上海市历年高考数学试题汇编:数列与极限
高考数学(理)题型步步衔接:专题 数列极限
【母题来源】2015上海卷理–18【母题原题】设(),n n n x y P 是直线21n x y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim1n n n y x →∞-=-( ) A .1-B .12-C .1D .2 【答案】A .【考点定位】本题考查极限的应用,属于中档题.【命题意图】本题考查求极限基础知识,考查数形结合思想、等价转化思想以及考生运算求解能力.【方法、技巧、规律】求数列极限方法:1.数列极限定义;2.恒等变形,化归为基本数列极限结论求解;3.求和或积的极限一般先求和或积,再求极限.【探源、变式、扩展】数列极限可通过具体解析式求解;若解析式不易求出,可等价转化为对应数列的极限,这时要用到一些法则(罗比特法则),要做一下等价变形,要明确基本数列极限是什么.有时需从极限含义出发,揭示数列极限的几何意义.【变式】若()1,112>∈⎪⎭⎫ ⎝⎛-n N n x n的展开式中4-x 的系数为,n a则⎪⎪⎭⎫⎝⎛+++∞→n n a a a 111lim 32 =.【答案】21.【上海市黄浦区2015届高三上学期期终调研测试】已知二项式*(12)(2,N )nx n n +≥∈的展开式中第3项的系数是A ,数列{}n a *(N )n ∈是公差为2的等差数列,且前n 项和为n S ,则limn nAS →∞=. 【答案】2考点:1.二项式定理;2.等差数列;3.数列的极限.2.【上海市五校2015届高三上学期联合教学质量调研】若无穷等比数列n a {}满足:4)(lim 21=+++∞→n n a a a ,则首项1a 的取值范围为.【答案】)8,4()4,0(⋃考点:无穷等比数列.3. 【上海市闸北区2014学年度第一学期高三数学】设*∈N n ,圆122141:()(1)41n n nC x y n +--+-=+的面积为n S ,则=+∞→n n S lim . 【答案】π4考点:极限及其运算.4. 【2014~2015学年第一学期普陀区高三质量调研卷】.若1lim =+∞→an ann ,则常数=a .【答案】1考点:极限的运算.5. 【虹口区2014学年第一学期高三期终教学质量监测试卷】若数列{}n a 为等差数列,且 12341,21a a a a =++=,则122limnn a a a n →∞+++=.【答案】1.5考点:极限的运算.6. 【青浦区2014学年第一学期高三期终学习质量调研测试】.已知1cos22n n n a π=,则无穷数列{}n a 前n 项和的极限为. 【答案】51-【考点】无穷递缩等比数列的各项和公式7. 已知()),,2,1,0(0,2log 0,112*∈≥≠>⎪⎩⎪⎨⎧≥+<+-=N n n m m x x C x xx x f n n m 若()x f 在0=x 处连续,则m 的值为() (A)81(B)41 (C) 21(D) 2 【答案】B考点:函数连续性8. 已知两点O (0,0),Q (a ,b ),点P 1是线段OQ 的中点,点P 2是线段QP 1的中点,P 3是线段P 1P 2的中点,┅,2+n P 是线段n P 1+n P 的中点,则点n P 的极限位置应是 ( ) A .(2a ,2b ) B.(3,3b a ) C.(32,32b a ) D. (43,43b a ) 【答案】C考点:1.等比数列前n 项和;2.求极限值.9. 数列{}n a 中,22211100010012n n n a n n n n⎧⎪⎪=⎨⎪⎪-⎩,≤≤,,≥, 则数列{}n a 的极限值( ) A.等于0 B.等于1 C.等于0或1 D.不存在 【答案】B考点:1.等比数列前n 项和;2.求极限值.10. 设⎪⎩⎪⎨⎧∈≥∈≤≤=-.N ,3,31,N ,21,21n n n n a n n n 数列{}n a 的前n 项和为n S ,则=∞→n n S lim ___________.【答案】5518. 考点:1.等比数列前n 项和;2.求极限值.。
上海历年高考经典真题专题汇编数列专题
a5 a3
【答案】 17
9
【解析】 S5
3S3
5 2
a1
a5
3
3 2
a1
a3
d
4a1 ,所以 a5
17a1 , a3
9a1 ,所以
a5 a3
17 9
6、(杨浦区 2016 届高三三模)若两整数 a 、 b 除以同一个整数 m ,所得余数相同,即 a b k (k Z ) , m
(2)根据bn 的公差为 20
,cn 的公比为
1 3
,写出通项公式,从而可得
an
bn
cn
20n
19
35n
.
通过计算 a1
a5
82 ,
a2
48 , a6
304 3
, a2
a6 ,即知an 不具有性质 .
(3)从充分性、必要性两方面加以证明,其中必要性用反证法证明.
第 7 页 /共 25 页
有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴!
,
有
其中k为使 an1 为奇数的正整数. 若存在
,
当n>m且 an 为奇数时, an 恒为常数p,则p的值为
14、(奉贤区 2016 届高三上学期期末)数列{an} 是等差数列, a2 和 a2014 是方程 5x 2 6x 1 0 的两根,则数 列{an}的前 2015 项的和为__________.
充分性得证.
必要性:
用反证法证明.假设bn 不是常数列,则存在 k ,
使得 b1 b2 bk b ,而 bk1 b .
下面证明存在满足 an1 bn sin an 的 an ,使得 a1 a2 ak1 ,但 ak2 ak1 .
上海市2024年高考二模分类汇编:数列
数列汇编一、题型一:等差数列及其求和1.(23-24高三下·上海浦东新·期中)设()()101100,10Z m m m m m f x a x a x a x a a m m --=++++≠≥∈ ,,记()()1n n f x f x -'=(1,2,,1)n m =-L ,令有穷数列n b 为()n f x 零点的个数()1,2,,1n m =- ,则有以下两个结论:①存在()0f x ,使得n b 为常数列;②存在()0f x ,使得n b 为公差不为零的等差数列.那么()A .①正确,②错误B .①错误,②正确C .①②都正确D .①②都错误2.(2024·上海松江·二模)已知等差数列{}n a 的公差为2,前n 项和为n S ,若35a S =,则使得n n S a <成立的n 的最大值为.3.(2024·上海杨浦·二模)已知实数a 满足:①[0,2π)a ∈;②存在实数,(2π)b c a b c <<<,使得a ,b ,c 是等差数列,cos b ,cos a ,cos c 也是等差数列.则实数a 的取值范围是.4.(2024·上海杨浦·二模)某钢材公司积压了部分圆钢,经清理知共有2024根,每根圆钢的直径为10厘米.现将它们堆放在一起.若堆成纵断面为等腰梯形(如图每一层的根数比上一层根数多1根),且为考虑安全隐患,堆放高度不得高于32米,若堆放占用场地面积最小,则最下层圆钢根数为.5.(2024·上海黄浦·二模)已知数列{}n a 是给定的等差数列,其前n 项和为n S ,若9100a a <,且当0m m =与0n n =时,m n S S -{}()*,|30,m n x x x ∈≤∈N 取得最大值,则00m n -的值为.6.(23-24高三下·上海浦东新·期中)已知等差数列{}n a 满足1612a a +=,47a =,则3a =.7.(2024·上海崇明·二模)若等差数列{}n a 的首项11a =,前5项和525S =,则5a =.8.(2024·上海虹口·二模)已知等差数列{}n a 满足25a =,9672a a +=.(1)求{}n a 的通项公式;(2)设数列{}n b 前n 项和为n S ,且221n n n b a a +=-,若432m S >,求正整数m 的最小值.二、题型二:等比数列及其求和9.(2024·上海松江·二模)设n S 为数列{}n a 的前n 项和,有以下两个命题:①若{}n a 是公差不为零的等差数列且N k ∈,2k ≥,则12210k S S S -⋅= 是120k a a a ⋅= 的必要非充分条件;②若{}n a 是等比数列且N k ∈,2k ≥,则120k S S S ⋅= 的充要条件是10k k a a ++=.那么()A .①是真命题,②是假命题B .①是假命题,①是真命题C .①、②都是真命题D .①、②都是假命题10.(2024·上海普陀·二模)设n S 是数列{}n a 的前n 项和(1,N)n n ≥∈,若数列{}n a 满足:对任意的2n ≥,存在大于1的整数m ,使得()()10m n m n S a S a +--<成立,则称数列{}n a 是“G 数列”.现给出如下两个结论:①存在等差数列{}n a 是“G 数列”;②任意等比数列{}n a 都不是“G 数列”.则()A .①成立②成立B .①成立②不成立C .①不成立②成立D .①不成立②不成立11.(2024·上海青浦·二模)设n S 是首项为1a ,公比为q 的等比数列{}n a 的前n 项和,且202320252024S S S <<,则().A .10a >B .0q >C .1n S a ≤D .n S q<12.(2024·上海长宁·二模)设数列{}n a 的前n 项和为n S ,若存在非零常数c ,使得对任意正整数n ,都有n a c =+,则称数列{}n a 具有性质p :①存在等差数列{}n a 具有性质p ;②不存在等比数列{}n a 具有性质p ;对于以上两个命题,下列判断正确的是()A .①真②真B .①真②假C .①假②真D .①假②假13.(2024·上海普陀·二模)设等比数列{}n a 的公比为(1,N)q n n ≥∈,则“212a ,4a ,32a 成等差数列”的一个充分非必要条件是.14.(2024·上海普陀·二模)设k ,m ,n 是正整数,n S 是数列{}n a 的前n 项和,12a =,11n n S a +=+,若()11ki i i m t S ==-∑,且{0,1}i t ∈,记12()k f m t t t =+++ ,则(2024)f =.15.(2024·上海徐汇·二模)已知数列{}n a 的前n 项和为n S ,若3122n n S a =-(n 是正整数),则5a =.16.(2024·上海杨浦·二模)各项为正的等比数列{}n a 满足:12a =,2312a a +=,则通项公式为n a =.17.(2024·上海静安·二模)已知等比数列的前n 项和为12nn S a ⎛⎫=+ ⎪⎝⎭,则a 的值为.18.(2024·上海金山·二模)设公比为2的等比数列{}n a 的前n 项和为n S ,若202420226S S -=,则2024a =.19.(2024·上海奉贤·二模)已知{}n a 是公差d =2的等差数列,其前5项和为15,{}n b 是公比q 为实数的等比数列,11b =,426b b -=.(1)求{}n a 和{}n b 的通项公式;(2)设()221,na n n cb n n =+≥∈N ,计算1ni i c =∑.三、题型三:数列极限及新定义问题20.(2024·上海虹口·二模)已知等比数列{}n a 是严格减数列,其前n 项和为12,n S a =,若123,2,3a a a 成等差数列,则lim n n S →∞=.21.(2024·上海黄浦·二模)设数列{}n a 的前n 项和为n S ,若对任意的*N n ∈,n S 都是数列{}n a 中的项,则称数列{}n a 为“T 数列”.对于命题:①存在“T 数列”{}n a ,使得数列{}n S 为公比不为1的等比数列;②对于任意的实数1a ,都存在实数d ,使得以1a 为首项、d 为公差的等差数列{}n a 为“T 数列”.下列判断正确的是()A .①和②均为真命题B .①和②均为假命题C .①是真命题,②是假命题D .①是假命题,②是真命题22.(2024·上海徐汇·二模)已知各项均不为0的数列{}n a 满足2211n n n n n a a a a a +++=+(n 是正整数),121a a ==,定义函数11()1(0)!nkn k y f x x x k ===+≥∑,e 是自然对数的底数.(1)求证:数列1n n a a +⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)记函数()n y g x =,其中()1e ()x n n g x f x -=-.(i )证明:对任意0x ≥,3430()()()≤≤-g x f x f x ;(ii )数列{}n b 满足12n n nb a -=,设n T 为数列{}n b 的前n 项和.数列{}n T 的极限的严格定义为:若存在一个常数T ,使得对任意给定的正实数u (不论它多么小),总存在正整数m 满足:当n m ≥时,恒有n T T u -<成立,则称T 为数列{}n T 的极限.试根据以上定义求出数列{}n T 的极限T .23.(2024·上海青浦·二模)若无穷数列{}n a 满足:存在正整数T ,使得n T n a a +=对一切正整数n 成立,则称{}n a 是周期为T 的周期数列.(1)若ππsin 3n n a m ⎛⎫=+ ⎪⎝⎭(其中正整数m 为常数,N,1n n ∈≥),判断数列{}n a 是否为周期数列,并说明理由;(2)若1sin (N,1)n n n a a a n n +=+∈≥,判断数列{}n a 是否为周期数列,并说明理由;(3)设{}n b 是无穷数列,已知1sin (N,1)n n n a b a n n +=+∈≥.求证:“存在1a ,使得{}n a 是周期数列”的充要条件是“{}n b 是周期数列”.24.(23-24高三下·上海浦东新·期中)已知函数()y f x =及其导函数()y f x '=的定义域均为D .设0x D ∈,曲线()y f x =在点()()00,x f x 处的切线交x 轴于点()1,0x .当1n ≥时,设曲线()y f x =在点()(),n n x f x 处的切线交x 轴于点()1,0n x +.依此类推,称得到的数列{}n x 为函数()y f x =关于0x 的“N 数列”.(1)若()ln f x x =,{}n x 是函数()y f x =关于01ex =的“N 数列”,求1x 的值;(2)若()24f x x =-,{}n x 是函数()y f x =关于03x =的“N 数列”,记32log 2n n n x a x +=-,证明:{}n a 是等比数列,并求出其公比;(3)若()2xf x a x =+,则对任意给定的非零实数a ,是否存在00x ≠,使得函数()y f x =关于0x 的“N 数列”{}n x 为周期数列?若存在,求出所有满足条件的0x ;若不存在,请说明理由.参考答案一、题型一:等差数列及其求和1.(23-24高三下·上海浦东新·期中)设()()101100,10Z m m m m m f x a x a x a x a a m m --=++++≠≥∈ ,,记()()1n n f x f x -'=(1,2,,1)n m =-L ,令有穷数列n b 为()n f x 零点的个数()1,2,,1n m =- ,则有以下两个结论:①存在()0f x ,使得n b 为常数列;②存在()0f x ,使得n b 为公差不为零的等差数列.那么()A .①正确,②错误B .①错误,②正确C .①②都正确D .①②都错误【答案】C【分析】对于①,列举()0mf x x =验证,对于②,列举()()()()012f x x x x m =--- 验证.【详解】当()0mf x x =时,()()110m f x f x mx '-==,此时11b =,()()()2211m f x f x m m x '-==-,此时21b =,⋯()()()()12122m m f x f x m m m x '--==--⨯⨯ ,此时11m b -=,故存在()0f x ,使n b 为常数列;①正确;设()()()()012f x x x x m =--- ,则()0f x 有m 个零点1,2,3,,m ,则()1f x 在()()()1,2,2,3,,1,m m - 的每个区间内各至少一个零点,故()1f x 至少有1m -个零点,因为是一个1m -次函数,故最多有1m -个零点,因此()1f x 有且仅有1m -个零点,同理,()2f x 有且仅有2m -个零点,L ,()k f x 有且仅有m k -个零点,故n b m n =-,所以{}n b 是公差为1-的等差数列,故②正确.故选:C.2.(2024·上海松江·二模)已知等差数列{}n a 的公差为2,前n 项和为n S ,若35a S =,则使得n n S a <成立的n 的最大值为.【答案】53.(2024·上海杨浦·二模)已知实数a 满足:①[0,2π)a ∈;②存在实数,(2π)b c a b c <<<,使得a ,b ,c 是等差数列,cos b ,cos a ,cos c 也是等差数列.则实数a 的取值范围是.4.(2024·上海杨浦·二模)某钢材公司积压了部分圆钢,经清理知共有2024根,每根圆钢的直径为10厘米.现将它们堆放在一起.若堆成纵断面为等腰梯形(如图每一层的根数比上一层根数多1根),且为考虑安全隐患,堆放高度不得高于32米,若堆放占用场地面积最小,则最下层圆钢根数为.【答案】134【分析】由题设信息,第一层有m根,共有n层,利用等差数列前n项和公式列出关系式,再借助整除的思想分析计算得解.【详解】设第一层有m根,共有n层,则(1)20242nn nS nm-=+=,4(21)404821123n m n+-==⨯⨯,显然n和21m n+-中一个奇数一个偶数,则1121368nm n=⎧⎨+-=⎩或1621253nm n=⎧⎨+-=⎩或23176nm=⎧⎨=⎩,即11179nm=⎧⎨=⎩或16119nm=⎧⎨=⎩或2377nm=⎧⎨=⎩,显然每增加一层高度增加53厘米,当11179nm=⎧⎨=⎩时,10531096.6h=⨯+≈厘米150<厘米,此时最下层有189根;当16119nm=⎧⎨=⎩时,155310139.9h=⨯+≈厘米150<厘米,此时最下层有134根;当2377nm=⎧⎨=⎩时,225310200.52150h=⨯+≈>厘米,超过32米,所以堆放占用场地面积最小时,最下层圆钢根数为134根.故答案为:1345.(2024·上海黄浦·二模)已知数列{}n a是给定的等差数列,其前n项和为n S,若9100a a<,且当m m=与0n n=时,m nS S-{}()*,|30,m n x x x∈≤∈N取得最大值,则00m n-的值为.【答案】21【分析】不妨设数列{}n a的公差大于零,不妨取m n>,则1mm n ii nS S a=+-=∑,设3030910iik S S a==-=∑,再分9,30n m>=和9,30n m<=两种情况讨论,可得出n的值,再讨论30m<,即可求出0m,即可得解.【详解】不妨设数列{}n a的公差大于零,6.(23-24高三下·上海浦东新·期中)已知等差数列{}n a 满足1612a a +=,47a =,则3a =.【答案】5【分析】由等差数列的性质可得.【详解】因为{}n a 是等差数列,所以1634a a a a +=+,则有3127a =+,解得35a =.故答案为:5.7.(2024·上海崇明·二模)若等差数列{}n a 的首项11a =,前5项和525S =,则5a =.【答案】9【分析】根据题意,利用等差数列的求和公式,列出方程,即可求解.【详解】因为等差数列{}n a 的首项11a =,前5项和525S =,由等差数列的求和公式,可得15555()5(1)2522a a a S ⨯+⨯+===,解得59a =.故答案为:9.8.(2024·上海虹口·二模)已知等差数列{}n a 满足25a =,9672a a +=.(1)求{}n a 的通项公式;(2)设数列{}n b 前n 项和为n S ,且221n n n b a a +=-,若432m S >,求正整数m 的最小值.【答案】(1)21n a n =+(2)10【分析】(1)设等差数列{}n a 的公差为d ,依题意根据等差数列通项公式得到关于1a 、d 的方程组,解得即可求出通项公式;(2)由(1)可得22188n n n b a a n +=-=+,利用等差数列求和公式求出n S ,再解不等式即可.【详解】(1)设等差数列{}n a 的公差为d ,则1115872(5)a d a d a d +=⎧⎨++=+⎩,解得132a d =⎧⎨=⎩,故1(1)21n a a n d n =+-=+;(2)由(1)可得123n a n +=+,则22221(23)(21)88n n n b a a n n n +=-=+-+=+,所以18(2)n n b b n --=≥,则数列{}n b 是以116b =为首项,8为公差的等差数列,故()216884122n n n S n n++==+,因为432m S >,所以2412432m m +>,所以4(12)(9)0m m +->,所以9m >或12m <-,因为N*m ∈,所以9m >,所以m 的最小值是10.二、题型二:等比数列及其求和9.(2024·上海松江·二模)设n S 为数列{}n a 的前n 项和,有以下两个命题:①若{}n a 是公差不为零的等差数列且N k ∈,2k ≥,则12210k S S S -⋅= 是120k a a a ⋅= 的必要非充分条件;②若{}n a 是等比数列且N k ∈,2k ≥,则120k S S S ⋅= 的充要条件是10k k a a ++=.那么()A .①是真命题,②是假命题B .①是假命题,①是真命题C .①、②都是真命题D .①、②都是假命题分析得解.10.(2024·上海普陀·二模)设n S 是数列{}n a 的前n 项和(1,N)n n ≥∈,若数列{}n a 满足:对任意的2n ≥,存在大于1的整数m ,使得()()10m n m n S a S a +--<成立,则称数列{}n a 是“G 数列”.现给出如下两个结论:①存在等差数列{}n a 是“G 数列”;②任意等比数列{}n a 都不是“G 数列”.则()A .①成立②成立B .①成立②不成立C .①不成立②成立D .①不成立②不成立【答案】D【分析】由题意可得任意的n ≥2,存在大于1的整数m ,使得1n m n a S a +<<,对命题①,分公差0d >或0d <两种情况讨论可判断结论,对于②,举例如2n n a =,可判断结论.【详解】由“G 数列”的定义,对任意的n ≥2,存在大于1的整数m ,使得1()()0m n m n S a S a +--<,成立,则对任意的n ≥2,存在大于1的整数m ,使得1n m n a S a +<<,对于命题①不成立,理由如下:假设存在11n m n m a S a S ++<<<< ,当0d >时,总存在2k a d >,由于对任意正整数n ,有1n n a a d +-=,所以总存在正整数k ,使得1k S -与1S 2k k S d -->,所以不会存在112n k n k n a S a S a -++<<<<,当0d <时,总存在2k a d <,由于对任意正整数n ,有1n n a a d +-=,所以总存在正整数k ,使得1k S -与1S 2k k S d --<,所以不会存在112n k n k n a S a S a -++<<<<,对于命题②不成立,理由如下:举例说明:如2n n a =,有122n n S +=-,因为1n m n a S a +<<,所以112222n m n ++<-<,可以取m n =,就可以保证不等式成立,综上所述:①不成立,②不成立.故选:D.【点睛】考查新定义题型,考查转化思想与阅读理解能力,以及分类讨论思想的应用.11.(2024·上海青浦·二模)设n S 是首项为1a ,公比为q 的等比数列{}n a 的前n 项和,且202320252024S S S <<,则().A .10a >B .0q >C .1n S a ≤D .n S q<12.(2024·上海长宁·二模)设数列{}n a 的前n 项和为n S ,若存在非零常数c ,使得对任意正整数n ,都有n a c =+,则称数列{}n a 具有性质p :①存在等差数列{}n a 具有性质p ;②不存在等比数列{}n a 具有性质p ;对于以上两个命题,下列判断正确的是()A .①真②真B .①真②假C .①假②真D .①假②假【答案】B【分析】直接构造21n a n =-和()11n n a -=-,说明存在等差数列{}n a 具有性质p ,且存在等比数列{}n a 具有性质p ,从而得到①真②假.【详解】一方面,对21n a n =-,知{}n a 是等差数列.而()211212n S n n n =⋅+-=,令1c =就有22211n n S n n a c ==-+=+,所以{}n a 具有性质p ,这表明存在等差数列{}n a 具有性质p ;另一方面,对()11n n a -=-,知{}n a 是等比数列.当n 为奇数时,1n a =;n 为偶数时,1n a =-.故当n 为奇数时,1n S =;n 为偶数时,0n S =.故当n 为奇数时,22111n n S a ==+=+;n 为偶数时,20111n n S a ==-+=+.这表明21n n S a =+恒成立,再令1c =就有2n n S a c =+,所以{}n a 具有性质p ,这表明存在等比数列{}n a 具有性质p .综上,①正确,②错误,故B 正确.故选:B.【点睛】关键点点睛:构造21n a n =-和()11n n a -=-作为例子,直接判断命题的真假,是判断选项正确性的简单有效的方法.13.(2024·上海普陀·二模)设等比数列{}n a 的公比为(1,N)q n n ≥∈,则“212a ,4a ,32a 成等差数列”的一个充分非必要条件是.【答案】3q =(或2q =-,答案不唯一)【分析】根据已知条件,结合等差数列、等比数列的性质,即可求解.【详解】212a ,4a ,32a 成等差数列,则4232122a a a =+,即26q q =+,解得3q =或2q =-,故“212a ,4a ,32a 成等差数列”的一个充分非必要条件是3q =(或2)q =-.故答案为:3q =(或2q =-,答案不唯一)14.(2024·上海普陀·二模)设k ,m ,n 是正整数,n S 是数列{}n a 的前n 项和,12a =,11n n S a +=+,若()11ki i i m t S ==-∑,且{0,1}i t ∈,记12()k f m t t t =+++ ,则(2024)f =.【答案】7【分析】根据数列递推式求出{}n a 的通项,从而可得i S ,进而可得m ,根据12()k f m t t t =+++ ,即可求出(2024)f .15.(2024·上海徐汇·二模)已知数列{}n a 的前n 项和为n S ,若22n n S a =-(n 是正整数),则5a =.16.(2024·上海杨浦·二模)各项为正的等比数列{}n a 满足:12a =,2312a a +=,则通项公式为n a =.【答案】2n【分析】利用给定条件,求出等比数列{}n a 的公比,再写出通项公式.【详解】设正项等比数列{}n a 的公比为,0q q >,由12a =,2312a a +=,得21112a q a q +=,则260q q +-=,解得2q =,所以112n nn a a q -==.故答案为:2n17.(2024·上海静安·二模)已知等比数列的前n 项和为12nn S a ⎛⎫=+ ⎪⎝⎭,则a 的值为.【答案】1-【分析】根据题意,分别求得112a a =+,214a =-,318a =-,结合2213a a a =,列出方程,即可求解.【详解】由等比数列的前n 项和为12nn S a ⎛⎫=+ ⎪⎝⎭,可得1112a S a ==+,22111()2414a S a S a ==+-=--+,33211()4818a S a S a ==+-=--+,所以2111()()()428a -=+⨯-,解得1a =-,经检验符合题意.故答案为:1-.18.(2024·上海金山·二模)设公比为2的等比数列{}n a 的前n 项和为n S ,若202420226S S -=,则2024a =.【答案】4【分析】根据等比数列的通项公式及前n 项和的概念计算即可得解.【详解】因为20242022202420232023(1)6S S a a a q -=+=⋅+=,所以20232a =,故20242023224a a q =⋅=⨯=.故答案为:419.(2024·上海奉贤·二模)已知{}n a 是公差d =2的等差数列,其前5项和为15,{}n b 是公比q 为实数的等比数列,11b =,426b b -=.(1)求{}n a 和{}n b 的通项公式;(2)设()221,na n n cb n n =+≥∈N ,计算ni c ∑.【答案】(1)23n a n =-,12n n b -=;(2)()5416n-.三、题型三:数列极限及新定义问题20.(2024·上海虹口·二模)已知等比数列{}na 是严格减数列,其前n 项和为12,n S a =,若123,2,3a a a 成等差数列,则lim n n S →∞=.21.(2024·上海黄浦·二模)设数列{}n a 的前n 项和为n S ,若对任意的*N n ∈,n S 都是数列{}n a 中的项,则称数列{}n a 为“T 数列”.对于命题:①存在“T 数列”{}n a ,使得数列{}n S 为公比不为1的等比数列;②对于任意的实数1a ,都存在实数d ,使得以1a 为首项、d 为公差的等差数列{}n a 为“T 数列”.下列判断正确的是()A .①和②均为真命题B .①和②均为假命题C .①是真命题,②是假命题D .①是假命题,②是真命题【答案】A【分析】根据题意,结合“T 数列”的定义,举出实例说明①②,即可得出答案.【详解】对于命题①,对于数列{}n a ,令21,12,2n n n a n -=⎧=⎨≥⎩,则11,12,2n n n S n -=⎧=⎨≥⎩,数列{}n S 为公比不为1的等比数列,当1n =时,11S =是数列{}n a 中的项,当2n ≥时,12n n S -=是数列{}n a 中的项,所以对任意的*N n ∈,n S 都是数列{}n a 中的项,故命题①正确;对于命题②,等差数列{}n a ,令1a d =-,则()()112n a a n d n d =+-=-,则()()()123222n n n d n d n a a n n S d ⎡⎤-+-+-⎣⎦===,因为21n -≥-且2Z n -∈,()2313912228n n n -⎛⎫=--≥- ⎪⎝⎭,且()3N*,Z 2n n n -∈∈,所以对任意的*N n ∈,n S 都是数列{}n a 中的项,所以对于任意的实数1a ,都存在实数d ,使得以1a 为首项、d 为公差的等差数列{}n a 为“T 数列”,故命题②正确;故选:A.22.(2024·上海徐汇·二模)已知各项均不为0的数列{}n a 满足2211n n n n n a a a a a +++=+(n 是正整数),121a a ==,定义函数11()1(0)!nkn k y f x x x k ===+≥∑,e 是自然对数的底数.(1)求证:数列1n n a a +⎧⎫⎨⎬⎩⎭是等差数列,并求数列{}n a 的通项公式;(2)记函数()n y g x =,其中()1e ()x n n g x f x -=-.(i )证明:对任意0x ≥,3430()()()≤≤-g x f x f x ;(ii )数列{}n b 满足12n n nb a -=,设n T 为数列{}n b 的前n 项和.数列{}n T 的极限的严格定义为:若存在一个常数T ,使得对任意给定的正实数u (不论它多么小),总存在正整数m 满足:当n m ≥时,恒有n T T u -<成立,则称T 为数列{}n T 的极限.试根据以上定义求出数列{}n T 的极限T .再证:343()()()≤-g x f x f x .又434()()4!-=f x f x x ,记334()()4!=-g x h x x ,则()()3333!''=-x h x g x ()3e 13!x x -=-,由0,e 10x x -≥-≤,故()30h x '≤且仅当0x =时等号成立,于是()3h x 在[)0,+∞上是严格减函数,故()()3300h x h ≤=,于是()4304!≤≤x g x ,证毕.(ii )由题意知,()2112221(2)1!2!1!--=++++=- n n n f T n ,下面研究()n y f x =.将(i )推广至一般情形.()111111e !1!n n k k k k xn g x x x k k -=-=⎡⎤⎛⎫'=-⎥⎛+⎢ ⎪⎝⎭⎭⎣ ⎝⎦⎫+⎪∑∑e !n x x n -=,由()*0,N ,e 0,!nxn x x n g x n -'≥∈=≥当且仅当0x =时等号成立,于是()n g x 在[)0,+∞上是严格增函数,故()()00n n g x g ≥=成立.①再证:1()()()n n n g x f x f x +≤-.()11()(1)!n n n f x f x x n ++-=+,记()1!()()1n n n h x g x x n ++=-,则()()!n n n x h x g x n ''=-()1!nx xe n -=-,由*0,N ,e 10x x n -≥∈-≤,故()0nh x '≤当且仅当0x =时等号成立,于是()n h x 在[)0,+∞上是严格减函数,故()()00n n h x h ≤=,于是()()101!n n x g x n +≤≤+,所以,()1101!11e (1)!n nxk k x x k n -+=≤-+≤+∑,即对任意0x ≥,10()()()n n n g x f x f x +≤≤-.于是对2n ≥,110()()()≤≤---n n n g x f x f x ,整理得1(0e e !)-≤-≤n n xxf x x n ,令2x =,得12(2)20e e !-≤-≤n x n n f ,即22e 20e !n n T n ⋅≤-≤,故22e 2e !n n T n ⋅-≤.(方法一)当6n ≥时,(1)(2)5416n n --≥⨯>故44222[1(2)(1)][23(3)](1)!n n n n n n -=⨯<⋅-⋅-⋅⨯⨯⨯-=-…即2(1)!n n <-,23.(2024·上海青浦·二模)若无穷数列{}n a 满足:存在正整数T ,使得n T n a a +=对一切正整数n 成立,则称{}n a 是周期为T 的周期数列.(1)若ππsin 3n n a m ⎛⎫=+ ⎪⎝⎭(其中正整数m 为常数,N,1n n ∈≥),判断数列{}n a 是否为周期数列,并说明理由;(2)若1sin (N,1)n n n a a a n n +=+∈≥,判断数列{}n a 是否为周期数列,并说明理由;(3)设{}n b 是无穷数列,已知1sin (N,1)n n n a b a n n +=+∈≥.求证:“存在1a ,使得{}n a 是周期数列”的充要条件是“{}n b 是周期数列”.【答案】(1){}n a 是周期为2m 的周期数列,理由见解析(2)答案见解析(3)证明见解析【分析】(1)根据题设定义,利用sin y x =的周期,即可得出结果;(2)分()1πZ a k k =∈与()1πa k k Z ≠∈两种情况讨论,当()1πZ a k k =∈,易得到{}n a 是周期为1的周期数列,当()1πZ a k k ≠∈时,构造()sin f x x x =+,则1()n n a f a +=,利用导数与函数单调性间的关系,可得出{}n a是严格增(或减)数列,从而可得出结果;(3)根据条件,利用充要条件的证明方法,即可证明结果.【详解】(1)因为2ππππππsin (2)sin 2πsin 333n m n n n a n m a mm m +⎛⎫⎛⎫⎛⎫=++=++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以{}n a 是周期为2m 的周期数列.(2)①当12a a =时,1sin 0a =,()1πZ a k k =∈,所以当()1πZ a k k =∈时,{}n a 是周期为1的周期数列,②当()1πZ a k k ≠∈时,记()sin f x x x =+,则1()n n a f a +=,()1cos 0f x x '=+≥,当且仅当()()1121πZ x k k =+∈时等号成立,即()1cos 0f x x =+>',所以()f x 在R 上严格增,若12a a <,则12()()f a f a <,即23a a <,进而可得1234a a a a <<<< ,即{}n a 是严格增数列,不是周期数列;同理,若12a a >,可得{}n a 是严格减数列,不是周期数列.综上,当1π()a k k =∈Z 时,{}n a 是周期为1的周期数列;当1π()a k k ≠∈Z 时,{}n a 不是周期数列.(3)必要性:若存在1a ,使得{}n a 是周期数列,设{}n a 的周期为0T ,则00011sin sin n T n T n T n n n b a a a a b +++++=-=-=,所以{}n b 是周期为0T 的周期数列,充分性:若{}n b 是周期数列,设它的周期为T ,记1a x =,则10()a f x x==211()sin a f x b x ==+,是关于x 的连续函数;3221()sin ()a f x b f x ==+,是关于x 的连续函数;…1()T T a f x -=,是关于x 的连续函数;11sin ()T T T a b f x +-=+,令1()sin ()T T g x x b f x -=--,则()g x 是连续函数,且1(2)2sin ()0T T g b f x -+=->,1(2)2sin ()0T T g b f x --=--<,所以()g x 存在零点c ,于是1sin ()0T T c b f c ---=,取1a c =,则111sin ()T T T a b f c c a +-=+==,从而211112sin sin T T T a b a b a a +++=+=+=,322223sin sin T T T a b a b a a +++=+=+=,……一般地,n T n a a +=对任何正整数n 都成立,即{}n a 是周期为T 的周期数列.(说明:关于函数连续性的说明不作要求)【点睛】方法点晴:对于数列的新定义问题,解决问题的关键在于准确理解定义,并结合定义进行判断或转化条件.24.(23-24高三下·上海浦东新·期中)已知函数()y f x =及其导函数()y f x '=的定义域均为D .设0x D ∈,曲线()y f x =在点()()00,x f x 处的切线交x 轴于点()1,0x .当1n ≥时,设曲线()y f x =在点()(),n n x f x 处的切线交x 轴于点()1,0n x +.依此类推,称得到的数列{}n x 为函数()y f x =关于0x 的“N 数列”.(1)若()ln f x x =,{}n x 是函数()y f x =关于01ex =的“N 数列”,求1x 的值;(2)若()24f x x =-,{}n x 是函数()y f x =关于03x =的“N 数列”,记32log 2n n n x a x +=-,证明:{}n a 是等比数列,并求出其公比;(3)若()2x f x a x=+,则对任意给定的非零实数a ,是否存在00x ≠,使得函数()y f x =关于0x 的“N 数列”{}n x 为周期数列?若存在,求出所有满足条件的0x ;若不存在,请说明理由.求出函数的单调区间,进而可得出结论.【详解】(1)由()ln f x x =,得()1f x x'=,因为01ex =,则()()001,e f x f x -'==,所以曲线()y f x =在点()()00,x f x 的切线方程为()11e e y x ⎛⎫--=- ⎪⎝⎭,令0y =,则2ex =,所以12ex =;(2)由()24f x x =-,得()2f x x '=,于是曲线()y f x =在点()(),n n x f x 处的切线方程为()()242n n n y x x x x --=-,令0y =,则2142n n nx x x x ++==,由题意得到2113332142222log log 2log 242222n n n n n n n n n nx x x x a a x x x x +++++++====+---,所以12n n a a +=,又因为0113333102232log 2log 2log 2log 52232x x a x x +++====---,所以数列{}n a 是以32log 5为首项,2为公比的等比数列;(3)由()2x f x a x =+,得()()222a x f x a x -'=+,所以曲线()y f x =在点()(),n n x f x 处的切线方程为()()2222n n n n n x a x y x x a x a x --=-++,令0y =,则3122n n n x x x x a+==-,设特征函数为()322x g x x a =-,则()()()()224222222326x x a x ax g x x a x a -'-==--,情况1:当a<0时,则()(),,x a a ∞∞∈---⋃-+,此时()()()2222230x x a g x x a --'=≥,所以函数()g x 在定义域内为增函数,情况2:当0a >时,x 令()0g x '>,得3x >令()0g x '<,得3a -所以不可能为0,所以数列不可能为周期数列;若k 为奇数,()()121ki j j k k k i j x x x x x x +--==+++++∑ 中,每一个括号内的式子都与k x 是同号的,所以不可能为0,所以数列不可能为周期数列;当()(),,,,33n a a x a a a a ∞∞⎛⎫⎛⎫∈--⋃--⋃⋃+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭时,1n n x x +>,可得得到起初1,n n x x +是正负交替,但是以后会一直为正或负,所以不能成周期数列,故当0a >时,有13a x =±满足条件,使得数列成周期为2的周期数列,此时03a x =±,综上所述,存在03a x =±满足题意.【点睛】方法点睛:等比数列的两种判定方法:(1)定义法:1n na q a +=(常数)()N n *∈⇔数列{}n a 为等比数列;(2)等差中项法:()212N n n n a a a n *++=⋅∈⇔数列{}n a 为等比数列.。
(完整word版)2013-2018年上海高考试题汇编-数列.docx
(2)若无穷数列{bn}是等差数列,无穷数列
{cn}是公比为正数的等比数列,
b1c51,
b5
c181,anbn
cn判断{an}是否具有性质
P,并说明理由;
(3)设{bn}是无穷数列,已知an
1bn
sinan(n
N*).求证:“对任意a1,{an}都具有性
质P”的充要条件为“
{bn}是常数列”.
,L均是等比数列
,L均是等比数列,且公比相同
知识点6:等差数列与等比数列综合
(2016文22) 对 于 无 穷 数 列{an}与{bn}, 记A { x| xan,nN*},
B{ x| xbn,nN*},若同时满足条件:①{an},{bn}均单调递增;②A I B且
A U BN*,则称{an}与{bn}是无穷互补数列.
答案:(1)a316;(2)由于a1
a5,但a2a6,故an不具有性质P;
(3)证明:必要性: 若对于任意
a1,an
都具有性质P,则a2b1
sin a1,设函数
f x
x b1, g x
sin x,由f
x , g
x
图像可得, 对于 任意的b1,二者图像必有一个
交点,所以一定能 找到
a1,使得a1
b1
sin a1,所以a2b1sin a1a1,所以anan 1,
3
3
n
1, 2, L ,99
.
①当d
0
时,a99
a98
L
a2
a1
,所以0
d
2 a1,即
0
d
2
.
②当d
0
时,a99
a98
近五年上海高考分类汇编——数列与数学归纳法
近五年上海高考汇编——数列与数学归纳一、填空题1.(2009年上海高考文13)已知函数x x x f tan sin )(+=.项数为27的等差数列{}n a 满足⎪⎭⎫⎝⎛-∈22ππ,n a ,且公差0≠d . 若0)()()(2721=+⋯++a f a f a f ,则当k =_____时,0)(=k a f . 答案:14.2.( 2010年上海高考文12) 在n 行m 列矩阵12321234113*********n n n n n n n n n n ⋅⋅⋅--⎛⎫ ⎪⋅⋅⋅- ⎪⎪⋅⋅⋅⎪⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎪ ⎪⋅⋅⋅---⎝⎭中, 记位于第i 行第j 列的数为(,1,2,)ij a i j n =⋅⋅⋅,当9n =时,11223399a a a a +++⋅⋅⋅+= .答案:453.(2010年上海高考文14)将直线1:10l x y +-=、2:0l nx y n +-=、3:0l x ny n +-= (*n N ∈,2n ≥)围成的三角形面积记为n S ,则lim n n S →∞=答案:124.(2010年上海高考理11)将直线2:0l nx y n +-=、3:0l x ny n +-=(*n N ∈,2n ≥)x 轴、y 轴围成的封闭图形的面积记为n S ,则lim n n S →∞=答案:15.(2011年上海高考文2)3lim(1)3n nn →∞-=+ 答案:2-6.(2011年上海高考理14)已知点(0,0)O 、0(0,1)Q 和0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10PR 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q 、2R ,使之满足22(||2)(||2)0OQ OR --<;依次下去,得到点12,,,,n P P P ,则0l im||n n Q P →∞= 答案:37.(2012年上海高考理6/文7)有一列正方体,棱长组成以1为首项、21为公比的等比数列,体积分别记为 ,,,,n V V V 21,则=+++∞→)(lim 21n n V V V .答案:878.(2012年上海高考文14)已知1()1f x x=+,各项均为正数的数列{}n a 满足11a =,2()n n a f a +=,若20102012a a =,则2011a a +的值是 .答案:3+135269. (2013年上海高考理1)计算:20lim313n n n →∞+=+ .答案:1310.(2013年上海高考理10)设非零常数d 是等差数列12319,,,,x x x x 的公差,随机变量ξ 等可能地取值12319,,,,x x x x ,则方差D ξ= .答案:230d11.(2013年上海高考文2)在等差数列{}n a 中,若123430a a a a +++=,则23a a += .答案:15二、选择题12.(2011年上海高考理18)设{}n a 是各项为正数的无穷数列,i A 是边长为1,i i a a +的矩形面积(1,2,i = ),则{}n A 为等比数列的充要条件为 ( )A {}n a 是等比数列B 1321,,,,n a a a - 或242,,,,n a a a 是等比数列C 1321,,,,n a a a - 和242,,,,n a a a 均是等比数列D 1321,,,,n a a a - 和242,,,,n a a a 均是等比数列,且公比相同答案:D13.(2012年上海高考文18)若2sinsin...sin 777n n S πππ=+++(n N *∈),则在12100,,...,S S S 中,正数的个数是( )A .16 B.72 C.86 D.100 答案:C14.(2012年上海高考理18)设25sin 1πn n a n =,n n a a a S +++= 21,在10021,,,S S S 中,正数的个数是( ) A .25 B .50 C .75 D .100答案:D15.(2013年上海高考理17)在数列{}n a 中,21n n a =-.若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j c a a a a =⋅++(1,2,,7i = ;1,2,,12j = ),则该矩阵元素能取到的不同数值的个数为( ). A .18 B. 28 C. 48 D. 63答案:A16.(2013年上海高考文18)记椭圆221441x ny n +=+围成的区域(含边界)为(1,2,)n n Ω= ,当点(,)x y 分别在12,,ΩΩ 上时,x y +的最大值分别是12,,M M ,则lim n n M →∞=( ).A. 0B.14C. 2D. 22 答案:D三、解答题17.(2009年上海高考文23)已知{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列(1)若31n a n =+,是否存在*m k N ∈、,有1?m m k a a a ++=请说明理由;(2)若b n =aq n (a 、q 为常数,且aq ≠0),对任意m 存在k ,有b m ·b m+1=b k ,试求a 、q 满足的充要条件; (3)若a n =2n +1,b n =3n ,试确定所有的p ,使数列{b n }中存在某个连续p 项的和是{a n }中的一项,请证明. 解:(1)由1,m m k a a a ++=得6631m k +++,整理后,可得42,3k m -=m 、k N ∈,2k m ∴-为整数∴不存在n 、k N *∈,使等式成立。
上海市历年高考数学试题汇编:数列与极限(无答案)
上海市历年高考数学试题汇编:数列与极限(无答
案)
上海市03-08 年高考数学试题汇编
数列与极限
(一)填空题
1、计算:=__________。
(05 上海理)
2、计算:= .
3.计算.(07 上海春)
4、计算:.(06 上海春)
5、. (05 上海春)
6、计算:=.(06 上海理)
7、计算:.(08 上海春)
8、在等差数列中,a5=3, a6=-2,则a4+a5+...+a10= . (03 上海理)
9、已知数列是公差不为零的等差数列,. 若成等比数列,则
.(08 上海春)
10、已知无穷数列前项和,则数列的各项和为.
(08 上海春)
11、若首项为a1,公比为q 的等比数列的前n 项和总小于这个数列的各项和,则首项a1,公比q 的一组取值可以是(a1,q)= . (03 上海理)
12、设等比数列{an}(n∈N)的公比q=-,且(a1+a3+a5+...+a2n-1)=,
则a1=.(04 上海理)。
历届上海高考中的数列试题选(附答案)
历届上海高考中的数列试题选一. 填空题 1.(05春2) =++++∞→nn n 212lim0 .2.(06春1)计算:=+-∞→3423lim n n n ; (06,4)计算:23(1)______61lim n n n n →∞+=+。
3.(07春1)计算=++∞→)1(312lim 2n n n n ;(06,4(理))计算:1lim 33+∞→n C n n = .解:33223333321(1)(2)321lim lim limlim 161(1)3!(1)3!(1)3!n n n n n C n n n n n n n n n n n n→∞→∞→∞→∞-+---+====++++; 4.(08春2)计算:131lim 32n n n n +→∞+=+ . 13(02文5)在二项式nx )31(+和nx )52(+的展开式中,各项系数之和分别记为n a 、n b ,n 是正整数,则nn n n n b a b a 432lim--∞→= 。
21(03文理3)在等差数列}{n a 中,a 5=3, a 6=-2,则a 4+a 5+…+a 10= .-49(08春5)已知数列{}n a 是公差不为零的等差数列,11a =. 若125a a a 、、成等比数列,则n a = .21n a n =-5.(08春9)已知无穷数列{}n a 前n 项和113n n S a =-,则数列{}n a 的各项和为 . 1-. (02文11)若数列}{n a 中,211,3n n a a a ==+且(n 是正整数),则数列的通项=n a 。
123-n6.(05春9)设数列{}n a 的前n 项和为n S (N ∈n ). 关于数列{}n a 有下列三个命题: (1)若{}n a 既是等差数列又是等比数列,则)(1N ∈=+n a a n n ;(2)若()R ∈+=b a n b n a S n 、2,则{}n a 是等差数列; (3)若()nn S 11--=,则{}n a 是等比数列.这些命题中,真命题的序号是 (1)、(2)、(3) .(03文理8)若首项为a 1,公比为q 的等比数列}{n a 的前n 项和总小于这个数列的各项和,则首项a 1,公比q 的一组取值可以是(a 1,q )= . 10,0)(21,1(1<<>q a 的一组数)(03文理11)已知点),0,24(),2,0(),2,0(nC n B n A +-其中n 为正整数.设S n 表示△ABC 外接圆的面积,则n n S ∞→lim = 4π.7.(08春12)已知12,,,n a a a ;12,,,n b b b (n 是正整数),令112n L b b b =+++,223L b b =+,n b ++,n n L b =. 某人用右图分析得到恒等式:1122n n a b a b a b +++=112233a L c L c L +++k k c L +n n c L ++,则k c = 1k k a a -- (2)k n ≤≤8.(05春12)已知函数2()2log xf x x =+,数列{}n a 的通项公式是n a n 1.0=(N ∈n ),当 |()2005|n f a -取得最小值时,n = 110 .9.(06春12)同学们都知道,在一次考试后,如果按顺序去掉一些高分,那么班级的平均分将降低; 反之,如果按顺序去掉一些低分,那么班级的平均分将提高. 这两个事实可以用数学语 言描述为:若有限数列n a a a ,,,21 满足n a a a ≤≤≤ 21,则)1(2121n m na a a m a a a nm <≤+++≤+++ 和)1(2121n m na a a m n a a a nn m m <≤+++≥-+++++10.(01春12)甲、乙两人于同一天分别携款1万元到银行储蓄,甲存五年期定期储蓄,年利率为2.88%.乙存一年期定期储蓄,年利率为2.25%,并在每年到期时将本息续存一年期定期储蓄按规定每次计息时,储户须交纳利息的20%作为利息税,若存满五年后两人同时从银行取出存款,则甲与乙所得本息之和的差为__________元(假定利率五年内保持不变,结果精确到1分)219.01)11.(04上海春7)在数列{}n a 中,31=a ,且对任意大于1的正整数n , 点),(1-n n a a 在直线03=--y x 上,则=+∞→2)1(limn a nn 3 .12.(04上海春8)根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有 12+-n n 个点.12312312312312312312.(04上海春12)在等差数列{}n a 中,当s r a a = )(s r ≠时,{}n a 必定是常数数列. 然而在等比数列{}n a 中,对某些正整数s r 、)(s r ≠,当s r a a =时,非常数数列{}n a 的一个例子是 r a a a a a .)0(,,,,≠--与s 同为奇数或偶数. (说明:不指出s r 、的情况,不扣分)(04文理4)设等比数列{a n }(n ∈N)的公比q=-21,且∞→n lim (a 1+a 3+a 5+…+a 2n-1)=38,则a 1= .2(04文理12)若干个能唯一确定一个数列的量称为该数列的“基本量”.设{a n }是公比为q 的无穷等比数列,下列{a n }的四组量中,一定能成为该数列“基本量”的是 第 组.(写出所有符合要求的组号) ①、④ ①S 1与S 2; ②a 2与S 3; ③a 1与a n ; ④q 与a n . 其中n 为大于1的整数, S n 为{a n }的前n 项和.(05理12,文16)用n 个不同的实数n a a a ,,,21 可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵。
2024年上海高考真题数学(含解析)
2024年上海市高考数学试卷注意:试题来自网络,请自行参考(含解析)一、填空题(本大题共有12题,满分54分.其中第1-6题每题4分,第7-12题每题满分5分)考生应在答题纸相应编号的空格内直接填写结果.1.设全集,集合,则______.【答案】【解析】【分析】根据补集的定义可求.【详解】由题设有,故答案为:2.已知则______.【答案】【解析】【分析】利用分段函数的形式可求.【详解】因故,故答案为:.3.已知则不等式的解集为______.【答案】【解析】【分析】求出方程的解后可求不等式的解集.【详解】方程的解为或,故不等式的解集为,故答案为:.4.已知,,且是奇函数,则______.【答案】【解析】【分析】根据奇函数的性质可求参数.【详解】因为是奇函数,故即,故,故答案为:.5.已知,且,则的值为______.【答案】15【解析】【分析】根据向量平行的坐标表示得到方程,解出即可.【详解】,,解得.故答案为:15.6.在的二项展开式中,若各项系数和为32,则项的系数为______.【答案】10【解析】【分析】令,解出,再利用二项式的展开式的通项合理赋值即可.【详解】令,,即,解得,所以的展开式通项公式为,令,则,.故答案为:10.7.已知抛物线上有一点到准线的距离为9,那么点到轴的距离为______.【答案】【解析】【分析】根据抛物线的定义知,将其再代入抛物线方程即可.【详解】由知抛物线的准线方程为,设点,由题意得,解得,代入抛物线方程,得,解得,则点到轴的距离为.故答案为:.8.某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是______.【答案】0.85【解析】【分析】求出各题库所占比,根据全概率公式即可得到答案.【详解】由题意知,题库的比例为:,各占比分别为,则根据全概率公式知所求正确率.故答案为:0.85.9.已知虚数,其实部为1,且,则实数为______.【答案】2【解析】【分析】设,直接根据复数的除法运算,再根据复数分类即可得到答案.【详解】设,且.则,,,解得,故答案为:2.10.设集合中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值______.【答案】329【解析】【分析】三位数中的偶数分个位是0和个位不是0讨论即可.【详解】由题意知集合中且至多只有一个奇数,其余均是偶数.首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有个;②当个位不为0时,则个位有个数字可选,百位有个数字可选,十位有个数字可选,根据分步乘法这样的偶数共有,最后再加上单独的奇数,所以集合中元素个数的最大值为个.故答案为:329.11.已知点B在点C正北方向,点D在点C的正东方向,,存在点A满足,则______(精确到0.1度)【答案】【解析】【分析】设,在和中分别利用正弦定理得到,,两式相除即可得到答案.【详解】设,在中,由正弦定理得,即’即①在中,由正弦定理得,即,即,②因为,得,利用计算器即可得,故答案为:.12.无穷等比数列满足首项,记,若对任意正整数集合是闭区间,则的取值范围是______.【答案】【解析】【分析】当时,不妨设,则,结合为闭区间可得对任意的恒成立,故可求的取值范围.【详解】由题设有,因为,故,故,当时,,故,此时为闭区间,当时,不妨设,若,则,若,则,若,则,综上,,又为闭区间等价于为闭区间,而,故对任意恒成立,故即,故,故对任意的恒成立,因,故当时,,故即.故答案为:.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.二、选择题(本大题共有4题,满分18分,其中第13-14题每题满分4分,第15-16题每题满分5分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得满分,否则一律得零分.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是()A气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势【答案】C【解析】【分析】根据相关系数的性质可得正确的选项.【详解】对于AB,当气候温度高,海水表层温度变高变低不确定,故AB错误.对于CD,因为相关系数为正,故随着气候温度由低到高时,海水表层温度呈上升趋势,故C正确,D错误.故选:C.14.下列函数的最小正周期是的是()A. B.C. D.【答案】A【解析】【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可.【详解】对A,,周期,故A正确;对B,,周期,故B错误;对于选项C,,是常值函数,不存在最小正周期,故C错误;对于选项D,,周期,故D错误,故选:A.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,使得.已知,则的充分条件是()A. B.C. D.【答案】C【解析】【分析】首先分析出三个向量共面,显然当时,三个向量构成空间的一个基底,则即可分析出正确答案.【详解】由题意知这三个向量共面,即这三个向量不能构成空间的一个基底,对A,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对B,由空间直角坐标系易知三个向量共面,则当无法推出,故A错误;对C,由空间直角坐标系易知三个向量不共面,可构成空间的一个基底,则由能推出,对D,由空间直角坐标系易知三个向量共面,则当无法推出,故D错误.故选:C.16.已知函数的定义域为R,定义集合,在使得的所有中,下列成立的是()A.存在是偶函数B.存在在处取最大值C.存在是严格增函数D.存在在处取到极小值【答案】B【解析】【分析】对于ACD利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B,构造函数即可判断.【详解】对于A,若存在是偶函数,取,则对于任意,而,矛盾,故A错误;对于B,可构造函数满足集合,当时,则,当时,,当时,,则该函数的最大值是,则B正确;对C,假设存在,使得严格递增,则,与已知矛盾,则C错误;对D,假设存在,使得在处取极小值,则在的左侧附近存在,使得,这与已知集合的定义矛盾,故D错误;故选:B.三、解答题(本大题共有5题,满分78分)解下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.如图为正四棱锥为底面的中心.(1)若,求绕旋转一周形成的几何体的体积;(2)若为的中点,求直线与平面所成角的大小.【答案】(1)(2)【解析】【分析】(1)根据正四棱锥的数据,先算出直角三角形的边长,然后求圆锥的体积;(2)连接,可先证平面,根据线面角的定义得出所求角为,然后结合题目数量关系求解.【小问1详解】正四棱锥满足且平面,由平面,则,又正四棱锥底面是正方形,由可得,,故,根据圆锥的定义,绕旋转一周形成的几何体是以为轴,为底面半径的圆锥,即圆锥的高为,底面半径为,根据圆锥的体积公式,所得圆锥的体积是【小问2详解】连接,由题意结合正四棱锥的性质可知,每个侧面都是等边三角形,由是中点,则,又平面,故平面,即平面,又平面,于是直线与平面所成角的大小即为,不妨设,则,,又线面角的范围是,故.即为所求.18.若.(1)过,求的解集;(2)存在使得成等差数列,求的取值范围.【答案】(1)(2)【解析】【分析】(1)求出底数,再根据对数函数的单调性可求不等式的解;(2)存在使得成等差数列等价于在上有解,利用换元法结合二次函数的性质可求的取值范围.【小问1详解】因为的图象过,故,故即(负的舍去),而在上为增函数,故,故即,故的解集为.小问2详解】因为存在使得成等差数列,故有解,故,因为,故,故在上有解,由在上有解,令,而在上的值域为,故即.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:其中,.)【答案】(1)(2)(3)有【解析】【分析】(1)求出相关占比,乘以总人数即可;(2)根据平均数的计算公式即可得到答案;(3)作出列联表,再提出零假设,计算卡方值和临界值比较大小即可得到结论.【小问1详解】由表可知锻炼时长不少于1小时的人数为占比,则估计该地区29000名学生中体育锻炼时长不少于1小时的人数为.【小问2详解】估计该地区初中生的日均体育锻炼时长约为.则估计该地区初中学生日均体育锻炼的时长为0.9小时.【小问3详解】由题列联表如下:其他合计优秀455095不优秀177308485合计222358580提出零假设:该地区成绩优秀与日均锻炼时长不少于1小时但少于2小时无关.其中..则零假设不成立,即有的把握认为学业成绩优秀与日均锻炼时长不小于1小时且小于2小时有关.20.已知双曲线左右顶点分别为,过点的直线交双曲线于两点.(1)若离心率时,求的值.(2)若为等腰三角形时,且点在第一象限,求点的坐标.(3)连接并延长,交双曲线于点,若,求取值范围.【答案】(1)(2)(3)【解析】【分析】(1)根据离心率公式计算即可;(2)分三角形三边分别为底讨论即可;(3)设直线,联立双曲线方程得到韦达定理式,再代入计算向量数量积的等式计算即可.【小问1详解】由题意得,则,.【小问2详解】当时,双曲线,其中,,因为为等腰三角形,则①当以为底时,显然点在直线上,这与点在第一象限矛盾,故舍去;②当以为底时,,设,则,联立解得或或,因为点在第一象限,显然以上均不合题意,舍去;(或者由双曲线性质知,矛盾,舍去);③当以为底时,,设,其中,则有,解得,即.综上所述:.小问3详解】由题知,当直线的斜率为0时,此时,不合题意,则,则设直线,设点,根据延长线交双曲线于点,根据双曲线对称性知,联立有,显然二次项系数,其中,①,②,,则,因为在直线上,则,,即,即,将①②代入有,即化简得,所以,代入到,得,所以,且,解得,又因为,则,综上知,,.【点睛】关键点点睛:本题第三问的关键是采用设线法,为了方便运算可设,将其与双曲线方程联立得到韦达定理式,再写出相关向量,代入计算,要注意排除联立后的方程得二次项系数不为0.21.对于一个函数和一个点,令,若是取到最小值的点,则称是在的“最近点”.(1)对于,求证:对于点,存在点,使得点是在的“最近点”;(2)对于,请判断是否存在一个点,它是在的“最近点”,且直线与在点处的切线垂直;(3)已知在定义域R上存在导函数,且函数在定义域R上恒正,设点,.若对任意的,存在点同时是在的“最近点”,试判断的单调性.【答案】(1)证明见解析(2)存在,(3)严格单调递减【解析】【分析】(1)代入,利用基本不等式即可;(2)由题得,利用导函数得到其最小值,则得到,再证明直线与切线垂直即可;(3)根据题意得到,对两等式化简得,再利用“最近点”的定义得到不等式组,即可证明,最后得到函数单调性.【小问1详解】当时,,当且仅当即时取等号,故对于点,存在点,使得该点是在的“最近点”.【小问2详解】由题设可得,则,因为均为上单调递增函数,则在上为严格增函数,而,故当时,,当时,,故,此时,而,故在点处的切线方程为.而,故,故直线与在点处的切线垂直.【小问3详解】设,,而,,若对任意的,存在点同时是在的“最近点”,设,则既是的最小值点,也是的最小值点,因为两函数的定义域均为,则也是两函数的极小值点,则存在,使得,即①②由①②相等得,即,即,又因为函数在定义域R上恒正,则恒成立,接下来证明,因为既是的最小值点,也是的最小值点,则,即,③,④③④得即,因为则,解得,则恒成立,因为的任意性,则严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到,再利用最值点定义得到即可.。
上海第03期高三名校数学文试题分省分项汇编 专题05 数列数学归纳法与极限解析含解析
一.基础题组1. 【上海市浦东新区2013—2014学年度第一学期期末质量抽测高三数学试卷(文卷)】221lim 2n n n n→∞+- =__________.2. 【上海市普陀区2014届高三上学期12月质量调研数学(文)试题】若圆1)1(22=-+y x 的圆心到直线:n l 0=+ny x (*N n ∈)的距离为n d ,则=∞→n n d lim .3. 【2013学年第一学期十二校联考高三数学(文)考试试卷】若数列{}n a 满足:111,2()n n a a a n N *+==∈,则前6项的和6S = .(用数字作答)【答案】63 【解析】试题分析:要求数列的前n 项的和,一般先确定下这个数列是不是等差数列或者等比数列,或者是否能转4. 【2013学年第一学期十二校联考高三数学(文)考试试卷】在等差数列{}n a 中,中若01<a ,n S 为前n 项之和,且177S S =,则n S 为最小时的n 的值为 .5. 【上海市十三校2013年高三调研考数学试卷(文科)】计算:21lim 1n n n n →∞⎡⎤⎛⎫- ⎪⎢⎥+⎝⎭⎣⎦=_________.6. 【2013学年第一学期徐汇区学习能力诊断卷高三年级数学学科(文科)】计算:210lim323x n n →∞++= .7. 【2013学年第一学期徐汇区学习能力诊断卷高三年级数学学科(文科)】如果()1111112312n f n n n =++++++++L L (*n N ∈)那么()()1f k f k +-共有 项.8. 【上海市浦东新区2013—2014学年度第一学期期末质量抽测高三数学试卷(文卷)】已知数列{}n a 中,11a =,*13,(2,)n n a a n n N -=+≥∈,则n a =___________.9. 【上海市普陀区2014届高三上学期12月质量调研数学(文)试题】数列}{n a 中,若11=a ,n n n a a 211=++(*N n ∈),则=+++∞→)(lim 221n n a a a Λ .10. 【2013学年第一学期十二校联考高三数学(文)考试试卷】计算:2(1)(13)lim(2)(1)n n n n n n →∞+-=-++________.11. 【上海市十三校2013年高三调研考数学试卷(文科)】等差数列{}n a 中,1102,15a S ==,记2482n n B a a a a =++++L ,则当n =____时,n B 取得最大值.12. 【上海市十三校2013年高三调研考数学试卷(文科)】设正数数列{}n a 的前n 项和是n S ,若{}n a 和{n S }都是等差数列,且公差相等,则=+d a 1__ _.13. 【上海市嘉定区2014届高三上学期期末质量调研(一模)数学(文)试卷】函数x ay =(0>a ,1≠a )的图像经过点⎪⎭⎫ ⎝⎛41,2P ,则=+++∞→)(lim 2nn a a a Λ______.14. 【黄浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(文科)】已知数列{}na 是公差为2的等差数列,若6a是7a 和8a 的等比中项,则n a =________.15. 【上海市嘉定区2014届高三上学期期末质量调研(一模)数学(文)试卷】已知数列}{n a 的前n 项和2n S n =(*N ∈n ),则8a 的值是__________.16. 【上海市嘉定区2014届高三上学期期末质量调研(一模)数学(文)试卷】设等比数列}{n a 的前n 项和为n S ,且55S a =,则=2014S ________.考点:等比数列的前n 项和.17. 【上海市杨浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(文科)】计算:=+∞→133lim nnn .二.能力题组1. 【上海市普陀区2014届高三上学期12月质量调研数学(文)试题】在数列}{n a 中,21=a ,341+=-n n a a (2≥n ),则数列}{n a 的前n 项和=n S .2. 【上海市浦东新区2013—2014学年度第一学期期末质量抽测高三数学试卷(文卷)】已知函数,1)(22+=x x x f 则()()()11112(2013)2014232013f f f f f f f ⎛⎫⎛⎫⎛⎫++++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭K L 12014f ⎛⎫+ ⎪⎝⎭= ( )(A) 201021 (B) 201121 (C) 201221 (D) 2013213.【上海市十三校2013年高三调研考数学试卷(文科)】已知函数()() 2318,3133,3x tx xf xt x x⎧-+≤⎪=⎨-->⎪⎩,记()()*na f n n N=∈,若{}n a是递减数列,则实数t的取值范围是______________.4.【上海市长宁区2013—2014第一学期高三教学质量检测数学试卷(文科)】数列{}na满足*,5221...2121221Nnnaaann∈+=+++,则=na .换n得12121111...2(1)5222nna a a n--+++=-+(2n≥),两式相减得122nna=,12nna+=,又1172a=,即114a=,故na=⎩⎨⎧≥=+.2,21,141nnn.考点:数列的通项公式.5.【上海市长宁区2013—2014第一学期高三教学质量检测数学试卷(文科)】已知数列{}{}n n b a ,都是公差为1的等差数列,其首项分别为11,b a ,且,511=+b a ,,11N b a ∈设),(N n a c n b n ∈=则数列{}n c 的前10项和等于______.6. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】已知{}n a 是各项均为正数的等比数列,且1a 与5a 的等比中项为2,则42a a +的最小值等于 .7. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】在n n n C B A ∆中,记角n A 、n B 、n C 所对的边分别为n a 、n b 、n c ,且这三角形的三边长是公差为1的等差数列,若最小边1+=n a n ,则=∞→n n C lim ( )..A 2π .B 3π .C 4π .D 6π8. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】已知函数2sin)(2πn n n f =,且)1()(++=n f n f a n ,则=++++2014321a a a a Λ .9. 【上海市普陀区2014届高三上学期12月质量调研数学(文)试题】若函数2cos1)(xx x f ⋅+=π,则=+++)100()2()1(f f f Λ .10. 【上海市十三校2013年高三调研考数学试卷(文科)】已知无穷数列{}n a 具有如下性质:①1a 为正整数;②对于任意的正整数n ,当n a 为偶数时,12n n a a +=;当n a 为奇数时,112n n a a ++=.在数列{}n a 中,若当n k ≥时,1n a =,当1n k ≤<时,1n a >(2k ≥,*k N ∈),则首项1a 可取数值的个数为 (用k 表示)11. 【黄浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(文科)】已知数列{}n a 满足142a =-,()()*+∈=-+N n n a a n n n ,11,则数列{}na 的前2013项的和2013S 的值是___________.三.拔高题组1. 【上海市普陀区2014届高三上学期12月质量调研数学(文)试题】已知数列{}n a 中,13a =,132n n n a a ++=⋅,*n N ∈.(1)证明数列{}2n n a -是等比数列,并求数列{}n a 的通项公式;(2)在数列{}n a 中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;(3)若1r s <<且r ,*s N ∈,求证:使得1a ,r a ,s a 成等差数列的点列(),r s 在某一直线上.2. 【2013学年第一学期十二校联考高三数学(文)考试试卷】已知数列{}n a 具有性质:①1a 为正数;②对于任意的正整数n ,当n a 为偶数时,21n n a a =+;当n a 为奇数时,211-=+n n a a (1)若641=a ,求数列{}n a 的通项公式;(2)若321,,a a a 成等差数列,求1a 的值;(3)设)3(321N m m a m ∈≥-=且,数列{}n a 的前n 项和为n S ,求证:521--≤+m S m n又01210m a +=-=,20m a +=,…3. 【上海市浦东新区2013—2014学年度第一学期期末质量抽测高三数学试卷(文卷)】设项数均为k (*2,k k N ≥∈)的数列}{n a 、}{n b 、}{n c 前n 项的和分别为n S 、n T 、n U .已知*2(1,)n n a b n n k n N -=≤≤∈,且集合1212{,,,,,,,}k k a a a b b b L L ={2,4,6,,42,4}k k -L .(1)已知n n n U 22+=,求数列}{n c 的通项公式;(2)若4k =,求4S 和4T 的值,并写出两对符合题意的数列}{n a 、}{n b ;(3)对于固定的k ,求证:符合条件的数列对(}{n a ,}{n b )有偶数对.1212{42,42,,42,42,42,,42}k k k a k a k a k b k b k b +-+-+-+-+-+-L L4. 【上海市十三校2013年高三调研考数学试卷(文科)】已知无穷数列{}n a 的前n 项和为n S ,且满足2n n n S Aa Ba C =++,其中A 、B 、C 是常数.(1)若0A =,3B =,2C =-,求数列{}n a 的通项公式;(2)若1A =,12B =,116C =,且0n a >,求数列{}n a 的前n 项和n S ; (3)试探究A 、B 、C 满足什么条件时,数列{}n a 是公比不为1-的等比数列.5. 【2013学年第一学期徐汇区学习能力诊断卷高三年级数学学科(文科)】称满足以下两个条件的有穷数列12,,,n a a a L 为()2,3,4,n n =L 阶“期待数列”:①1230n a a a a ++++=L ;②1231n a a a a ++++=L .(1)若数列{}n a 的通项公式是, 试判断数列{}n a 是否为2014阶“期待数列”,并说明理由;(2)若等比数列{}n a 为()2*k k N ∈阶“期待数列”,求公比q 及{}n a 的通项公式;(3)若一个等差数列{}n a 既是()2*k k N ∈阶“期待数列”又是递增数列,求该数列的通项公式;6. 【上海市长宁区2013—2014第一学期高三教学质量检测数学试卷(文科)】设二次函数)()4()(2R k kxx k x f ∈+-=,对任意实数x ,有26)(+≤x x f 恒成立;数列}{n a 满足)(1n n a f a =+. (1)求函数)(x f 的解析式和值域;(2)证明:当)21,0(∈na 时,数列}{n a 在该区间上是递增数列;(3)已知311=a ,是否存在非零整数λ,使得对任意n N *∈,都有 ()12333312111log log log 12log 1111222n n n a a a λ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪++⋅⋅⋅+>-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭2log 2)1(131n n +-+--λ 恒成立,若存在,求之;若不存在,说明理由.试题解析:(1)由 26)(+≤x x f 恒成立等价于02)6()4(2≤--+-x k x k 恒成立,从而得:⎩⎨⎧≤-+-<-0)4(8)6(042k k k ,化简得⎩⎨⎧≤-<0)2(42k k ,从而得2=k ,所以x x x f 22)(2+-=, …………3分其值域为]21,(-∞. …………4分(2)解: 81)41(222)(221+--=-+-=-=-+n n n nn n n n a a a a a a f a a …………6分7.【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】数列{}na 是递增的等差数列,且661-=+a a ,843=⋅a a .(1)求数列{}n a 的通项公式;(2)求数列{}n a 的前n 项和n S 的最小值;(3)求数列{}n a 的前n 项和n T .8. 【虹口区2013学年度第一学期高三年级数学学科期终教学质量监控测试题】设函数n nnn x x x x f 2222)(22++++-=Λ. (1)求函数)(2x f 在]2,1[上的值域;(2)证明对于每一个*∈N n ,在[1,2]上存在唯一的n x ,使得0)(=n n x f ;(3)求)()()(21a f a f a f n +++Λ的值.9. 【黄浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(文科)】已知数列{}n a ,满足62=a ,n a a a a n n n n 11111=-++-++()*∈N n , (1)求5431,,,a a a a 的值;(2)猜想数列{}n a 的通项公式n a ,并用数学归纳法证明;(3)己知02lim=∞→n n n ,设()*∈⋅=N n n a b n n n 2,记n n b b b b s ++++=Λ321,求n n S lim ∞→.21(1)(1)(21)k k a k k k +⇒-=+--1(1)(1)(1)(21)k k a k k k +⇒-=+-+.10. 【上海市嘉定区2014届高三上学期期末质量调研(一模)数学(文)试卷】已知数列}{n a 满足121++=+n a a n n (*N ∈n ).(1)若数列}{n a 是等差数列,求它的首项和公差;(2)证明:数列}{n a 不可能是等比数列;(3)若11-=a ,b kn a c n n ++=(*N ∈n ),试求实数k 和b 的值,使得数列}{n c 为等比数列;并求此时数列}{n a 的通项公式.11. 【上海市杨浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(文科)】已知数列{}n a ,n S 是其前n 项的和,且满足21=a ,对一切*∈N n 都有2321++=+n S S n n 成立,设n a b n n +=.(1)求2a ;(2)求证:数列{}n b 是等比数列;(3)求使814011121>+⋅⋅⋅++n b b b 成立的最小正整数n 的值.试题分析:(1)只求2a ,只要在2321++=+n S S n n 中令1n =民,则有2121131233S a a S a =+=++=+,。
(完整word)2013-2018年上海高考试题汇编-数列,推荐文档
数列(2018秋6)记等差数列{%}的前n 项和为S n ,若a 3 0 , a 6 a ? 14,则S y ________________________ 答案:14(2018春5)已知{編}是等差数列,若 还 比10,则爲 爲 ❺ .答案:12 *(2017秋15)已知数列 人 an bn c,n N ,使得x 100 k ,x 200 k ,x 300 k 成等差数列的必 要条件是 ()A. a 0B. b 0C. c 0D. a 2b c 0 答案:A(2013年文22)已知函数f (X ) 2 X ,无穷数列 a n 满足4 1f (4), n N * .(1 )若a i 0,求 a 2, a 3,a4; (2)若a i 0,且a i ,a 2,a 3成等比数列,求的值;(3)是否存在a,,使得a 1,a 2,L ,a n 丄 成等差数列?若存在, 求出所有这样的 印;若不存 在,说明理由.解:(1)a 22 , a3 0 , a4 2 .①当0 a 12 时,a 3 2 2 a 12 2a1,所以42 a1,得 a 1 1 .②当a 12 时,a 32a 2 4 a 1,所以 a 1 4 a 12 a 1 ?,得2 2 (舍去)或a 1 2 2.综合①②得a 1 1或a 12 、2 .由 2a 2 a 1 a 3得 2 a 1 2 a 1 2 a 1 ().(2) a 2 2 a 12, a 3 2 a 2 2 2a 1(3)假设这样的等差数列存在,那么 a22 a1 ,a32 2 |a 』.以下分情况讨论:①当a 1 2时,由()得a 1 0,与a 1 2矛盾;足 4 1f (an), n N(i )若a\c 2,求 a 2及 a 3 ;(2)求证:对任意 n N * , %1a c •(3)是否存在ai,使得a1 , a2 , L , an,L 成等差数列?若存在, 求出所有这样的a 1 ;若不存在,说明理由.解:(1) a 2 2, a 3c 10 .Xc 8,Xc,(2) fX3x 3c+8, c 4 X c,X c 8, Xc 4.当a n c 时,a n 1 a n c 8 c;②当 当0 a 1 2时,由()得a 1 1,从而 a n1 n 1,2,L ,所以 a n 曰是 -个等差数列;③当 当a 10 时,则公差d a 2 a 1 a 2a i2 0,因此存在m 2使得ama 1 2 m 12 .此时 d a m1 a m2ama m 0,矛盾.综合①②③ 可知,当且仅当1时,a i , a 2, a 3 L 构成等差数列.(2013理23)2 X C 4 X C •数列 a i ,a 2,a 3,L 满当 c 4 a n c时,a n 1 Hi 2a n3c 8 2 c 43c 8 c ;当a n C 4 时,a n 1 a n 2a n c 8 2 c 4 c 8 c.方法二:要证:2xc4 xcxc2xc4 xcxc当x c 0时,等式右边为0 ,不等式显然成立当x c 0时,等式化为2 x c 4 2 x c显然(3)由(2),结合c 0得a n i a n,即昂为无穷递增数列.又Oi为等差数列,所以存在正数M,当n M时,a n c ,从而,f(4)a n c 8.由于a n为等差数列,因此其公差d c 8.①若a i c 4,贝V a2 f (a i)a i c 8,又a2 a i d a i c 8,故a i c 8 a i c 8,即a i c 8,从而 a 2 0 •当n 2时,由于O H为递增数列,故a n a2 0 c ,所以,a ni f(4)a n c 8,而a2 a i c 8 ,故当a i c 8时,a n为无穷等差数列,符合要求;②若 c 4 a i c,则a? f(a) 3a i 3c 8,又a2 a i d a i c 8 ,所以,3a i 3c 8 a i c 8,得a i c,舍去;③若a i c,则由 a n a i 得到°n i f (an)°nc 8,从而a n为无穷等差数列,符合要求. 综上,a i的取值集合为c, U c 8知识点4:等比数列的性质(2015理17)记方程①:x2盼1 0,方程②:x2 a2x 2 0,方程③:x2 a3x 4 0,其中a i, a2, a3是正实数.当a i, a2, a3成等比数列时,下列选项中,能推出方程③无实根的是( )A .方程①有实根,且②有实根B.方程①有实根,且②无实根知识点5:等比数列的判定一(2011理18)设{a.}是各项为正数的无穷数列,A是边长为a i,a i i的矩形面积(i 1,2,L ),则{A.}为等比数列的充要条件为()A {a n}是等比数列B a1 , a3 丄,a2n1丄或a2, a4丄,a2n,L是等比数列C a1, a3,L,a2n1,L和a2,a4丄,a2n,L均是等比数列D a1 , a3 ,L,a2n1丄和a2, a4丄,a2n 丄均是等比数列,且公比相同答案:D知识点6:等差数列与等比数列综合(2016 文22)对于无穷数列{a n}与{b h},记A {x|x a n,n N*}, B {x|x b n,n N*},若同时满足条件:① 佝}, {0}均单调递增;② AI B 且A U B N *,则称{01}与{b n}是无穷互补数列.(1 )若K 2n 1, b n4n 2,判断{环}与{0}是否为无穷互补数列,并说明理由;(2)若s n 2n且{a n}与{b n}是无穷互补数列,求数列{t n}的前16项的和;(3)若{&}与{$}是无穷互补数列,{&}为等差数列,且 氐 36,求{珀}与佝}的通项 公式.【解】 (1)因为 4 A , 4 B , 所以4 AU B ,从而 {an}与不是 无穷互补数列.(2) 因为 a4'16,所以b6 4 20.数列的前 16项的和为41 20(1 2 ! L20)(2 222324) 2 20 (252) 180 -(3) 设{a n }的公差为d,dN ,则 ai6a 115d 36.由 a 3615d 1,得或2.若d1, 则a 121, a. n 20,与“ {a n } 与{b}是无穷互补数 列”矛盾;若d 2,则a 6, an :2n n,4, b nn 52n 5, n 5综上,a n2n4,b nn , n 525, n 5求q 的取值范围;(3)若a 1,a 2,L ,a k 成等差数列,且 a 1 a 2 L a k1000,求正整数k 的最大值,以及k 取最大值时相应数列 a i , a 2 , L ,a k 的公差. 2 解:(1 )由条件得-X 3 (2)由1 T a n 3a n ,且 an 3x6且一 3n 1aq9 3x ,解得30,得 a n 0, 所以x 6 .所以X 勺取值范围是x[3,6].1 1所以 3Sn S n 1 •又 3 a n1 3an,时,Snn, Sn 11,由n1 3n 得 S n 1 3S n 成立. 时, S n 1 3S n •即nqq(2014 年理 23)已知数列 an 13an,N , a 11(1)若 a 2 2局 x,a 49,求X 的取值范围;(2)设{a }是a n•若 ^S n S n 1 3S n ,n3①若1 q 3,则q (3 q)n•由qN,得q (3 q)所以i1②若q 1,则q3 (3 q)•由q N ,得q(3 q)1所以-3综上,q的取值范围为3,2•(3)设a1,a2丄a k的公差为由3aan 13a n,且a i 1,1)d] 1 nd 3[1 (n 1)d],1,2,L ,k (2n(2n1)d3)d2,2,1,2,L ,k n 1时,n 2,L ,k时,由2n 1 2n 3,得d—,所以d2n 2k 1所以1000 kq —,即k22 2k 1 2000 k 10001999•所以k的最大值为1999, k 1999时,a1,a2,L ak的公差为1 1999(2014 文23)已知数列{a n}满足!a n a n 1 3a n,n N ,a1 1 •3(1)若a2咼x,a4 9,求x的取值范围;(2)设{a n}是等比数列,且a m1而,求正整数m的最小值,以及m取最小值时相应的公比;(3)若耳卫2,L ,^00成等差数列,求数列弘还丄,a(00的公差的取值范围.2 解:(1 )由条件得2 x3 (2)设{&}的公比为q ・x6且9 3x,解得3 x 6 .所以x的取值范围是31 a3n 1qq,得an•[3,6] •因为如am 3an,所以3•从而1000m 1 / 1、m 1 c mq (3,31000 ,解m 8时, [制•所以,m的最小值为8, 8时,{a n}的公比为7104 101(3 ) 设数列a 1, a 2, L51OO的公差为d .由1 a na n d3anand 2 an,3 n3n 1,2,L ,99 .①当d 0时, a99a98L a 2 a t ,所以 0 d 2a 1,即0 d 2 .②当d 0时, a99 a98La 2 a !,符合条件.③ d 0时,a99 a 98 L a 2a 〕 ,所 以2 a99d 2 a99 ,3l (1 98d) d 2(1 ' 98d)又d 0, 所以2d 0 .199综上,51,52,L aoo 的公差的取值范围为[ — 2]. 199 知识点7:数列的递推关系式与函数 (2012 文 14)已知 f (x) 各项均为正数的数列 a n 满足 a 1 1, a n 2 f (a n ),右 52010 52012,则 520 511 的值是 __________ 答案: 3 135 2612358解:由a 1 1 , a n 2 f ,得a 3a s,a7,a 9 一 ,an235 813111 ,由a n 2 f (a n ), 得a n1 ,a 201 a 201a201011an 2a201a2010a 2010 a 2010,依次类推,得全体偶数项相等,a2010a 2 a2010所以a 20 a 1185 1 13 23 13一5 26(2017春21)已知函数 (1)解方程f X 1; (2)设 x 1,1 ,a 1, ,证明:1,1,且 fax 1得X 3 X n 对任意nN 成立答案:(1)x1;(3) 1,1;33解= log 空t * 2 = 1,1 — X八兰=2 ,计負得岀上=;;1 - -T3A 『%— 1— J7)+(W — 11— 1国于j (时 ----- 「则孑N - -_,a ——--; ------------- 住ci —■ dr_ «r f'-w. {1- 4 K:) > 0 .◎上}在 1,1)上是堆B|数.(3)在数列x n 中,X 11,1,人 1n 13X p 1 3 X n 'n N ,求X 1的取值范围,使又貞一i) = \ / = -1 . tf(i> = -_T = 11。
2024年上海市高考数学试卷
2024年上海市高考数学试卷(2024•上海)设全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.答案:{1,3,5}.解析:结合补集的定义,即可求解.解答:解:全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.故答案为:{1,3,5}.(2024•上海)已知f (x )=,则f(3)=.{,x >01,x ≤0√x√3答案:.√3解析:根据已知条件,将x=3代入函数解析式,即可求解.解答:解:f (x )=,则f(3)=.故答案为:.{,x >01,x ≤0√x√3√3(2024•上海)已知x∈R,则不等式x 2-2x-3<0的解集为 {x|-1<x<3}.答案:{x|-1<x<3}.解析:根据一元二次不等式的解法直接求解即可.解答:解:x 2-2x-3<0可化为(x-3)(x+1)<0,解得-1<x<3,故不等式的解集为:{x|-1<x<3}.故答案为:{x|-1<x<3}.(2024•上海)已知f(x)=x 3+a,x∈R,且f(x)是奇函数,则a=0.答案:0.解析:首先根据f(0)=0,解得a=0,再根据奇函数的定义进行验证即可.解答:解:由题意,可得f(0)=0+a=0,解得a=0,当a=0时,f(x)=x 3,满足f(-x)=(-x)3=-x 3=-f(x),即f(x)是奇函数,故a=0符合题意.故答案为:0.(2024•上海)已知k∈R,a =(2,5),b =(6,k ),a ∥b ,则k的值为 15.→→→→答案:15.解析:根据向量平行的坐标表示,列方程求解即可.解答:解:由a =(2,5),b =(6,k ),a ∥b ,可得2k-5×6=0,解得k=15.故答案为:15.→→→→(2024•上海)在(x+1)n 的二项展开式中,若各项系数和为32,则x 2项的系数为 10.答案:见试题解答内容解析:根据二项式系数和求得n值,再结合二项式的通项公式即可求得.解答:解:由题意,展开式中各项系数的和是(1+1)n =32,所以n=5,则该二项式的通项公式是=••,令5-r=2,解得r=3,故x 2项的系数为=10.故答案为:10.T r +1C 5rx 5-r 1rC 53(2024•上海)已知抛物线y 2=4x上有一点P到准线的距离为9,那么P到x轴的距离为 4.√2答案:4.√2解析:根据已知条件,结合抛物线的定义,即可求解.解答:解:设P坐标为(x 0,y 0),P到准线的距离为9,即x 0+1=9,解得x 0=8,代入抛物线方程,可得=±4,故P到x轴的距离为4.故答案为:4.y 0√2√2√2(2024•上海)某校举办科学竞技比赛,有A、B、C3种题库,A题库有5000道题,B题库有4000道题,C题库有3000道题.小申已完成所有题,他A题库的正确率是0.92,B题库的正确率是答案:.1720解析:根据已知条件,结合全概率公式,即可求解.解答:解:由题可知,A题库占比为,B题库占比为,C题库占比为,故P =×0.92+×0.86+×0.72=.故答案为:.5121314512131417201720(2024•上海)已知虚数z,其实部为1,且z +=m (m ∈R ),则实数m为 2.2z答案:2.解析:根据已知条件,结合复数的概念,以及复数的四则运算,即可求解.解答:解:虚数z,其实部为1,则可设z=1+bi(b≠0),所以z +=1+bi +=1+bi +=1++(b -)i ,因为m∈R,所以b -=0,解得b=±1,所以m =1+=1+1=2.故答案为:2.2z 21+bi 2•(1-bi )1+b221+b22b 1+b22b 1+b221+b2(2024•上海)设集合A中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 329.答案:329.解析:根据已知条件,结合组合数、排列数公式,并分类讨论,即可求解.解答:解:由题可知,集合A中每个元素都互异,且元素中最多有一个奇数,剩余全是偶数,先研究集合中无重复数字的三位偶数:(1)若个位为0,这样的偶数有=72种;(2)若个位不为0,这样的偶数有••=256种;所以集合元素个数最大值为256+72+1=329种.故答案为:329.P 92C 41C 81C 81(2024•上海)已知点B在点C正北方向,点D在点C的正东方向,BC=CD,存在点A满足∠BAC=16.5°,∠DAC=37°,则∠BCA=7.8°.(精确到0.1度)答案:7.8°.解析:根据已知条件,结合正弦定理,余弦定理,即可求解.解答:解:在△ACD中,根据正弦定理可得=,设∠ACB=α,则∠ACD=90°-α,所以==,①在△ABC中,根据正弦定理可得=,==,②联立①②,因为BC=CD,所以=,利用计算器可得,α=7.8°,即∠BCA=7.8°.故答案为:7.8°.AC sin ∠DCD sin ∠CADAC sin [180°-(37°+90°-α)]CD sin 37°AC sin (90°-α+37°)CB sin ∠BAC CA sin ∠BBC sin ∠16.5°CA sin [180°-(α+16.5°)]CA sin (α+16.5°)sin 37°sin (90°-α+37°)sin 16.5°sin (α+16.5°)(2024•上海)无穷等比数列{a n }满足首项a 1>0,q>1,记I n ={x-y|x,y∈[a 1,a 2]∪[a n ,a n+1]},若对任意正整数n,集合I n 是闭区间,则q的取值范围是 [2,+∞).答案:[2,+∞)解析:当n≥2时,不妨设x≥y,则x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],结合I n 为闭区间可得q -2≥-对任意的n≥2恒成立,故可求q的取值范围.1q n -2解答:解:由题设有=,因为a 1>0,q>1,故a n+1>a n ,故[,]=[,],a n a n q n -1a n a n +1a 1q n -1a 1q nA.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势A.sinx+cosx B.sinxcosx C.sin 2x+cos 2xD.sin 2x-cos 2x当n=1时,x,y∈[a 1,a 2],故x-y∈[a 1-a 2,a 2-a 1],此时I 1为闭区间,当n≥2时,不妨设x≥y,若x,y∈[a 1,a 2],则x-y∈[0,a 2-a 1],若y∈[a 1,a 2],x∈[a n ,a n+1],则x-y∈[a n -a 2,a n+1-a 1],若x,y∈[a n ,a n+1],则x-y∈[0,a n+1-a n ],综上,x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],又I n 为闭区间等价于[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ]为闭区间,而a n+1-a 1>a n+1-a n >a 2-a 1,故a n+1-a n ≥a n -a 2对任意n≥2恒成立,故-2+≥0即(q -2)+≥0,故q n-2(q-2)+1≥0,故q -2≥-对任意的n≥2恒成立,因为q>1,故当n→+∞时,-→0,故q-2≥0即q≥2.故答案为:[2,+∞).a n +1a n a 2a 1q n -1a 21q n -21q n -2(2024•上海)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是( )答案:C解析:利用变量的性关系,判断选项即可.解答:解:成对数据相关分析中,如果相关系数为正,当x的值由小变大,y的值具有由小变大的变化趋势,所以A、B、D选项错误.故选:C.(2024•上海)下列函数f(x)的最小正周期是2π的是( )答案:AA.(0,0,0)∈ΩB.(-1,0,0)∈ΩC.(0,1,0)∈ΩD.(0,0,-1)∈ΩA.存在f(x)是偶函数B.存在f(x)在x=2处取最大值C.存在f(x)为严格增函数解析:利用两角和与差的三角函数,二倍角公式,化简选项表达式,求解函数的周期即可.解答:解:对于A,sinx+cosx=sin(x+),则T=2π,满足条件,所以A正确.对于B,sinxcosx=sin2x,则T=π,不满足条件,所以B不正确.对于C,sin 2x+cos 2x=1,函数是常函数,不存在最小正周期,不满足条件,所以C不正确.对于D,sin 2x-cos 2x=-cos2x,则T=π,不满足条件,所以D不正确.故选:A.√2π412(2024•上海)定义一个集合Ω,集合元素是空间内的点集,任取P 1,P 2,P 3∈Ω,存在不全为0的实数λ1,λ2,λ3,使得O +O +O =0.已知(1,0,0)∈Ω,则(0,0,1)∉Ω的充分条件是( )λ1→P 1λ2→P 2λ3→P 3→答案:C解析:利用空间向量的基本定理,结合充要条件,判断选项即可.解答:解:不全为0的实数λ1,λ2,λ3,使得O +O +O =0.所以3个向量无法构成三维空间坐标系的一组基,又因为(1,0,0)∈Ω,所以对于A三者不能构成一组基,故不能推出(0,0,1)∉Ω,故A错误;对于B,(1,0,0)∈Ω,(-1,0,1)∈Ω,且(1,0,0),(-1,0,0)共线,所以(0,0,1)可以属于Ω,此时三者不共面,故B错误;对于C,显然三者可以构成一组基,与条件不符合,故可以推出(0,0,1)∉Ω,故C正确;对于D,三者无法构成一组基,故不能推出(0,0,1)∉Ω,故D错误.故选:C.λ1→P 1λ2→P 2λ3→P 3→(2024•上海)已知函数f(x)的定义域为R,定义集合M={x 0|x 0∈R,x∈(-∞,x 0),f(x)<f (x 0)},在使得M=[-1,1]的所有f(x)中,下列成立的是( )D.存在f(x)在x=-1处取到极小值答案:B解析:根据函数的奇偶性、单调性、极值及最值的相关性质对各选项进行判定即可.解答:解:对于A,x<x 0时,f(x)<f(x 0),当x 0=1时,x 0∈[-1,1],对于任意x∈(-∞,1),f(x)<f(1)恒成立,若f(x)是偶函数,此时f(1)=f(-1),矛盾,故A错误;对于B,若f(x)函数图像如下:当x<-1时,f(x)=-2,-1≤x≤1时,f(x)∈[-1,1],当x>1,f(x)=1,所以存在f(x)在x=2处取最大值,故B正确;对于C,在x<-1时,若函数f(x)严格增,则集合M的取值不会是[-1,1],而是全体定义域,故C错误;对于D,若存在f(x)在x=-1处取到极小值,则在x=-1左侧存在x=n,f(n)>-1,与集合M定义矛盾,故D错误.故选:B.(2024•上海)如图为正四棱锥P-ABCD,O为底面ABCD的中心.(1)若AP=5,AD =3,求△POA绕PO旋转一周形成的几何体的体积;(2)若AP=AD,E为PB的中点,求直线BD与平面AEC所成角的大小.√2答案:(1)12π;(2).π4解析:(1)根据已知条件,先求出PO,再结合棱锥的体积公式,即可求解.(2)建立空间直角坐标系,求出平面AEC的法向量,再结合向量的夹角公式,即可求解.解答:解:(1)因为P-ABCD是正四棱锥,所以底面ABCD是正方形,且OP⊥底面ABCD,因为AD =3,√2所以AO=OD=OB=OC=3,因为AP=5,所以PO ==4,所以△POA绕OP旋转一周形成的几何体是以3为底面半径,4为高的圆锥,所以=Sh =π××4=12π;(2)如图建立空间直角坐标系,因为AP=AD,由题知P-ABCD是正四棱锥,所以该四棱锥各棱长相等,设AB =a ,则AO=OD=OB=OC=a,PO ==a ,则O(0,0,0),P(0,0,a),A(0,-a,0),B(a,0,0),C(0,a,0),D(-a,0,0),E (,0,),故BD =(-2a ,0,0),AC =(0,2a ,0),AE =(,a ,),设n =(,,)为平面AEC的法向量,则,即,令x 1=1,则y 1=0,z 1=-1,所以n =(1,0-1),则cos 〈n ,BD 〉==设直线BD与面AEC所成角为θ,因为sinθ=|cos 〈n ,BD 〉θ∈[0,],则θ=,故直线BD与平面AEC所成角的大小为.√A -A P 2O 2V圆锥131332√2√A -A P 2O 2a 2a 2→→→a 2a 2→x 1y 1z 1{n •AC =0n •AE =0→→→→{2a •=0•+a •+•=0y 1a 2x 1y 1a 2z 1→→→n •BD →→|n |•|BD |→→2→→2π2π4π4(2024•上海)已知f(x)=log a x(a>0,a≠1).(1)若y=f(x)过(4,2),求f(2x-2)<f(x)的解集;(2)存在x使得f(x+1)、f(ax)、f(x+2)成等差数列,求a的取值范围.答案:(1)(1,2);(2)(1,+∞).解析:(1)先求出函数解析式,再结合函数的单调性,即可求解;(2)根据等差数列的性质,推得log a (x+1)+log a (x+2)=2log a (ax)有解,再结合分离常数法,以及二次函数的性质,即可求解.解答:解:(1)由y=f(x)过(4,2)可得log a 4=2,则a 2=4,解得a=2(负值舍去),因为f(x)=log 2x在(0,+∞)上是严格增函数,f(2x-2)<f(x),则0<2x-2<x,解得1<x<2,故所求解集为(1,2);(2)因为f(x+1)、f(ax)、f(x+2)成等差数列,所以f(x+1)+f(x+2)=2f(ax),即log a (x+1)+log a (x+2)=2log a (ax)有解,化简可得lo (x +1)(x +2)=lo (ax ,则(x+1)(x+2)=(ax)2且,故=在(0,+∞)上有解,又=++1=2(+-,故在(0,+∞)上,>2(0+-=1,故a 2>1,解得a<-1或a>1,又a>0,所以a>1,故a的取值范围为(1,+∞).g a g a )2⎧⎨⎩x +1>0x +2>0a >0,a ≠1ax >0a 2(x +1)(x +2)x 2(x +1)(x +2)x 22x 23x1x 34)218(x +1)(x +2)x 234)218(2024•上海)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时的人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1).(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?答案:(1)12500人;(2)0.9h;(3)学业成绩与锻炼时长不小于1小时且小于2两小时有关解析:(1)由已知结合频率与概率关系即可求解;(2)先求出样本平均数,然后用样本平均数估计总体平均数即可;(3)结合独立性检验即可判断.解答:解:(1)580人中体育锻炼时长大于1小时人数占比P ==,该地区29000名初中学生中体育锻炼时长大于1小时的人数约为29000×=12500;(2)该地区初中学生锻炼平均时长约为×[×0.5×(5+134)+×(4+147)+×(42+137)+×(3+40)+×(1+27)]=≈0.9h;(3)由题意可得2×2列联表,[1,2)其他总数优秀455095不优秀177308485①提出零假设 H 0:成绩优秀与日均体育锻炼时长不小于1小时且小于2小时无关,②确定显著性水平α=0.05,P(χ2≥3.841)≈0.05,③=≈3.976>3.841,④否定零假设,即学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关.42+3+1+137+40+27580255825581580121+0.521+1.521.5+222+2.522729χ2580×(45×308-177×50)2(45+50)×(177+308)×(45+177)×(50+308)(2024•上海)已知双曲线Γ:-=1,(b>0),左右顶点分别为A 1,A 2,过点M(-2,0)的直线l交双曲线Γ于P、Q两点,且点P在第一象限.(1)当离心率e=2时,求b的值;x 2y 2b2(2)当b =,△MA 2P为等腰三角形时,求点P的坐标;(3)连接OQ并延长,交双曲线Γ于点R,若R •P =1,求b的取值范围.2√63→A 1→A 2答案:(1)b =;(2)P(2,2);(3)b∈(0,)∪(,√3√2√3√33解析:(1)由题意可得=2,a=1,可得c=2,由a 2+b 2=c 2求解即可;(2)由题意可得MA 2=PA 2,P(x 0,y 0),x 0>0,y 0>0,则可得(-1+=9,再由-=1,求解即可;(3)设 P(x 1,y 1) Q(x 2,y 2) 则R(-x 2,-y 2),设直线l :x =my -2(m >),联立直线与双曲线方程,再结合韦达定理可得y 1+y 2=,y 1y 2=,又由R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,即有(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,可得=>,即可得答案.c ax 0)2y 02x 02y 02831b 4m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2m 210-3b2b21b2解答:解:(1)因为e=2,即=2,所以=4,又因为a 2=1,所以c 2=4,又因为a 2+b 2=c 2,所以b 2=3,所以b =(负舍);(2)因为△MA 2P为等腰三角形,①若A 1A 2为底,则点P在线段MA 2的中垂线,即x =-上,与P双曲线上且在第一象限矛盾,故舍去;②若A 2P为底,则MP=MA 2,与MP>MA 2矛盾,故舍去;③若MP为底,则MA 2=PA 2,设P(x 0,y 0),x 0>0,y 0>0,c ac 2a 2√312则=3,即(-1+=9,又因为-=1,得(-1+(-1×=9,得11-6-32=0,解得=2,=2,即P (2,2);(3)由题可知A 1(-1,0),A 2(1,0),当直线l的斜率为0时,此时R •P =0,不合题意;则k l ≠0,设直线l:x=my-2,设P(x 1,y 1),Q(x 2,y 2),根据延长OQ交双曲线于点R,则R(-x 2,-y 2),联立,得(b 2m 2-1)y 2-4b 2my+3b 2=0,二次项系数b 2m 2-1≠0,√(-1+(-0x 0)2y 0)2x 0)2y 02x 02y 0283x 0)2x 0)283x 02x 0x 0y 0√2√2→A 1→A 2{x =my -2-=1x 2y 2b2Δ=(-4b 2m)2-12b 2(b 2m 2-1)=4b 4m 2+12b 2>0,y 1+y 2=,y 1y 2=,所以R =(-x 2+1,-y 2),P =(x 1-1,y 1),又因为R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,则(x 2-1)(x 1-1)+y 1y 2=-1,即(my 2-3)(my 1-3)+y 1y 2=-1,化简后可得到(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,再由韦达定理得3b 2(m 2+1)-12m 2b 2+10(b 2m 2-1)=0,化简得b 2m 2+3b 2-10=0,所以=-3,代入b 2m 2-1≠0,得b 2=10-3b 2≠1,所以b 2≠3,且=-3≥0,解得b 2≤,又因为b>0,则0<b 2≤,综上,b 2∈(0,3)∪(3,],所以b∈(0,)∪(,4m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2→A 1→A 2m 210b2m 210b 210310310√3√33(2024•上海)设全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.答案:{1,3,5}.解析:结合补集的定义,即可求解.解答:解:全集U={1,2,3,4,5},集合A={2,4},则A ={1,3,5}.故答案为:{1,3,5}.(2024•上海)已知f (x )=,则f(3)=.{,x >01,x ≤0√x√3答案:.√3解析:根据已知条件,将x=3代入函数解析式,即可求解.解答:解:f (x )=,则f(3)=.故答案为:.{,x >01,x ≤0√x√3√3(2024•上海)已知x∈R,则不等式x 2-2x-3<0的解集为 {x|-1<x<3}.答案:{x|-1<x<3}.解析:根据一元二次不等式的解法直接求解即可.解答:解:x 2-2x-3<0可化为(x-3)(x+1)<0,解得-1<x<3,故不等式的解集为:{x|-1<x<3}.故答案为:{x|-1<x<3}.(2024•上海)已知f(x)=x 3+a,x∈R,且f(x)是奇函数,则a=0.答案:0.解析:首先根据f(0)=0,解得a=0,再根据奇函数的定义进行验证即可.解答:解:由题意,可得f(0)=0+a=0,解得a=0,当a=0时,f(x)=x 3,满足f(-x)=(-x)3=-x 3=-f(x),即f(x)是奇函数,故a=0符合题意.故答案为:0.(2024•上海)已知k∈R,a =(2,5),b =(6,k ),a ∥b ,则k的值为 15.→→→→答案:15.解析:根据向量平行的坐标表示,列方程求解即可.解答:解:由a =(2,5),b =(6,k ),a ∥b ,可得2k-5×6=0,解得k=15.故答案为:15.→→→→(2024•上海)在(x+1)n 的二项展开式中,若各项系数和为32,则x 2项的系数为 10.答案:见试题解答内容解析:根据二项式系数和求得n值,再结合二项式的通项公式即可求得.解答:解:由题意,展开式中各项系数的和是(1+1)n =32,所以n=5,则该二项式的通项公式是=••,令5-r=2,解得r=3,故x 2项的系数为=10.故答案为:10.T r +1C 5rx 5-r 1rC 53(2024•上海)已知抛物线y 2=4x上有一点P到准线的距离为9,那么P到x轴的距离为 4.√2答案:4.√2解析:根据已知条件,结合抛物线的定义,即可求解.解答:解:设P坐标为(x 0,y 0),P到准线的距离为9,即x 0+1=9,解得x 0=8,代入抛物线方程,可得=±4,故P到x轴的距离为4.故答案为:4.y 0√2√2√2(2024•上海)某校举办科学竞技比赛,有A、B、C3种题库,A题库有5000道题,B题库有4000答案:.1720解析:根据已知条件,结合全概率公式,即可求解.解答:解:由题可知,A题库占比为,B题库占比为,C题库占比为,故P =×0.92+×0.86+×0.72=.故答案为:.5121314512131417201720(2024•上海)已知虚数z,其实部为1,且z +=m (m ∈R ),则实数m为 2.2z答案:2.解析:根据已知条件,结合复数的概念,以及复数的四则运算,即可求解.解答:解:虚数z,其实部为1,则可设z=1+bi(b≠0),所以z +=1+bi +=1+bi +=1++(b -)i ,因为m∈R,所以b -=0,解得b=±1,所以m =1+=1+1=2.故答案为:2.2z 21+bi 2•(1-bi )1+b221+b22b 1+b22b 1+b221+b2(2024•上海)设集合A中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 329.答案:329.解析:根据已知条件,结合组合数、排列数公式,并分类讨论,即可求解.解答:解:由题可知,集合A中每个元素都互异,且元素中最多有一个奇数,剩余全是偶数,先研究集合中无重复数字的三位偶数:(1)若个位为0,这样的偶数有=72种;(2)若个位不为0,这样的偶数有••=256种;所以集合元素个数最大值为256+72+1=329种.故答案为:329.P 92C 41C 81C 81(2024•上海)已知点B在点C正北方向,点D在点C的正东方向,BC=CD,存在点A满足∠BAC=16.5°,∠DAC=37°,则∠BCA=7.8°.(精确到0.1度)答案:7.8°.解析:根据已知条件,结合正弦定理,余弦定理,即可求解.解答:解:在△ACD中,根据正弦定理可得=,设∠ACB=α,则∠ACD=90°-α,所以==,①在△ABC中,根据正弦定理可得=,==,②联立①②,因为BC=CD,所以=,利用计算器可得,α=7.8°,即∠BCA=7.8°.故答案为:7.8°.AC sin ∠DCD sin ∠CADAC sin [180°-(37°+90°-α)]CD sin 37°AC sin (90°-α+37°)CB sin ∠BAC CA sin ∠BBC sin ∠16.5°CA sin [180°-(α+16.5°)]CA sin (α+16.5°)sin 37°sin (90°-α+37°)sin 16.5°sin (α+16.5°)(2024•上海)无穷等比数列{a n }满足首项a 1>0,q>1,记I n ={x-y|x,y∈[a 1,a 2]∪[a n ,a n+1]},若对任意正整数n,集合I n 是闭区间,则q的取值范围是 [2,+∞).答案:[2,+∞)解析:当n≥2时,不妨设x≥y,则x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],结合I n 为闭区间可得q -2≥-对任意的n≥2恒成立,故可求q的取值范围.1q n -2解答:解:由题设有=,因为a 1>0,q>1,故a n+1>a n ,故[,]=[,],当n=1时,x,y∈[a 1,a 2],故x-y∈[a 1-a 2,a 2-a 1],此时I 1为闭区间,当n≥2时,不妨设x≥y,若x,y∈[a 1,a 2],则x-y∈[0,a 2-a 1],若y∈[a 1,a 2],x∈[a n ,a n+1],则x-y∈[a n -a 2,a n+1-a 1],若x,y∈[a n ,a n+1],则x-y∈[0,a n+1-a n ],综上,x-y∈[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ],又I n 为闭区间等价于[0,a 2-a 1]∪[a n -a 2,a n+1-a 1]∪[0,a n+1-a n ]为闭区间,而a n+1-a 1>a n+1-a n >a 2-a 1,故a n+1-a n ≥a n -a 2对任意n≥2恒成立,故-2+≥0即(q -2)+≥0,故q n-2(q-2)+1≥0,故q -2≥-对任意的n≥2恒成立,因为q>1,故当n→+∞时,-→0,故q-2≥0即q≥2.故答案为:[2,+∞).a n a n q n -1a n a n +1a 1q n -1a 1q n a n +1a n a 2a 1q n -1a 21q n -21q n -2A.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势A.sinx+cosx B.sinxcosx C.sin 2x+cos 2xD.sin 2x-cos 2x(2024•上海)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是( )答案:C解析:利用变量的性关系,判断选项即可.解答:解:成对数据相关分析中,如果相关系数为正,当x的值由小变大,y的值具有由小变大的变化趋势,所以A、B、D选项错误.故选:C.(2024•上海)下列函数f(x)的最小正周期是2π的是( )答案:A解析:利用两角和与差的三角函数,二倍角公式,化简选项表达式,求解函数的周期即可.解答:解:对于A,sinx+cosx=sin(x+),则T=2π,满足条件,所以A正确.对于B,sinxcosx=sin2x,则T=π,不满足条件,所以B不正确.对于C,sin 2x+cos 2x=1,函数是常函数,不存在最小正周期,不满足条件,所以C不正确.对于D,sin 2x-cos 2x=-cos2x,则T=π,不满足条件,所以D不正确.故选:A.√2π412A.(0,0,0)∈ΩB.(-1,0,0)∈ΩC.(0,1,0)∈ΩD.(0,0,-1)∈ΩA.存在f(x)是偶函数B.存在f(x)在x=2处取最大值C.存在f(x)为严格增函数D.存在f(x)在x=-1处取到极小值(2024•上海)定义一个集合Ω,集合元素是空间内的点集,任取P 1,P 2,P 3∈Ω,存在不全为0的实数λ1,λ2,λ3,使得O +O +O =0.已知(1,0,0)∈Ω,则(0,0,1)∉Ω的充分条件是( )λ1→P 1λ2→P 2λ3→P 3→答案:C解析:利用空间向量的基本定理,结合充要条件,判断选项即可.解答:解:不全为0的实数λ1,λ2,λ3,使得O +O +O =0.所以3个向量无法构成三维空间坐标系的一组基,又因为(1,0,0)∈Ω,所以对于A三者不能构成一组基,故不能推出(0,0,1)∉Ω,故A错误;对于B,(1,0,0)∈Ω,(-1,0,1)∈Ω,且(1,0,0),(-1,0,0)共线,所以(0,0,1)可以属于Ω,此时三者不共面,故B错误;对于C,显然三者可以构成一组基,与条件不符合,故可以推出(0,0,1)∉Ω,故C正确;对于D,三者无法构成一组基,故不能推出(0,0,1)∉Ω,故D错误.故选:C.λ1→P 1λ2→P 2λ3→P 3→(2024•上海)已知函数f(x)的定义域为R,定义集合M={x 0|x 0∈R,x∈(-∞,x 0),f(x)<f (x 0)},在使得M=[-1,1]的所有f(x)中,下列成立的是( )答案:B解析:根据函数的奇偶性、单调性、极值及最值的相关性质对各选项进行判定即可.解答:解:对于A,x<x 0时,f(x)<f(x 0),当x 0=1时,x 0∈[-1,1],对于任意x∈(-∞,1),f(x)<f(1)恒成立,若f(x)是偶函数,此时f(1)=f(-1),矛盾,故A错误;对于B,若f(x)函数图像如下:当x<-1时,f(x)=-2,-1≤x≤1时,f(x)∈[-1,1],当x>1,f(x)=1,所以存在f(x)在x=2处取最大值,故B正确;对于C,在x<-1时,若函数f(x)严格增,则集合M的取值不会是[-1,1],而是全体定义域,故C错误;对于D,若存在f(x)在x=-1处取到极小值,则在x=-1左侧存在x=n,f(n)>-1,与集合M定义矛盾,故D错误.故选:B.(2024•上海)如图为正四棱锥P-ABCD,O为底面ABCD的中心.(1)若AP=5,AD =3,求△POA绕PO旋转一周形成的几何体的体积;(2)若AP=AD,E为PB的中点,求直线BD与平面AEC所成角的大小.√2答案:(1)12π;(2).π4解析:(1)根据已知条件,先求出PO,再结合棱锥的体积公式,即可求解.(2)建立空间直角坐标系,求出平面AEC的法向量,再结合向量的夹角公式,即可求解.解答:解:(1)因为P-ABCD是正四棱锥,所以底面ABCD是正方形,且OP⊥底面ABCD,因为AD =3,所以AO=OD=OB=OC=3,因为AP=5,所以PO ==4,所以△POA绕OP旋转一周形成的几何体是以3为底面半径,4为高的圆锥,所以=Sh =π××4=12π;(2)如图建立空间直角坐标系,√2√A -A P 2O 2V圆锥131332因为AP=AD,由题知P-ABCD是正四棱锥,所以该四棱锥各棱长相等,设AB =a ,则AO=OD=OB=OC=a,PO ==a ,则O(0,0,0),P(0,0,a),A(0,-a,0),B(a,0,0),C(0,a,0),D(-a,0,0),E (,0,),故BD =(-2a ,0,0),AC =(0,2a ,0),AE =(,a ,),设n =(,,)为平面AEC的法向量,则,即,令x 1=1,则y 1=0,z 1=-1,所以n =(1,0-1),则cos 〈n ,BD 〉==设直线BD与面AEC所成角为θ,因为sinθ=|cos 〈n ,BD 〉θ∈[0,],则θ=,故直线BD与平面AEC所成角的大小为.√2√A -A P 2O 2a 2a 2→→→a 2a 2→x 1y 1z 1{n •AC =0n •AE =0→→→→{2a •=0•+a •+•=0y 1a 2x 1y 1a 2z 1→→→n •BD →→|n |•|BD |→→2→→2π2π4π4(2024•上海)已知f(x)=log a x(a>0,a≠1).(1)若y=f(x)过(4,2),求f(2x-2)<f(x)的解集;(2)存在x使得f(x+1)、f(ax)、f(x+2)成等差数列,求a的取值范围.答案:(1)(1,2);(2)(1,+∞).解析:(1)先求出函数解析式,再结合函数的单调性,即可求解;(2)根据等差数列的性质,推得log a (x+1)+log a (x+2)=2log a (ax)有解,再结合分离常数法,以及二次函数的性质,即可求解.解答:解:(1)由y=f(x)过(4,2)可得log a 4=2,则a 2=4,解得a=2(负值舍去),因为f(x)=log 2x在(0,+∞)上是严格增函数,f(2x-2)<f(x),则0<2x-2<x,解得1<x<2,故所求解集为(1,2);(2)因为f(x+1)、f(ax)、f(x+2)成等差数列,所以f(x+1)+f(x+2)=2f(ax),即log a (x+1)+log a (x+2)=2log a (ax)有解,化简可得lo (x +1)(x +2)=lo (ax ,则(x+1)(x+2)=(ax)2且,故=在(0,+∞)上有解,又=++1=2(+-,故在(0,+∞)上,>2(0+-=1,故a 2>1,解得a<-1或a>1,又a>0,所以a>1,故a的取值范围为(1,+∞).g a g a )2⎧⎨⎩x +1>0x +2>0a >0,a ≠1ax >0a 2(x +1)(x +2)x 2(x +1)(x +2)x 22x 23x1x 34)218(x +1)(x +2)x 234)218(2024•上海)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:时间范围[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)学业成绩优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长不少于1小时的人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1).(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?答案:(1)12500人;(2)0.9h;(3)学业成绩与锻炼时长不小于1小时且小于2两小时有关解析:(1)由已知结合频率与概率关系即可求解;(2)先求出样本平均数,然后用样本平均数估计总体平均数即可;(3)结合独立性检验即可判断.解答:解:(1)580人中体育锻炼时长大于1小时人数占比P ==,该地区29000名初中学生中体育锻炼时长大于1小时的人数约为29000×=12500;(2)该地区初中学生锻炼平均时长约为×[×0.5×(5+134)+×(4+147)+×(42+137)+×(3+40)+×(1+27)]=≈0.9h;(3)由题意可得2×2列联表,[1,2)其他总数优秀455095不优秀177308485①提出零假设 H 0:成绩优秀与日均体育锻炼时长不小于1小时且小于2小时无关,②确定显著性水平α=0.05,P(χ2≥3.841)≈0.05,③=≈3.976>3.841,④否定零假设,即学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关.42+3+1+137+40+27580255825581580121+0.521+1.521.5+222+2.522729χ2580×(45×308-177×50)2(45+50)×(177+308)×(45+177)×(50+308)(2024•上海)已知双曲线Γ:-=1,(b>0),左右顶点分别为A 1,A 2,过点M(-2,0)的直线l交双曲线Γ于P、Q两点,且点P在第一象限.(1)当离心率e=2时,求b的值;(2)当b =,△MA 2P为等腰三角形时,求点P的坐标;(3)连接OQ并延长,交双曲线Γ于点R,若R •P =1,求b的取值范围.x 2y 2b22√63→A 1→A 2答案:(1)b =;(2)P(2,2);(3)b∈(0,)∪(,].√3√2√3√3√303解析:(1)由题意可得=2,a=1,可得c=2,由a 2+b 2=c 2求解即可;(2)由题意可得MA 2=PA 2,P(x 0,y 0),x 0>0,y 0>0,则可得(-1+=9,再由-=1,求解即可;(3)设 P(x 1,y 1) Q(x 2,y 2) 则R(-x 2,-y 2),设直线l :x =my -2(m >),联立直线与双曲线方程,再结合韦达定理可得y 1+y 2=,y 1y 2=,又由R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,即有(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,可得=>,即可得答案.c ax 0)2y 02x 02y 02831b 4m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2m 210-3b2b21b2解答:解:(1)因为e=2,即=2,所以=4,又因为a 2=1,所以c 2=4,又因为a 2+b 2=c 2,所以b 2=3,所以b =(负舍);(2)因为△MA 2P为等腰三角形,①若A 1A 2为底,则点P在线段MA 2的中垂线,即x =-上,与P双曲线上且在第一象限矛盾,故舍去;②若A 2P为底,则MP=MA 2,与MP>MA 2矛盾,故舍去;③若MP为底,则MA 2=PA 2,设P(x 0,y 0),x 0>0,y 0>0,c ac 2a 2√312则=3,即(-1+=9,又因为-=1,得(-1+(-1×=9,得11-6-32=0,解得=2,=2,即P (2,2);(3)由题可知A1(-1,0),A 2(1,0),当直线l的斜率为0时,此时R •P =0,不合题意;则k l ≠0,设直线l:x=my-2,设P(x 1,y 1),Q(x 2,y 2),根据延长OQ交双曲线于点R,则R(-x 2,-y 2),联立,得(b 2m 2-1)y 2-4b 2my+3b 2=0,二次项系数b 2m 2-1≠0,Δ=(-4b 2m)2-12b 2(b 2m 2-1)=4b 4m 2+12b 2>0,y 1+y 2=,y 1y 2=,所以R =(-x 2+1,-y 2),P =(x 1-1,y 1),又因为R •P =1,得(-x 2+1)(x 1-1)-y 1y 2=1,则(x 2-1)(x 1-1)+y 1y 2=-1,√(-1+(-0x 0)2y 0)2x 0)2y 02x 02y 0283x 0)2x 0)283x 02x 0x 0y 0√2√2→A 1→A 2{x =my -2-=1x 2y 2b24m b 2-1b 2m 23b2-1b 2m 2→A 1→A 2→A 1→A 2即(my 2-3)(my 1-3)+y 1y 2=-1,化简后可得到(m 2+1)y 1y 2-3m(y 1+y 2)+10=0,再由韦达定理得3b 2(m 2+1)-12m 2b 2+10(b 2m 2-1)=0,化简得b 2m 2+3b 2-10=0,所以=-3,代入b 2m 2-1≠0,得b 2=10-3b 2≠1,所以b 2≠3,且=-3≥0,解得b 2≤,又因为b>0,则0<b 2≤,综上,b 2∈(0,3)∪(3,],所以b∈(0,)∪(,m 210b2m 210b 210310310√3√33(2024•上海)对于一个函数f(x)和一个点M(a,b),定义s(x)=(x-a)2+(f(x)-b)2,若存在P(x 0,f(x 0)),使s(x 0)是s(x)的最小值,则称点P是函数f(x)到点M的“最近点”.(1)对于f (x )=(x>0),求证:对于点M(0,0),存在点P,使得点P是f(x)到点M的“最近点”;(2)对于f(x)=e x ,M(1,0),请判断是否存在一个点P,它是f(x)到点M的“最近点”,且直线MP与f(x)在点P处的切线垂直;(3)已知f(x)存在导函数f′(x),函数g(x)恒大于零,对于点M 1(t-1,f(t)-g(t)),点M 2(t+1,f(t)+g(t)),若对任意t∈R,存在点P同时是f(x)到点M 1与点M 2的“最近点”,试判断f(x)的单调性.1x答案:(1)证明过程见解析;(2)存在,P(0,1);(3)f(x)严格单调递减.解析:(1)代入M(0,0),利用基本不等式即可;(2)由题得s(x)=(x-1)2+e 2x ,利用导函数得到其最小值,则得到P,再证明直线MP与切线垂直即可;(3)根据题意得到s 1'(x 0)=s 2'(x 0)=0,对两等式化简得f ′()=-,再利用“最近点”的定义得到不等式组,即可证明x 0=t,最后得到函数单调性.x 01g (t )解答:解:(1)当M(0,0)时,s (x )=(x -0+(-0=+≥22,当且仅当=即x=1时取等号,故对于点M(0,0),存在点P(1,1),使得该点是M(0,0)在f(x)的“最近点”;(2)由题设可得s(x)=(x-1)2+(e x -0)2=(x-1)2+e 2x ,则s'(x)=2(x-1)+2e 2x ,因为y=2(x-1),y=2e 2x 均为R上单调递增函数,则s'(x)=2(x-1)+2e 2x 在R上为严格增函数,而s'(0)=0,故当x<0时,s'(x)<0,当x>0时,s'(x)>0,故s(x)min =s(0)=2,此时P(0,1),而f'(x)=e x ,k=f'(0)=1,故f(x)在点P处的切线方程为y=x+1,而==-1,故k MP •k=-1,故直线MP与y=f(x)在点P处的切线垂直.(3)设(x )=(x -t +1+(f (x )-f (t )+g (t ),(x )=(x -t -1+(f (x )-f (t )-g (t ),而s 1'(x)=2(x-t+1)+2(f(x)-f(t)+g(t))f'(x),s 2'(x)=2(x-t-1)+2(f(x)-f(t)-g(t))f'(x),若对任意的t∈R,存在点P同时是M 1,M 2在f(x)的“最近点”,设P(x 0,y 0),则x 0既是s 1(x)的最小值点,也是s 2(x)的最小值点,因为两函数的定义域均为R,则x 0也是两函数的极小值点,则存在x 0,使得s 1'(x 0)=s 2'(x 0)=0,即s 1'(x 0)=2(x 0-t+1)+2f′(x 0)[f(x 0)-f(t)+g(t)]=0,①s 2'(x 0)=2(x 0-t-1)+2f′(x 0)[f(x 0)-f(t)-g(t)]=0,②由①②相等得4+4g(t)•f'(x 0)=0,即1+f'(x 0)g(t)=0,即f ′()=-,又因为函数g(x)在定义域R上恒正,则f ′()=-<0恒成立,接下来证明x 0=t,因为x 0既是s 1(x)的最小值点,也是s 2(x)的最小值点,则s 1(x 0)≤s(t),s 2(x 0)≤s(t),即 (-t +1+(f ()-f (t )+g (t )≤1+(g (t ),③(-t -1+(f ()-f (t )-g (t )≤1+(g (t ),④③+④得2(-t +2+2[f ()-f (t )+2(t )≤2+2(t ),即(-t +(f ()-f (t )≤0,因为(-t ≥0,(f ()-f (t )≥0)21x )2x 21x 2x 21x 2k MP 0-11-0s 1)2)2s 2)2)2x 01g (t )x 01g (t )x 0)2x 0)2)2x 0)2x 0)2)2x 0)2x 0]2g 2g 2x 0)2x 0)2x 0)2x 0)2则,解得x 0=t,则f ′(t )=-<0恒成立,因为t的任意性,则f(x)严格单调递减.{-t =0f ()-f (t )=0x 0x 01g (t )。
03-06上海高考试题分类汇编
2003—2006上海市高考数学试题汇编崇明县教研室 龚为民 一、 函数(一)填空题1、函数)1(log )(4+=x x f 的反函数)(1x f -=__________。
(05上海理) 2、 函数]1,0[,53)(∈+=x x x f 的反函数=-)(1x f . (06上海春)3、设奇函数f (x )的定义域为[-5,5].(04上海理)若当x ∈[0,5]时,f (x )的图象如右图,则不等式f (x )<0的解是 .(04上海理)4、 若函数f(x)=a x (a>0,且a≠1)的反函数的图像过点(2,1),则a= .5、 函数2()f x x =-)]2,((-∞-∈x 的反函数=-)(1x f .(05上海春) 6、已知函数)24(log )(3+=xx f ,则方程4)(1=-x f的解=x __________.(04上海春季)7、设f (x )是定义在R 上的奇函数. 若当x ≥0时,f (x )=log 3(1+x ),则f (–2)= . (03上海春季)8、已知函数)(x f 是定义在),(∞+∞-上的偶函数. 当)0,(∞-∈x 时,4)(x x x f -=,则 当),0(∞+∈x 时,=)(x f . (06上海春)9、 若函数)(x f =xa (a >0,且a ≠1)的反函数的图像过点(2,-1),则a = .(06上海理)10、若函数f (x )=a 2+-b x 在[0,+∞]上为增函数,则实数a 、b 的取值范围是 .(04上海理)11、已知函数f (x )=log )log(22x x aa +-的定义域是)21,0(,则实数a 的取值范围是 .(03上海春季)12、若曲线12+=xy 与直线y= b 没有公共点,则b 的取值范围是 . (06上海文) 13、若曲线2y =|x |+1与直线y =kx +b 没有公共点,则k 、b 分别应满足的条件是 .(06上海理)14、如下图所示,客轮以速度2v 由A 至B 再到C 匀速航行,货轮从AC 的中点D 出发,以速度v 沿直线匀速航行,将货物送达客轮.已知AB ⊥BC ,且AB=BC=50海里.若两船同时出发,则两船相遇之处距C 点 海里.(结果精确到小数点后1位)(03上海春季)15、三个同学对问题“关于x 的不等式2x +25+|3x -52x |≥ax 在[1,12]上恒成立,求实数a 的取值范围”提出各自的解题思路.甲说:“只须不等式左边的最小值不小于右边的最大值”.乙说:“把不等式变形为左边含变量x 的函数,右边仅含常数,求函数的最值”. 丙说:“把不等式两边看成关于x 的函数,作出函数图像”.参考上述解题思路,你认为他们所讨论的问题的正确结论,即a 的取值范围是 . (06上海理)(二)选择题16、若函数121)(+=xx f ,则该函数在()+∞∞-,上是( )(05上海理)A .单调递减无最小值B .单调递减有最小值C .单调递增无最大值D .单调递增有最大值 17、设A>0,a ≠1,函数y =xy x aa1loglog=的反函数和的反函数的图象关于( )(03上海春季) (A)x 轴对称(B)y 轴对称(C)y =x 对称(D)原点对称18、设定义域为R 的函数⎩⎨⎧=≠-=1,01||,1|lg |)(x x x x f ,则关于x 的方程0)()(2=++c x bf x f 有7个不同实数解的充要条件是( )(05上海理)A .0<b 且0>cB .0>b 且0<cC .0<b 且0=cD .0≥b 且0=c 19、若函数y =f (x )的图象可由函数y =lg (x +1)的图象绕坐标原点O 逆时针旋转2π得到,则 f (x )=( ) (04上海理)(A ) 10-x-1. (B ) 10x -1. (C ) 1-10-x . (D ) 1-10x. 20、 设函数()f x 的定义域为R ,有下列三个命题:(1)若存在常数M ,使得对任意R ∈x ,有()f x M ≤,则M 是函数()f x 的最大值;(2)若存在R ∈0x ,使得对任意R ∈x ,且0x x ≠,有)()(0x f x f <,则)(0x f 是函数()f x 的最大值;(3)若存在R ∈0x ,使得对任意R ∈x ,有)()(0x f x f ≤,则)(0x f 是函数()f x 的最大值. 这些命题中,真命题的个数是 ( ) (05上海春) (A )0个. (B )1个. (C )2个. (D )3个. 21、某地2004年第一季度应聘和招聘人数排行榜前5个行业的情况列表如下若用同一行业中应聘人数与招聘人数比值的大小来衡量该行业的就业情况,则根据表中数据,就业形势一定是( ) (04上海理)(A )计算机行业好于化工行业. (B ) 建筑行业好于物流行业.(C ) 机械行业最紧张. (D ) 营销行业比贸易行业紧张.22、f (x )是定义在区间[-c,c]上的奇函数,其图象如图所示:令g (x )=af (x )+b ,则下列关于函数g (x )的叙述正确的是( )(03上海理)A .若a <0,则函数g (x )的图象关于原点对称.B .若a =-1,-2<b<0,则方程g (x )=0有大于2的实根.C .若a ≠0,b=2,则方程g (x )=0有两个实根.D .若a ≥1,b<2,则方程g (x )=0有三个实根.(三)解答题23、(本题满分12分)某单位用木料制作如图所示的框架, 框架的下部是边长分别为x 、y (单位:m )的矩形.上部是等腰直角三角形. 要求框架围成的总面积8cm 2. 问x 、y 分别为多少(精确到0. 001m ) 时用料最省? (04上海理)24、(本题满分14分) 第1小题满分6分, 第2小题满分8分记函数f (x )=132++-x x 的定义域为A , g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B .(04上海理) (1) 求A ;(2) 若B ⊆A , 求实数a 的取值范围.25、(本题满分14分) 第1小题满分6分, 第2小题满分8分(04上海理)已知二次函数y =f 1(x )的图象以原点为顶点且过点(1,1),反比例函数y =f 2(x )的图象与直线y =x 的两个交点间距离为8,f (x )= f 1(x )+ f 2(x ). (1) 求函数f (x )的表达式;(2) 证明:当a >3时,关于x 的方程f (x )= f (a )有三个实数解. 26、(本小题满分14分) (03上海春季) 已知函数f (x )=).1(12>+-+a x x a x(1)证明:函数f (x )在(–1,+∞)上为增函数; (2)用反证法证明方程f (x )=0没有负数根.27、(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分。
上海历年高考文科数学试题及答案汇编十数列
上海历年高考文科数学试题及答案汇编十数列(2008-2016)试题1、14.(4分)(2008上海)若数列{a n}是首项为1,公比为a﹣的无穷等比数列,且{a n}各项的和为a,则a的值是()A.1 B.2 C.D.2、12.(4分)(2010上海)在n行n列表中,记位于第i行第j列的数为a ij(i,j=1,2,…,n).当n=9时,a11+a22+a33+…+a99= .3、14.(4分)(2010上海)将直线l1:x+y﹣1=0、l2:nx+y﹣n=0、l3:x+ny﹣n=0(n∈N*,n≥2)围成的三角形面积记为S n,则= .4、2.(4分)(2011上海)计算= .5、7.(4分)(2012上海)有一列正方体,棱长组成以1为首项、为公比的等比数列,体积分别记为V1,V2,…,V n,…,则(V1+V2+…+V n)═.6、14.(4分)(2012上海)已知,各项均为正数的数列{a n}满足a1=1,a n+2=f (a n),若a2010=a2012,则a20+a11的值是.7、18.(5分)(2012上海)若(n∈N*),则在S1,S2,…,A.16 B.72 C.86 D.100n123423= .9、10.(4分)(2014上海)设无穷等比数列{a n}的公比为q,若a1=(a3+a4+…a n),则q= .10、18. (5分)(2015上海)设(,)n n n P x y 是直线21nx y n -=+()*n ∈N 与圆222x y +=在第一象限的交点,则极限1lim1n n n y x →∞--=( ) A.1- B.12-C.1D.2 11、14.(4分)(2016上海)无穷数列{a n }由k 个不同的数组成,S n 为{a n }的前n 项和,若对任意n ∈N *,S n ∈{2,3},则k 的最大值为 . 解答题 1、21.(18分)(2008上海)已知数列{a n }:a 1=1,a 2=2,a 3=r ,a n+3=a n +2(n 是正整数),与数列{b n }:b 1=1,b 2=0,b 3=﹣1,b 4=0,b n+4=b n (n 是正整数). 记T n =b 1a 1+b 2a 2+b 3a 3+…+b n a n .(1)若a 1+a 2+a 3+…+a 12=64,求r 的值; (2)求证:当n 是正整数时,T 12n =﹣4n . 2、23.(18分)(2009上海)已知{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列(1)若a n =3n+1,是否存在m ,n ∈N *,有a m +a m+1=a k ?请说明理由;(2)若b n =aq n(a 、q 为常数,且aq≠0)对任意m 存在k ,有b m •b m+1=b k ,试求a 、q 满足的充要条件;(3)若a n =2n+1,b n =3n试确定所有的p ,使数列{b n }中存在某个连续p 项的和式数列中{a n }的一项,请证明.3、21.(14分)(2010上海)已知数列{a n }的前n 项和为S n ,且S n =n ﹣5a n ﹣85,n ∈N *. (1)证明:{a n ﹣1}是等比数列;(2)求数列{S n }的通项公式,并求出使得S n+1>S n 成立的最小正整数n . 4、23.(18分)(2011上海)已知数列{a n } 和{b n } 的通项公式分别为a n =3n+6,b n =2n+7(n ∈N *).将集合{x|x=a n ,n ∈N *}∪{x|x=b n ,n ∈N *}中的元素从小到大依次排列,构成数列c 1,c 2,c 3,…,c n ,…(1)求三个最小的数,使它们既是数列{a n } 中的项,又是数列{b n }中的项; (2)数列c 1,c 2,c 3,…,c 40 中有多少项不是数列{b n }中的项?请说明理由;(3)求数列{c n }的前4n 项和S 4n (n ∈N *). 5、23.(18分)(2012上海)对于项数为m 的有穷数列{a n },记b k =max{a 1,a 2,…,a k }(k=1,2,…,m ),即b k 为a 1,a 2,…,a k 中的最大值,并称数列{b n }是{a n }的控制数列,如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列{a n }的控制数列为2,3,4,5,5,写出所有的{a n }. (2)设{b n }是{a n }的控制数列,满足a k +b m ﹣k+1=C (C 为常数,k=1,2,…,m ),求证:b k =a k (k=1,2,…,m ). (3)设m=100,常数a ∈(,1),a n =a n 2﹣n ,{b n }是{a n }的控制数列,求(b 1﹣a 1)+(b 2﹣a 2)+…+(b 100﹣a 100).6、22.(16分)(2013上海)已知函数f (x )=2﹣|x|,无穷数列{a n }满足a n+1=f (a n ),n ∈N *(1)若a 1=0,求a 2,a 3,a 4;(2)若a 1>0,且a 1,a 2,a 3成等比数列,求a 1的值(3)是否存在a 1,使得a 1,a 2,…,a n ,…成等差数列?若存在,求出所有这样的a 1,若不存在,说明理由.7、23.(18分)(2014上海)已知数列{a n }满足a n ≤a n+1≤3a n ,n ∈N *,a 1=1. (1)若a 2=2,a 3=x ,a 4=9,求x 的取值范围; (2)若{a n }是等比数列,且a m =,求正整数m 的最小值,以及m 取最小值时相应{a n }的公比;(3)若a 1,a 2,…a 100成等差数列,求数列a 1,a 2,…a 100的公差的取值范围. 8、23.(本题满分18分)(2015上海)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知数列{}n a 与{}n b 满足112()n n n n a a b b ++-=-,*.n ∈N (1) 若35n b n =+,且11a =,求{}n a 的通项公式;(2) 设{}n a 的第0n 项是最大项,即0n n a a …()*n ∈N .求证:{}n b 的第0n 项是最大项; (3) 设130a λ=<,n n b λ=()*n ∈N .求λ的取值范围,使得对任意*,m n ∈N ,0n a ≠,且1(,6)6m n a a ∈. 9、22.(16分)(2016上海)对于无穷数列{a n }与{b n },记A={x|x=a n ,n ∈N *},B={x|x=b n ,n ∈N *},若同时满足条件:①{a n },{b n }均单调递增;②A∩B=∅且A∪B=N *,则称{a n }与{b n }是无穷互补数列.(1)若a n =2n ﹣1,b n =4n ﹣2,判断{a n }与{b n }是否为无穷互补数列,并说明理由;(2)若a n =2n且{a n }与{b n }是无穷互补数列,求数量{b n }的前16项的和;(3)若{a n }与{b n }是无穷互补数列,{a n }为等差数列且a 16=36,求{a n }与{b n }的通项公式.答案1、解:由题意知a1=1,q=a﹣,且|q|<1,∴S n==a,即,解得a=2.故选B.2、解:a11+a22+a33+…+a99=1+3+5+7+9+2+4+6+8=45.故答案为:45.3、解:l2:nx+y﹣n=0、l3:x+ny﹣n=0的交点为B,所以BO⊥AC,∵l1:x+y﹣1=0与x轴、y轴的交点分别为:(1,0)、(0,1),∴AC=S n=所以=,故答案为:.4、解:对于,变形可得,当n→∞时,有→3;则原式=﹣2;故答案为:﹣2.5、解:由题意可得,正方体的棱长满足的通项记为a n则∴=是以1为首项,以为公比的等比数列则(V1+V2+…+v n)==故答案为:6、解:∵,各项均为正数的数列{a n}满足a1=1,a n+2=f(a n),∴a1=1,,,a7=,,∵a2010=a2012,∴∴a2010=(负值舍去),由a2010=得a2008=…依次往前推得到a20=∴a20+a11=故答案为:7、解:∵sin>0,sin>0,…sin>0,sin=0,sin<0,…sin<0,sin=0,∴S1=sin>0,S2=sin+sin>0,…,S8=sin+sin+…sin+sin+sin=sin+…+sin+sin>0,…,S12>0,而S13=sin+sin+…+sin+sin+sin+sin+…+sin=0,S14=S13+sin=0+0=0,又S15=S14+sin=0+sin=S1>0,S16=S2>0,…S27=S13=0,S28=S14=0,∴S14n﹣1=0,S14n=0(n∈N*),在1,2,…100中,能被14整除的共7项,∴在S1,S2,…,S100中,为0的项共有14项,其余项都为正数.故在S1,S2,…,S100中,正数的个数是86.故选C.8、解:因为数列{a n}是等差数列,根据等差数列的性质有:a1+a4=a2+a3,由a1+a2+a3+a4=30,所以,2(a2+a3)=30,则a2+a3=15.故答案为:15.9、解:∵无穷等比数列{a n}的公比为q,a1=(a3+a4+…a n)=(﹣a 1﹣a1q)=,∴q 2+q ﹣1=0, 解得q=或q=(舍).故答案为:.10、解:当n →∞时,直线21nx y n -=+趋近于21x y -=,与圆222x y +=在第一象限的交点无限靠近(1,1),而11n n y x --可看作(,)n n n P x y 与点(1,1)连线的斜率.其值会无限接近圆222x y +=在点(1,1)处的切线的斜率,其斜率为-1.∴ 1lim1n n n y x →∞--=-1.∴答案选A. 11、解:对任意n ∈N *,S n ∈{2,3},可得 当n=1时,a 1=S 1=2或3;若n=2,由S 2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,﹣1; 若n=3,由S 3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1; 若n=4,由S 3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1; 或2,0,1,0;或2,0,1,﹣1;或2,1,0,0;或2,1,0,﹣1; 或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1; 或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1; 或3,﹣1,1,0;或3,﹣1,1,﹣1; …即有n >4后一项都为0或1或﹣1,则k 的最大个数为4, 不同的四个数均为2,0,1,﹣1,或3,0,1,﹣1. 故答案为:4. 解答题 1、解:(1)a 1+a 2+a 3+…+a 12=1+2+r+3+4+(r+2)+5+6+(r+4)+7+8+(r+6) =48+4r . ∵48+4r=64, ∴r=4. 证明:(2)用数学归纳法证明:当n ∈Z +时,T 12n =﹣4n .①当n=1时,T 12=a 1﹣a 3+a 5﹣a 7+a 9﹣a 11=﹣4, 等式成立②假设n=k 时等式成立,即T 12k =﹣4k , 那么当n=k+1时,T 12(k+1)=T 12k +a 12k+1﹣a 12k+3+a 12k+5﹣a 12k+7+a 12k+9﹣a 12k+11=﹣4k+(8k+1)﹣(8k+r )+(8k+4)﹣(8k+5)+(8k+r+4)﹣(8k+8) =﹣4k ﹣4=﹣4(k+1),等式也成立.根据①和②可以断定:当n∈Z+时,T12n=﹣4n2、解:(1)由a m+a m+1=a k,得6m+6+3k+1,整理后,可得,∵m、k∈N,∴k﹣2m为整数∴不存在n、k∈N*,使等式成立.(2)当m=1时,则b1•b2=b k,∴a2•q3=aq k∴a=q k﹣3,即a=q c,其中c是大于等于﹣2的整数反之当a=q c时,其中c是大于等于﹣2的整数,则b n=q n+c,显然b m•b m+1=q m+c•q m+1+c=q2m+1+2c=b k,其中k=2m+1+c∴a、q满足的充要条件是a=q c,其中c是大于等于﹣2的整数(3)设b m+1+b m+2+…+b m+p=a k当p为偶数时,(*)式左边为偶数,右边为奇数,当p为偶数时,(*)式不成立.由(*)式得,整理得3m+1(3p﹣1)=4k+2当p=1时,符合题意.当p≥3,p为奇数时,3p﹣1=(1+2)p﹣1=C p0+C p1•21+C p2•22++C p p•2p﹣1=C p1•21+C p2•22++C p p•2p=2(C p1+C p2•2++C p p•2p﹣1)=2[2(C p2+C p2•22++C p p•2p﹣2)+p]∴由3m+1(3p﹣1)=4k+2,得3m+1[2(C p2+C p2•22++C p p•2p﹣2)+p]=2k+1∴当p为奇数时,此时,一定有m和k使上式一定成立.∴当p为奇数时,命题都成立.3、解:(1)当n=1时,a1=﹣14;当n≥2时,a n=S n﹣S n﹣1=﹣5a n+5a n﹣1+1,所以,又a1﹣1=﹣15≠0,所以数列{a n﹣1}是等比数列;(2)由(1)知:,得,从而(n∈N*);由S n+1>S n,得()n<,即n>≈14.9,最小正整数n=15.4、解:(1)因为数列{a n} 和{b n} 的通项公式分别为a n=3n+6,b n=2n+7,所以数列{a n}的项为:9,12,15,18,21,24,…;数列{b n} 的项为:9,11,13,15,17,19,21,23,…,则既是数列{a n} 中的项,又是数列{b n}中的项的三个最小的数为:9,15,21;(2)数列c1,c2,c3,…,c40的项分别为:9,11,12,13,15,17,18,19,21,23,24,25,27,29,30,31,33,35,36,37,39,41,42,43,45,47,48,49,51,53,54,55,57,59,60,61,63,65,66,67,则不是数列{b n}中的项有12,18,24,30,36,42,48,54,60,66共10项;(3)b3k﹣2=2(3k﹣2)+7=6k+3=a2k﹣1,b3k﹣1=6k+5,a2k=6k+6,b3k=6k+7,∵6k+3<6k+5<6k+6<6k+7,∴c n=,k∈N+,c4k﹣3+c4k﹣2+c4k﹣1+c k=24k+21,则S4n=(c1+c2+c3+c4)+…+(c4n﹣3+c4n﹣2+c4n﹣1+c4n)=24×+21n=12n2+33n.5、解:(1)数列{a n}为:2,3,4,5,1;2,3,4,5,2;2,3,4,5,3;2,3,4,5,4,;2,3,4,5,5;(2)∵b k=max{a1,a2,…,a k},b k+1=max{a1,a2,…,a k+1},∴b k+1≥b k…6分∵a k+b m﹣k+1=C,a k+1+b m﹣k=C,∴a k+1﹣a k=b m﹣k+1﹣b m﹣k≥0,即a k+1≥a k,∴b k=a k…10分(3)对k=1,2,…25,a4k﹣3=a(4k﹣3)2+(4k﹣3),a4k﹣2=a(4k﹣2)2+(4k﹣2),a4k﹣1=a(4k﹣1)2﹣(4k﹣1),a4k=a(4k)2﹣4k,比较大小,可得a4k﹣2>a4k﹣1,∵<a<1,∴a4k﹣1﹣a4k﹣2=(a﹣1)(8k﹣3)<0,即a4k﹣2>a4k﹣1;a4k﹣a4k﹣2=2(2a﹣1)(4k﹣1)>0,即a4k>a4k﹣2,又a4k+1>a4k,从而b4k﹣3=a4k﹣3,b4k﹣2=a4k﹣2,b4k﹣1=a4k﹣2,b4k=a4k,∴(b1﹣a1)+(b2﹣a2)+…+(b100﹣a100)=(a2﹣a3)+(a6﹣a7)+…+(a98﹣a99)=(a4k﹣2﹣a4k﹣1)=(1﹣a)(8k﹣3)=2525(1﹣a)6、解:(1)由题意,代入计算得a2=2,a3=0,a4=2;(2)a2=2﹣|a1|=2﹣a1,a3=2﹣|a2|=2﹣|2﹣a1|,①当0<a1≤2时,a3=2﹣(2﹣a1)=a1,所以,得a1=1;②当a1>2时,a3=2﹣(a1﹣2)=4﹣a1,所以,得(舍去)或.综合①②得a 1=1或.(3)假设这样的等差数列存在,那么a2=2﹣|a1|,a3=2﹣|2﹣|a1||,由2a2=a1+a3得2﹣a1+|2﹣|a1||=2|a1|(*),以下分情况讨论:①当a1>2时,由(*)得a1=0,与a1>2矛盾;②当0<a1≤2时,由(*)得a1=1,从而a n=1(n=1,2,…),所以{a n}是一个等差数列;③当a1≤0时,则公差d=a2﹣a1=(a1+2)﹣a1=2>0,因此存在m≥2使得a m=a1+2(m﹣1)>2,此时d=a m+1﹣a m=2﹣|a m|﹣a m<0,矛盾.综合①②③可知,当且仅当a1=1时,a1,a2,…,a n,…成等差数列.7、解;(1)由题意可得:,∴;又,∴3≤x≤27.综上可得:3≤x≤6.(2)设公比为q,由已知可得,,又,∴.因此,∴,∴m=1﹣log q1000==1﹣=≈7.28.∴m的最小值是8,因此q7=,∴=.(3)设公差为d,由已知可得≤1+nd≤3[1+(n﹣1)d]即,令n=1,得.当2≤n≤99时,不等式即,.∴.综上可得:公差d 的取值范围是.8、(1)由13n n b b +-=,得16n n a a +-=,所以{}n a 是首项为1,公差为6的等差数列,故{}n a 的通项公式为65n a n =-,*n ∈N .(2)证明:由11()2()n n n n a a b b ++-=-,得1122n n n n a b a b ++-=-.所以{}2n n a b -为常数列,1122n n a b a b -=-,即1122n n a b a b =+-.因为0n n a a …,*n ∈N ,所以01122n b a b +-1122n b a b +-…,即0n n b b ….故{}n b 的第0n 项是最大项.(3)因为n n b λ=,所以()112n nn n a a λλ++-=-,当2n …时,n a =()1n n a a --()()12211n n a a a a a --+-++-+()()()11222223n n n n λλλλλλλ---=-+-++-+2n λλ=+.当1n =时,13a λ=,符合上式.所以2n n a λλ=+.因为130a λ=<,且对任意*n ∈N ,11(,6)6n a a ∈,故0n a <.特别地,2220a λλ=+<,于是1(,0)2λ∈-.此时对任意*n ∈N ,0n a ≠.当102λ-<<时,222n n a λλλ=+>,21212n n a λλλ--=-+<,由指数函数的单调性知,{}n a 的最大值为2220a λλ=+<,最小值为13a λ=.由题意,mna a 的最大值及最小值分别为12321a a λ=+及21213a a λ+=.由21136λ+>及3621λ<+,解得104λ-<<.综上所述,λ的取值范围为1(,0)4-. 9、解:(1){a n }与{b n }不是无穷互补数列. 理由:由a n =2n ﹣1,b n =4n ﹣2,可得4∉A ,4∉B ,即有4∉A ∪B=N *,即有{a n }与{b n }不是无穷互补数列;(2)由a n =2n,可得a 4=16,a 5=32,由{a n }与{b n }是无穷互补数列,可得b 16=16+4=20, 即有数列{b n }的前16项的和为(1+2+3+…+20)﹣(2+4+8+16)=×20﹣30=180;(3)设{a n}为公差为d(d为正整数)的等差数列且a16=36,则a1+15d=36,由a1=36﹣15d≥1,可得d=1或2,若d=1,则a1=21,a n=n+20,b n=n(1≤n≤20),与{a n}与{b n}是无穷互补数列矛盾,舍去;若d=2,则a1=6,a n=2n+4,b n=.综上可得,a n=2n+4,b n=.11。
2024年上海高考数学试题+答案详解
2024年上海高考数学试题+答案详解(试题部分)一、填空题1.设全集{}1,2,3,4,5U =,集合{}2,4A =,则A = .2.已知()0,1,0x f x x >=≤⎪⎩则()3f = . 3.已知,x ∈R 则不等式2230x x −−<的解集为 .4.已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .5.已知()(),2,5,6,k a b k ∈==R ,且//a b ,则k 的值为 .6.在(1)n x +的二项展开式中,若各项系数和为32,则2x 项的系数为 .7.已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 .8.某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 . 9.已知虚数z ,其实部为1,且()2z m m z+=∈R ,则实数m 为 . 10.设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 .11.已知点B 在点C 正北方向,点D 在点C 的正东方向,BC CD =,存在点A 满足16.5,37BAC DAC =︒=︒∠∠,则BCA ∠= (精确到0.1度)12.无穷等比数列{}n a 满足首项10,1a q >>,记[][]{}121,,,n n n I x y x y a a a a +=−∈⋃,若对任意正整数n 集合n I 是闭区间,则q 的取值范围是 . 二、单选题13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是( )A .气候温度高,海水表层温度就高B .气候温度高,海水表层温度就低C .随着气候温度由低到高,海水表层温度呈上升趋势D .随着气候温度由低到高,海水表层温度呈下降趋势 14.下列函数()f x 的最小正周期是2π的是( )A .sin cos x x +B .sin cos x xC .22sin cos x x +D .22sin cos x x −15.定义一个集合Ω,集合中的元素是空间内的点集,任取123,,ΩP P P ∈,存在不全为0的实数123,,λλλ,使得1122330OP OP OP λλλ++=.已知(1,0,0)Ω∈,则(0,0,1)Ω∉的充分条件是( )A .()0,0,0∈ΩB .()1,0,0−∈ΩC .()0,1,0∈ΩD .()0,0,1−∈Ω16.已知函数()f x 的定义域为R ,定义集合()()(){}0000,,,M x x x x f x f x ∞=∈∈−<R ,在使得[]1,1M =−的所有()f x 中,下列成立的是( )A .存在()f x 是偶函数B .存在()f x 在2x =处取最大值C .存在()f x 是严格增函数D .存在()f x 在=1x −处取到极小值三、解答题17.如图为正四棱锥,P ABCD O −为底面ABCD 的中心.(1)若5,AP AD ==POA 绕PO 旋转一周形成的几何体的体积; (2)若,AP AD E =为PB 的中点,求直线BD 与平面AEC 所成角的大小. 18.若()log (0,1)a f x x a a =>≠.(1)()y f x =过()4,2,求()()22f x f x −<的解集;(2)存在x 使得()()()12f x f ax f x ++、、成等差数列,求a 的取值范围.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:(1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少? (2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有95%的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?(附:()()()()22(),n ad bc a b c d a c b d −=++++χ其中n a b c d =+++,()2 3.8410.05P χ≥≈.)20.已知双曲线222Γ:1,(0),y x b b−=>左右顶点分别为12,A A ,过点()2,0M −的直线l 交双曲线Γ于,P Q 两点.(1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.21.对于一个函数()f x 和一个点(),M a b ,令()()22()()s x x a f x b =−+−,若()()00,P x f x 是()s x 取到最小值的点,则称P 是M 在()f x 的“最近点”. (1)对于1()(0)f x x x=>,求证:对于点()0,0M ,存在点P ,使得点P 是M 在()f x 的“最近点”; (2)对于()()e ,1,0xf x M =,请判断是否存在一个点P ,它是M 在()f x 的“最近点”,且直线MP 与()y f x =在点P 处的切线垂直;(3)已知()y f x =在定义域R 上存在导函数()f x ',且函数 ()g x 在定义域R 上恒正,设点()()()11,M t f t g t −−,()()()21,M t f t g t ++.若对任意的t ∈R ,存在点P 同时是12,M M 在()f x 的“最近点”,试判断()f x 的单调性.2024年上海高考数学试题+答案详解(答案详解)一、填空题1.设全集{}1,2,3,4,5U =,集合{}2,4A =,则A = . 【答案】{}1,3,5【解析】由题设有{}1,3,5A =, 答案:{}1,3,52.已知()0,1,0x f x x >=≤⎪⎩则()3f = .【解析】因为()0,1,0x f x x >=≤⎪⎩故()3f =3.已知,x ∈R 则不等式2230x x −−<的解集为 . 【答案】{}|13x x −<<【解析】方程2230x x −−=的解为=1x −或3x =, 故不等式2230x x −−<的解集为{}|13x x −<<, 答案:{}|13x x −<<.4.已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .【答案】0【解析】因为()f x 是奇函数,故()()0f x f x −+=即()330x a x a ++−+=,故0a =, 答案:0.5.已知()(),2,5,6,k a b k ∈==R ,且//a b ,则k 的值为 . 【答案】15【解析】//a b ,256k ∴=⨯,解得15k =. 答案:15.6.在(1)n x +的二项展开式中,若各项系数和为32,则2x 项的系数为 . 【答案】10【分析】令1x =,解出5n =,再利用二项式的展开式的通项合理赋值即可. 【解析】令1x =,(11)32n ∴+=,即232n =,解得5n =, 所以5(1)x +的展开式通项公式为515C r rr T x−+=⋅,令52r -=,则3r =,32245C 10T x x ==∴.答案:10.7.已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 .【答案】【分析】根据抛物线的定义知8P x =,将其再代入抛物线方程即可.【解析】由24y x =知抛物线的准线方程为1x =−,设点()00,P x y ,由题意得019x +=,解得08x =,代入抛物线方程24y x =,得2032y =,解得0y =±,则点P 到x轴的距离为答案:8.某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 . 【答案】0.85【解析】根据题意知,,,A B C 题库的比例为:5:4:3, 各占比分别为543,,121212, 则根据全概率公式知所求正确率5430.920.860.720.85121212p =⨯+⨯+⨯=. 答案:0.85.9.已知虚数z ,其实部为1,且()2z m m z+=∈R ,则实数m 为 . 【答案】2【解析】设1i z b =+,b ∈R 且0b ≠.则23222231i i 1i 11b b b z b m z b b b ⎛⎫⎛⎫+−+=++=+= ⎪ ⎪+++⎝⎭⎝⎭,m ∈R ,22323101b m b b b b ⎧+=⎪⎪+∴⎨−⎪=⎪+⎩,解得2m =,答案:2.10.设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值 . 【答案】329【解析】根据题意知集合中且至多只有一个奇数,其余均是偶数. 首先讨论三位数中的偶数,①当个位为0时,则百位和十位在剩余的9个数字中选择两个进行排列,则这样的偶数有29P 72=个;②当个位不为0时,则个位有14C 个数字可选,百位有18C 256=个数字可选,十位有18C 个数字可选,由分步乘法这样的偶数共有111488C C C 256=,最后再加上单独的奇数,所以集合中元素个数的最大值为722561329++=个. 答案:329.11.已知点B 在点C 正北方向,点D 在点C 的正东方向,BC CD =,存在点A 满足16.5,37BAC DAC =︒=︒∠∠,则BCA ∠= (精确到0.1度)【答案】7.8︒【分析】设BCA θ∠=,在DCA △和BCA V 中分别利用正弦定理得到sin sin CA CD D CAD =∠,()sin16.5sin 16.5CA CB θ=+。
沪教版(上海)高三年级新高考辅导与训练第四章数列与数学归纳法四、数列的极限
沪教版(上海)高三年级新高考辅导与训练第四章数列与数学归纳法四、数列的极限学校:___________姓名:___________班级:___________考号:___________1.求下列各式的极限:(1)1111lim 132435(2)→∞⎛⎫++++ ⎪⨯⨯⨯+⎝⎭L n n n ; (2)222111lim 11123→∞⎛⎫⎛⎫⎛⎫--- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L n n ;(3)n ; (4)当01a <<时,()()()242lim(1)111→∞++++L nn a a a a ; (5)121023lim 31002--+→∞-+⨯n n n n n . 2.已知()lim 348n n n a b →∞+=,()lim 61n n n a b →∞+=,求()lim 3n n n a b →∞+的值. 3.求值:2423211lim (0)-→∞++++≠+++L L nn n a a a a a a a .4.如图所示,设正三角形1T 边长为1,+n a T 是n T 的中点三角形,n A 为n T 除去1n T +后剩下三个三角形内切圆面积之和,求()12lim →∞+++L n n A A A .5.如图所示,有一列曲线012,,,L P P P .已知0P 所围成的图形是面积为1的等边三角形,1k P +是对k P 进行如下操作:将k P 的每条边三等分,以每边中间部分的线段为边,向外作等边三角形,再将中间部分的线段去掉(0,1,2,3,k =L ).记n S 为曲线n P 所围成图形的面积.(1)求数列{}n S 的通项公式;(2)求lim n n S →∞. 6.求下列各式极限:(1)74lim 53→∞+-n n n ;(2)2221lim 354→∞+++n n n n ; (3)n ;(4)1234(21)2lim 1→∞-+-++--+L n n n n ; (5)1111lim 1111234→∞⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L n n ; (6)2(1)lim 1→∞-⋅+n n n n ;(7)222214732lim →∞-⎛⎫+++⋯+ ⎪⎝⎭n n n n n n 7.求下列各式极限:(1)1123lim 23++→∞-+n nn n n ; (2)()111242lim 139273n n n --→∞++++-+-++-L L ; (3)()()()()()1111lim 111n n n n n a a a a a a a +-→∞-+-≠-+-;(4)()11lim 11nn n q q q +→∞->-; (5)sin cos lim 0sin cos 2ααπααα→∞-⎛⎫<< ⎪+⎝⎭n n n n n ; (6)()23lim 31333n nnn p p →∞+<++++L . 8.化循环小数为分数:(1)0.38&&;(2)0.418&&.9.2100lim 231→∞+-=-n an bn n ,则a =__________,b =__________; 10.若1lim 02n n a a →∞-⎛⎫= ⎪⎝⎭,则实数a 的取值范围为______.11.已知数列{}n a 的极限为A ,数列662,10;33,10.n n na nb a n ⎧⎪=⎨⎪>⎩…则数列{}n b 的极限lim n n b →∞=__________;12.设等比数列{}()*n a n N∈的公比12q =-,且()135218lim 3-→∞++++=L n n a a a a ,则1a =__________;13.已知等差数列{}n a 的公差0d >,首项11110,=+>=∑n n i i i a S a a ,则lim n n S →∞=__________.14.{}n a 是等差数列,n S 为数列前n 项和()10≠a .求:(1)lim n n nna S →∞; (2)11lim +→∞-++n n n n n S S S S . 15.{}n a 是等比数列,n S 为数列前n 项和,公比10,1>=q a .求:(1)lim n n na S →∞; (2)lim 1→∞-n n nS S .16.若121lim 2(1)2+→∞=++n n n n a ,求常数a 的取值范围. 17.设数列{}n a 的首项114a a =≠,且11,221,214n n n a n k a a n k +⎧=⎪⎪=⎨⎪+=-⎪⎩*k N ∈,记2114n n b a -=-,1,2,3,n =L .(1)求23,a a ;(2)判断{}n b 是否为等比数列,并证明你的结论;(3)求()12lim n n b b b →∞+++L . 18.已知数列{}n a 满足()12121,,3,4,22--==+=L n n n x x x x x n ,若lim 2→∞=n n x ,则1x =( )A .32B .3C .4D .519.数列{a n }中,a 1=15,a n +a n+1=*16,5n n N +∈,则lim n →∞(a 1+a 2+…+a n ) = ( ) A .25 B .14 C .27 D .42520.已知p 和q 是两个不相等的正整数,且2q ≥,则111lim 111→∞⎛⎫+- ⎪⎝⎭=⎛⎫+- ⎪⎝⎭p q n n n ( ) A .0B .1C .p qD .11--p q 21.()2222lim 1n n n n C C n -→∞++=________.22.设等比数列{}()*n a n N∈的公比12q =-,且()135218lim 3-→∞++++=L n n a a a a ,则1a =__________; 23.lim (0)2→∞>=+nn nn a a a __________. 24.将直线()*12:0,:0,+-=+-=∈N l nx y n l x ny n n x 轴,y 轴围成的封闭区域的面积记为n S ,则lim n n S →∞=__________. 25.→∞=n __________. 26.极限lim n →+∞⎛⎫+=L __________. 27.已知点(0,0)O 、0(0,1)Q 和0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10P R 中的一条,记其端点为1Q 、1R ,使之满足11(2)(2)0OQ OR --<;记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q 、2R ,使之满足22(2)(2)0OQ OR --<;依次下去,得到点12,,,,n P P P L L ,则0lim n n Q P →∞= . 28.求下列极限:(1)1lim (1)1→∞-≠-+nnn a a a ; (2)111lim (0,1,1)1++→∞++>>≠≠--n nn n n p q p q p q p q . 29.数列{}n x 由下列条件确定:*1110,,2n n n a x a x x n N x +⎛⎫=>=+∈ ⎪⎝⎭.若数列{}n x 的极限存在且大于0,求lim n n x →∞. 30.已知()1221*,,0n n n n n n u a a b a b ab b n N a b ---=+++⋅⋅⋅++∈>.(1)当a b =时,求数列{}n u 前n 项和n S ;(用a 和n 表示);(2)求1lim n n n u u →∞-.参考答案1.(1)34;(2)12;(3)12;(4)11a-;(5)3-. 【解析】【分析】(1)先裂项求和,然后再求极限即可;(2)变形221(1)(1)1n n n n -+-=,通过相乘可得222111*********n n ⎛⎫⎛⎫⎛⎫⎛⎫---=+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L ,进而可求极限;(3=,进而可求极限; (4)变形()()()42421(1)1111nn a a a a a a -+++⋅⋅+=-L ,进而可求极限; (5)分子分母同时除以3n ,进而可求极限.【详解】解(1)1111(2)22⎛⎫=- ⎪++⎝⎭Q n n n n , 1111132435(2)∴+++⋯+⨯⨯⨯+n n 11111111121324352⎛⎫=-+-+-+⋯+- ⎪+⎝⎭n n 111112212n n ⎛⎫=+-- ⎪++⎝⎭, 11113233lim lim 1324(2)22(1)(2)4n n n n n n n →∞→∞⎛⎫⎛⎫+∴+++=-= ⎪ ⎪⨯⨯+++⎝⎭⎝⎭L ; (2)221(1)(1)1-+-=Q n n n n , 22211111123⎛⎫⎛⎫⎛⎫∴--- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L n22222213243546(2)(1)(1)111112345(1)22n n n n n n n n n ⨯⨯⨯⨯--++⎛⎫=⋅⋅⋅⋅⋯⋅⋅=⋅=+ ⎪-⎝⎭, 则222111111lim 111lim 12322n n n n →∞→∞⎛⎫⎛⎫⎛⎫⎛⎫---=+= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭L ; (3)==Q ,12n n ∴==; (4)()()()242(1)111+++⋅⋅+Q L n a a a a()()()242(1)(1)1111-++++=-L L n a a a a a a()()()()224211111-+++=-L L n a a a a a()()()4421111-+⋅⋅+=-L na a a a…411na a-=-, ∴当01a <<时,()()()2421lim(1)1111→∞++++=-L n n a a a a a; (5)分子分母同时除以3n , 得12101021123333lim lim 3131002121002993nn n n n n n n --+→∞→∞⎛⎫-- ⎪-⎝⎭===-+⨯⎛⎫+⨯⨯ ⎪⎝⎭. 【点睛】本题考查数列极限的求解,关键是要对式子进行合理的变形,从而达到可以求极限的目的,是中档题.2.117【解析】【分析】设()()3346n n n n n n a b x a b y a b +=+++,利用待定系数法求得x 、y 的值,然后利用极限的运算性质可求得()lim 3n n n a b →∞+的值. 【详解】设()()3346n n n n n n a b x a b y a b +=+++,则36341x y x y +=⎧⎨+=⎩,解得1737x y ⎧=⎪⎪⎨⎪=⎪⎩, ()()()1311lim 3lim 34lim 6777n n n n n n n n n a b a b a b →∞→∞→∞∴+=+++=. 【点睛】本题考查数列极限的计算,本题只已知了34+n n a b 及6n n a b +的极限存在,因此将它们的整体作为研究,而不能将其分成n a 与n b 来单独考虑.3.242321111lim 1nn n a a a a a a a a-→∞⎧⎪-⎪++++⎪=⎨+++⎪⎪⎪⎩L L ,1,1,1,1a a a a ==-<> 【解析】【分析】分子分母都是公比为2a 的等比数列,先考虑21a =,即1a =或1a =-两种情况求极限,再分1a <和1a >两种情况讨论数列的极限.【详解】分子分母都是公比为2a 的等比数列,先考虑21a =,即1a =或1a =-两种情况. 当1a =时,原式1lim 1→∞+==n n n;当1a =-时,原式1lim 1→∞+⎛⎫=-=- ⎪⎝⎭n n n ; 当1a ≠±时,原式()2221lim 1+→∞-=-n n n a a a ; 若||1a <时,原式()()222lim 11lim 1+→∞→∞-==-n n n n a a a a , 若||1a >时,原式2221lim 11→∞⎛⎫- ⎪⎝⎭==⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦n n n a a a a a . 综上可知,242321111lim 1n n n a a a a a a a a -→∞⎧⎪-⎪++++⎪=⎨+++⎪⎪⎪⎩L L ,1,1,1,1a a a a ==-<> 【点睛】本题考查极限求值,重点考查分类讨论的思想,等比数列的前n 项和,属于基础题型, 本题解答中除了对公比21a =需要单独讨论外,另一个要点是注意数列的项数,这里分子是1n +项,分母是n 项.4.212πa 【解析】【分析】由题意和图形,表示221324ππ+⎫==⎪⎪⎝⎭n n n a a A ,并求得114n n A A +=,说明数列{}n A 是公比为14的等比数列,并求首项1A ,最后代入公式求极限. 【详解】解 由于边长为a的正三角形的内切圆半径为=r .于是2213624ππ+⎛⎫== ⎪ ⎪⎝⎭n n n a a A ,22111213244ππ++++⎫==⇒=⎪⎪⎝⎭n n n n n A a a A A ,又因为2213216ππ⎫==⎪⎪⎝⎭a a A ,所以数列{}n A 是一个公比为14的无穷等比数列, 故()222121116416lim lim11121144nn n n a a a A A A πππ→∞→∞⎛⎫- ⎪⎝⎭+++===--L .【点睛】本题考查无穷等比数列的前n 项和,重点考查数形结合分析问题,抽象概括能力,属于中档题型,本题的关键是读懂题意,并结合图形分析出每个内切圆和对应三角形边长的关系. 5.(1)834()559nn S =-;(2)85. 【解析】 【分析】观察前两个图形,1P 在0P 的每条边上增加了一个小等边三角形,其面积为213,探寻 每个图形的面积,寻找规律,猜想213521144413333n n n S --=++++⋯+,然后用完全归纳法进行证明.(2)对数列求极限可得. 【详解】解(1)102113133=+⨯=+S S , 2143114341333=+⨯⨯=++S S , 223263511443413333=+⨯⨯=+++S S .M猜测21352144[1()]14443991143333419n n n n S ---=++++⋯+=+⋅- 348341[1()]()59559n n =+-=-.证明 1n =时,等式显然成立. 假设n k =时,有834()559kk S =-.则当1n k =+时,由于第1k +次操作后,1k P +在k P 的每条边上增加了一个小等边三角形,其面积为2(1)13+k ,而k P 有34⨯k 条边,故112(1)211483434()33559k kk k k k k k S S S ++++=+⨯⨯=+=-综上,由数学归纳法知834()559nn S =-成立. (2)[8348lim lim ()5595]n n n n S →∞→∞=-=.【点睛】归纳—猜想—证明类问题的解题步骤:利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理(即演绎推理)论证结论的正确性. 6.(1)73-;(2)23;(3)2;(4)1-;(5)0;(6)0;(7)32【解析】 【分析】直接利用数列极限公式结合数列求和方法计算得到答案. 【详解】(1)47747limlim 55333n n n n n n→∞→∞++==---. (2)222212212lim lim 5435433n n n n n n n n→∞→∞++==++++. (3)2li 21mn n n →∞=-24lim 2212n n→∞-⎝⎭===.(4)1234(21)2limlim lim 111111n n n n n n n n n→∞→∞→∞-+-++--=--=+++=-L . (5)12310211111lim 1111lim lim 23434n n n n n n n →∞→∞→∞-⎛⎫⎛⎫⎛⎫⎛⎫----=⨯ ⎪⎪⎪ ⎛⎫⨯⨯⨯=⎪⎝⎭⎝⎭⎝⎭⎝=⎝⎭ ⎪⎭L L .(6)当2n k =,*k N ∈时,2(1)lim lim 011212n n k n n k k →∞→∞-⋅==++, 当21n k =-,*k N ∈时,2(1)lim lim 01121211n n k n n k k →∞→∞-⋅=-=+-+-, 故2(1)lim 01n n n n →∞-⋅=+. (7)()2222213132314732lim lim lim li 1m32222n n n n nn n n n n n n n n n →∞→∞→∞→∞-⎛⎫+++⋯+= ⎪⎝-==⎭+--=. 【点睛】本题考查了数列极限,意在考查学生的计算能力和转化能力. 7.(1)13-;(2)0;(3)见解析;(4)1q ;(5)见解析;(6)23. 【解析】 【分析】(1)在分式的分子和分母中同时除以13n +,再利用常见数列的极限可求得所求极限的值; (2)利用等比数列求和公式化简分式的分子和分母,然后在分式的分子和分母中同时除以()3n-,再利用常见数列的极限可求得所求极限的值;(3)化简所求极限为112121lim n n n n n a a a a +-→∞-+-+,然后分1a =-、1a <、1a >三种情况讨论,利用常用数列的极限可求得所求极限的值;(4)在分式的分子和分母中同时除以1n q +,再利用常见数列的极限可求得所求极限的值; (5)在所求的分式的分子和分母中同时除以cos n α,然后分04πα<<、4πα=、42ππα<<三种情况讨论,利用常见数列的极限可求得所求极限的值;(6)利用等比数列求和公式化简分母,然后在分式的分子和分母中同时除以3n ,利用常见数列的极限可求得所求极限的值. 【详解】(1)原式11211013333lim 013213nn n +→∞⎛⎫⨯-- ⎪⎝⎭===-+⎛⎫+ ⎪⎝⎭; (2)11212422112n n n --++++==--Q L ,()()()11313139273134nnn ------+-++-==+L ,∴原式()()()()2144213340021lim lim lim 00111313134n n n n n n n n n n →∞→∞→∞⎡⎤⎛⎫⎛⎫⨯---⎢⎥ ⎪ ⎪-⎝⎭⎝⎭⨯--⎢⎥⎣⎦=====-----⎛⎫-- ⎪⎝⎭; (3)()()()()11111121limlim 2111n n nn n nn nn n a a a aa a a a a a ++--→∞→∞-+--+=-+-+-. 当1a =-时,原极限不存在;当1a <时,原式1121020112102lim 01n n n n n a a a a -→+∞-+-⨯+===-+-⨯+; 当1a >时,原式111122112012lim 111122120lim 2nn n n n n n n a a a a a a a a a a a a a a→∞+-→∞-+-+-+-=====--+-+-+. 综上所述,当1a =-时,原极限不存在;当1a <时,原式1=;当1a >时,原式a =;(4)1q >Q ,原式11111101lim 101n n n q qq q q+→∞+=--==--; (5)02πα<<Q ,则1sin cos lim limsin co 1tan ta s n n n n n n n n n αααααα→∞→∞--++=. 当04πα<<时,0tan 1α<<,原式tan 1011ta i n 11l 0m n n n αα→∞--==-++=;当4πα=时,tan 1α=,原式tan 1110ta l n 1im 11n n n αα→∞=--==++; 当42ππα<<时,tan 1α>,原式11tan 110tan 11tan 1101tan lim lim nn n n n n αααα→∞→∞=---===+++. 综上所述,当04πα<<时,原式1=-;当4πα=时,原式0=;当42ππα<<时,原式1=;(6)21113311321333nn n ++--==-++++L ,3p <Q ,则113p -<<, 所以,原式111330123lim 2lim 2lim 213131303332nn n n nn n n n n np p p ++→∞→∞→∞⎛⎫+ ⎪+++⎝⎭====⨯=----. 【点睛】本题考查数列极限的计算,解答的关键就是要化简所求极限,并对指数式的底数进行分类讨论,考查计算能力,属于中等题. 8.(1)3899;(2)2355【解析】 【分析】(1)将循环小数转化为求无穷等数列110.38,100a q ==的各项和; (2)将循环小数转化为0.4加无穷等数列110.018,100a q ==的各项和;【详解】(1)将循环小数转化为求无穷等数列110.38,100a q ==的各项和,则 0.38380.381991100==-&&. (2)0.0180.4180.40.0180.411100=+=+-&&&&2355=. 【点睛】本题考查了化循环小数为分数,解题的关键在于构造无穷等比数列并求各项和,属于容易题. 9.0 6 【解析】 【分析】根据极限的思想,2100lim 231→∞+-=-n an bn n ,则分子,分母最高次幂的系数比为2,列方程组即可得到,a b 的值 【详解】2100lim 231n an bn n Q →∞+-=- 极限存在,所以分子,分母最高次幂系数相同,且最高次幂的系数比即为极限23a b =⎧⎪⎨=⎪⎩ ,解得06a b =⎧⎨=⎩ 故答案为0,6a b == 【点睛】本题考查极限求值,解题的关键在于理清对应项以及对应项的系数比,是基础题. 10.13a >或1a <- 【解析】 【分析】由lim 0nn q →∞=,则1q <,代入运算即可得解. 【详解】解:因为1lim 02nn a a →∞-⎛⎫= ⎪⎝⎭,则1-12a a <,解得23210a a +->,即13a >或1a <-, 故答案为:13a >或1a <-. 【点睛】本题考查了由数列的极限求参数的值,属基础题. 11.3A 【解析】 【分析】根据数列的极限的性质计算即可. 【详解】由数列{}n a 的极限为A ,得lim n n a A →∞= 则lim 3lim 3n n n n b a A →∞→∞== 故答案为:3A 【点睛】本题主要考查了数列的极限知识的应用,属于基础题. 12.2 【解析】 【分析】根据等比数列求和公式结合数列极限公式计算得到答案. 【详解】()1113521148lim lim 3314114n n n na a a a a a -→∞→∞⎛⎫⎛⎫- ⎪⎪⎝⎭ ⎪ ⎪- ⎪⎝++++===⎭L ,故12a =.故答案为:2. 【点睛】本题考查了等比数列求和,数列极限,意在考查学生的计算能力和对数列公式方法的综合应用. 13.11a d【解析】 【分析】利用裂项求和法求得n S ,由此求得lim n n S →∞【详解】依题意等差数列{}n a 的公差0d >,首项10a >.由于()()11111111111n n a a d dn a d dn a a n d a nd +⎛⎫==- ⎪⋅+-++-⋅+⎡⎤⎝⎭⎣⎦,所以111nn i i i S a a =+=∑ 11111111111112d a a d a d a d dn a d dn a ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-⎢⎥ ⎪ ⎪ ⎪++++-+⎝⎭⎝⎭⎝⎭⎣⎦L11111d a dn a ⎛⎫=⋅- ⎪+⎝⎭. 所以lim n n S →∞=11111d a a d=⋅=. 故答案为:11a d【点睛】本小题主要考查数列极限,考查裂项求和法,属于中档题. 14.(1)0d ≠时为2,0d =时为1;(2)1 【解析】 【分析】(1)利用等差数列通项公式和前n 项和公式,求得nn na S 的表达式,由此求得lim n n nna S →∞.(2)利用等差数列前n 项和公式,求得11n n n n S S S S +-++的表达式,由此求得11lim +→∞-++n n n n n S S S S . 【详解】(1)当0d =时,1n a a =,所以111n n na na S na ==,lim 1n n nna S →∞=. 当0d ≠时,()()()()111111111111222n n a d n a n d a n d na n a d n n n S na d a d n +⎡⎤+-+-⎣⎦-===--+++-, 所以111limlim 212nn n n a dna n a d S n →∞→∞+-==+-. 综上所述,当0d ≠时,lim 2nn n na S →∞=;当0d =时,lim 1n n nna S →∞=.(2)11n n n n S S S S +-++()()()()()()()111111122112122n n n n na d n a dn n n n na d n a d -+++++=---++-+ ()()()21212211221212112111a d n a n d n n n a n d a dn n n ⎛⎫++ ⎪++⎝⎭==-+-⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭, 所以2112121lim lim 2121111n n n n n n a d n n a d n n n S S S S +→∞→∞-⎛⎫++ ⎪⎝⎭⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭+==+ 【点睛】本小题主要考查数列的极限,属于中档题. 15.(1)01q <≤时为0;1q >时为1-q q ;(2)01q <<时为1,1q q≥时为1 【解析】 【分析】(1)讨论1q =,01q <<,1q >,运用等比数列的求和公式,结合数列极限的公式,计算即可得到所求值;(2)讨论1q =,01q <<,1q >,运用等比数列的求和公式,结合数列极限的公式,计算即可得到所求值. 【详解】解:(1)∵在等比数列{}n a 中,n S 为数列前n 项和,公比10,1>=q a , 当1q =时,111lim lim lim 0n n n n n a a S na n→∞→∞→∞===, 当1q ≠时,1111lim lim lim lim 11111n n n n n n n n n n n na q q q q q S q q q--→∞→∞→∞→∞--===----, 当01q <<时,lim 0nn na S →∞=, 当1q >时,111lim 1n n na q q S q →∞--==-, 综上可得01q <≤时,lim 0n n n a S →∞=;1q >时,1lim n n na q S q →∞-=; (2)若1q =,则11,n n a a S n ===,即有111limlim lim 111101n n n n n n S S n n→∞→∞→∞====----; 若1q ≠,则()11111nnn a q qS qq--==--,即有111lim lim lim 1111nn n n nn n n nq S q qq S q q q→∞→∞→∞---=-=----,当01q <<时,1101lim 0n n n S S q q→∞-==--;当1q >时,1101lim lim 10111nn n n n nS qq S q→∞→∞--===---. 综上可得01q <<时,1lim 1n n nS S q →∞-=;1q ≥时,lim 11n n n S S →∞-=.【点睛】本题考查等比数列的第n 项和公式以及极限的求解,考查运算求解能力,是基础题. 16.31a -<< 【解析】 【分析】变换得到1lim21221nn a →∞=+⎛⎫+ ⎪⎝⎭,得到112a +<,解得答案. 【详解】121lim lim 2(21211)2nnn n n n a a +→∞→∞==+++⎛⎫+ ⎪⎝⎭,则112a +<,解得31a -<<. 【点睛】本题考查了根据数列极限求参数,意在考查学生的计算能力和转化能力. 17.(1)23111,428=+=+a a a a ;(2)是等比数列,证明详见解析;(3)()121lim 22n n b b b a →∞+++=-L 【解析】 【分析】(1)利用数列{}n a 的递推公式可计算出2a 、3a ;(2)证明出1n nb b +为非零常数,即可证明出数列{}n b 是等比数列;(3)求出数列{}n b 的前n 项和,利用极限的运算法则可计算出所求极限值. 【详解】(1)()*11,221,214n n n a n k a k N a n k +⎧=⎪⎪=∈⎨⎪+=-⎪⎩Q , 211144a a a ∴=+=+,32111228a a a ==+; (2)12122121211111111111142424428242n n n n n n n b a a a a a b ++---⎛⎫⎛⎫=-=-=+-=-=-= ⎪ ⎪⎝⎭⎝⎭Q , 所以,112n n b b +=,且1111044b a a =-=-≠,所以,数列{}n b 是等比数列; (3)由(2)知,数列{}n b 是以14a -为首项,以12为公比的等比数列,所以,112111122112212nn n b b b b a ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭+++==-⋅- ⎪ ⎪⎝⎭⎝⎭-L ,因此,()122l 1im l m 1112i 222n n n n a a b b b →∞→∞⎡⎤⎛⎫⎛⎫=--=- ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦+++L L . 【点睛】本题考查利用数列递推公式写出数列中的项,同时也考查了等比数列的证明以及数列极限的计算,考查推理能力与计算能力,属于中等题. 18.B 【解析】 【分析】先求通过归纳猜想数列的通项,并证明11112n n n x x x --⎛⎫-=- ⎪⎝⎭,再通过累加法求数列{}n x 的通项公式,最后根据lim 2→∞=n n x ,求1x . 【详解】当3n =时,()32111324x x x x =+=,当4n =时,()42311528x x x x =+= 21112x x x ∴-=-,32114x x x -= ,43118x x x -=-,…,猜想:11112n n n x x x --⎛⎫-=- ⎪⎝⎭,当2n =时,2121111122x x x x -⎛⎫-=-⋅=- ⎪⎝⎭成立,假设当()*2,n k k k N =≥∈时,11112k k k x x x --⎛⎫-=-⋅ ⎪⎝⎭成立,那么当1n k =+时,()()1111122k k k k k k k x x x x x x x +---=+-=-- ()11111111112222k kk x x x -+-⎛⎫⎛⎫⎛⎫=-⋅-⋅=-⋅=-⋅ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以当1n k =+时等式成立,综上可知,当*2,n n N ≥∈时,等式成立.11212n n n n x x x x ----=--,()3n ≥∴数列{}1n n x x --是公比为12-,首项为112x -的等比数列,()()()121321...n n n x x x x x x x x -∴=+-+-++-11111122112n x x -⎡⎤⎛⎫---⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=++ ,111122lim 2332n n x x x x →∞∴=-==,解得:13x =. 故选:B 【点睛】本题考查归纳-猜想-证明,无穷等比数列的前n 项和,累加法,意在考查归纳猜想,推理证明,计算能力,属于中档题型. 19.B 【解析】【详解】解:由题意,可知 ①当n 为偶数时, a 1+a 2+…+a n=(a 1+a 2)+(a 3+a 4)+…+(a n ﹣1+a n )24666555n=+++L =6•(24111555n +++L )=6•2211155115n ⎛⎫- ⎪⎝⎭- 14=(115n -). 此时nlim →∞(a 1+a 2+…+a n )14n lim →∞=(115n -)14=. ②当n 为奇数时,则n ﹣1为偶数, a 1+a 2+…+a n=a 1+(a 2+a 3)+(a 4+a 5)+…+(a n ﹣1+a n )3516665555n =++++L 15=+6•(35111555n +++L ) 15=+6•1232211[1)55115n -⎛⎤- ⎥⎝⎦- 11420=+•115n -. 此时nlim →∞(a 1+a 2+…+a n )n lim →∞=(11420+•115n -)14=. 综上所述,可得n lim →∞(a 1+a 2+…+a n )14=. 故选:B . 20.C【分析】排除法:由题意取1,2p q ==,代入求极限可得答案. 【详解】解:排除法:由题意取1,2p q ==,则211111lim lim lim 121211112pq n n n p n n q n n n n →∞→∞→∞⎛⎫+- ⎪⎝⎭====⎛⎫+++- ⎪⎝⎭,可见应选C . 故选:C . 【点睛】注意到本题的易错点:取特值时忽略p 和q 是两个不相等的正整数的条件;或不知变形而无法求解,或者认为是0型而误选B ,看错项数而错选D . 21.32【解析】 【分析】 将()2222lim 1n n nn C C n -→∞++化为()223lim 1nn C n →∞+,分子分母同除以2n ,化简即可求出结果.【详解】(1,2))⋃+∞【点睛】 本题主要考查∞∞型的极限运算,属于基础题型. 22.2 【解析】 【分析】根据等比数列求和公式结合数列极限公式计算得到答案. 【详解】()1113521148lim lim 3314114n n n na a a a a a -→∞→∞⎛⎫⎛⎫- ⎪⎪⎝⎭ ⎪ ⎪- ⎪⎝++++===⎭L ,故12a =.故答案为:2. 【点睛】本题考查了等比数列求和,数列极限,意在考查学生的计算能力和对数列公式方法的综合应用.23.1,21,220,02a a a >⎧⎪⎪=⎨⎪<<⎪⎩【解析】 【分析】对a 分02,2,2a a a <<=>三种讨论,变形并用定义求极限. 【详解】当02a <<时,2lim lim 0212nn n n n n n a a a a →∞→∞⎛⎫⎪⎝⎭==+⎛⎫+ ⎪⎝⎭; 当2a =时,11lim lim 22222n n n n n →∞→∞==+;当2a >时,lim lim 11212n n n n n n a a a →∞→∞==+⎛⎪⎭+⎫⎝ 故答案为:1,21,220,02a a a >⎧⎪⎪=⎨⎪<<⎪⎩【点睛】本题主要考查了定义法求极限的解,分类讨论的思想,属于容易题. 24.1【解析】 【分析】求出两直线与坐标轴的交点以及两直线的交点,根据数量积公式证明BO AC ⊥,由模长公式以及三角形面积公式得出1n nS n =+,最后由数列的极限的性质计算即可. 【详解】直线12,l l 的图象如下图所示 由题意可知,,,(0,1),(1,0)11n n B A C n n ⎛⎫⎪++⎝⎭连接,OB AC ,(),1,1,11OB n AC n n n ⎛⎫ ⎪++⎝==-⎭u u u r u u ur ()11011n n n O AC n B ⋅=⨯+⨯-=++u u u r u u u r Q ,BO AC ∴⊥1O B n =+=u u u r,AC =u u u r112211n n nS OB AC n n =⨯⨯==++ 则lim lim1111n n n S n→∞→∞==+故答案为:1【点睛】本题主要考查了数列的极限的应用涉及了向量数量积公式的应用,属于中档题. 25.1 【解析】 【分析】22+,然后可得到答案.【详解】l n n →∞=221n +==故答案为:1 【点睛】本题主要考查了数列极限的求解,解题的关键是对所求式子进行分子有理化,属于基础题. 26.1【分析】利用“夹逼准则”求得所求极限. 【详解】对于任意0n >,有≥≥≥L ,所以lim n →+∞⎛⎫L lim n →+∞⎛⎫+≥Llim n →+∞⎛⎫+++≥L .而lim lim lim 1n n n →+∞→+∞→+∞⎛⎫ ⎪⎛⎫⎛⎫===L ,lim lim lim 1n n n →+∞→+∞→+∞⎛⎫ ⎪⎛⎫⎛⎫+===L ,根据“夹逼准则”可知lim 1n →+∞⎛⎫++=L . 故答案为:1 【点睛】本小题主要考查“夹逼准则”,属于中档题. 27【解析】 略28.(1)当||1a >时为1-,当1a =时为0,当1a <时为0, ||1a <时为1;(2)1p >时为1,01-<<p p时为1【分析】(1)讨论a 的值,利用数列的极限的性质计算即可;(2)分别讨论01p <<,1p >两种情况,利用数列的极限的性质计算即可. 【详解】(1)当||1a <时,lim 0n n a →∞=,则()()lim 1110lim 1110lim 1nn n n n n n a a a a →∞→∞→∞---===+++ 当1a =时,111lim lim 0111n n n n a a →∞→∞--==++当||1a >时,11lim lim 101lim lim 110111lim li 11m 11n nn n n n n n n n n n a a a a a a →∞→∞→∞→∞→∞→∞⎛⎫⎛⎫⎪ ⎪--⎝⎭⎝⎭====-++⎛⎫⎛--+⎫ ⎪ ⎪⎝⎭⎭+⎝ (2)当01p <<时,则01q <<1111lim1lim lim 1100lim 11lim1lim lim 100n nn n n n n n n n n n n n n p q p q p q p q →∞→∞→∞++++→∞→∞→∞→∞++++++===------ 当1p >时,01qp<< 11111limlim 11n nn nn n n n n n q p p p q p q q p q p p ++→∞→∞⎛⎫⎛⎫++ ⎪ ⎪++⎝⎭⎝⎭=--⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭1lim lim1lim 0101001lim lim lim nnn n n n nn n n q p p p p q p q p p →∞→∞→∞→∞→∞→∞⎛⎫⎛⎫++ ⎪ ⎪++⎝⎭⎝⎭===---⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭【点睛】本题主要考查了数列极限的应用,属于中档题. 29.lim n n x →∞=【解析】 【分析】令lim →∞=n n x b ,等式两边取极限得12a b b b ⎛⎫=+ ⎪⎝⎭,解得答案. 【详解】令lim →∞=n n x b ,数列{}n x 的极限存在且大于0,*1110,,2n n n a x a x x n N x +⎛⎫=>=+∈ ⎪⎝⎭, 两边取极限得12a b b b ⎛⎫=+ ⎪⎝⎭,解得b =lim n n x →∞=【点睛】本题考查了数列的极限,属于简单题.30.(1)1a =时,()3,12n n n S a +=≠时,()()()21221221n n nn a n a a aS a +++-+-+=-;(2)1,lim,n n n a a b u b a b u →∞-≥⎧=⎨<⎩;【解析】 【分析】(1)当a b =时,求出()1nn u n a =+,再利用错位相减法,求出{}n u 的前n 项和n S ;(2)求出1n n u u -的表达式,对a ,b 的大小进行分类讨论,从而求出数列的极限.【详解】(1)当a b =时,可得()1nn u n a =+,当1a =时,得到1n u n =+, 所以()32n n n S +=, 当1a ≠时,所以()2312341n n n S a a a nan a -=+++⋅⋅⋅+++,两边同乘a 得()23412341nn n aS a a a na n a+=+++⋅⋅⋅+++上式减去下式得()()231121nn n a S a a a a n a+-=+++⋅⋅⋅+-+()()()11111n n n a a a S a n a a+--=+-+-,所以()()()121111n n n a a a n a S aa +--+=+--()()()21221221n n n a n a a a a +++-+-+=- 所以综上所述,1a =时,()32n n n S +=;1a ≠时,()()()21221221n n n n a n a a aS a +++-+-+=-.(2)由(1)可知当a b =时,()1nn u n a =+则()111lim lim n nn n n n n a u u na -→∞→∞-+=()1lim n a n a n →∞+==; 当a b ¹时,11n n n nn u a a b ab b --=++⋅⋅⋅++21nnb b b a a a a ⎡⎤⎛⎫⎛⎫=+++⋅⋅⋅+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()111111n n n n b aa ab b a ba+++⎛⎫- ⎪⎝⎭==--- 则111n n n n n n u a b u a b++--=- 若0a b >>,111limlim lim 1nn n n n n n n n n n b a b u a b a a u a b b a ++→∞→∞→∞-⎛⎫- ⎪-⎝⎭===-⎛⎫- ⎪⎝⎭ 若0b a >>,111lim lim lim 1nn n n n n n n n n n b a b u a b ab u a b b a ++→∞→∞→∞-⎛⎫- ⎪-⎝⎭===-⎛⎫- ⎪⎝⎭所以综上所述1,lim ,n n n a a b u b a b u →∞-≥⎧=⎨<⎩.【点睛】本题考查错位相减法求数列的和,数列的极限,涉及分类讨论的思想,属于中档题.。
上海高考数学真题专题- 数列专题
第四部 数列专题【考点1】等差数列与等比数列1. 等差数列等差数列{}n a 的通项公式:1(1)n a a n d *()n N . 等差数列{}n a 的递推公式:1n n a a d (2)n . 等差数列{}n a 的前n 项和公式:11()(1)22n n n a a n n S na d na 中. 等差数列{}n a 的性质: ① ()n m a a n m d .② 若m n p q ,则m n p q a a a a .③ k a 、k m a 、2k m a 、 成等差数列,公差为md .④ n S 、2n n S S 、32n n S S 、43n n S S 、 成等差数列,公差为2n d .⑤ 数列{}n a 成等差数列n a pn q ,112n n n a a a ,2n S An Bn .⑥ 若数列{}n a 是等差数列,则{}n ac 为等比数列,0c .⑦ n S 是前n 项和,S 奇表示奇数项的和,S 偶表示偶数项的和,则n S S S 奇偶. 当n 为偶数时,2n S S d偶奇. 当n 为奇数时,S S a 奇偶中,11S n S n 奇偶,S S n S S 奇偶奇偶. ⑧ 设n S 和n T 分别表示等差数列{}n a 、{}n b 的前n 项和,则2121n n n n a S b T. ⑨ 若p a q ,q a p ,p q ,则0p q a ,1d . 若p S q ,q S p ,p q ,则()p q S p q . 若p q S S ,p q ,则0p q S .1.(2018年6)记等差数列{}n a 的前n 项和为n S ,若30a ,6714a a ,则7S2.(2014春7)已知等差数列{}n a 的首项为1,公差为2,则该数列的前n 项和n S3.(2013春11)若等差数列的前6项和为23,前9项和为57,则数列的前n 项和n S4.(2018春5)已知{}n a 是等差数列,若2810a a ,则357a a a5.(2017春6)若等差数列{}n a 的前5项的和为25,则15a a6.(2013文2)在等差数列{}n a 中,若123430a a a a ,则23a a7.(2012春13)已知等差数列{}n a 的首项及公差均为正数,令n b (*n N ,2012n ),当k b 是数列{}n b 的最大项时,k8.(2017年15)已知a 、b 、c 为实常数,数列{}n x 的通项2n x an bn c ,*n N , 则“存在*k N ,使得100k x 、200k x 、300k x 成等差数列”的一个必要条件是( ) A. 0a B. 0b C. 0c D. 20a b c9.(2015春附3)已知数列{}n a 满足413n n n n a a a a ()n *N ,那么( )A. {}n a 是等差数列B. 21{}n a 是等差数列C. 2{}n a 是等差数列D. 3{}n a 是等差数列10.(2015春21)若无穷等差数列{}n a 的首项10a ,公差0d ,{}n a 的前n 项和为n S , 则( )A. n S 单调递减B. n S 单调递增C. n S 有最大值D. n S 有最小值 2. 等比数列等比数列{}n a 的通项公式:11n n a a q*()n N .等比数列{}n a 的递推公式:1n n a a q (2)n .等比数列{}n a 的前n 项和公式:11(1)11n n n a a qa q S qq (1)q ,1n S na (1)q .等比数列{}n a 的性质: ① n mn m a a q.② 若m n p q ,则m n p q a a a a .③ k a 、k m a 、2k m a 、 成等比数列,公比为mq .④ n S 、2n n S S 、32n n S S 、43n n S S 、 成等比数列,公比为nq . ⑤ 数列{}n a 成等比数列211n n n a a a ,n n a p q ,(1)n n S A q .⑥ 若数列{}n a 是等比数列,则{log }c n a 为等差数列,0n a .⑦ n S 是前n 项和,S 奇表示奇数项的和,S 偶表示偶数项的和,则n S S S 奇偶. 当n 为偶数时,S q S 偶奇. 当n 为奇数时,1S a q S 奇偶. ⑧ 设n T 是前n 项积,T 奇表示奇数项的积,T 偶表示偶数项的积,则n T T T 奇偶. 当n 为偶数时,2n T q T 偶奇. 当n 为奇数时,T a T 奇中偶. 11.(2011春8)若n S 为等比数列{}n a 的前n 项和,2580a a ,则63S S12.(2014春22)已知数列{}n a 是以q 为公比的等比数列,若2n n b a ,则数列{}n b 是 ( )A. 以q 为公比的等比数列B. 以q 为公比的等比数列C. 以2q 为公比的等比数列D. 以2q 为公比的等比数列13.(2011理18)设{}n a 是各项为正数的无穷数列,i A 是边长为i a 、1i a 的矩形面积 (1,2,i ),则{}n A 为等比数列的充要条件是( ) A. {}n a 是等比数列B. 1321,,,,n a a a 或242,,,n a a a 是等比数列C. 1321,,,,n a a a 和242,,,n a a a 均是等比数列D. 1321,,,,n a a a 和242,,,n a a a 均是等比数列,且公比相同14.(2015理17)记方程①:2110x a x ;方程②:2210x a x ;方程③: 2310x a x ;其中1a 、2a 、3a 是正实数,当1a 、2a 、3a 成等比数列时,下列选项中, 能推出方程③无实数根的是( )A. 方程①有实根,且②有实根B. 方程①有实根,且②无实根C. 方程①无实根,且②有实根D. 方程①无实根,且②无实根15.(2014文23)已知数列{}n a 满足1133n n n a a a ,*n N ,11a .(1)若22a ,3a x ,49a ,求x 的取值范围;(2)设{}n a 是等比数列,且11000m a ,求正整数m 的最小值,以及m 取最小值时相 应{}n a 的公比;(3)若12100,,,a a a 成等差数列,求数列12100,,,a a a 的公差的取值范围.16.(2014理23)已知数列{}n a 满足1133n n n a a a ,*n N ,11a .(1)若22a ,3a x ,49a ,求x 的取值范围;(2)设{}n a 是公比为q 的等比数列,12n n S a a a ,若1133n n n S S S ,*n N ,求q 的取值范围;(3)若12,,,k a a a 成等差数列,且121000k a a a ,求正整数k 的最大值, 以及k 取最大值时相应数列12,,,k a a a 的公差.17.(2013文22)已知函数()2||f x x ,无穷数列{}n a 满足1()n n a f a ,*n N . (1)若10a ,求2a 、3a 、4a ;(2)若10a ,且1a 、2a 、3a 成等比数列,求1a 的值;(3)是否存在1a ,使得12,,,,n a a a 成等差数列?若存在,求出所有这样的1a ; 若不存在,说明理由.【考点2】数列通项与数列求和1. 求数列通项方法(1)公式法:等差数列通项1(1)n a a n d ,等比数列通项11n n a a q .(2)累加法(累乘法):1()n n a a f n ,1()nn a f n a ,2n . (3)作差法(作商法):若123n n S a a a a ,则1n n n a S S ,2n . 若123n n T a a a a ,则1nn n T a T,2n . (4)构造法:1n n a Aa B ,1n n a Aa Bn C ,1nn n a Aa B .1q n n a pa ,11n n n a a ka b,11n n n a pa qa ,其他类型.(5)数学归纳法:对数列通项进行归纳猜想,然后按数学归纳法步骤进行证明. 2. 数列求和方法(1)求和公式法:等差数列前n 项和公式:11()(1)22n n n a a n n S na d na中. 等比数列前n 项和公式:11(1)11n n n a a qa q S qq (1)q .22221123(1)(21)6n n n n (3333221)123(1)4n n n ….(2)倒序相加法:首尾距离相等的两项有共性或数列的通项与组合数相关联. (3)错位相减法:数列通项由等差数列与等比数列相乘构成.(4)裂项相消法:将数列中的每项进行分解,然后重新组合,达到消项的目的.111(1)1n n n n ,1111()()n n k k n n k, 1111[](1)(2)2(1)(1)(2)n n n n n n n ,1k,11(1)!!(1)!n n n n ,sin1tan(1)tan cos cos(1)n n n n.(5)分组求和法:将通项中有共同规律的部分进行分组,分别求和.(6)数学归纳法:对数列前n 项和进行归纳猜想,然后按数学归纳法步骤进行证明. 18.(2019年8)已知数列{}n a 前n 项和为n S ,且满足2n n S a ,则5S 19.(2017年10)已知数列{}n a 和{}n b ,其中2n a n ,*n N ,{}n b 的项是互不相等的正 整数,若对于任意*n N ,{}n b 的第n a 项等于{}n a 的第n b 项,则149161234lg()lg()b b b b b b b b20.(2016理11)无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和,若对任意*N ,{2,3}n S ,则k 的最大值为21.(2013春12)36的所有正约数之和可按如下方法得到:∵223623 ,∴36所有正约 数之和22222222(133)(22323)(22323)(122)133)91 (, 参照上述方法,可求得2000的所有正约数之和为 22.(2012文14)已知函数1()1f x x,各项均为正数的数列{}n a 满足11a , 2()n n a f a ,若20102012a a ,则2011a a 的值是23.(2013理17)在数列{}n a 中,21n n a .若一个7行12列的矩阵的第i 行第j 列 的元素,i j c i j i j a a a a (1,2,,7i ;1,2,,12j ),则该矩阵元素能取到的不同 数值的个数为( )A. 18B. 28C. 48D. 6324.(2016春19)用数学归纳法证明等式2123...22n n n ()n *N 的第(ii )步中,假设n k 时原等式成立,那么在1n k 时,需要证明的等式为( ) A. 22123...22(1)22(1)(1)k k k k k k B. 2123...22(1)2(1)(1)k k k kC. 22123...2(21)2(1)22(1)(1)k k k k k k kD. 2123...2(21)2(1)2(1)(1)k k k k k 25.(2016春28)已知数列{}n a 是公差为2的等差数列. (1)若1a 、3a 、4a 成等比数列,求1a 的值;(2)设119a ,数列{}n a 的前n 项和为n S ,数列{}n b 满足11b ,11(2n n n b b ,记12n n n n c S b ()n *N ,求数列{}n c 的最小值0n c .(即0n n c c 对任意n *N 成立)26.(2012春22)已知数列{}n a 、{}n b 、{}n c 满足11()()n n n n n a a b b c (*n N ). (1)设36n c n ,{}n a 是公差为3的等差数列,当11b 时,求2b 、3b 的值; (2)设3n c n ,28n a n n ,求正整数k ,使得一切*n N 均有n k b b ;(3)设2nn c n ,1(1)2nn a,当11b 时,求数列{}n b 的通项公式.27.(2011文23)已知数列{}n a 和{}n b 的通项公式分别为36n a n ,27n b n (*n N ),将集合**{|,}{|,}n n x x a n x x b n N N 中的元素从小到大依次排列, 构成数列1c ,2c ,3c , ,n c , .(1)求三个最小的数,使它们既是数列{}n a 中的项,又是数列{}n b 中的项; (2)数列1c ,2c ,3c , ,40c 中有多少项不是数列{}n b 中的项?请说明理由; (3)求数列{}n c 的前4n 项和4n S (*n N ).28.(2011理22)已知数列{}n a 和{}n b 的通项公式分别为36n a n ,27n b n (*n N ),将集合**{|,}{|,}n n x x a n x x b n N N 中的元素从小到大依次排列, 构成数列1c ,2c ,3c , ,n c , . (1)求1c ,2c ,3c ,4c ;(2)求证:在数列{}n c 中,但不在数列{}n b 中的项恰为2a ,4a , ,2n a , ; (3)求数列{}n c 的通项公式.【考点3】数列单调性常结合函数性质分析数列单调性,或根据1n n a a 的大小分析数列单调性29.(2018春15)设n S 为数列{}n a 的前n 项和,“{}n a 是递增数列”是“{}n S 是递增数列” 的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【考点4】数列极限三个常用极限:① lim n C C(C 为常数). ② 1lim0n n. ③ 当||1q ,lim 0n n q .我们把||1q 的无穷等比数列的前n 项和n S 当n 时的极限叫做无穷等比数列各项的 和,并用符号S 表示,即11a S q(||1)q . 30.(2019春2)计算:22231lim 41n n n n n31.(2015春4)计算:223lim 2n n n n32.(2018春2)计算:31lim 2n n n33.(2013理1)计算:20lim313n n n34.(2011文2)计算3lim(13n nn35.(2017春8)已知数列{}n a 的通项公式为3nn a ,则123lim nn na a a a a36.(2016春9)无穷等比数列{}n a 的首项为2,公比为13,则{}n a 的各项和为 37.(2012理6)有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为12,,,,n V V V ,则12lim()n n V V V38.(2014理8)设无穷等比数列{}n a 的公比为q ,若134lim()n n a a a a,则q39.(2018年10)设等比数列{}n a 的通项公式为1n n a q (n *N ),前n 项和为n S , 若11lim 2n n n S a ,则q40.(2011理14)已知点(0,0)O 、0(0,1)Q 和点0(3,1)R ,记00Q R 的中点为1P ,取01Q P 和10PR 中的一条,记其端点为1Q 、1R ,使之满足11(||2)(||2)0OQ OR ,记11Q R 的中点为2P ,取12Q P 和21P R 中的一条,记其端点为2Q 、2R ,使之满足22(||2)(||2)0OQ OR 依次下去,得到12,,,,n P P P ,则0lim ||n n Q P41.(2017年14)在数列{}n a 中,1()2n n a ,*n N ,则lim n n a( )A. 等于12B. 等于0C. 等于12D. 不存在42.(2015年18)设(,)n n n P x y 是直线21nx y n ()n *N 与圆222x y 在第一象限 的交点,则极限1lim1n n n y x( ) A. 1 B. 12C. 1D. 243.(2013文18)记椭圆221441x ny n围成的区域(含边界)为(1,2,)n n ,当点 (,)x y 分别在1 、2 、 上时,x y 的最大值分别是1M 、2M 、 ,则lim n n M( )A. 0B. 14C. 2D.44.(2016理17)已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且lim n n S S,下列条件中,使得2n S S (n *N )恒成立的是( )A. 10a ,0.60.7qB. 10a ,0.70.6qC. 10a ,0.70.8qD. 10a ,0.80.7q45.(2013春27)已知数列{}n a 的前n 项和为2n S n n ,数列{}n b 满足2n an b ,求12limn n b b b().46.(2019春18)已知数列{}n a 中,13a ,前n 项和为n S . (1)若{}n a 为等差数列,且415a ,求n S ;(2)若{}n a 为等比数列,且lim 12n n S,求公比q 的取值范围.【考点5】数列应用题47.(2016春附6)小明用数列{}n a 记录某地区2015年12月份31天中每天是否下过雨, 方法为:当第k 天下过雨时,记1k a ,当第k 天没下过雨时,记1k a (131)k ; 他用数列{}n b 记录该地区该月每天气象台预报是否有雨,方法为:当预报第k 天有雨时, 记1k b ,当预报第k 天没有雨时,记1k b (131)k ;记录完毕后,小明计算出1122333131...a b a b a b a b 25 ,那么该月气象台预报准确的总天数为48.(2017年19)根据预测,某地第n *()n N 个月共享单车的投放量和损失量分别为n a和n b (单位:辆),其中4515,1310470,4n n n a n n ,5n b n ,第n 个月底的共享单车的保有量是前n 个月的累计投放量与累计损失量的差.(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n 个月底的单车容纳量24(46)8800n S n (单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?【考点6】数列新定义题型49.(2019年21)数列{}n a ()n *N 有100项,1a a ,对任意[2,100]n ,存在n i a a d ,[1,1]i n ()n *N ,若k a 与前n 项中某一项相等,则称k a 具有性质P .(1)若11a ,2d ,求4a 所有可能的值;(2)若{}n a 不是等差数列,求证:数列{}n a 中存在某些项具有性质P ;(3)若{}n a 中恰有三项具有性质P ,这三项和为c ,请用a 、d 、c 表示12100a a a .50.(2018春21)若{}n c 是递增数列,数列{}n a 满足:对任意n *N ,存在m *N ,使 得10m nm n a c a c ,则称{}n a 是{}n c 的“分隔数列”.(1)设2n c n ,1n a n ,证明:数列{}n a 是{}n c 的分隔数列;(2)设4n c n ,n S 是{}n c 的前n 项和,32n n d c ,判断数列{}n S 是否是数列{}n d 的分隔数列,并说明理由;(3)设1n n c aq ,n T 是{}n c 的前n 项和,若数列{}n T 是{}n c 的分隔数列,求实数a 、q 的取值范围.51.(2018年21)给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意n *N ,都有||1n n b a ,则称{}n b 与{}n a “接近”.(1)设{}n a 是首项为1,公比为12的等比数列,11n n b a ,n *N ,判断数列{}n b 是 否与{}n a 接近,并说明理由;(2)设数列{}n a 的前四项为:11a ,22a ,34a ,48a ,{}n b 是一个与{}n a 接近的数列,记集合{|,1,2,3,4}i M x x b i ,求M 中元素的个数m ;(3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在21b b ,32b b , ,201200b b 中至少有100个为正数,求d 的取值范围.52.(2016理23)无穷数列{}n a 满足:只要p q a a (,p q *N ),必有11p q a a , 则称{}n a 具有性质P .(1)若{}n a 具有性质P ,且11a ,22a ,43a ,52a ,67821a a a ,求3a ; (2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比为正数的等比数列,151b c ,5181b c ,n n n a b c ,判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知1sin n n n a b a (n *N ),求证:“对任意1a ,{}n a 都具 有性质P ”的充要条件为“{}n b 是常数列”.53.(2016文22)对于无穷数列{}n a 与{}n b ,记{|,}n A x x a n *N ,{|,}n B x x b n *N ,若同时满足条件:① {}n a ,{}n b 均单调递增;②A B 且A B *N ,则称{}n a 与{}n b 是无穷互补数列.(1)若21n a n ,42n b n ,判断{}n a 与{}n b 是否为无穷互补数列,并说明理由; (2)若2nn a 且{}n a 与{}n b 是无穷互补数列,求数列{}n b 的前16项的和;(3)若{}n a 与{}n b 是无穷互补数列,{}n a 为等差数列,且1636a ,求{}n a 与{}n b 的通 项公式.54.(2016春附7)对于数列{}n a 与{}n b ,若对数列{}n c 的每一项k c ,均有k k c a 或k k c b ,则称数列{}n c 是{}n a 与{}n b 的一个“并数列”.(1)设数列{}n a 与{}n b 的前三项分别为11a ,23a ,35a ,11b ,22b ,33b , 若数列{}n c 是{}n a 与{}n b 的一个“并数列”,求所有可能的有序数组123(,,)c c c ; (2)已知数列{}n a 、{}n c 均为等差数列,{}n a 的公差为1,首项为正整数t ,{}n c 的前 10项和为30 ,前20项和为260 ,若存在唯一的数列{}n b ,使得{}n c 是{}n a 与{}n b 的 一个“并数列”,求t 的值所构成的集合.55.(2015理23)对于定义域为R 的函数()g x ,若存在正常数T ,使得cos ()g x 是以T 、为周期的函数,则称()g x 为余弦周期函数,且称T 为其余弦周期;已知()f x 是以T 为余 弦周期的余弦周期函数,其值域为R ,设()f x 单调递增,(0)0f ,()4f T . (1)验证()sin3xh x x 是以6 为余弦周期的余弦周期函数; (2)设a b ,证明对任意[(),()]c f a f b ,存在0[,]x a b ,使得0()f x c ; (3)证明:“0u 为方程cos ()1f x 在[0,]T 上的解”的充要条件是“0u T 为方程cos ()1f x 在[,2]T T 上的解”,并证明对任意[0,]x T 都有()()()f x T f x f T .56.(2012文23)对于项数为m 的有穷数列{}n a ,记12max{,,...,}k k b a a a(1,2,...,k m ),即k b 为12,,...,k a a a 中的最大值,并称数列{}n b 是{}n a 的控制数列, 如1、3、2、5、5的控制数列是1、3、3、5、5.(1)若各项均为正整数的数列{}n a 的控制数列为2、3、4、5、5,写出所有的{}n a ; (2)设{}n b 是{}n a 的控制数列,满足1k m k a b C (C 为常数,1,2,...,k m ), 求证:k k b a (1,2,...,k m ); (3)设100m ,常数1(,1)2a ,若(1)22(1)n n n a an n ,{}n b 是{}n a 的控制数列,求1122100100()()()b a b a b a .57.(2012理23)对于数集12{1,,,,}n X x x x ,其中120n x x x ,2n ,定义向量集{|(,),,}Y a a s t s X t X,若对任意1a Y ,存在2a Y ,使得120a a ,则称X 具有性质P ,例如{1,1,2} 具有性质P .(1)若2x ,且{1,1,2,}x 具有性质P ,求x 的值;(2)若X 具有性质P ,求证:1X ,且当1n x 时,11x ;(3)若X 具有性质P ,且11x 、2x q (q 为常数),求有穷数列12,,,n x x x 的 通项公式.【考点7】数列综合题型58.(2015春29)已知函数2()|22|x f x ()x R . (1)解不等式()2f x ;(2)数列{}n a 满足()n a f n ()n *N ,n S 为{}n a 的前n 项和,对任意的4n ,不等式12n n S ka恒成立,求实数k 的取值范围.59.(2019春21)若{}n a 是等差数列,公差(0,]d ,数列{}n b 满足:sin()n n b a ,n *N ,记{|,}n S x x b n *N .(1)设10a ,23d ,求集合S ; (2)设12a,试求d 的值,使得集合S 恰有两个元素;(3)若集合S 恰有三个元素,且n T n b b ,其中T 为不超过7的正整数,求T 所有可能值.60.(2017春21)已知函数21()log 1xf x x. (1)解方程()1f x ;(2)设(1,1)x ,(1,)a ,证明:1(1,1)ax a x ,且11(()()ax f f x f a xa ; (3)设数列{}n x 中,1(1,1)x ,1131(1)3n nn nx x x ,n *N ,求1x 的取值范围, 使得3n x x 对任意n *N 成立.61.(2011春23)对于给定首项0x 0a ),由递推式11(2n n x x (*n N )得到数列{}n x ,且对于任意的*n N,都有n x,用数列{}n x的近似值.(1)取05x ,100a ,计算1x 、2x 、3x 的值(精确到0.01), 并且归纳出n x 、1n x 的大小关系; (2)当1n 时,证明:111()2n n n n x x x x; (3)当0[5,10]x 时,用数列{}n x41||10n n x x , 请你估计n ,并说明理由.62.(2013理23)给定常数0c ,定义函数()2|4|||f x x c x c ,数列123,,,a a a ,满足1()n n a f a ,*n N .(1)若12a c ,求2a 及3a ;(2)求证:对任意*n N ,1n n a a c ;(3)是否存在1a ,使得12,,,,n a a a 成等差数列?若存在,求出所有这样的1a ; 若不存在,说明理由.63.(2015年22)已知数列{}n a 与{}n b 满足112()n n n n a a b b ,n *N .(1)若35n b n ,且11a ,求{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0n n a a ()n *N ,求证{}n b 的第0n 项是最大项;(3)(文)设130a ,n n b ()n *N ,求 的取值范围,使得对任意m 、n *N ,0n a ,且1(,6)6m na a . (3)(理)设10a ,nn b ()n *N ,求 的取值范围,使得{}n a 有最大值M 与最小值m ,且(2,2)Mm.。
2024年上海卷高考数学真题(含部分解析)
2024年普通高等学校招生全国统一考试 上海卷数学试卷1.设全集,集合,则_________.2.已知,_________.3.已知,的解集为_________.4.已知,若是奇函数,,_________.5.已知,,,,则k 的值为_________.6.在的二项展开式中,若各项系数和为32,则项的系数为_________.7.已知抛物线上有一点P 到准线的距离为9,那么P 到x 轴的距离为_________.8.某校举办科学竞技比赛,有A 、B 、C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72,现他从所有的题中随机选一题,正确率是_________.9.已知虚数z ,其实部为1,且,则实数m 为_________.10.设集合A 中的元素皆为无重复数字的三位正整数,且元素中任意两者之积皆为偶数,求集合中元素个数的最大值_________.11.已知A 在O 正东方向,B 在O 的正北方向,O 到A 、B 距离相等,,,则_________.(精确到0.1度)12.等比数列首项,,记,若对任意正整数n ,是闭区间,则q 的范围是_________.13.已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是(){1,2,3,4,5}U ={2,4}A =A=0()1,0x f x x >=≤⎪⎩(3)f =x ∈R 2230x x --<3()f x x a =+()f x x ∈R a =k ∈R (2,5)a =(6,)b k = //a b (1)n x +2x 24y x =2()z m m z+=∈R 16.5BTO ∠=︒37ATO ∠=︒BOT ∠={}n a 10a >1q >[][]{}121ln ,,,n n x y x y a a a a +=-∈ ∣lnA.气候温度高,海水表层温度就高B.气候温度高,海水表层温度就低C.随着气候温度由低到高,海水表层温度呈上升趋势D.随着气候温度由低到高,海水表层温度呈下降趋势14.下列函数的最小正周期是的是( )A. B. C. D.15.定义一个集合,集合中的元素是空间内的点集,任取,存在不全为0的实数,,,使得.已知,则的充分条件是( )A. B. C. D.16.定义集合,在使得的所有中,下列成立的是( )A.是偶函数 B.在处取最大值C.严格增D.在处取到极小值17.如图为正四棱锥,O 为底面ABCD 的中心.(1)若,绕PO 旋转一周形成的几何体的体积;(2)若,E 为PB 的中点,求直线BD 与平面AEC 所成角的大小.18.若(,).(1)过,求的解集;(2)存在x 使得、、成等差数列,求a 的取值范围.19.为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580()f x 2πsin cos x x+sin cos x x22sin cos x x+22sin cos x x-Ω123,,P P P ∈Ω1λ2λ3λ1122330OP OP OP λλλ++= (1,0,0)∈Ω(0,0,1)∉Ω(0,0,0)(1,0,0)-(0,1,0)(0,0,1)-()(){}0000,,,()M x x x x f x f x =∈∈-∞<R ∣[1,1]M =-()f x ()f x ()f x 2x =()f x ()f x 1x =-P ABCD -5AP =AD =POA △AP AD =()log a f x x =0a >1a ≠()y f x =(4,2)(22)()f x f x -<(1)f x +()f ax (2)f x +人,得到日均体育锻炼时长与学业成绩的数据如下表所示:优秀5444231不优秀1341471374027(1)该地区29000名学生中体育锻炼时长大于1小时人数约为多少?(2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)(3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?附:,.20.双曲线,,,为左右顶点,过点的直线l 交双曲线于两点P 、Q ,且点P 在第一象限.(1)若时,求b .(2)若为等腰三角形时,求点P 的坐标.(3)过点Q 作OQ 延长线交于点R ,若,求b 取值范围.21.对于一个函数和一个点,令,若是取到最小值的点,则称P 是M 在的“最近点”.(1)对于,,求证,对于点,存在点P ,使得P 是M 在的“最近点”;(2)对于,,,请判断是否存在一个点P ,它是M 在最近点,且直线MP 与在点P 处的切线垂直;(3)设存在导函数,且在定义域R 上恒正,设点,.若对任意的,都存在点P ,满足P 是的最近点,也是的最近点,试求的单调性.[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)95%22()()()()()n ad bc a b c d a c b d χ-=++++()2 3.8410.05P χ≥≈222:1y x bΓ-=(0)b >1A 2A (2,0)M -Γe 2=b =2MA P △Γ121A R A P ⋅=()f x (,)M a b 22()()(())s x x a f x b =-+-()()00,P x f x ()s x ()f x 1()f x x=(0,)D =+∞(1,0)M ()f x ()e x f x =D =R (1,0)M ()f x ()f x ()f x ()g x 1(1,()())M t f t g t --2(1,()())M t f t g t ++t ∈R 1M 2M ()f x参考答案3.答案:4.答案:0解析:由题可知,,则.5.答案:15解析:由题可知,,则.6.答案:10解析:由题可知,展开式中各项系数的和是,所以,该二项式的通项公式是,令,,得.7.答案:解析:设P 坐标为,P 到准线的距离为9,即,,代入抛物线方程,可得,则P 到x 轴的距离为解析:由题可知,A 题库占比为,B 题库占比为,C 题库占比为,.9.答案:2解析:设,所以,因为,所以,解得,所以.10.答案:329解析:由题可知,集合A 中每个元素都互异的,且元素中最多有一个奇数,剩余全是偶数,先研究集合中(0)0F =256k =⨯(1)32nx +=515C 1rr r r T x -+=⋅⋅3r =2201b b b -=+2211121m b =+=+=+(1,3)-0a =15k =5n =52r -=35C 10=()00,x y 019x +=08x =0y =±5121314511170.920.860.72123420P =⨯+⨯+⨯=1i(0)z b b =+≠222222(1i)221i 1i 1i 1i 111b b z b b b z b b b b ⋅-⎛⎫+=++=++=++- ⎪++++⎝⎭m ∈R 1b =±无重复数字的三位偶数:(1)若个位为0,这样的偶数有种;(2)若个位不为0,这样的偶数有种;所以集合元素个数最大值为种.11.答案:解析:不妨设,,,则所以在中,①在中,②在中,③①②③联立.12.答案:解析:由题不妨设,若x ,y 均在,则有,若x ,y 均在,则有,若x ,y 分別在两个区间,则,又因为,总有ln 是闭区间,则恒成立即可,化简得,所以有恒成立.13.答案:C解析:成对数据相关分析中,若相关系数为正数,当x 的值由小变大,y 的值具有由小变大的变化趋垫,故A ,B ,D 选项错误,答案选C.14.答案:A解析:对于A ,,则,满足条件,故A 正确;对于B ,,则,不满足条件,故B 错误;对于C ,,为常值函数,则不存在最小正周期,不满足条件,故C 错误;对于D ,,则,不满足条件,故D 错误;故答案选A.15.答案:C111488C C C 256⋅⋅=7.8︒BT b =AB =222)2cos53.5b c bc =+-︒sin16.5sin a bBOT=︒∠()sin 37sin 90a bBOT =︒︒-∠1(2)0nq q q --+≥2πT=2ππ2T==22sin cos cos 2x x x -=-2972P =256721329++=OA OB a ==AT c =ABT △OBT △OAT △7.8BOT ∠≈︒[2,)+∞x y >[]12,a a []210,x y a a -∈-[]1,n n a a +[]10,n n x y a a +-∈-[]211,n n x y a a a a +-∈--1q >21n n n a a a a +-≤-2q ≥πsin cos 4x x x x x ⎫⎛⎫+=+=+⎪ ⎪⎪⎝⎭⎭1sin cos sin 22x x x =22sin cos 1x x +=2ππ2T ==解析:因为,,不全为0,,所以三个向量无法构成三维空间坐标系的一组基,又因为,所以对于A ,三者可以构成一组基,故不能推出,故A 错误;对于B ,若,均属于,且,共线,所以可以属于,此时三者不共面,故B 错误;对于C ,显然,三者可以构成一组基,与条件不符合,故可以推出,故C 正确;对于D ,三者无法构成一组基,故不能推出,故D 错误.故答案选C.16.答案:D解析:时,,又因为,所以,当且时,恒成立,说明在上,函数单调递增,故A 错误;对于B ,且在上,函数单调递增,故函数在上最大值为,若函数在时,,则M 的集合不会是,所以在1处取到极大值,在2处不一定取最大值,故B 错误;对于C ,在时,若函数严格增,则集合M 的取值不会是,而是全体定义域,故C 错误.对于D ,因为当时,,所以左侧不是单调递减,若左侧单调递增,或者在某一段单调递增,则M 的集合不会是,所以在左侧相邻一段是常函数,又因为在上,函数单调递增,故D 正确.17.答案:(1)(2)解析:(1)因为是正四棱锥,所以底面ABCD 是正方形,且底面ABCD ,因为,因为,所以,所以绕OP 旋转一周形成的几何体是以3为底面半径,4为高的圆锥,所以.1λ(1,0,0)-(1,0,0)(0,0,1)(0,0,1)∈Ω0x x <[1,1]M =-0[1,1]x ∈-()0()f x f x <()(1)f x f <-()(1)f x f <-[1,1]-[1,1]-π4OP ⊥3AO OD OB OC ====4PO ==211π3412π33V Sh ==⨯⨯=圆锥2λ3λ1122330OP OP OP λλλ++=(1,0,0)∈Ω(0,0,1)∈Ω(1,0,0)Ω(1,0,0)-Ω(0,0,1)Ω∉()0()f x f x <()(1)f x f <-[1,1)x ∈-[1,1]-[1,1]-(,1]-∞(1)f ()f x 1x >()(1)f x f >[1,1]-1x <-()f x [1,1]-1x <-1-1-12πP ABCD -AD =5AP =POA △(2)如图建立空间直角坐标系,因为,由题知是正四棱锥,所以该四棱锥各棱长相等,设,则,,则可得,,,,,,,故,,设为平面AEC 的法向量,则,令,则,,所以,则,设直线BD 与面AEC 所成角为,因为,,所以.18.答案:(1)(2)解析:(1)由过可得,则,又,故,AP AD =P ABCD-AB =AO OD OB OC a ====PO a ==(0,0,0)O (0,0,)P a (0,,0)A a -(,0,0)B a (0,,0)C a (,0,0)D a -,0,22aa E ⎛⎫⎪⎝⎭(2,0,0)BD a =- (0,2,0)AC a = ,,22a a AE a ⎛⎫⎪⎝⎭ ()111,,n x y z =11112000022a y n AC a ax a y z n AE ⎧⋅=⎧⋅=⎪⎪⇒⎨⎨⋅+⋅+⋅=⋅=⎪⎪⎩⎩11x =10y =11z =-(1,01)n =-cos ,||||n BD n BD n BD ⋅〈〉===⋅θsin |cos ,|n BD θ=〈〉= π0,2θ⎡⎤∈⎢⎥⎣⎦π4θ=(1,2)1a >()y f x =(4,2)log 42a =242a a =⇒=±0a >2a =因为在上是严格增函数,,所以解集为.(2)因为、、成等差数列,所以,即有解,化简可得,得且,则在上有解,又,故在上,,即或,又,所以.19.答案:(1)12500人(2)(3)学业成绩与锻炼时长不小于1小时且小于2小时有关解析:(1)580人中体育锻炼时长不小于1小时人数占比该地区29000名初中学生中体育锻炼时长不小于1小时的人数约为人;(2)该地区初中学生锻炼平均时长约为:;(3)[1,2)其他总数优秀455095不优秀177308485①提出原假设:成绩优秀与日均体育锻炼时长不小于1小时且小于2小时无关.log (1)log (2)2log ()a a a x x ax +++=2(1)(2)()x x ax ++=22(1)(2)x x a x ++=222(1)(2)231311248x x x x x x ++⎛⎫=++=+- ⎪⎝⎭22(1)(2)3120148x x x ++⎛⎫>+-= ⎪⎝⎭1a >1a >423113740272558058P +++++==10.50.511 1.5 1.522 2.5(5134)(44147)(42137)(340)(127)58022222++++⎡⎤⨯++⨯++⨯++⨯++⨯+⎢⎥⎣⎦2()log f x x =(0,)+∞(22)()02212f x f x x x x -<⇒<-<⇒<<(1,2)(1)f x +()f ax (2)f x +(1)(2)2()f x f x f ax +++=()2log (1)(2)log a a x x ax ++=1020000,1x x x ax a a +>⎧⎪+>⎪⇒>⎨>⎪⎪>≠⎩(0,)+∞(0,)+∞211a a >⇒<-0a >0.9h25290001250058⨯=270.9h 29=≈0H②确定显著性水平,③④否定原假设,即学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关.20.答案:(1)(2)(3)解析:(1)因为,即,所以.因为,所以.因为,所以,所以.(2)因为为等腰三角形,①若为底,则点P 在直线时,与P 在第一象限矛盾,故舍去.②若为底,则,与矛盾,故舍去.③若MP 为底,则,设,,.,即,又因为,得,很,得,.(3)由,设,,则,设直线0.05α=22580(4530817750) 3.976 3.841(4550)(177308)(45177)(50308)χ⨯⨯-⨯=≈>+⨯+⨯+⨯+(2,P 2e =224c a =24c =23b =2MA P △12x =-2MP MA =22MA PA =00x >3=()2 3.8410.05P χ≥≈b =b ∈2ca=21a =222a b c +=b =2MA 2A P 2MP MA >()00,P x y 00y >()220019x y -+=2200183y x -=()()220081193x x -+-⨯=200116320x x --=02x =0y =(2,P 1(1,0)A -()11,P x y ()22,Q x y ()22,R x y --1:2l x my m b ⎛⎫=->⎪⎝⎭联立得,则,,,又由,得即,即化简后可得到再由韦达定理得,化简:所以得,又,得.21.答案:(1)见解析(2)存在点使直线MP 于在点P 处的切线垂直(3)略解析:(1)证明:,当且仅当即时取到最小值,所以对于点存在点使得P 是M 在的最近点.(2),0负0正严格减极小值严格增所以当时,取到最小值,此时点,,,222121x my m b y x b ⎧⎛⎫=-> ⎪⎪⎪⎝⎭⎨⎪-=⎪⎩()222221430b m y b my b --+=21222212224131b m y y b m b y y b m ⎧+=⎪⎪-⎨⎪⋅=⎪-⎩()1221,A R x y =-+- ()2111,A P x y =- 121A R A P ⋅=()()2112111x x y y -+--=()()2112111x x y y --+=-()()2112331my my y y --+=-()()2121213100m y y m y y +-++=()()22222231121010b m m b b m +-+-=2223100b m b +-=22221031b m b b-=>23b <0b >b ∈(0,1)P ()f x 222211()(0)02s x x x x x ⎛⎫=-+-=+≥= ⎪⎝⎭221x x=1x =(0,0)M (1,1)P ()f x ()2222()(1)e 0(1)e xx s x x x =-+-=-+2()2(1)2e xs x x '=-+(,0)-∞(0,)+∞()s x '()s x 0x =()s x (0,1)P ()e xf x '=0e 1k ==在点P 处的切线为,,此时,所以存在点使直线MP 于在点P 处的切线垂直.()f x 1y x =+01110MP k -==--1MP k k ⋅=-(0,1)P ()f x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市03-08年高考数学试题汇编崇明县教研室 龚为民 卢立臻数列与极限(一)填空题1、计算:112323lim -+∞→+-n n nn n =__________。
(05上海理)2、计算:∞→n lim 16)1(32++n n n = .3.计算=++∞→)1(312lim2n n n n .(07上海春) 4、 计算:=+-∞→3423limn n n .(06上海春)5、=++++∞→nn n 212lim . (05上海春)6、计算:1lim 33+∞→n C nn = .(06上海理)7、计算:131lim 32n n nn +→∞+=+ .(08上海春) 8、在等差数列}{n a 中,a 5=3, a 6=-2,则a 4+a 5+…+a 10= . (03上海理) 9、已知数列{}n a 是公差不为零的等差数列,11a =. 若125a a a 、、成等比数列,则n a = .(08上海春) 10、已知无穷数列{}n a 前n 项和113n n S a =-,则数列{}n a 的各项和为 . (08上海春)11、若首项为a 1,公比为q 的等比数列}{n a 的前n 项和总小于这个数列的各项和,则首项a 1,公比q 的一组取值可以是(a 1,q )= . (03上海理)12、设等比数列{a n }(n ∈N )的公比q =-21,且∞→n lim (a 1+a 3+a 5+…+a 2n -1)=38,则a 1= .(04上海理)13、若干个能唯一确定一个数列的量称为该数列的“基本量”.设{a n }是公比为q 的无穷等比数列,下列{a n }的四组量中,一定能成为该数列“基本量”的是第 组. (写出所有符合要求的组号) ①S 1与S 2; ②a 2与S 3; ③a 1与a n ; ④q 与a n . 其中n为大于1的整数, S n 为{a n }的前n 项和.(04上海理) 14、已知点),0,24(),2,0(),2,0(nC n B n A +-其中n 的为正整数.设S n 表示△ABC 外接圆的面 积,则n n S ∞→lim = . (03上海理)15、在数列}{n a 中,31=a ,且对任意大于1的正整数n ,点),(1-n n a a 在直线03=--y x 上,则=+∞→2)1(limn a n n _____________.(04上海春季)16、用n 个不同的实数n a a a ,,,21 可得到!n 个不同的排列,每个排列为一行写成一个!n 行的数阵。
(05上海理)对第i 行in i i a a a ,,,21 ,记in ni i i i na a a a b )1(32321-++-+-=,!,,3,2,1n i =。
(05上海理)例如:用1,2,3可得数阵如图,由于此数阵中每一列各数之和都是12,所以,2412312212621-=⨯-⨯+-=+++b b b ,那么,在用1,2,3,14,5形成的数阵中,12021b b b +++ =__________。
(05上海理)12312312312312312317、在等差数列}{n a 中,当s r a a =)(s r ≠时,}{n a 必定是常数数列。
然而在等比数列}{n a 中,对某些正整数r 、s )(s r ≠,当s r a a =时,非常数数列}{n a 的一个例子是____________.(04上海春季)18、根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有___________个点. (04上海春季)(1) (2) (3) (4) (5)19、 设数列{}n a 的前n 项和为n S (N ∈n ). 关于数列{}n a 有下列三个命题: (1)若{}n a 既是等差数列又是等比数列,则)(1N ∈=+n a a n n ;(2)若()R ∈+=b a n b n a S n 、2,则{}n a 是等差数列; 。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
。
(3)若()nn S 11--=,则{}n a 是等比数列.这些命题中,真命题的序号是 . (05上海春)20、 已知函数2()2log xf x x =+,数列{}n a 的通项公式是n a n 1.0=(N ∈n ),当|()2005|n f a -取得最小值时,n = . (05上海春)(二)选择题21、设{})(N n a n ∈是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )(03上海春季)(A)d<0 (B)a 7=0 (C)S 9>S 5 (D)S 6和S 7均为S n 的最大值.22、(08上海理)若数列{a n }是首项为l ,公比为a 23-的无穷等比数列,且{a n }各项的和为a ,则a 的值是 [答]( )(A )1. (B)2. (C).21 (D).45(三)解答题23、(03上海理) 已知数列}{n a (n 为正整数)是首项是a 1,公比为q 的等比数列.(1)求和:;,334233132031223122021C a C a C a C a C a C a C a -+-+-(2)由(1)的结果归纳概括出关于正整数n 的一个结论,并加以证明.24、(07上海春)我们在下面的表格内填写数值:先将第1行的所有空格填上1;再把一个首项为1,公比为q 的数列{}n a 依次填入第一列的空格内;然后按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写其它空格.(1) 设第2行的数依次为n B B B ,,,21 ,试用q n ,表示n B B B +++ 21的值; (2) 设第3列的数依次为n c c c c ,,,,321 ,求证:对于任意非零实数q ,2312c c c >+; (3) 请在以下两个问题中选择一个进行研究 (只能选择一个问题,如果都选,被认为选择了第一问).① 能否找到q 的值,使得(2) 中的数列n c c c c ,,,,321 的前m 项m c c c ,,,21 (3≥m ) 成为等比数列?若能找到,m 的值有多少个?若不能找到,说明理由.② 能否找到q 的值,使得填完表格后,除第1列外,还有不同的两列数的前三项各自依次成等比数列?并说明理由.25、(08上海春)直角坐标平面xOy 上一列点()()11221,,2,,,A a A a(,),n n A n a ,简记为{}n A . 若由1n n n b A A j +=⋅构成的数列{}n b 满足1,1,2,n n b b n +>=,其中j 为方向与y 轴正方向相同的单位向量,则称{}n A 为T 点列.(1) 判断()123111,1,2,,3,,,23A A A ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭1,,n A n n ⎛⎫⎪⎝⎭,是否为T 点列,并说明理由;(2)若{}n A 为T 点列,且点2A 在点1A 的右上方. 任取其中连续三点1k k A A +、、2k A +, 判断△12k k k A A A ++的形状(锐角三角形、直角三角形、钝角三角形),并予以证明; (3)若{}n A 为T 点列,正整数1m n p q ≤<<<满足m q n p +=+,求证: >n q m p A A j A A j ⋅⋅.26、 (本题满分14分) 本题共有2个小题,第1小题满分7分, 第2小题满分7分. 设数列{a n }的前n 项和为S n ,且对任意正整数n, a n + S n =4096. (1) 求数列{a n }的通项公式;(2) 设数列{log 2a n }的前n 项和为T n .对数列{T n },从第几项起T n <-509? (06上海文)27、 (06上海春) 已知数列3021,,,a a a ,其中1021,,,a a a 是首项为1,公差为1的等差数列;201110,,,a a a 是公差为d 的等差数列;302120,,,a a a 是公差为2d 的等差数列(0≠d ).(1)若4020=a ,求d ;(2)试写出30a 关于d 的关系式,并求30a 的取值范围;(3)续写已知数列,使得403130,,,a a a 是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?28、(06上海理)已知有穷数列{n a }共有2k 项(整数k ≥2),首项1a =2.设该数列的前n 项和为n S ,且1+n a =n S a )1(-+2(n =1,2,┅,2k -1),其中常数a >1. (1)求证:数列{n a }是等比数列;(2)若a =2122-k ,数列{n b }满足n b =)(log 1212n a a a n⋅⋅⋅(n =1,2,┅,2k ),求数列{n b }的通项公式;(3)若(2)中的数列{n b }满足不等式|1b -23|+|2b -23|+┅+|12-k b -23|+|k b 2-23|≤4,求k 的值. 29、 某市2004年底有住房面积1200万平方米,计划从2005年起,每年拆除20万平方米的旧住房. 假定该市每年新建住房面积是上年年底住房面积的5%. (1)分别求2005年底和2006年底的住房面积 ;(2)求2024年底的住房面积.(计算结果以万平方米为单位,且精确到0.0130、(05上海理)假设某市2004年新建住房面积400万平方米,其中有250万平方米是中低价房。
预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%。
另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米。
那么,到哪一年底, (1)该市历年所建中低价层的累计面积(以2004年为累计的第一年)将首次不少于4780万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?31、(07上海理)若有穷数列12,...n a a a (n 是正整数),满足1211,....n n n a a a a a a -===即1i n i a a -+=(i 是正整数,且1i n ≤≤),就称该数列为“对称数列”。
(1)已知数列{}n b 是项数为7的对称数列,且1234,,,b b b b 成等差数列,142,11b b ==,试写出{}n b 的每一项(2)已知{}n c 是项数为()211k k -≥的对称数列,且121,...k k k c c c +-构成首项为50,公差为4-的等差数列,数列{}n c 的前21k -项和为21k S -,则当k 为何值时,21k S -取到最大值?最大值为多少?(3)对于给定的正整数1m >,试写出所有项数不超过2m 的对称数列,使得211,2,2...2m -成为数列中的连续项;当1500m >时,试求其中一个数列的前2008项和2008S32、(08上海理)已知以a 1为首项的数列{a n }满足:a n +1=⎩⎪⎨⎪⎧a n +c ,a n <3 a n d , a n ≥3⑴当a 1=1,c =1,d =3时,求数列{a n }的通项公式;⑵当0<a 1<1,c =1,d =3时,试用a 1表示数列{a n }的前100项的和S 100 ; ⑶当0<a 1<1m (m 是正整数),c =1m ,d ≥3m 时,求证:数列a 2-1m ,a 3m+2-1m,a 6m+2-1m ,a 9m+2-1m成等比数列当且仅当d =3m 。