酮体生成和利用的生理意义

合集下载

6.3 酮体代谢

6.3 酮体代谢

酮 体 代 谢•一、酮体的概念•二、酮体的生成•三、酮体的利用•四、酮体生成的生理和病理意义乙 酰 乙 酸β-羟基丁酸丙 酮酮体的概念酮体的形成--肝脏线粒体中乙酰-CoA有4种去向:(1)三羧酸循环(2)合成胆固醇(3)合成脂肪酸(4)酮体代谢--取决于草酰乙酸的可利用性。

Ø饥饿、禁食、糖尿病等,糖异生使少量乙酰CoA进入TCA,而大多数乙酰CoA合成酮体。

Ø乙酰-CoA超过TCA循环所需量时,经由生酮作用转化成酮体。

硫解酶HMG-CoA 合成酶HMG-CoA 裂解酶羟甲基戊二酸单酰CoA 脱羧酶脱氢酶乙酰乙酸β-羟基丁酸丙酮肝、肾线粒体酮 体 的 利 用肌肉中:β-羟丁酸 →→ 乙酰乙酸ATP +HS-CoA ↓AMP+PPi ↓ 乙酰乙酰CoAHS-CoA ↓ 硫解酶2 乙酰CoA ⇒ TCA脱氢酶硫激酶脑、肾上腺中乙酰乙酸的分解琥珀酰CoAβ-羟丁酸脱氢酶β-酮酰-CoA 转移酶硫解酶 -羟丁酸作为燃料酮体生成的调节(1)饱食与饥饿饱食-酮体生成减少;饥饿-利于β-氧化、酮体生成;(2)肝糖原含量及其代谢的影响丰富-脂肪酸合成甘油三酯、磷脂;不足-酮体生成增多;(3)丙二酸单酰CoA抑制脂酰CoA进入线粒体内进 行β-氧化-酮体生成减少。

酮体生成的生理学意义l 酮体是肝脏输出能源、联系肝脏和肝外组织一种形式。

l酮体是心肌、骨骼肌和脑组织等的主要能源。

长期饥饿或糖尿病,脑中75%能量来自酮体l 严重饥饿或未治疗的糖尿病人产生过量的酮体。

l酮血症和酸中毒。

-正常:0.03-0.5 mmol/L酮体-酸毒症:乙酰乙酸、β-羟基丁酸过多,降低血液的pH值。

酮体的生成与利用

酮体的生成与利用

二.酮体的生成


部位:肝细胞线粒体
原料:乙酰CoA,主要来自脂酸的-氧化

酶:具有活性较强的酮体合成酶,尤其是羟 甲基戊二单酰CoA合成酶
酮体生成的过程: (1)乙酰乙酰CoA的生成 (2)3-羟-3-甲基戊二酸单酰CoA ( HMG CoA )的生成 (3)酮体的生成

酮体的生成
2CH3COSCoA
酮体的生成及利用
微生物与生化药学 黄宏宝
酮体的生成及利用



一.酮体 二.酮体的生成 三.酮体的利用 四.酮体生成的调节 五.酮体代谢的生理意义 六.中西医结合治疗糖尿病酮症酸中毒
一.酮体


酮体是脂酸在肝细胞分解氧化时特有的中 间代谢产物。是乙酰乙酸、-羟丁酸和丙 酮三者的总称。 其中β-羟丁酸约占70% ,乙酰乙酸约占 28% ,丙酮约占2%。
拓展:酮症
正常人血液中仅存在极微量的酮体,在某些 生理或病理情况下,酮体的生成和利用失去 平衡,导致酮症。酮症是以血酮体水平升高 为特点的一个短暂阶段。种: 生理性酮症多见于禁食、高脂饮食、长时 间剧烈运动、应激等。新生儿和孕妇血清 中的酮体也会稍增高。孕妇基础酮体水平 增高,禁食后酮体水平急剧升高,约30%妊娠 妇女首次晨尿标本尿酮呈阳性。 病理性酮症可由糖尿病、皮质醇减少症、 生长激素缺少、乙醇或水杨酸盐摄入过量 而中毒及一些罕见的先天性代谢病引起。
硫解酶
CoASH
CH3COCH2COSCoA
乙酰乙酰CoA
HMGCoA合 成酶 HMGCoA裂 解酶 CH3COCH2COOH
CH3COSCoA CoASH
乙酰乙酸 脱氢酶
NADH+H+

生物化学脂代谢重点简答题2

生物化学脂代谢重点简答题2

简答题1.简述酮体在何处生成,在何处氧化利用?酮体的生理意义?酮症对机体有何危害?酮体在肝脏合成,输送到肝外组织氧化利用。

酮体的生理意义:酮体是脂肪酸在肝内正常的代谢中间产物,酮体是肝脏输出能源的一种形式;并且酮体可通过血脑屏障,是脑组织的重要能源;长期饥饿和糖供给不足时,酮体可以代替葡萄糖成为脑组织及肌肉组织的主要能源。

危害:可导致代谢性酸中毒,导致其腹痛、肠胃道症状、昏睡、头痛、恶心、心脏毒性作用、食欲减退等症状。

2.简述脂肪酸的氧化与生物合成的主要区别是什么?3.磷脂的主要生理功能是什么?卵磷脂生物合成需要哪些原料?磷脂的主要生理功能:由甘油构成的磷脂是生物膜的主要组分;含鞘氨醇而不含甘油的磷脂是神经组织各种膜的主要结构脂之一。

卵磷脂生物合成需要脂酸、甘油、磷酸盐、胆碱、丝氨酸、肌醇等原料。

4.人或实验动物长期缺乏胆碱会诱发脂肪肝,请解释其原因。

长期缺乏胆碱会导致合成磷脂的原料不足,胆碱可促进脂肪以磷脂形式由肝脏通过血液输送出去或改善脂肪酸本身在肝中的利用,并防止脂肪在肝脏里的异常积聚。

5.胆固醇可以转变成哪几种具有重要生理功用的物质?胆汁酸、类固醇激素、7-脱氢胆固醇6.简述乙酰CoA的来源与去路。

乙酰CoA的来源:糖的有氧氧化、脂肪的分解代谢、氨基酸的分解代谢以及酮体的分解代谢。

乙酰CoA的去路:进入三羧酸循环、合成酮体的原料、合成胆固醇的原料以及合成脂肪酸的原料。

7.分离血浆脂蛋白的方法有几种?各将血浆脂蛋白分成哪几种?分离血浆脂蛋白的方法有2种,分别为电泳法和密度梯度超速离心法电泳法:将血浆脂蛋白分为α-脂蛋白、前β-脂蛋白、β-脂蛋白、乳糜微粒。

密度梯度超速离心法:将血浆脂蛋白分为乳糜蛋白、极低密度蛋白、低密度蛋白、高密度蛋白。

论述题1.计算1摩尔硬脂酸在体内彻底氧化为CO2和H20能产生多少摩尔ATP?2.脂肪酸的-氧化过程包括哪些反应?有哪些酶和辅酶参加?脂肪酸的氧化过程包括脂肪酸的活化、脂酰CoA转运至线粒体、脂肪酸的β-氧化、脂肪酸氧化的能量生成这四个反应。

大学生物化学考试模拟题

大学生物化学考试模拟题

大学生物化学考试模拟题一、选择题(每题 2 分,共 40 分)1、下列哪种氨基酸是碱性氨基酸?()A 丙氨酸B 谷氨酸C 赖氨酸D 丝氨酸2、维系蛋白质二级结构稳定的主要化学键是()A 盐键B 氢键C 疏水键D 范德华力3、核酸中核苷酸之间的连接方式是()A 2',3'磷酸二酯键B 3',5'磷酸二酯键C 2',5'磷酸二酯键D 糖苷键4、 DNA 双螺旋结构模型的提出者是()A 沃森和克里克B 桑格和尼克森C 查哥夫D 摩尔根5、酶促反应中,决定反应特异性的是()A 酶蛋白B 辅酶C 辅基D 金属离子6、下列哪种维生素参与构成辅酶 A?()A 维生素 B1B 维生素 B2C 泛酸D 叶酸7、糖酵解途径中,催化不可逆反应的酶是()A 己糖激酶B 磷酸果糖激酶-1C 丙酮酸激酶D 以上都是8、三羧酸循环中,发生底物水平磷酸化的反应是()A 柠檬酸合酶催化的反应B 异柠檬酸脱氢酶催化的反应C 琥珀酰CoA 合成酶催化的反应D 苹果酸脱氢酶催化的反应9、呼吸链中,既能传递电子又能传递氢的组分是()A NAD+B 铁硫蛋白C 细胞色素 cD 辅酶 Q10、脂肪酸β氧化的过程不包括()A 脱氢B 加水C 再脱氢D 缩合11、酮体生成的关键酶是()A HMG CoA 合成酶B HMG CoA 还原酶C 乙酰 CoA 羧化酶D 脂肪酸合成酶12、胆固醇合成的限速酶是()A HMG CoA 合成酶B HMG CoA 还原酶C 鲨烯环氧酶D 胆固醇酯酶13、下列哪种物质不是通过鸟氨酸循环生成的?()A 尿素B 精氨酸C 瓜氨酸D 天冬氨酸14、嘌呤核苷酸从头合成时,首先合成的是()A IMPB AMPC GMPD XMP15、下列哪种物质不是嘧啶核苷酸从头合成的原料?()A 天冬氨酸B 谷氨酰胺C 二氧化碳D 一碳单位16、 DNA 复制时,子链的合成方向是()A 5'→3'B 3'→5'C 两条链均为5'→3'D 两条链均为3'→5'17、转录过程中,RNA 聚合酶的核心酶组成是()A α2ββ'ωB α2ββ'σC αββ'D αββ'ωσ18、遗传密码的特点不包括()A 通用性B 连续性C 简并性D 摆动性19、蛋白质生物合成的起始密码子是()A AUGB UAGC UGAD UAA20、基因表达调控的基本控制点是()A 转录起始B 转录后加工C 翻译起始D 翻译后加工二、填空题(每空 1 分,共 20 分)1、组成蛋白质的基本单位是_____,其结构通式为_____。

酮体的代谢

酮体的代谢

8.3酮体的代谢酮体的代谢脂肪酸β-氧化产生的乙酰CoA,在肌肉和肝外组织中直接进入TCA,然而在肝、肾脏细胞中还有另外一条去路:生成乙酰乙酸、D-β-羟丁酸、丙酮,这三种物质统称酮体。

酮体在肝中生成后,再运到肝外组织中利用。

1、酮体的生成酮体的合成发生在肝、肾细胞的线粒体内。

形成酮体的目的是将肝中大量的乙酰CoA转移出去,乙酰乙酸占30%,β—羟丁酸70%,少量丙酮。

(丙酮主要由肺呼出体外)肝脏线粒体中的乙酰CoA走哪一条途径,主要取决于草酰乙酸的可利用性。

饥饿状态下,草酰乙酸离开TCA,用于异生合成Glc。

当草酰乙酸浓度很低时,只有少量乙酰CoA进入TCA,大多数乙酰CoA用于合成酮体。

当乙酰CoA不能再进入TCA时,肝脏合成酮体送至肝外组织利用,肝脏仍可继续氧化脂肪酸。

肝中酮体生成的酶类很活泼,但没有能利用酮体的酶类。

因此,肝脏线粒体合成的酮体,迅速透过线粒体并进入血液循环,送至全身。

2、酮体的利用肝外许多组织具有活性很强的利用酮体的酶。

(1)乙酰乙酸被琥珀酰CoA转硫酶(β-酮脂酰CoA转移酶)活化成乙酰乙酰CoA心、肾、脑、骨骼肌等的线粒体中有较高的酶活性,可活化乙酰乙酸。

乙酰乙酸+琥珀酰CoA→乙酰乙酰CoA+琥珀酸然后,乙酰乙酰CoA被β氧化酶系中的硫解酶硫解,生成2分子乙酰CoA,进入TCA。

(2)β—羟基丁酸由β—羟基丁酸脱氢酶催化,生成乙酰乙酸,然后进入上述途径。

(3)丙酮可在一系列酶作用下转变成丙酮酸或乳酸,进入TCA或异生成糖。

肝脏氧化脂肪时可产生酮体,但不能利用它(缺少β—酮脂酰CoA转移酶),而肝外组织在脂肪氧化时不产生酮体,但能利用肝中输出的酮体。

在正常情况下,脑组织基本上利用Glc供能,而在严重饥饿状态,75%的能量由血中酮体供应。

3、酮体生成的生理意义酮体是肝内正常的中间代谢产物,是肝输出能量的一种形式。

酮体溶于水,分子小,能通过血脑屏障及肌肉毛细管壁,是心、脑组织的重要能源。

生化实验报告_酮体

生化实验报告_酮体

一、实验目的1. 了解酮体的生成过程。

2. 掌握酮体代谢的基本原理。

3. 学习通过实验方法检测酮体的生成和代谢。

二、实验原理酮体(Ketone bodies)是脂肪酸在肝脏中氧化分解的产物,主要包括乙酰乙酸、β-羟基丁酸和丙酮。

当机体糖原储备耗尽,血糖供应不足时,脂肪酸氧化生成的乙酰辅酶A(Acetyl-CoA)无法进入三羧酸循环(TCA cycle)进行彻底氧化,于是通过酮体生成途径产生酮体,供机体利用。

酮体生成过程分为以下几个步骤:1. 脂肪酸β-氧化:脂肪酸在细胞质中被氧化成乙酰辅酶A。

2. 乙酰辅酶A进入线粒体:乙酰辅酶A通过肉碱棕榈酰转移酶I(CPT I)进入线粒体。

3. 酮体生成:乙酰辅酶A在线粒体中缩合成乙酰乙酰辅酶A,再与另一分子乙酰辅酶A缩合成β-酮丁酸,β-酮丁酸还原成β-羟基丁酸,最终脱羧生成丙酮。

酮体代谢过程如下:1. 靶器官摄取:血液中的酮体被靶器官(如脑、肌肉等)摄取。

2. 酮体氧化:在靶器官中,酮体被重新合成成乙酰辅酶A,进入三羧酸循环进行彻底氧化,产生能量。

三、实验材料与仪器1. 实验材料:- 纯净脂肪酸- 肉碱棕榈酰转移酶I(CPT I)抑制剂- 乙酰辅酶A- β-羟基丁酸脱氢酶- 丙酮- 实验试剂:磷酸缓冲液、三氯化铁溶液、硫酸铜溶液、碘液等- 实验动物:小鼠2. 实验仪器:- 离心机- 恒温水浴锅- 分光光度计- 移液器- 试管四、实验方法1. 脂肪酸氧化实验:- 将纯净脂肪酸与磷酸缓冲液混合,加入肉碱棕榈酰转移酶I抑制剂,观察乙酰辅酶A的生成情况。

- 将脂肪酸与磷酸缓冲液混合,加入乙酰辅酶A,观察酮体的生成情况。

2. 酮体代谢实验:- 将小鼠麻醉后处死,取肝脏和肌肉组织。

- 分别提取肝脏和肌肉组织中的酮体。

- 测定肝脏和肌肉组织中酮体的含量。

- 检测肝脏和肌肉组织中乙酰辅酶A的含量。

3. 酮体检测实验:- 取少量乙酰乙酸、β-羟基丁酸和丙酮,分别与三氯化铁溶液、硫酸铜溶液和碘液反应,观察颜色变化,判断酮体的种类。

生物化学 问答题

生物化学 问答题

1.酮体生成的意义:酮体是肝脏输出能源的一种形式。

并且酮体可通过血脑屏障,是脑组织的重要能源。

酮体利用的增加可减少糖的利用,有利于维持血糖水平恒定,节省蛋白质的消耗。

2.氨基酸脱氨基作用有哪几种方式?转氨基作用,氧化脱氨基,联合脱氨基,非氧化脱氨基3.简述一碳单位的定义、来源和生理意义某些氨基酸在分解代谢过程中产生的只含有一个碳原子的基团,称为一碳单位。

能作为合成嘌呤和嘧啶的原料,把氨基酸代谢和核酸代谢联系起来需要四氢叶酸载体。

4.维生素B12缺乏与巨幼红细胞贫血的关系是什么?由叶酸、维生素B12缺乏引起的一种大细胞性贫血。

这种贫血的特点是骨髓里的幼稚红细胞增多,红细胞核发育不良,成为特殊的巨幼红细胞。

5.鸟氨酸循环的主要过程及生理意义是什么?氨基甲酰磷酸的合成,瓜氨酸的合成,精氨酸代琥珀酸的生成,精氨酸的生成,精氨酸水解生成尿素最重要的意义是将体内蛋白质代谢产生的较高毒性的氨转化为低毒的尿素,从而排出体外。

鸟氨酸循环也叫尿素循环。

6.补救合成的生理意义补救合成节省从头合成时的能量和一些氨基酸的消耗。

体内某些组织器官,如脑、骨髓等只能进行补救合成。

7. 列举影响核苷酸合成的抗代谢物及其抗癌作用原理.6-巯基鸟嘌呤与次黄嘌呤的结构相似,可抑制次黄嘌呤核苷酸向腺苷酸和鸟甘酸的转变。

8.为什么说细胞水平的调节是机体代谢调节的基础?细胞水平调节主要通过细胞内代谢物浓度的变化,对酶的活性及含量进行调节,是最基础的代谢调节。

9.机体代谢调节方式有多种,相互之间如何联系?物质代谢通过各代谢途径的共同中间产物相互联系,但在相互转变的程度上差异很大,有些代谢反应是不可逆的。

乙酰CoA 是糖、脂、氨基酸代谢共有的重要中间代谢物,三羧酸循环是三大营养物最终代谢途径,是转化的枢纽。

10.平时与饥饿时机体内能量主要来源有何不同平时能量主要来源于对葡萄糖的利用在饥饿时整体水平的代谢调节发挥作用:(1)糖代谢变化糖异生加强,组织对葡萄糖利用降低(2)蛋白质代谢变化分解加强,氨基酸异生成糖(3)脂代谢变化脂肪动员加强,酮体生成增多11.血浆蛋白质的功能。

生物化学试卷

生物化学试卷

一、填空题(每空分,共10分)1、蛋白质在等电点时,以_________离子形式存在,净电荷为______________。

2、维持DNA双螺旋稳定的力是_____________和__________。

3、缺乏VitB1可能引起___________疾病,夜盲症是由于缺乏__________引起的。

4、蛋白酶按其化学组成可分为____________和____________。

5、糖酵解途径中的关键酶是__________、_____________、和_______________。

6、脂肪酸β—氧化包括__________步连续反应,其产物是_______________。

7、脑中氨的主要去路是_________________。

8、体内高能磷酸化合物的生成方式有_________________和______________。

9、体内胆红素的主要来源是______________随______________排泄。

10、血浆中调节酸碱平衡最重要的缓冲系统是_______________其缓冲固定酸的主要物质是_____________。

二、是非判断题(每题1分,共10分)1、含有两个氨基的氨基酸,其PH值大于。

( )2、DNA变性的实质是磷酸二酯键的断裂。

( )3、酶的必需基团全部都位于活性中心外,可分为结合基团和催化基团。

( )4、葡萄糖是小分子有机化合物,它进入细胞是通过简单的扩散过程。

( )5、人体对维生素的需要量很少,但由于机体不能合成或者合成量较少,必须经常由食物供给。

( )6、糖无氧氧化能够产生ATP,故糖酵解是正常人获得能量的主要方式。

( )7、所有的肝外组织都能生成酮体,也都能利用酮体。

( )8、胆固醇在体内不能彻底分解为CO2+H2O。

( )9、食物蛋白质营养价值的高低取决于含必需氨基酸的种类、数量和比例。

( )10、成人每日需饮水1200ml,才能维持体内水平衡。

( )三、名词解释(每个2分,共20分)1、电泳2、酶的竞争性抑制作用3、DNA变性4、呼吸链5、糖异生6、脂肪动员7、乳酸循环8、结合胆红素9、氮总平衡10、必需氨基酸四、选择题(每题1分,共30分)A型题(选择一个正确答案)1、下列属于亚氨基酸的是A、甘氨酸B、脯氨酸C、组氨酸D、色氨酸E、谷氨酸2、测定血清标本的含氮量为10g/L,蛋白质的含量是多少A、10g/LB、16g/LC、62.5g/LD、45.5g/LE、72.5g/L3、DNA双螺旋结构错误的是A、二条链方向相反B、螺旋的直径为2nmC、为右手螺旋,每个螺旋为10个碱基对D、维持螺旋稳定的主要力量是肽键E、螺旋每上升一圈高度为4、某种酶活性需以-SH基为必需基团,能保护此酶不被氧化的物质是A、两价阳离子B、还原型谷胱甘肽C、尿素D、氧化型谷胱甘肽E、胱氨酸5、关于糖酵解的描述正确的是A、糖酵解过程所有反应都是可逆的B、最终产物是丙酮酸C、能产生36或38个ATPD、其反应过程都是在线粒体中进行的E、其反应过程都是在胞液中进行的6、糖酵解时哪一对代谢物提供~P使ADP生成ATPA、3—P—甘油醛及磷酸果糖B、1、3—二磷酸甘油酸及磷酸烯醇式丙酮酸C、1、3—二磷酸甘油酸及3—P—甘油醛D、6—P—葡萄糖及1、3—二磷酸甘油酸E、1、6—二磷酸果糖及1、3—二磷酸甘油酸7、催化底物直接以氧为受氢体的酶是A、乳酸脱氢酶B、过氧化物酶C、琥珀酸脱氢酶D、氨基酸氧化酶E、细胞色素氧化酶8、一分子丙酮酸在线粒体内彻底氧化生成C2O和H2O产生多少分子ATPA、12B、14C、15D、18E、389、在线粒体中进行脂酸碳链加长时,二碳单位的供体是A、乙酰CoAB、琥珀酰CoAC、丙酰CoAD、丁酰CoAE、丙二酰CoA10、一分子软脂酸彻底氧化生成ATP分子数是A、129B、130C、131D、12E、1511、酮体合成过程中的关键酶是A、HMGCOA合成酶B、HMGCoA裂解酶C、HMGCoA还原酶D、硫解酶E、脱羧酶12、含有较多稀有碱基的是A、DNAB、tRNAC、mRNAD、rRNAE、cAMP13、有机磷农药可与酶活性中心上的哪种基团结合,使酶的活性受抑制A、—SHB、NH3C、—OHD、—COOHE、—CH314、下列可能影响氧化磷酸化运行的因素是A、NAD+量B、FAD量C、ADP/ATP比值↑D、草酰乙酸的量E、葡萄糖15、DNA分子中的碱基特点是A、A=T G=CB、G与C之间有二条氢键C、C+G=A+TD、A与T之间有三条氢键E、A=U G=CX型题(选择二个或二个以上正确答案)16、酶的活性中心哪些正确A、酶的必需基团都位于活性中心内B、有的酶活性中心外也存在必需基团C、抑制剂都是与酶活性中心的必需基团结合D、有的抑制剂与酶活性中心外必需基团结合也可抑制酶活性E、构成酶活性中心的必需基团在一级结构上彼此都是相邻的17、糖酵解途径的关键酶是A、已糖激酶B、3-P-甘油醛脱氢酶C、丙酮酸激酶D、烯醇化酶E、磷酸果糖激酶18、氨的运输形式是A、NH3B、谷氨酰胺C、尿素D、谷氨酸E、丙氨酸19、下列关于三羧酸循环正确的是A、此循环有三个关键酶催化B、经一周循环,乙酰COA的二个碳被消耗掉C、循环过程中,没有脱下CO2D、此循环是糖有氧氧化的必经途径E、每循环一周产生15分子ATP20、胞液中NADH通过何种途径进入线粒体A、3—磷酸甘油穿梭B、柠檬酸—丙酮酸穿梭C、苹果酸—天冬氨酸穿梭D、葡萄糖—丙酮酸穿梭E、草酰乙酸—α—酮戊二酸穿梭21、肝脏对物质代谢的作用有A、维持血糖浓度的平衡B、维持酸碱平衡C、合成尿素D、合成脂肪酸E、合成多种蛋白质22、磷酸戊糖途径的生理意义是A、产生NADPH+H+B、产生NADH+H+C、产生核糖D、提供少量能量E、合成肝糖元23、脂肪酸的活化需A、HSCoAB、乙酰CoAC、ATPD、NADE、NADP+24、下列哪些是酮体A、乙酰CoAB、乙酰乙酸C、γ-氨基丁酸D、β—羟丁酸E、丙酮25、合成脂肪酸需要A、乙酰CoAB、NADPH+H+C、NADH+H+D、ATPE、GTP26、下列哪些为非必需氨基酸A、赖氨酸B、甲硫氨酸C、甘氨酸D、亮氨酸E、谷氨酸27、结合胆红素的叙述错误的是A、凡登白试验直接阳性B、水溶性较大C、可随尿液排出D、易透过生物膜E、与血浆清蛋白结合28、哪些维生素与能量代谢有关A、VitB2B、VitB6C、VitPPD、VitB12E、叶酸29、参与体内酸碱平衡调节的有A、肝B、肾C、心D、肺E、血液30、无机盐的生理功能是A、构成组织和体液的成分B、维持酸碱平衡C、维持神经肌肉的应激性D、维持酶活性E、参与体内某些主重要化合物的合成五、问答题(共30分)1、糖有氧氧化的基本过程和生理意义。

生化大题+名词解释

生化大题+名词解释

BiochemistryPart I1.代谢的意义:①将食物转化为能量维持细胞生命活动②合成组成细胞的必需物质,如蛋白质,脂质,核酸,糖类③代谢废物的消除2.糖代谢的意义:①糖类作为能源物质②分解代谢产生的中间物作为合成生物体内重要代谢物质的碳架和前体③是细胞中的结构物质,如细胞壁等④参与分子与细胞特异性识别:由寡糖或多糖组成的糖链常存在于细胞表面,形成糖脂和糖蛋白,参与分子或细胞间的特异性识别和结合3.糖酵解磷酸化中间产物的意义①带有负电荷的磷酸基团使中间产物具有极性,从而使这些产物不易透过脂膜而失散;②磷酸基团在各反应步骤中,对酶来说,起到信号基团的作用,有利于与酶结合而被催化;③磷酸基团经酵解作用后,最终形成ATP的末端磷酸基团,因此具有保存能量的作用。

4.糖酵解意义①在无氧条件下迅速提供能量,供机体需要。

如:剧烈运动、人到高原②是某些细胞在不缺氧条件下的能量来源。

③是某些病理情况下机体获得能量的方式。

④是糖的有氧氧化的前过程,亦是糖异生作用,大部分逆过程。

⑤糖酵解是糖、脂肪和氨基酸代谢相联系的途径⑥若糖酵解过度,可因乳酸生成过多而导致乳酸中毒。

5.糖酵解存在实例?⑴糖酵解与肌肉收缩①肌肉内ATP含量很低;②肌肉中磷酸肌酸储存的能量可供肌肉收缩所急需的化学能;③即使氧不缺乏,葡萄糖进行有氧氧化的过程比糖酵解长得多,来不及满足需要;④肌肉局部血流不足,处于相对缺氧状态。

⑵糖酵解与初到高原:人初到高原,高原大气压低,易缺氧,机体加强糖酵解以适应高原缺氧环境⑶某些组织细胞与糖酵解供能①成熟红细胞无线粒体,无法通过氧化磷酸化获得能量,只能通过糖酵解获得能量②视网膜、肿瘤细胞等,代谢极为活跃,即使不缺氧,也常由糖酵解提供部分能量。

⑷某些病理状态与糖酵解供能:严重贫血,大量失血,呼吸障碍,肺及心血管等疾病,机体主要通过糖酵解获得能量.6.乳酸循环的生理意义:① 乳酸再利用,避免了乳酸的损失。

② 防止乳酸的堆积引起酸中毒。

生物化学常考大题

生物化学常考大题

生物化学常考大题1 酮体生成和利用的生理意义。

(1) 酮体是脂酸在肝内正常的中间代谢产物,是甘输出能源的一种形式;(2)酮体是肌肉尤其是脑的重要能源。

酮体分子小,易溶于水,容易透过血脑屏障。

体内糖供应不足(血糖降低)时,大脑不能氧化脂肪酸,这时酮体是脑的主要能源物质。

2 试述乙酰CoA在脂质代谢中的作用. 在机体脂质代谢中,乙酰CoA主要来自脂肪酸的β氧化,也可来自甘油的氧化分解;乙酰CoA在肝中可被转化为酮体向肝外运送,也可作为脂肪酸生物合成及细胞胆固醇合成的基本原料。

3 试述人体胆固醇的来源与去路? 来源:⑴从食物中摄取⑵机体细胞自身合成去路:⑴在肝脏可转换成胆汁酸⑵在性腺,肾上腺皮质可以转化为类固醇激素⑶在欺负可以转化为维生素D3⑷用于构成细胞膜⑸酯化成胆固醇酯,储存在细胞液中⑹经胆汁直接排除肠腔,随粪便排除体外。

4 酶的催化作用有何特点?①具有极高的催化效率,如酶的催化效率可比一般的催化剂高10 8~1020 倍;②具有高度特异性:即酶对其所催化的底物具有严格的选择性,包括:绝对特异性、相对特异性、立体异构特异性;③酶促反应的可调节性:酶促反应受多种因素的调控,以适应机体不断变化的内外环境和生命活动的需要。

5 距离说明酶的三种特异性(定义、分类、举例)。

一种酶仅作用于一种或一种化合物,或一定化学键,催化一定的化学反应,产生一定的产物,这种现象称为酶作用的特异性或专一性。

根据其选择底物严格程度不同,分为三类:①绝对特异性:一种酶只能作用于一种专一的化学反应,生成一种特定结构的产物,称为绝对特异性.如:脲酶仅能催化尿素水解产生CO2 和NH3,对其它底物不起作用;②相对特异性:一种酶作用于一类化合物或一种化学键,催化一类化学反应,对底物不太严格的选择性,称为相对特异性。

如各种水解酶类属于相对特异性;举例:磷酸酶对一般的磷酸酯键都有水解作用,既可水解甘油与磷酸形成的酯键,也可水解酚与磷酸形成的酯键;③立体异构特异性:对底物的立体构型有要求,是一种严格的特异性。

生物化学简答题

生物化学简答题

1、酮体生成和利用的生理意义。

(1)酮体是脂酸在肝内正常的中间代谢产物,是甘输出能源的一种形式;(2)酮体是肌肉尤其是脑的重要能源。

酮体分子小,易溶于水,容易透过血脑屏障。

体内糖供应不足(血糖降低)时,大脑不能氧化脂肪酸,这时酮体是脑的主要能源物质。

2、试述人体胆固醇的来源与去路?来源:⑴从食物中摄取⑵机体细胞自身合成去路:⑴在肝脏可转换成胆汁酸⑵在性腺,肾上腺皮质可以转化为类固醇激素⑶在欺负可以转化为维生素D3⑷用于构成细胞膜⑸酯化成胆固醇酯,储存在细胞液中⑹经胆汁直接排除肠腔,随粪便排除体外。

3、酶的催化作用有何特点?①具有极高的催化效率,如酶的催化效率可比一般的催化剂高108~1020 倍;②具有高度特异性:即酶对其所催化的底物具有严格的选择性,包括:绝对特异性、相对特异性、立体异构特异性;③酶促反应的可调节性:酶促反应受多种因素的调控,以适应机体不断变化的内外环境和生命活动的需要。

4、何谓酶的不可逆抑制作用?试举例说明某些抑制剂通常以共价键与酶蛋白中的必需基团结合,而使酶失活,抑制剂不能用透析、超滤等物理方法除去,有这种作用的不可逆抑制剂引起的抑制作用称不可逆抑制作用举例:①有机磷抑制胆碱酯酶:与酶活性中心的丝氨酸残基结合,可用解磷定解毒②重金属离子和路易士气抑制巯基酶:与酶分子的巯基结合,可用二巯丙醇解毒。

5、试述竞争性抑制作用的特点,并举例其临床应用特点:①抑制剂与底物化学结构相似②抑制剂以非抑制剂可逆地结合酶的活性中心,但不被催化为产物③由于抑制剂与酶的结合是可逆的,抑制作用大小取决于抑制剂浓度与底物浓度的相对比例④当抑制剂浓度不变时,逐渐增加底物浓度,抑制作用减弱,甚至解除,因而酶的V不变⑤抑制剂的存在使酶的km的值明显增加。

说明底物和酶的亲和力明显下降。

举例:①磺胺类药物与对氨基苯甲酸竞争抑制二氢叶酸合成酶②丙二酸与琥珀酸竞争抑制琥珀酸脱氢酶③核苷酸的抗代谢物与抗肿瘤药物6、何谓酶原及酶原激活?简述其生理意义有些酶在细胞内合成时,或初分泌时,没有催化活性,这种无活性状态的酶的前身物称为酶原,酶原向活性的酶转化的过程称为酶原的激活。

酮体生成和利用的特点

酮体生成和利用的特点

酮体生成和利用的特点
酮体生成和利用是机体在能量代谢过程中的重要组成部分。

酮体主要是由肝脏在低血糖状态下合成的,其生成过程主要涉及到脂肪酸分解、乙酰辅酶A合成、羧化和酮体合成四个步骤。

在严重饥饿、糖尿病、甲状腺功能减退和进行性神经肌肉疾病等情况下,酮体的生成量会增加。

酮体主要被心脏、肌肉和肝脏等组织利用,其中心脏对酮体的利用量最大,而肝脏则负责酮体的合成和分解。

酮体在能量代谢中的作用主要是替代葡萄糖作为能量来源,从而保护脑细胞免受低血糖的影响。

此外,酮体还可以调节酸碱平衡、抗氧化和抗炎等功能,具有多重生理效应。

酮体生成和利用的特点包括:1. 酮体的生成主要依赖于脂肪酸的供应和代谢;2. 酮体的利用主要发生在心脏、肌肉和肝脏等组织中;3. 酮体可以替代葡萄糖作为能量来源,从而保护脑细胞免受低血糖的影响;4. 酮体具有多重生理效应,如调节酸碱平衡、抗氧化和抗炎等功能。

总之,酮体生成和利用是机体在能量代谢中的重要组成部分,其作用不仅仅局限于能量供应,还涉及到多个生理过程。

深入了解酮体的生成和利用特点,对于预防和治疗相关疾病具有重要的临床意义。

- 1 -。

生物化学简答题

生物化学简答题

一、何谓蛋白质的变性作用?引起蛋白质变性的因素有哪些?蛋白质变性的本质是什么?变性后有何特性?(P51)1.是由于稳定蛋白质构象的化学键被破坏,造成二三四级结构被破坏,导致其天然部分或完全破坏,理化性质改变,活性丧失2.因素:物理(加热,紫外线,X射线,高压,超声波),化学:极端Ph即强酸或强碱,重金属离子,丙酮等有机溶剂。

3.本质:天然蛋白质特定的空间构象被破坏(从有序的空间结构变为无序的空间结构)4.特性:理化性质改变:溶解度降低,不对称性增加,溶液黏度增加,易被蛋白酶降解,结晶能力丧失生物活性丧失:酶蛋白丧失催化活性,蛋白类激素丧失调节能力,细菌,病毒等蛋白丧失免疫原性二、比较DNA和RNA分子组成的异同。

(P58)相同:DNA和RNA分子组成上都含有磷酸戊糖和碱基不同:戊糖种类不同,DNA中为脱氧核糖,RNA中为核糖。

个别碱基不同,二者除都含有AGC外,DNA还有的胸腺嘧啶T,RNA还含有鸟嘌呤U三、.酶的竞争性抑制作用有何特点?(P88)1.抑制剂和底物结构相似,都能与酶的活性用心结合2.抑制剂与底物存在竞争,即两者不能同时结合活性中心3.抑制剂结合抑制底物,从而抑制酶促反应4.增加底物浓度理论上可以消除竞争性抑制的抑制作用5.动力学参数Km增大,Vmax不变。

四、.氰化物为什么能引起细胞窒息死亡?其解救机理是什么?(1)氰化钾的毒性是因为它进入人体内时,CNT的N原子含有孤对电子能够与细胞色素aas的氧化形式——高价铁Fe3"以配位键结合成氰化高铁细胞色素aa,使其失去传递电子的能力,阻断了电子传递给02,结果呼吸链中断,细胞因室息而死亡。

(2)亚硝酸在体内可以将血红蛋白的血红素辅基上的Fe2十氧化为Fe3"。

部分血红蛋白的血红素辅基上的Fe^被氧化成Fe?*——高铁血红蛋白,且含量达到20%~30%时,高铁血红蛋白(Fe3*)也可以和氰化钾结合,这就竞争性抑制了氰化钾与细胞色素aax 的结合,从而使细胞色素aas的活力恢复;但生成的氰化高铁血红蛋白在数分钟后又能逐渐解离而放出CN~。

生化简答重点版

生化简答重点版

生生化化简简答答1.酮体生成和利用的生理意义:(1)酮体是脂酸在肝内正常的中间代谢产物,是肝输出能源的一种形式.(2)酮体是肌肉尤其是脑的重要能源 ,酮体分子量小,可通过血脑屏障.血糖降低时,大脑不能氧化脂肪酸,这时酮体是脑的主要能源物质.2. 试述乙酰 CoA 在脂质代谢中的作用:在机体脂质代谢中,乙酰 CoA 主要来自脂肪酸的β氧化,也可来自甘油的氧化分解;乙酰CoA 在肝中可被转化为酮体像肝外运输,也可作为脂肪酸生物合成和细胞胆固醇合成的基本原料.3.试述人体胆固醇的来源和去路:来源:(1)机体细胞自身的合成(2) 食物来源的消化吸收.去路(1)在肝脏内合成胆汁酸(2)在性腺,肾上腺皮质可以转化为类固醇激素(3)在皮肤可以转化为维生素D3 (4)用于构成细胞膜 (5)酯化成胆固醇zhi, 储存在细胞液中 (6)经胆汁直接排出,随粪便排出体外4.酶的催化作用有何特点:(1)酶具有极高的催化效率,即高效性,(2)酶具有高度特异性,酶对其所催化的底物具有严格的选择性,包括绝对特异性,相对特异性,和立体异构特异性.(3)酶促反应具有可调节性,酶促反应受多种因素调节,以适应机体不断变化的内外环境和生命活动的需要.5. 举例说明酶的三种特异性(定义,分类,举例):一种酶只对一种或者一类化合物,或者一定化学键,催化一定的化学反应,产生一定的产物,这种现象叫做酶的特异性.根据选择底物的不同分为三类.(1)绝对特异性,指的是酶只作用于一种专一的化学反应,生成一种特定的化学产物.比如脲酶能催化尿素分解成CO2和氨气.(2)相对特异性,指的是酶作用于一种特定的化学键,对底物的选择不太严格.比如多种水解酶.(3)立体异构特异性:指的是对底物的立体构型有要求,作用于不对称碳原子的立体异构,或只作用于某种旋光异构体.比如乳酸脱氢酶只作用于 L-型乳酸脱氢.6. 简述 Km 和 Vm 的意义: Km=Vm/2时的[ s ].Km 的意义(1)Km 是酶的一种特征性常数,代表酶对底物的催化效率. 在[ s ]一定时,Km 越大, Vm 越小.(2) Km 表示酶对底物的亲和力.Km越大,亲和力越小,Km 越小,亲和力越大.(3)Km 可用于判断酶的天然底物.Km 最小者可作为该酶的天然底物.Vm 指的是酶完全被底物饱和时的反应速率,与酶的浓度成正比.7. 温度对酶促反应有何影响 温度升高对酶促反应速率有双重影响(1)与一般反应一样,温度升高,分子碰撞机会增大,反应速率升高(2)温度升高可导致酶蛋白变性失活,反应速率降低.温度对速率影响的表现(1)温度较低时,温度越高,速率越大(2)达到某一温度时, V 达到最大.是酶促反应速率达到最大是的反应温度称为酶的最适反应温度.(3)反应温度达到或超过最适反应温度时,随着温度升高,酶蛋白变性,速率降低.8.竞争性抑制作用的特点:(1)竞争性抑制剂和底物的结构相似(2)竞争抑制剂和底物竞争与酶活性中心结合(3)抑制剂浓度越大,抑制作用越大.(4)当增大底物浓度时,抑制剂作用会减小甚至消除(5)动力学参数: Km 越大, Vm 不变.9.说明酶原与酶原激活的意义:有些酶在细胞内合成或初分泌时,是没有活性的.这种没有活性的酶的前身物称为酶原.酶原激活指的是酶原在一定条件下被激活成有活性的酶的过程.酶原激活的机制:酶原分子内肽链一处或多处的断裂,去除多余的肽段,构想发生改变,形成活性中心,从而使酶原激活.酶原激活的意义:(1)消化道蛋白酶以酶原形式分泌,保护消化器官自身不收酶的水解,从而使酶在特定部位或环境发挥催化作用.(2)酶原可以视作酶的储存形式.一旦需要转化为诱惑性的酶,发挥其对机体的保护作用.10.什么叫同工酶.有何临床意义同工酶指的是催化的化学反应相同,但是酶蛋白分子结构,理化性质和免疫学性质不同的一组酶.临床意义(1)属于同工酶的几种酶由于催化活性的差异,和体内分布的不同,有利于体内代谢的协调.(2)同工酶的检测有助于某些疾病的诊断和鉴别诊断.当某些组织病变是,可能有特殊的同工酶释放出来,使该同工酶活性升高.比如肝细胞受损的患者, LDH3含量较高.11. 何为质粒,为什么质粒可作为基因克隆的载体:质粒就是存在于细胞染色体外的小型环状DNA分子.质粒作为载体的原因(1)自身具有复制能力,在寄宿细胞里能独立自主的复制(2)细胞分裂时保持稳定的遗传.(3)携带某些遗传基因,使寄宿细胞具有某些遗传性状.12.说明高氨血症导致昏迷的生化基础.:高氨血症时,氨进入脑组织.与α-酮戊二酸结合生成谷氨酸,氨也可与谷氨酸进一步生成谷氨酰酸.脑中氨的增加,导致α-酮戊二酸减少,导致三羧酸循环减弱, ATP 产生减少,引起大脑功能障碍,严重时发生昏迷. 13.血氨的来源和去路:血氨的来源(1)氨基酸脱氨基和其他含氮物质(2)由肠道吸收(3)肾脏谷氨酰酸的分解血氨的去路(1)合成含氮物质(2)合成氨基酸(3)在肝中转变为尿素(4)以NH4+直接排出体外14.概述体内氨基酸的来源和主要代谢去路:来源(1)食物蛋白质的消化吸收(2)组织蛋白质的分解(3)体内合成的非必需氨基酸氨基酸的去路(1)合成蛋白质(2)合成其他含氮物质(3)脱氨基作用产生氨和α-酮酸(4)脱羧基作用生成CO2和胺类物质15.为什么测定血清中的转氨酶活性可以做肝.心组织受损的参考指标:正常情况下,多种转氨酶主要存在于组织细胞中,血清中含量少.如,谷丙转氨酶在干细胞中活性最高,谷草转氨酶在心肌细胞中活性最高.若干细胞或者心肌细胞受损,上述转氨酶会释放入血,在血清中的含量增高.16. 细胞内有哪些主要的RNA, 其主要功能是什么17.DNA双螺旋结构的特点:(1)反相平行,右向螺旋(2)碱基在螺旋内侧,磷酸核糖的骨架位于外侧(3)碱基互补配对A=T C≡G (4)螺旋的稳定因素是氢键和碱基的堆彻力(5)10bp\ 螺旋,螺距是3.4nm, 半径2nm.(6)有大沟有小沟18. tRNA 的二级结构的基本特点:三叶草结构(1)有四个环: DHU 环反密码环Tψ 环可变环(2)四臂: DHU 臂反密码臂Tψ 臂氨基酸臂(3)—末端:3`—CCA—OH 末端19.饥饿48小时后体内糖/脂/蛋白质代谢的特点:饥饿48小时属于短期借,此时血糖趋于降低,引起胰岛分泌减少,胰高血糖素分泌增加.糖代谢:糖原基本耗尽,糖异生作用增强,组织对葡萄糖额氧化利用降低,大脑仍以葡萄糖为主要能源物质脂代谢:脂肪动员加强,酮体生成增加,肌肉以脂酸分解方式功能. 蛋白质代谢:肌肉蛋白分解加强.20.糖酵解的生理意义:(1)在无氧或缺氧的条件下,作为糖分解功能的补充途径(2)在有氧条件瞎,作为某些组织细胞主要的供能途径,成熟红细胞(没有线粒体,不能进行有氧氧化),神经白细胞等在有氧供应充足时人主要靠糖酵解供能.21.简述糖异生的生理意义:(1)在饥饿情况下,维持血糖浓度的相对稳定(2)补充和恢复肝糖原(3)维持酸碱平衡,肾的糖异生有利于酸性物质的排泄(4)回收乳酸分子的能量(乳酸循环)22.血糖的去路和来源:血糖的来源(1)食物糖类物质的消化吸收(2)肝糖原的分解(3)非糖物质异生而成血糖的去路(1)合成某些糖原(2)氧化分解的功能(3)合成其他糖类物质(4)合成脂肪和氨基酸23. 血浆脂蛋白的分类,来源和生理功能24. 糖代谢过程中生成的丙酮酸可进入那些代谢循环25. 三羧酸循环的要点及生理意义26. DNA 聚合酶的种类及功能27. 草酰一算在物质代谢中的作用28. 何为目的基因,其主要来源29. 乙酰CoA在物质代谢中的作用30. 蛋白质的二级结构,只要有哪些形式,各有何特征。

实验5:肝中酮体生成(1071)_附件

实验5:肝中酮体生成(1071)_附件

准。
5.蒸馏水取用四人一小管,每管接水到1/3处。
【思考题】 洛克液、15%三氯乙酸溶液在实验中各有什么 作用?
洛克液起到营养的作用;
15%三氯乙酸溶液可以终止反应的发生。
【测试】
1.请写出酮体由哪些成分组成?
酮体包括乙酰乙酸、-羟丁酸和丙酮。
2.酮体的利用特点? 肝内生成,肝外利用。 3.酮体生成的生理意义? 酮体是肝脏输出能源物质的一种形式。在 长期饥饿时,是脑和肌肉的主要能源物质。
合成酮体。本实验以丁酸作为底物,与新鲜肝
匀浆一起放入与体内相似的环境中,也可以生混合,酮体能与显色粉中的亚硝基铁氰化 钠反应,生成紫红色化合物。而将丁酸与肌匀 浆混合,放在同样的环境中则不能生成酮体, 因此也不与显色粉反应。
【实践操作】 取3支小试管,在上端标注学号、管号,如下操作 加入物 (滴) 1 2 3 洛克液 15 15 15 — 0.5mol/L丁酸溶液 30 30 Ph7.6磷酸缓冲液 15 15 15 — 肝匀浆 20 20 — — 肌匀浆 20 — — 蒸馏水 30 0.02%甲烯蓝溶液 10 10 10 将各管混匀后置37度水浴40分钟。 15%三氯乙酸溶液 20 20 20 混匀后离心5分钟,用滴管取各管上清液置反应板中。 显色粉一小匙(克) 0.2 0.2 0.2 白色 结果(颜色反应) 紫红色 淡紫红色 结果分析 肝脏中酶的催化下 肝脏中酶的催化下以肝 肌肉中的酶不能催
3. 酮体生成的生理意义
• 酮体是肝脏输出能源物质的一种形式。在长期饥 饿时,是脑和肌肉的主要能源物质。
【原理】
肝匀浆
丁酸
肌匀浆
√ 酮体 ×
β-羟丁酸 乙酰乙酸 丙酮
显色粉
紫红色化合物
观察显色粉发生的颜色变化,判定在酶的作用 下是否有酮体的生成。

酮体生成和利用的生理意义

酮体生成和利用的生理意义

酮体是肝脏中脂肪酸氧化分解的中间产物,包括乙酰乙酸、β-羟基丁酸和丙酮。

酮体生成和利用的生理意义如下:
1. 能量供应:在饥饿或葡萄糖供应不足的情况下,肝脏可以将脂肪酸氧化分解产生酮体,为身体提供能量。

酮体可以被大脑、心脏等组织利用,代替葡萄糖作为能量来源。

2. 维持血糖水平:在葡萄糖供应不足的情况下,肝脏生成的酮体可以通过血液循环到达其他组织,被利用作为能量来源,从而减少对葡萄糖的需求,维持血糖水平。

3. 促进脂肪分解:酮体的生成可以促进肝脏和其他组织对脂肪酸的分解和利用,从而提供更多的能量。

4. 减少蛋白质分解:在饥饿或葡萄糖供应不足的情况下,酮体可以代替葡萄糖为身体提供能量,从而减少蛋白质的分解,维持组织和器官的正常功能。

需要注意的是,在正常情况下,酮体的生成和利用是受到严格调控的。

如果酮体生成过多或利用不足,就会导致血液中酮体浓度升高,引起酮症酸中毒,这是一种严重的代谢紊乱,需要及时治疗。

简述酮体代谢的特点及生理意义

简述酮体代谢的特点及生理意义

简述酮体代谢的特点及生理意义
酮体代谢是个有机物在人体内所经历的代谢过程,简而言之也就是天然物质在人体内转变,成为能够被机体吸收和利用的物质(即为酮体)。

酮体代谢特点:
1. 酮体代谢可以分解多种物质,如脂肪、蛋白质和糖类等,用来合成维持机体健康的氨基酸、脂肪酸等物质。

2. 酮体代谢的产物(酮体)是机体所需的热量和能量的重要来源,也是构筑细胞的重要物质。

3. 酮体代谢可帮助机体充分利用其他营养物质,并为其生理机能提供特定的功能物质。

酮体代谢的生理意义:
1. 通过酮体代谢可以合成机体所必须的物质,支撑机体正常运行;
2. 酮体代谢过程可以提供人体所需的热量和能量,使人体维持良好的健康;
3. 酮体代谢是构建细胞的过程,可提供必要的元素给机体;
4. 酮体代谢有助于更好地利用机体其他营养素,改善机体的营养状况。

酮体的生成和利用

酮体的生成和利用

酮体的生成和利用酮体是脂肪酸在肝内分解氧化时的正常中间代谢产物,它包括乙酰乙酸、β-羟丁酸及丙酮三种有机物质。

其中β-羟丁酸含量较多,丙酮含量极微。

(1)酮体的生成以乙酰CoA为原料,在肝线粒体经酶催化先缩合,后再裂解而生成酮体,除肝之外,肾也含有生成酮体的酮体系。

酮体的合成过程可分三步进行。

①首先由两分子乙酰CoA在硫解酶的作用下缩合生成乙酰乙酰CoA,同时释放出一分子CoA-SH。

【反应式1】②然后,乙酰乙酰CoA再与一分子乙酰CoA结合生成6个碳的3-羟甲基戊二酸单酰CoA(HMGCoA),并释放出CoA-SH,此反应是由HMGCoA合成酶催化的,该酶在肝线粒体含量极高。

【反应式2】③乙酰乙酸被还原生成β-羟丁酸,该还原反应是由紧密结合在线粒体内膜上的β-羟丁酸脱氢酶(此酶在肝中活性极高)催化,还原反应所需的氢由NADH提供。

该反应速度取决于NADH/NAD+之比值。

部分乙酰乙酸还可缓慢地自发脱羧,亦可经乙酰乙酸脱羧酶催化脱羧生成丙酮。

【肝内酮体的生成】肝含有合成酮体的酶体系,故能生成酮体,但肝缺乏利用酮体的酶,因此不能氧化酮体,肝产生的酮体需经血液运输到肝外组织进一步氧化分解。

(2)酮体的利用酮体被氧化的关键是乙酰乙酸被激活为乙酰乙酸辅酶A,激活的途径有两种:一是在肝外组织细胞的线粒体内,β-羟丁酸经β-羟丁酸脱氢酶作用,被氧化生成乙酰乙酸,乙酰乙酸与琥珀酰CoA在β-酮脂酰CoA转移酶(β-ketoacyl CoA transferase)(3-氧酰CoA转移酶),即琥珀酰CoA;乙酰乙酸辅酶A转移酶催化下,生成乙酰乙酰CoA,同时放出琥珀酸。

另一途径是在有HSCoA和ATP存在时,由乙酰乙酸硫激酶催化,使乙酰乙酸形成乙酰乙酰辅酶A,后者再经硫解生成两分子乙酰CoA。

乙酰CoA进入三羧酸循环被彻底氧化。

【肝外组织对酮体的利用】丙酮不能按上述方式氧化,它可随尿排出。

丙酮易挥发,如血中浓度过高时,丙酮还可经肺直接呼出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1酮体生成和利用的生理意义。

(1)酮体是脂酸在肝内正常的中间代谢产物,是甘输出能源的一种形式;(2)酮体是肌肉尤其是脑的重要能源。

酮体分子小,易溶于水,容易透过血脑屏障。

体内糖供应不足(血糖降低)时,大脑不能氧化脂肪酸,这时酮体是脑的主要能源物质。

2试述乙酰CoA在脂质代谢中的作用.在机体脂质代谢中,乙酰CoA主要来自脂肪酸的β氧化,也可来自甘油的氧化分解;乙酰CoA在肝中可被转化为酮体向肝外运送,也可作为脂肪酸生物合成及细胞胆固醇合成的基本原料。

3试述人体胆固醇的来源与去路?来源:⑴从食物中摄取⑵机体细胞自身合成去路:⑴在肝脏可转换成胆汁酸⑵在性腺,肾上腺皮质可以转化为类固醇激素⑶在欺负可以转化为维生素D3⑷用于构成细胞膜⑸酯化成胆固醇酯,储存在细胞液中⑹经胆汁直接排除肠腔,随粪便排除体外。

4什么是血浆脂蛋白?试述血浆脂蛋白的分类,来源及生理功能?血浆脂蛋白是脂质与载脂蛋白结合形成球形复合体,是血浆脂蛋白的运输和代谢形式。

.血浆脂蛋白的分类方法有两种:1电泳法:可敬脂蛋白分为乳糜微粒(CM) β-脂蛋白, 前-β脂蛋白和α脂蛋白四类2超速离心法:可将脂蛋白分为乳糜微粒(CM),极低密度脂蛋白(VLDL),低密度脂蛋白(LDL)和高密度脂蛋白(HDL)四类,分别相当于电泳分离的CM、前β-脂蛋白、β-脂蛋白和α-脂蛋白四类。

各种血浆脂蛋白的来源主要生理功能如下:①CM由小肠黏膜细胞合成,功能是转运外源性甘油三酯和胆固醇;②VLDL由肝细胞合成、分泌,功能是转运内源性甘油三酯和胆固醇;③LDL由VLDL在血浆中转化而来,功能是转运内源性胆固醇,即将胆固醇由肝转运至肝外组织;④HDL主要由肝细胞合成、分泌,功能是逆向转运胆固醇,即将胆固醇由肝外组织转运到肝。

1、酶的催化作用有何特点?①具有极高的催化效率,如酶的催化效率可比一般的催化剂高10 8~1020倍;②具有高度特异性:即酶对其所催化的底物具有严格的选择性,包括:绝对特异性、相对特异性、立体异构特异性;③酶促反应的可调节性:酶促反应受多种因素的调控,以适应机体不断变化的内外环境和生命活动的需要。

2、距离说明酶的三种特异性(定义、分类、举例)。

一种酶仅作用于一种或一种化合物,或一定化学键,催化一定的化学反应,产生一定的产物,这种现象称为酶作用的特异性或专一性。

根据其选择底物严格程度不同,分为三类:①绝对特异性:一种酶只能作用于一种专一的化学反应,生成一种特定结构的产物,称为绝对特异性.如:脲酶仅能催化尿素水解产生CO2和NH3,对其它底物不起作用;②相对特异性:一种酶作用于一类化合物或一种化学键,催化一类化学反应,对底物不太严格的选择性,称为相对特异性。

如各种水解酶类属于相对特异性;举例:磷酸酶对一般的磷酸酯键都有水解作用,既可水解甘油与磷酸形成的酯键,也可水解酚与磷酸形成的酯键;③立体异构特异性:对底物的立体构型有要求,是一种严格的特异性。

作用于不对称碳原子产生的立体异构体;或只作用于某种旋光异构体(D-型或L-型其中一种),如乳酸脱氢酶仅催化L-型乳酸脱氢,不作用于D-乳酸等。

4、简述Km与Vm的意义。

⑴Km等于当V=Vm/2时的[S]。

⑵Km的意义:①Km值是酶的特征性常数——代表酶对底物的催化效率。

当[S]相同时,Km小——V大;②Km值可近似表示酶与底物的亲和力:1/Km大,亲和力大;1/Km小,亲和力小;③可用以判断酶的天然底物:Km最小者为该酶的天然底物。

⑶Vm的意义:Vm是酶完全被底物饱和时的反应速率,与酶浓度成正比。

5、温度对酶促反应有何影响。

(1)温度升高对V的双重影响:①与一般化学反应一样,温度升高可增加反应分子的碰撞机会,使V增大;②温度升高可加速酶变性失活,使酶促反应V变小(2)温度对V影响的表现:①温度较低时,V随温度升高而增大(低温时由于活化分子数目减少,反应速度降低,但温度升高时,酶活性又可恢复)②达到某一温度时,V最大。

使酶促反应V达到最大时的反应温度称为酶的最适反应温度(酶的最适温度不是酶的特征性常数)③反应温度达到或超过最适温度后,随着反应温度的升高,酶蛋白变性,V下降。

6、竞争性抑制作用的特点是什么?(1)竞争性抑制剂与酶的底物结构相似(2)抑制剂与底物相互竞争与酶的活性中心结合(3)抑制剂浓度越大,则抑制作用越大,但增加底物浓度可使抑制程度减小甚至消除(4)动力学参数:Km值增大,Vm值不变。

7、说明酶原与酶原激活的意义。

(1)有些酶(绝大多数蛋白酶)在细胞内合成或初分泌时没有活性,这些无活性的酶的前身物称为酶原。

酶原激活是指酶原在一定条件下转化为有活性的酶的过程。

酶原激活的机制:酶原分子内肽链一处或多处断裂,弃去多余的肽段,构象变化,活性中心形成,从而使酶原激活。

(2)酶原激活的意义:①消化道内蛋白酶以酶原形式分泌,保护消化器官自身不受酶的水解(如胰蛋白酶),保证酶在特定部位或环境发挥催化作用;②酶原可以视为酶的贮存形式(如凝血酶和纤维蛋白溶解酶),一旦需要转化为有活性的酶,发挥其对机体的保护作用。

什么叫同工酶?有何临床意义?(1)同工酶是指催化的化学反应相同,而酶蛋白的分子结构、理化性质及免疫学性质不同的一组酶下称为同工酶。

(2)其临床意义:①属同工酶的几种酶由于催化活性有差异及体内分布不同,有利于体内代谢的协调。

②同工酶的检测有助于对某些疾病的诊断及鉴别诊断.当某组织病变时,可能有特殊的同工酶释放出来,使该同工酶活性升高。

如:冠心病等引起的心肌受损患者血清中LDH1和LDH2增高,LDH1大于LDH2;肝细胞受损患者血清中LDH5含量增高。

1、简述糖酵解的生理意义(1)在无氧和缺氧条件下,作为糖分解功能的补充途径(2)在有氧条件下,作为某些组织细胞主要的供能途径:①成熟红细胞(没有线粒体,不能进行有氧氧化②神经、白细胞、骨髓、视网膜、皮肤等在氧供应充足时仍主要靠糖酵解供能。

2、简述糖异生的生理意义(1)在饥饿情况下维持血糖浓度的相对恒定。

(2)补充和恢复肝糖原。

(3)维持酸碱平衡:肾的糖异生有利于酸性物质的排泄。

(4)回收乳酸分子中的能量(乳酸循环)。

3、简述血糖的来源和去路血糖的来源:(1)食物糖类物质的消化吸收;(2)肝糖原的分解;(3)非糖物质异生而成。

血糖的去路:(1)氧化分解功能;(2)合成糖原;(3)合成其它糖类物质;(4)合成脂肪或氨基酸等。

4、糖酵解与有氧氧化的比较糖酵解:反应条件:供氧不足或不需氧;进行部位:胞液;关键酶:己糖激酶(或葡萄糖激酶)、磷酸果糖-1、丙酮酸激酶;产物:乳酸、ATP;能量:1mol葡萄糖净得2molATP;生理意义:迅速供能,某些组织依赖糖酵解供能。

有氧氧化:反应条件:有氧情况;进行部位:胞液和线粒体;关键酶:己糖激酶等三个酶及丙酮酸脱氢酶系、异柠檬酸脱氢酶、柠檬酸合酶、α-酮戊二酸脱氢酶系;产物:H2O、CO2、ATP;能量:1mol葡萄糖净得36mol或38molATP;生理意义:是机体获取能量主要方式5、在糖代谢过程中生成的丙酮酸可进入哪些代谢途径(1)在供氧不足时,丙酮酸在LDH催化下,接受NADH+H的氢还原生成乳酸。

(2)在供氧充足时,丙酮酸进入线粒体,在丙酮酸脱氢酶系的催化下,氧化脱羧生成乙酰CoA,再经三羧酸循环和氧化磷酸化,彻底氧化生成CO2、H2O和ATP。

(3)丙酮酸进入线粒体在丙酮酸羧化酶催化下生成草酰乙酸,后者经磷酸烯醇式丙酮酸羧激酶催化生成磷酸烯醇式丙酮酸,再异生成糖。

(4)丙酮酸进入线粒体在丙酮酸羧化酶催化下生成草酰乙酸,后者与乙酰CoA缩合生成柠檬酸,可促进乙酰CoA进入三羧酸循环彻底氧化。

(5)丙酮酸进入线粒体在丙酮酸羧化酶催化下生成草酰乙酸,后者与乙酰CoA缩合生成柠檬酸,柠檬酸出线粒体在细胞液中经柠檬酸裂解催化生成乙酰CoA,后者可作为脂肪酸、胆固醇等的合成原料。

(6)丙酮酸可经还原性氨基化生成丙氨酸等非必需氨基酸。

决定丙酮酸代谢的方向是各条代谢途径中关键酶的活性,这些酶受到别构效应剂与激素的调节。

简述三羧酸循环的要点及生理意义要点:(1)TAC中有4次脱氢,2次脱羧,1次底物水平磷酸化(2)TAC中有3个不可逆反应,3个关键酶;(3)TAC的中间产物包括草酰乙酸在内起着催化剂作用,草酰乙酸的回补反应释丙酮酸的直接羧化或者经苹果酸生成;(4)三羧酸循环一周共产生12ATP。

生理意义:(1)TAC是三大营养素彻底氧化的最终代谢通路;(2)是三大营养素代谢联系的枢纽;(3)可为其他合成代谢提供小分子前体(4)可为氧化磷酸化提供还原能量。

蛋白质21、重组DNA 技术常包括以下几个步骤:分离制备目的基因-“分”,切割目的基因和载体-“切”,目的基因与载体的连接-“接”,将重组DNA 导入宿主细胞-“转”,筛选并鉴定含重组DNA 分子的受体细胞克隆-“筛”,克隆基因在受体细胞内进行复制或表达-“表”。

1、 蛋白质的元素组成特点是什么?怎样计算生物样品中蛋白质的含量?蛋白质的元素组成特点是含N,平均含量为16%,可用于推算未知样品中蛋白质的含量:100克样品中的蛋白质含量=每克样品含氮克数×6.25×100. 2、 何谓蛋白质的二级结构?二级结构主要有哪些形式?各有何特征? 蛋白质的二级结构是指蛋白质分子中某一段肽键的局部结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。

二级结构的主要形式有:α-螺旋,β-折叠、β-转角、无规则卷曲。

特征:(1)α-螺旋:①主链骨架围绕中心轴盘绕形成右手螺旋;②螺旋每上升一圈是3.6个氨基酸残基,螺距为0.54nm ;③相邻螺旋圈之间形成许多氢键;④侧链基团位于螺旋的外侧。

(2)β-折叠:①若干条肽链或肽段平行或反平行排列成片;②所有肽键的C=O 和N-H 形成链间氢键;③侧链基团分别交替位于片层的上、下方。

(3)β-转角:多肽链180o 回折部分,通常由四个氨基酸残基构成,借1、4残基之间形成氢键维系。

(4)无规则卷曲:主链骨架无规律盘绕的部分。

3、何谓蛋白质的变性作用?引起蛋白质变性的因素有哪些?蛋白质变性的本质是什么?变性后有何特性?(1)蛋白质的变性作用是指蛋白质分子在某些理化因素作用下,其特定的空间结构被破坏而导致理化性质改变及生物学活性丧失的现象。

(2)引起蛋白质变性的因素:物理因素有加热、紫外线、X 射线、高压、超声波等;化学因素有极端pH 值(强酸、强碱)、重金属盐、丙酮等有机溶剂。

(3)蛋白质变性的本质是:次级键断链,空间结构破坏,一级结构不受影响。

(4)变性后的特性:①活性丧失:空间结构破坏使Pr 的活性部位解体②易发生沉淀:疏水基团外露,亲水性下降;③易被蛋白酶水解:肽键暴露出来④扩散常数降低,溶液的粘度增加。

相关文档
最新文档