代谢的相互关系及调控

合集下载

人体代谢与能量调控的关系

人体代谢与能量调控的关系

人体代谢与能量调控的关系人的身体需要能量来维持生命活动。

这能量来自食物摄取后的代谢过程。

身体内的代谢过程涉及到多个生化反应。

这些反应的过程称为代谢途径。

人体的代谢途径分为两个方向:一是能量合成途径,即将食物转化为脂肪、碳水化合物等能量,二是降解途径,将这些能量转化为生命活动所需的能量。

食物摄取后的代谢,能量的转化与调控的产生,是由人体内的能量代谢调控机制完成的。

这个调控机制的作用是维持机体内能量供应与需求之间的平衡。

能量调控机制由神经系统和内分泌系统组成。

神经系统是机体的调节中枢,它能够通过控制代谢途径的活性来影响机体能量状态。

神经系统自身调节的主要作用是控制食欲与能量消耗。

食欲的控制主要是通过影响消化系统内饥饿感受器和饱腹感受器的信号传递。

能量消耗的控制,则主要是通过运动活动和基础代谢率的调整来实现的。

内分泌系统主要是通过分泌激素来调节能量代谢。

当血糖水平低于一定程度时,胰岛素分泌增加,促进血糖的摄取与利用。

当血糖水平过高时,胰岛素分泌减少,血糖利用减少。

另外,代谢性激素、甲亢激素、皮质醇等激素也与能量代谢的调节有密切关系。

人体内代谢途径的调节和能量的平衡有重要的生理意义。

代谢途径的调节能够适应机体不同的生活条件,满足机体的能量需要。

而平衡的维持,可使机体稳定地维持内部环境的稳定性。

当身体出现代谢途径的紊乱和能量失调时,机体会出现一系列的代谢性疾病,如肥胖、糖尿病、高脂血症等。

肥胖是指机体脂肪储存过度,引起体重增加。

这种情况下,机体无法使脂肪代谢平衡,长期积累下来即为肥胖。

肥胖的发生与能量的摄入和消耗有关,人体能量摄入将超过消耗时,就会发生脂肪储存,形成肥胖。

肥胖还与内分泌系统有关,如胰岛素的分泌、脑垂体的生长激素等激素的分泌不平衡,也会影响脂肪代谢。

糖尿病是由胰岛素分泌不足或机体组织对胰岛素抵抗而引起的,导致血糖过高的一种疾病。

胰岛素分泌不足导致血糖不能及时利用,形成高血糖。

抗胰岛素抵抗则使机体对胰岛素产生抵抗,影响胰岛素对血糖的调节。

运动生物化学 物质代谢的关系与调节

运动生物化学  物质代谢的关系与调节

乙酰乙酰CoA
酮体
脂 苏氨酸
亮氨酸
肪 色氨酸 代 谢
色氨酸 草酰乙酸
亮氨酸 赖氨酸
柠檬酸
酪氨酸 色氨酸 苯丙氨酸
的 联
天冬氨酸 天冬酰胺
TAC
CO2

延胡索酸
α-酮戊二酸
谷氨酸
苯丙氨酸 酪氨酸
琥珀酰CoA CO2
异亮氨酸 蛋氨酸 丝氨酸 苏氨酸 缬氨酸
精氨酸 谷氨酰胺 组氨酸 缬氨酸
二、糖、脂肪和蛋白质供能的关系
磷酸化酶激酶 (无活性)
ATP
ADP
磷酸化酶激酶 (有活性)
磷酸化酶b (无活性)
ATP
磷酸化酶a (有活性)
ADP
由激素启动磷酸化的级联机制
激素 受体
腺苷酸环 化酶活化
ATP R2C2
cAMP
(别构激活 )
C2 + R2
磷酸化酶激酶 (无活性)
ATP
磷酸化酶激酶 (有活性)
ADP
磷酸化酶b (无活性)
通过抑制GS和增加PFK的活性分别抑制糖 原的合成和促进糖原酵解;
通过磷酸化ACCβ促进脂肪酸氧化;
通过mTOR和eEF2等信号通路抑制蛋白的 合成。
细胞应激状态(肌肉收缩、缺氧、缺血), AMPK↑→ATP消耗↓合成↑
磷酸化酶
PPi UDPG焦磷酸化酶
Pi 糖原n
UTP
G-1-P
磷酸葡萄糖变位酶
葡萄糖-6-磷酸酶(肝)
G-6-P
G
己糖(葡萄糖)激酶
激素(胰高血糖素、肾上腺素等)+ 受体
腺苷环化酶
腺苷环化酶(有活性)
(无活性) ATP
cAMP

基因调控与代谢途径的关系

基因调控与代谢途径的关系

基因调控与代谢途径的关系基因调控是指生物体对基因表达过程进行调节的机制,通过控制基因的活性,可以影响生物体的代谢途径。

基因调控与代谢途径之间存在着复杂而密切的相互关系,本文将探讨这两者之间的相互作用,并分析其在生物学研究和生物工程领域的应用。

1. 基因调控对代谢途径的影响基因调控可以通过调整特定基因的表达水平来改变代谢途径的活性。

在细胞内,基因调控通过调节转录因子的活性、甲基化修饰等方式实现。

举例来说,如果一个转录因子能够抑制某个酶基因的表达,那么该酶的活性就会降低,从而影响相应的代谢途径。

此外,在细胞内信号传导网络中,很多信号分子可以作为转录因子,直接或间接地对基因表达进行调控,进而影响代谢途径的运行。

2. 代谢途径对基因调控的需求代谢途径的活性也对基因的调控产生影响。

在代谢途径中,产生的代谢产物可以作为信号分子直接或间接地影响转录因子的活性,从而调控相关基因的表达。

此外,代谢途径内部的反馈机制能够调控基因表达的稳态水平,维持代谢通路的平衡。

例如,某些化合物可以作为共同的底物或产物来调控多个基因的表达,协调整个代谢通路的运转。

3. 基因调控与代谢途径相互作用的例子a) 糖代谢途径和蔗糖诱导基因表达:研究发现,在植物中,蔗糖能够诱导与糖代谢相关的基因表达。

蔗糖诱导的基因表达主要通过反应性氧化物(ROS)信号途径实现,ROS可以调节转录因子的活性,从而影响相关基因的表达水平。

b) 感染和免疫调节:许多病原微生物感染会导致细胞内代谢途径的改变,并引起免疫应答。

免疫细胞激活后,会产生多种细胞因子和信号分子,这些分子通过与转录因子结合,调控相关基因的表达,进而参与免疫调节和炎症反应。

4. 生物研究和生物工程中的应用基因调控与代谢途径的相互关系在生物研究和生物工程中具有重要的应用价值。

首先,在生命科学研究中,深入理解基因调控与代谢途径之间的相互作用,有助于揭示生物体内复杂的生物调控网络。

这对于研究疾病机制、发展新药物和改善生物制造过程具有重要意义。

物质代谢的联系与调节《生物化学》复习提要

物质代谢的联系与调节《生物化学》复习提要

物质代谢的联系与调节第一节物质代谢的特点(一)整体性体内各种物质包括糖、脂、蛋白质、水、无机盐、维生素等的代谢不是彼此孤立各自为政,而是同时进行的,而且彼此互相联系,或相互转变,或相互依存,构成统一的整体。

(二)代谢调节机体存在精细的调节机制,不断调节各种物质代谢的强度、方向和速度以适应内外环境的变化。

代谢调节普遍存在于生物界,是生物的重要特征。

(三)各组织、器官物质代谢各具特色由于各组织、器官的结构不同,所含有酶系的种类和含量各不相同,因而代谢途径及功能各异,各具特色。

例如肝在糖、脂、蛋白质代谢上具有特殊重要的作用,是人体物质代谢的枢纽。

(四)各种代谢物均具有各自共同的代谢池无论是体外摄人的营养物或体内各组织细胞的代谢物,只要是同一化学结构的物质在进行中间代谢时,不分彼此,参加到共同的代谢池中参与代谢。

(五)ATP是机体能量利用的共同形式糖、脂及蛋白质在体内分解氧化释出的能量,均储存在ATP的高能磷酸键中。

(六)NADPH是合成代谢所需的还原当量参与还原合成代谢的还原酶则多以NADPH为辅酶,提供还原当量。

如糖经戊糖磷酸途径生成的NADPH既可为乙酰辅酶A合成脂酸,又可为乙酰辅酶A 合成固醇提供还原当量。

第二节物质代谢的相互联系一、在能量代谢上的相互联系乙酰辅酶A是三大营养物共同的中间代谢物,三羧酸循环是糖、脂、蛋白质最后分解的共同代谢途径,释出的能量均以ATP形式储存。

从能量供应的角度看,这三大营养素可以互相代替,并互相制约。

二、糖、脂和蛋白质代谢之间的联系体内糖、脂、蛋白质和核酸等的代谢不是彼此独立,而是相互关联。

它们通过共同的中间代谢物,即两种代谢途径汇合时的中间产物,三羧酸循环和生物氧化等联成整体。

(一)糖代谢与脂代谢的相互联系当摄人的糖量超过体内能量消耗时,除合成少量糖原储存在肝及肌肉外,生成的柠檬酸及ATP可变构激活乙酰辅酶A竣化酶,使由糖代谢源源而来的大量乙酰辅酶A得以羧化成丙二酰辅酶A,进而合成脂酸及脂肪在脂肪组织中储存,即糖可以转变为脂肪。

物质代谢的联系与调节

物质代谢的联系与调节

• ATP是机体储存能量及消耗能量的共同形式
• NADPH是合成代谢所需的还原当量
– NADPH不生成水,为还原反应提供氢
第二节 物质代谢的相互联系
• 一、在能量代谢上的相互联系
– 乙酰辅酶A是三大营养物质共同中间代谢产物 – 三羧酸循环是三大营养物质分解的共同途径
• 从能量供应角度看:
– 三大营养素可以相互代替,相互制约.
• 激素(第一信使)
• 膜受体 • 第二信使 • 代谢效应
• (二)激素-胞内受体复合物通过基因转录 调节细胞内酶的含量
– 激素: 类固醇激素
• 疏水性激素:类固醇激素、甲状腺素、VD3视黄酸 等 • 受体位于胞液或细胞核内
• 激素-受体复合物二聚体
• 与DNA特定序列(应答元件)结合 • 调控转录 • 细胞内酶量改变
• 3 肥胖可致糖脂代谢紊乱
– (1)肥胖时血糖偏高,胰岛素抗性增加
• • • • • 肥胖活跃期,进食后血糖增加,刺激胰岛素分泌增加 口服或静注葡萄糖后,释出胰岛素增多 糖耐量先增强 ,后下降 肌组织对葡萄糖的摄取减少,氧化降低 空腹血浆胰岛素水平升高,外周组织对胰岛素的敏感 性降低,产年胰岛素抵伉
• 生长激素释放肽
– 合成部位:胃粘膜细胞 – 作用方式: 通过受体 – 生物学效应:
• 作用于脑垂体,促进生长激素分泌 • 作用下下丘脑增食欲神经元,刺激食欲
• 2 生命过程各阶段均可发生肥胖症
– 体重超过标准体重的20%,或体重指数>30 – 体质性肥胖:25岁前发生的肥胖,由于脂肪细胞 数量增加所致 – 获得性肥胖:20-25岁后发生,由于摄入热量过多 所致.脂肪细胞肥大,数量增加
• (4)肌肉蛋白质分解加强

《生物化学》-物质代谢的调节与控制

《生物化学》-物质代谢的调节与控制
这种调节方式为迟缓调节,所需时间较长, 但作用时间持久。
1.酶量调节机理
酶量调节的两种基本调节机制是诱导和阻遏
诱导:一些分解代谢的酶类只在有关的底物或底物 类似物存在时才被诱导合成。依赖于诱导物才能合 成的酶称为诱导酶。
阻遏:对于合成代谢的酶类,在产物或产物类似物 足够量存在时,其合成被阻遏。(反馈阻遏)
共价修饰调节是酶蛋白中的活性基团(-OH、SH、-COOH、-NH2)在其他酶的作用下发生共价 修饰,从而改变酶的活性。
共价修饰调节具有级联放大作用,效率高。
(三)酶量变化对代谢的调节(基因表达的调节控制)
细胞内酶浓度的改变也可以改变代谢速度。
主要是通过调节酶蛋白的合成过程实现的。 (1)活化基因则合成相应的酶,酶量增加; (2)钝化基因则停止酶的合成,酶量降低。
柠檬酸
+

乙酰辅酶A羧化酶 6-磷酸果糖激酶
促进脂酸的合成 抑制糖的氧化
2.共价修饰调节
(1)有些酶,在其它酶的催化下,其分子结构中的某 些基团,如:Ser、Thr或Tyr 的-OH 基,能与特殊的 化学基团,如ATP分子上脱下的磷酸基或腺苷酰基 (AMP),共价结合或解离,从而使酶分子活性形式发生 改变。这种修饰作用称为共价修饰调节。这种被修饰 的酶称为共价调节酶。
葡萄糖
分解代 谢产物
变构调节的生理意义
① 代谢终产物反馈抑制 (feedback inhibition) 反应途径中的酶,使代谢物不致生成过多。
乙酰CoA
丙二酰CoA
乙酰CoA羧化酶
长链脂酰CoA
②变构调节使能量得以有效利用,不致浪费。
G-6-P
+

糖原合酶
糖原磷酸化酶

代谢调控

代谢调控
葡萄糖
中间产物
α-酮戊二酸 谷氨酸脱氢酶 NH4+ 谷氨酸
21
抑制
分析: 1、两实例的共同点是: 微生物代谢调控主要是过酶的调节来实现的 2、由两实例区别得出: 实例1,通过调节酶的合成,控制代谢过程 实例2,通过调节酶的活性,控制代谢过程
22
微生物代谢调节
一、代谢活动的调节部位 二、微生物代谢过程中的自我调节 三、酶水平的调节 四、酶活性的调节 五、酶量的调节
1 、酶活性的激活:在代谢途径中后面的反应可被较前面 的反应产物所促进的现象;常见于分解代谢途径。 如:粗糙脉孢霉的异柠檬酸脱氢酶的活性受柠檬酸 促进 2、酶活性的抑制:包括:竞争性抑制和反馈抑制。 反馈:指反应链中某些中间代谢产物或终产物对该途径关 键酶活性的影响。 凡使反应速度加快的称正反馈; 凡使反应速度减慢的称负反馈(反馈抑制); 反馈抑制——主要表现在某代谢途径的末端产物过量时可 反过来直接抑制该途径中第一个酶的活性。主要表现在氨 基酸、核苷酸合成途径中。 特点:作用直接、效果快速、末端产物浓度降低时又可解 42 除
胆胺
胆碱
脑磷脂
卵磷脂
15
3. 脂肪的甘油部分可转变为非必需氨基酸
脂肪 甘油 磷酸甘油醛
糖酵解途径
丙酮酸 某些非必需氨基酸 其他α-酮酸 —— 但不能说,脂类可转变为氨基酸。
16
(四)核酸与糖、蛋白质代谢的相互联系
1. 氨基酸是体内合成核酸的重要原料
天冬氨酸 甘氨酸 谷氨酰胺 一碳单位
合成嘌呤
合成嘧啶
丙氨酸
脱氨基
丙酮酸
糖异生
葡萄糖
13
2. 糖代谢的中间产物可氨基化生成某些 非必需氨基酸
丙氨酸
糖 丙酮酸 天冬氨酸

大学生物化学课件物质代谢的联系和调节

大学生物化学课件物质代谢的联系和调节
肝内脂酸β-氧化极为活跃 肝是酮体生成的主要器官。 (3)肝是合成脂蛋白的主要场所 合成VLDL, 脂肪肝 (肝、小肠和脂肪组织是TG合成的主要场所) (4)肝是胆固醇代谢的主要器官, 胆固醇的生成,转变为胆汁酸 (p164, 166) (5)肝是血浆磷脂的主要来源
(3)肝在蛋白质代谢中的作用
1. 合成多种血浆蛋白质
(四)共同代谢池
体外摄入的营养物或体内各组织细胞的代谢物, 只要是同一化学结构的物质,在进行中间代谢 时,不分彼此,参加到共同的代谢池中参与代 谢,机会均等。 葡萄糖、 氨基酸
(五)ATP是机体能量利用的共同形式 (六) NADPH是合成代谢所需还原当量
第二节 物质代谢的相互联系
一、在能量代谢上的相互联系
全部清蛋白、凝血酶原、纤维蛋白原、Apo A、B、C、 E,部分a1, a2, β球蛋白。
2. AA合成与分解的主要器官。
3. 生成尿素的器官。 肝昏迷氨中毒
(4)肝参与多种维生素和辅酶的代谢 (略)
1. 肝在脂溶性维生素吸收和血液运输中的作用 胆汁酸参与维生素A,D,E,K的吸收。 血液中的运输:视黄醇结合蛋白 维生素D结合蛋白
(二)糖代谢与AA代谢的联系
1. 糖
NEAA (12种)
2. AA 糖 (18种,糖异生,除Leu, Lys)
必需AA 生糖AA 生酮AA 生糖兼生酮AA
(三)脂类代谢与AA代谢的相互联系
1. AA CH3CO-ScoA
FA、胆固醇
2. AA 是合成PL的原料 丝AA、乙醇胺、甲硫AA、胆碱(p160) 肉碱(β-氧化,p156)
饥饿:脂肪动员,脂肪组织分解TG为甘油和FA,释放入血。
6 . 肾:
糖异生、糖酵解、酮体生成 肾髓质,无线粒体,只能酵解供能 肾皮质,主要利用FA、酮体供能

代谢调节

代谢调节

代谢调节生物体是一个完整的统一体。

糖、脂肪、蛋白质以及核酸等代谢在体内构成新陈代谢的整体网络。

代谢途径的相互途径一、糖代谢与脂类代谢的相互联系二、糖代谢与蛋白质代谢的相互联系三、脂类代谢与蛋白质代谢的相互联系四、核酸代谢与糖、脂肪及蛋白质代谢的相互联系ATP 能量和磷酸基团的供应UTP 单糖的转变和多糖的合成CTP 参与卵磷脂的合成核酸核苷酸GTP 供给蛋白质合成的能量CAMP 激素的第二信使CoA、NAD(P+)、FAD等参与代谢甘氨酸、天冬氨酸、谷氨酰胺嘌呤、嘧啶合成糖代谢的磷酸戊糖途径磷酸戊糖酶和蛋白质因子核酸的合成综上所述,糖、脂肪、蛋白质及核酸在代谢过程中形成网络。

见图14-1 P361其中三羧酸循环是各类物质代谢的共同途径,也是它们之间相互联系的枢纽。

代谢调节代谢是一个完整统一的过程,它存在着复杂而精确的调节机制。

生物体在长期进化过程中建立了四级水平的调节:神经水平调节是生物进化发展而完善起来的调节机制,是通过细胞水平和激素水平调节酶水平变化来实现细胞水平调节是最基本的调节方式酶水平调节一、酶水平的调节:是生物体内最基本、最普遍的调节方式〈一〉酶定位的区域化各代谢反应的酶定位于不同的细胞区域中,见表14-1 P364〈二〉酶活性的调节1、酶原激活⑴酶原:酶的无活性前体。

⑵酶原激活(不可逆的共价修饰):某些酶先以无活性的酶原形式合成或分泌,然后在到达作用部位后由其它酶作用,使其失去部分肽链,从而形成或暴露活性中心,形成有活性酶分子的过程。

⑶酶原激活的实例:例:胃蛋白酶原(胃黏膜)胃蛋白(N—末端切去42个氨基酸残基)胰蛋白酶原(胰)胰蛋白酶胰凝乳蛋白酶原—胰凝乳蛋白酶3单性蛋白酶原—3单性蛋白酶羧肽酶原——羧肽酶2、酶活性的前馈和反馈调节前馈调节(feed forward):前面的底物对其后某一反应的酶的调节。

前馈激活(feed forward activation):使代谢过程加快前馈抑制(feed forward inhibition):使代谢过程减慢反馈调节(feed back):代谢产物对前面的某一酶的调节反馈激活(feed back activation)反馈抑制(feed back inhibition)前馈和反馈调节都是通过酶的别构效应来实现的。

物质代谢的相互联系和代谢调节

物质代谢的相互联系和代谢调节

(无活性) 磷酸化酶激酶(活性)
104
ATP ADP
5
106
Ⅲ 、举例:糖原磷酸化酶的共价修饰调节
去磷酸化
磷酸化
Ⅳ 、特点:
①快速调节(比别构调节慢);
②酶促、共价修饰;
③被修饰的酶有两种形式,一种为活性形式, 另一种为非活性形式。
④对调节信号有放大效应,调节效率比别构 调节高;
酶级联系统 调控示意图
肾上腺素或 胰高血糖素
1、腺苷酸环化酶
(无活性)
腺苷酸环化酶(活性)
三、脂代谢与蛋白质代谢的相互联系
1、脂肪转化为蛋白质
甘油 脂肪
磷酸二羟丙酮
脂肪酸 乙酰CoA 氨基酸碳架 氨基酸 蛋白质
有限
2、蛋白质转化为脂肪
生酮AA α-酮酸
乙酰乙酸 乙酰辅酶A
蛋白质 生糖AA
丙酮酸
磷酸二羟丙酮
脂肪酸 脂肪
α-磷酸甘油
四、核酸代谢与其他物质代谢的相互关系
1、糖、脂肪、蛋白质为核酸的合成提供原料和能量
Ⅲ、别构调节的一种重要方式 ——前馈和反馈调节
前馈:意思是“输入对输出的影响”。 底物对代谢过程的调节作用。
反馈:意思是“输出对输入的影响”。 代谢产物对代谢过程的调节作用。
前馈和反正馈调控(+):使代谢过程加快。 负调控(-):使代谢过程减慢。
其调节机理是通过酶的变构效应来实现的。
+ 或—
前馈 S0 E0 S1 E1 S2
2.糖、脂肪、蛋白质的代谢是相互关联的
(殊途同归——TCA)
3.三者之间的相互转化
一、糖代谢与脂肪代谢的相互联系(转化)
1、糖转化为脂肪
⑴糖
有氧氧化乙酰CoA,NADPH 从头合成 脂肪酸

生物化学教案——第十五章 代谢调节

生物化学教案——第十五章 代谢调节

第十五章代谢调节细胞代谢包括物质代谢和能量代谢。

细胞代谢是一个完整统一的网络,并且存在复杂的调节机制,这些调节机制都是在基因表达产物(蛋白质或RNA)的作用下进行的。

本章重点是:物质代谢途径的相互联系,酶活性的调节。

物质代谢途径的相互联系细胞代谢的基本原则是将各类物质分别纳入各自的共同代谢途径,以少数种类的反应转化种类繁多的分子。

不同代谢途径可以通过交叉点上关键的中间物而相互转化,其中三个关键的中间物是乙酰CoA、G-6-P、丙酮酸。

一、糖代谢与脂代谢的联系1、糖转变成脂糖经过酵解,生成磷酸二羟丙酮及丙酮酸。

磷酸二羟丙酮还原为甘油,丙酮酸氧化脱羧转变成乙酰CoA,合成脂肪酸。

2、脂转变成糖甘油经磷酸化为3-磷酸甘油,转变为磷酸二羟丙酮,异生为糖。

在植物、细菌中,脂肪酸转化成乙酰CoA,后者经乙醛酸循环生成琥珀酸,进入TCA,由草酰乙酸脱羧生成丙酮酸,生糖。

动物体内,无乙醛酸循环,乙酰CoA进入TCA氧化,生成CO2和H2O。

脂肪酸在动物体内也可以转变成糖,但此时必需要有其他来源的物质补充TCA中消耗的有机酸(草酰乙酸)。

糖利用受阻,依靠脂类物质供能量,脂肪动员,在肝中产生大量酮体(丙酮、乙酰乙酸、β-羟基丁酸)。

二、糖代谢与氨基酸代谢的关系1、糖的分解代谢为氨基酸合成提供碳架糖→ 丙酮酸→ α-酮戊二酸+ 草酰乙酸这三种酮酸,经过转氨作用分别生成Ala、Glu和Asp。

2、生糖氨基酸的碳架可以转变成糖凡是能生成丙酮酸、α—酮戊二酸、琥珀酸、草酰乙酸的a.a,称为生糖a.a。

Phe、Tyr、Ilr、Lys、Trp等可生成乙酰乙酰CoA,从而生成酮体。

Phe、Tyr等生糖及生酮。

三、氨基酸代谢与脂代谢的关系氨基酸的碳架都可以最终转变成乙酰CoA,可以用于脂肪酸和胆甾醇的合成。

生糖a.a的碳架可以转变成甘油。

Ser可以转变成胆胺和胆碱,合成脑磷脂和卵磷脂。

动物体内脂肪酸的降解产物乙酰CoA,不能为a.a合成提供净碳架。

免疫与代谢的相互作用及其调控研究

免疫与代谢的相互作用及其调控研究

免疫与代谢的相互作用及其调控研究免疫和代谢是两个生物体非常基本的生命现象。

免疫是人身体内一种很重要的功能,能够保护我们的身体免受疾病的侵害。

代谢则是机体从外界获得能量,并将这些能量转化为有用的物质。

虽然免疫和代谢似乎完全不同,但事实上它们之间存在着密切的联系。

在这篇文章中,我将探讨免疫和代谢之间的相互作用及其调控研究。

一、免疫系统与代谢的相互作用我们的身体中有许多不同的免疫细胞,包括巨噬细胞、B细胞和T细胞等。

当我们的身体受到感染时,免疫细胞会启动免疫反应,帮助我们排除病原体和细菌。

与此同时,代谢过程也在进行着。

人体代谢需要能量来支持其运作,而这些能量主要来源于食物。

当我们进食时,身体会吸收营养物质,如葡萄糖和脂肪酸,然后将其转化为能量。

这些能量将被代谢细胞用于各种生命活动中,包括免疫反应。

之前的研究显示,代谢异常和免疫反应失调之间有着密切的关系。

例如,在许多免疫性疾病中,如类风湿性关节炎和炎症性肠病等,代谢异常是其中的一个重要因素。

炎症状态下,代谢率会增加,导致身体消耗更多的能量。

而在某些情况下,代谢细胞的健康状况也会影响免疫细胞的功能。

例如,当代谢细胞受损时,它们会释放一些促炎症的物质,这些物质可能会影响免疫细胞的功能,导致免疫反应异常。

二、免疫和代谢的相互调控免疫和代谢之间的相互作用是双向的,因此它们之间的相互调控也是非常复杂的。

一些研究表明,代谢细胞的能量状态可以影响免疫细胞的功能,而免疫细胞的生理状态也可以影响代谢细胞的活动。

例如,肥胖患者往往会出现免疫细胞的失调。

在这种情况下,免疫细胞会释放大量的促炎症因子,从而导致炎症反应。

这种炎症状态进一步会影响代谢细胞的功能,导致身体难以有效地代谢食物。

另外一些研究表明,免疫细胞能够通过调控代谢途径来控制其自身的功能。

例如,在免疫应答过程中,T细胞会转化为不同类型的细胞,这需要大量的能量和合适的代谢途径。

当身体状态不佳或代谢异常时,T细胞的功能也会受到影响,这可能会导致身体发生各种免疫性疾病。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章代谢的相互关系及调节控制I 主要内容本章重点讲了两个方面问题,一是生物体内不同物质代谢的相互联系,二是生物体内物质代谢的调控。

一、物质代谢的相互联系糖代谢、脂代谢、蛋白质代谢和核酸代谢是广泛存在于各种生物体内的四大物质代谢途径,不同途径之间的相互关系集中体现为各有所重,相互转化,又相互制约的关系。

二、代谢调节的一般原理代谢的调节控制方式有分子水平调节、细胞水平调节、激素水平调节和神经水平调节四种,其中神经水平调节是高等动物所特有的,细胞水平是所有生物体共有的,各种类型的调节都是由细胞水平来实现的。

细胞水平调控是一切调控的最重要基础,细胞水平调节主要分为酶的区域化分布调节、底物的可利用性、辅因子的可利用性调节、酶活性的调节、酶量调节五种形式。

(一)酶的区域化分布调节(二)底物的可利用性(三)辅助因子的可利用性(四)酶活性调节酶活性调节是通过对现有酶催化能力的调节,最基本的方式是酶的反馈调节,亦即通过代谢物浓度对自身代谢速度的调节作用,反馈调节作用根据其效应的不同分为正反馈调节和负反馈调节。

反馈是结果对行为本身的调节或输出对输入的调节,在物质代谢调节中引用反馈是指产物的积累对本身代谢速度的调节。

反馈抵制调节包括顺序反馈调节、积累反馈调节、协同反馈调节和同功酶调节四种。

(五) 酶量的调节细胞内的酶可以根据其是否随外界环境条件的改变而改变分为组成酶和诱导酶。

组成酶是催化细胞内各种代谢反应的酶,如糖酵解、三羧酸循环等。

诱导酶则是其含量可以随外界条件发生变化的一些酶类。

它的产生或消失可以使细胞获得或失去代谢某一种物质的能力。

1.原核生物基因表达调控操纵子学说是F. Jacob 和 J. Monod 于1961年首先提出来用于解释原核生物基因表达调控的一个理论。

该理论认为一个转录调控单位包括:结构基因、调节基因、启动子和操纵基因四个部分,其中操纵基因加上它所控制的一个或几个结构基因构成的转录调控功能单位称为操纵子。

(1)酶合成的诱导乳糖操纵子是目前人们研究最清楚的一种酶合成控制方式。

当环境中没有乳糖单独存在时,微生物细胞中不产生与乳糖代谢有关的半乳糖通透酶、-半乳糖苷酶及硫代半乳糖苷转乙酰基酶三种酶。

关于酶合成的诱导应该注意以下几点:①诱导物是所诱导产生诱导酶的正常底物。

酶诱导的结果是使细胞获得代谢某一种物质的能力。

②阻遏蛋白一合成即有和操纵基因结合的能力,阻遏蛋白结合到操纵基因部位可以阻止结构基因的表达。

③诱导物也可以与阻遏蛋白结合,并且两者的亲合力大于阻遏蛋白与操纵基因的亲合力,因此可以将阻遏蛋白从操纵基因部位解离下来,使结构基因可以表达。

④酶合成的诱导,除了需要诱导物存在外,它的作用还需要降解物激活蛋白和cAMP存在,只有CAP和cAMP同时结合在CAP结合位点,才能启动酶的合成。

⑤一旦调节基因或操纵基因突变,使调节蛋白不能结合在操纵基因部位,则可以导致结构基因的永久性表达。

(2)酶合成的阻遏色氨酸操纵子是一种典型的酶合成阻遏控制方式。

该操纵子的调节蛋白单独不具有与操纵基因结合的能力,只有与它的辅阻遏物(正常代谢的终产物结合)后,才有与操纵基因结合的能力,因此,它作用的结果是使细胞暂时停止某些酶的合成,失去合成某些物质的能力。

关于酶合成的阻遏应该注意以下几点:①辅阻遏物通常是所阻遏酶的终末产物。

阻遏的结果是使细胞暂时停止与其有关酶的合成。

②阻遏蛋白单独存在时,不具备和操纵基因结合的能力,只有它和辅阻遏物结合之后,才能获得与操纵基因结合的能力,阻止结构基因的表达。

③一旦调节基因或操纵基因突变,使调节蛋白不能结合在操纵基因部位,则可以导致结构基因的永久性表达(组成型突变)。

2.真核生物基因表达的调控(六)激素对代谢的调节激素是由多细胞生物的特殊细胞分泌,经由体液运输到特殊的靶细胞发挥其专有生理作用的微量有机物质。

激素根据其化学组成的不同分为氨基酸及其衍生物、肽及蛋白质、固醇类、脂肪酸衍生物四种类型。

激素的调控分为两种基本形式,氨基酸类、多肽及蛋白质类,其作用部位主要在细胞膜上,通过cAMP、cGMP的作用,调节细胞内酶的活性。

固醇类激素主要作用部位在细胞核内,这类激素首先与细胞质中的蛋白质受体结合形成激素受体复合物,此复合物进入核内与DNA分子上特定部位结合,启动特定基因的转录、翻译作用。

(七)神经系统对代谢的调节一、各种物质代谢途径之间的相互关系II 习题一、名词解释1.反馈调节:2.酶共价修饰调节:3.操纵子学说4.诱导酶、组成酶:5.葡萄糖效应:6.酶合成的阻遏:二、是非题1.某物质的水解产物在280nm处有吸收高峰,地衣酚和二苯胺试验为阴性,由此可以认为此物质不是核酸类物质。

2.多肽类激素作为信使分子必须便于运输,所以都是小分子。

3.反馈抑制主要是指反应系统中最终产物对初始步骤酶活力的抑制作用。

4.肌球蛋白是由相同的肽链亚基聚合而成,肌动蛋白本身还具有ATP酶活力,所以当释放能量时就会引起肌肉收缩。

5.所有跨膜扩散反应的AG0′=06.在许多生物合成途径中,最先一步都是由一种调节酶催化的,此酶可被自身的产物,即该途径的最终产物所抑制。

7.短期禁食时,肝和肌肉中的糖原储备用于为其它组织特别是大脑提供葡萄糖。

8.与乳糖代谢有关的酶合成常常被阻遏,只有当细菌以乳糖为唯一碳源时,这些酶才能被诱导合成。

9.在动物体内蛋白质可转变为脂肪,但不能转变为糖。

10.细胞内代谢的调节主要是通过调节酶的作用而实现的。

11.磷酸化是最常见的酶促化学修饰反应,一般是耗能的。

12.据目前所知非组蛋白在真核细胞基因表达的调控中起重要作用三、填空题1.下列过程主要在体内何种组织器官中进行乳酸-葡萄糖在;软脂酸-β-羟丁酸在;1,25-二经维生素D,生成在。

精氨酸合成在;碘的利用在。

(答案:肝脏;肝脏;肝脏及肾脏;肝脏;甲状腺)2.下列过程发生在真核生物细胞的哪一部分 DNA合成在rRNA合成在;蛋白质合成在;光合作用在;脂酸合成在;氧化磷酸化在;糖酵解在β-氧化在。

3.分子病是指的缺陷,造成人体的结构和功能的障碍,如。

4.生物体内往往利用某些三磷酸核苷作为能量的直接来源,如用于多糖合成,用于磷脂合成,用于蛋白质合成。

这些三磷酸核苷分子中的高能磷酸键则来源于。

5.生物选择专一性的立体异构分子作为构成生物大分子的单体,如糖原中的葡萄糖,蛋白质中的氨基酸,核酸中的核糖或脱氧核糖,脂肪中的。

6.在糖、脂和蛋白质代谢的互变过程中,和起关键作用的物质。

(答案:酮酸、乙酰CoA)7.生物体内的代谢调节在四种不同水平上进行即,,和。

8.1961年Monod和Jocob提出了模型。

9.乳糖操纵于的启动,不仅需要有信号分子乳糖存在,而且培养基中不能有,因为它的分解代谢产物会降低细胞中的水平,而使复合物不足,它是启动基因启动所不可缺少的调节因子。

10.真核细胞基因表达的调控是多级的,有,,,,和。

11.酶合成的诱导调节中,诱导物多是诱导酶的,作用的结果是使细胞获得分解能力;酶合成的阻遏调节中,附阻遏物多是阻遏酶参与代谢反应的产物,作用的结果是使细胞停止与合成有关酶的合成。

12.是近年来找到的在代谢调控中,有重要作用的多磷酸核苷酸。

在中,它参与rRNA合成的控制。

(答案:ppGpp)四、选择题1.大肠杆菌内的β-半乳糖苷的主动运输的特点是:A 需要能源。

B β-半乳糖苷具有一定的饱和浓度,超出此饱和浓度摄取率不可能再加快C β-半乳糖苷的流速取决于细胞内的β-半乳糖苷浓度。

D β-半乳糖的分子形状。

2.在哺乳动物的组织内,丝氨酸可作为下列哪些物质的合成前体: A 甲硫氨酸 B 甘氨酸C 色氨酸D 胆碱3.在哺乳动物的组织内,甘氨酸是合成下列哪些物质的前体:A 血红素B 肌酸C 鸟嘌呤D 胸腺嘧啶4.体内活泼甲基供体主要是:A 硫辛酸B S—腺苷甲硫氨酸C 甲硫氨酸D 磷酸肌酸5.将下列物质加到无细胞质悬浓中会引起cAMP降低的是:A cAMP磷酸二酯酶B 腺苷酸环化酶C 咖啡碱D 氨基卟啉6.与乳糖操纵子操纵基因结合的物质是:A RNA聚合酶B DNA聚合酶C 阻遏蛋白D 反密码子7.在蛋白质生物合成的起始步骤中,包括下列步骤中的:A mRNA与16S核糖体RNA配对。

B 由fMet-tRNAfMet,起始因子和核糖体30S亚基间形成起始复合物。

C 由fMet-tRNAfMet定位于核糖体P-位。

D 把fMet-tRNAfMet水解除去甲酰基。

E 由fMet-tRNAfMet识别起始密码子AUG或GUG。

8.真核DNA基因表达受:A 操纵子控制B 非组蛋白的调控C 组蛋白的调控9.下列有关新陈代谢功能的顺序和调控的陈述错误的是:A 任何特定分子的合成代谢途径往往是它的分解代谢途径的逆向反应。

B 合成代谢是从小分子前体合成大分子的过程,并且必须供给一定的能量。

C 一种酶只能催化某一种特定的化学反应,从而使细胞中的许多代谢反应可以同时进行,互不干扰。

五、问答题1.一些细菌苗株排泄大量的核酸酶,这种排泄对于细菌有何益处哺乳动物胰脏分泌大量的核糖核酸酶和脱氧核糖核酸酶,它们有何作用2..什么是操纵子按照操纵子学说,酶合成的控制分为哪两种类型两者在控制上主要有哪些重要区别3.生物体内糖代谢、脂代谢、蛋白质代谢及核酸代谢主要是通过哪些重要化合物彼此相连形成一个相互联系的有机整体的为什么(可用图示方法说明)4.一度流行但有争议的快速减重膳食,你可以敞开吃你爱吃的富有蛋白和脂类的食物但仍会减重。

不过采用这种饮食的病人经常自述呼吸不佳。

请你:(1)从代谢角度给与一个较为合理的解释,说明为什么这种膳食是有效的。

(2)试讨论这一主张:即不必限制你所吃的蛋白质和脂类的量而仍能减重。

5.生物的代谢调节主要分为哪几个层次在生物的代谢调节中最基本的调节是什么水平调节为什么第十一章代谢的相互关系及调节控制一、名词解释1.反馈调节:反馈是结果对行为本身的调节或输出对输入的调节,在物质代谢调节中引用反馈是指产物的积累对本身代谢速度的调节。

7.2.酶共价修饰调节:通过共价的方式在酶分子上连接上某一个基团或其逆反应,使酶活性发生可逆性变化,这种调节作用称为酶的共价修饰调节。

8.3.操纵子学说:操纵子学说是F. Jacob 和 J. Monod 于1961年首先提出来用于解释原核生物基因表达调控的一个理论。

该理论认为一个转录调控单位由结构基因、调节基因、启动子和操纵基因四个部分组成,其中调节基因的表达产物是阻遏蛋白,阻遏蛋白结合到操纵基因位置可以阻止基因的表达,否则,基因就可以表达。

4.诱导酶、组成酶:诱导酶则是指细胞内存在的一些与某些特定的物质代谢有关的酶类,这些酶只有在环境中有相应物质存在时,细胞内才会大量产生,否则,其含量很少。

相关文档
最新文档