八年级数学上册全册全套试卷中考真题汇编[解析版]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册全册全套试卷中考真题汇编[解析版]
一、八年级数学三角形填空题(难)
∠=,边AB的垂直平分线交边BC于点D,边AC的垂直平分线1.在ABC中,BACα
∠的度数为______.(用含α的代数式表示)
交边BC于点E,连结AD,AE,则DAE
【答案】2α﹣180°或180°﹣2α
【解析】
分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B=∠BAD,∠C=∠CAE,进而得到∠BAD+∠CAE=∠B+∠C=180°-a,再根据角的和差关系进行计算即可.
解:有两种情况:
①如图所示,当∠BAC⩾90°时,
∵DM垂直平分AB,
∴DA=DB,
∴∠B=∠BAD,
同理可得,∠C=∠CAE,
∴∠BAD+∠CAE=∠B+∠C=180°−α,
∴∠DAE=∠BAC−(∠BAD+∠CAE)=α−(180°−α)=2α−180°;
②如图所示,当∠BAC<90°时,
∵DM垂直平分AB,
∴DA=DB,
∴∠B=∠BAD,
同理可得,∠C=∠CAE,
∴∠BAD+∠CAE=∠B+∠C=180°−α,
∴∠DAE=∠BAD+∠CAE−∠BAC=180°−α−α=180°−2α.
故答案为2α−180°或180°−2α.
点睛:本题主要考查垂直平分线的性质.根据题意准确画出符合题意的两种图形是解题的关键.
2.一个等腰三角形的两边长分别为4cm和9cm,则它的周长为__cm.
【答案】22
【解析】
【分析】
底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.
【详解】
试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去. ②当底边是4cm ,腰长是9cm 时,能构成三角形,则其周长=4+9+9=22cm .
故填22.
【点睛】
本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.
3.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.
【答案】7
【解析】
【分析】
根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.
【详解】
∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,
∴a ﹣7=0,b ﹣1=0,
解得a=7,b=1,
∵7﹣1=6,7+1=8,
∴68c <<,
又∵c 为奇数,
∴c=7,
故答案为7.
【点睛】
本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.
4.如图,A 、B 、C 三点在同一条直线上,∠A =50°,BD 垂直平分AE ,垂足为D ,则∠EBC 的度数为_____.
【答案】100°
【解析】
【分析】
根据线段垂直平分线的性质,得BE BA =,
根据等腰三角形的性质,得50E A ∠=∠=︒,再根据三角形外角的性质即可求解.
【详解】
∵BD 垂直平分AE ,
∴BE BA =,
∴50E A ∠=∠=︒,
∴100EBC E A ∠=∠+∠=︒,
故答案为100°.
【点睛】
考查线段垂直平分线的性质以及三角形外角的性质,掌握线段垂直平分线的性质是解题的关键.
5.如图,△ABC 中,∠B 与∠C 的平分线交于点O ,过O 作EF ∥BC 交AB 、AC 于E 、F ,若△ABC 的周长比△AEF 的周长大12cm ,O 到AB 的距离为4cm ,△OBC 的面积_____cm 2.
【答案】242cm .
【解析】
【分析】
由BE=EO 可证得EF ∥BC ,从而可得∠FOC=∠OCF ,即得OF=CF ;可知△AEF 等于AB+AC ,所以根据题中的条件可得出BC 及O 到BC 的距离,从而能求出△OBC 的面积.
【详解】
∵BE=EO ,∴∠EBO=∠EOB=∠OBC ,∴EF ∥BC ,∴∠FOC=∠OCB=∠OCF ,
∴OF=CF ;△AEF 等于AB+AC ,
又∵△ABC 的周长比△AEF 的周长大12cm ,∴可得BC=12cm ,
根据角平分线的性质可得O 到BC 的距离为4cm ,
∴S △OBC =12
×12×4=24cm 2. 考点:1.三角形的面积;2.三角形三边关系.
6.将直角三角形(ACB ∠为直角)沿线段CD 折叠使B 落在B '处,若50ACB '︒∠=,则ACD ∠度数为________.
【答案】20°.
【解析】
【分析】
根据翻折的性质可知:∠BCD=∠B′CD ,又
∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,继而即可求出∠BCD 的值,又∠ACD+∠BCD=∠ACB=90°,继而即可求出∠ACD 的度数.
【详解】
解:∵△B′CD 时由△BCD 翻折得到的,
∴∠BCD=∠B′CD ,
又∵∠BCD+∠B′CD=∠B′CB=∠ACB+∠ACB′=90°+50°=140°,
∴∠BCD=70°,
又∵∠ACD+∠BCD=∠ACB=90°,
∴∠ACD=20°.
故答案为:20°.
【点睛】
本题考查翻折变换的知识,难度适中,解题关键是掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
二、八年级数学三角形选择题(难)
7.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠,...,6A BC ∠与6A CD ∠的平分线相交于点7A ,得7A ∠,则7A ∠=( )
A .32α
B .64α
C .128α
D .256
α 【答案】C
【解析】
【分析】 根据角平分线的性质及外角的性质可得11122A A α∠=∠=,同理可得2212
A α∠=,3312A α∠=
,由此可归纳出12n n
A α∠=,易知7A ∠. 【详解】 解:ABC ∠与ACD ∠的平分线交于点1A
1111,22
A BC ABC ACD ACD ∴∠=∠∠=∠ 1
11ACD A BC A ∠=∠+∠ 11122
ACD ABC A ∴∠=∠+∠ ACD ABC A ∠=∠+∠
111222
ACD ABC A ∴∠=∠+∠ 11122
A A α∴∠=∠= 同理可得21211112222A A αα∠=
∠=⨯=,3231122A A α∠=∠=,…,由此可知12
n n A α∠=, 所以7712128A αα∠=
=. 故选:C.
【点睛】
本题考查了角平分线的性质及图形的规律探究,灵活的利用角平分线的性质及外角的性质确定角的变化规律是解题的关键.
8.已知,如图,AB ∥CD ,则图中α、β、γ三个角之间的数量关系为( )
A .α-β+γ=180°
B .α+β-γ=180°
C .α+β+γ=360°
D .α-β-γ=90°
【答案】B
【解析】
【分析】
延长CD 交AE 于点F ,利用平行证得β=∠AFD ;再利用三角形外角定理及平角定义即可得到答案.
【详解】
如图,延长CD 交AE 于点F
∵AB ∥CD
∴β=∠AFD
∵∠FDE+α=180°
∴∠FDE=180°
-α ∵γ+∠FDE=∠ADF ∴γ+180°
-α=β ∴α+β-γ=180°
故选B
【点睛】
本题考查平行线的性质以及三角形外角定理的应用,熟练掌握相关性质定理是解题关键.
9.如图,把一张长方形纸条ABCD 沿EF 折叠,C 、D 两点落到'C 、'D 处.已知
20DAC ∠=,且''//C D AC ,则AEF ∠的度数为( )
A .20
B .35
C .50
D .70
【答案】B
【解析】
依据C'D'//AC ,即可得到∠AHG=∠C′=90°,进而得出AGH 70∠=,由折叠可得,CFE GFE ∠∠=,由AD//BC ,可得CFE GEF ∠∠=,依据三角形外角性质得到1AEF GFE AGH 352∠∠∠===.
【详解】
如图,C'D'//AC ,
,
又DAC 20∠=,
AGH 70∠∴=,
由折叠可得,CFE GFE ∠∠=,
由AD//BC ,可得CFE GEF ∠∠=,
1AEF GFE AGH 352
∠∠∠∴===, 故选:B .
【点睛】
本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.
10.在下列图形中,正确画出△ABC 的AC 边上的高的图形是( )
A .
B .
C .
D .
【答案】C
【解析】
【分析】
△ABC 的AC 边上的高的就是通过顶点B 作的AC 所在直线的垂线段,根据定义即可作出判断.
【详解】
解:△ABC 的AC 边上的高的就是通过顶点B 作的AC 所在直线的垂线段.根据定义正确
故选:C.
【点睛】
本题考查了三角形的高线的定义,理解定义是关键.
11.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()
A.4B.5C.6D.9
【答案】C
【解析】
【分析】
根据三角形的三边关系可判断x的取值范围,进而可得答案.
【详解】
解:由三角形三边关系定理得7-2<x<7+2,即5<x<9.
因此,本题的第三边应满足5<x<9,把各项代入不等式符合的即为答案.
4,5,9都不符合不等式5<x<9,只有6符合不等式,
故选C.
【点睛】
本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.
12.已知三角形的两边长分别为4和9,则下列数据中能作为第三边长的是( )
A.13 B.6 C.5 D.4
【答案】B
【解析】
【分析】
首先根据三角形的三边关系定理,求得第三边的取值范围,再进一步找到符合条件的数值.【详解】
解:设这个三角形的第三边为x.
根据三角形的三边关系定理“两边之和大于第三边,两边之差小于第三边”,得:
-<<+,
94x94
<<.
解得5x13
故选:B.
【点睛】
.一定要注意构成三角形的条件:两边之和>第三边,两本题考查了三角形的三边关系定理
边之差<第三边.
三、八年级数学全等三角形填空题(难)
90,点D在AB上,BC=BD,DE⊥AB交AC于点E,△ABC的周13.如图,在△ABC中,∠C=0
长为12,△ADE的周长为6,则BC的长为_______
【答案】3
【解析】
【分析】
连接BE ,由斜边直角边判定Rt BDE ∆≅ Rt BCE ∆,从而DE CE =,再由△ABC 的周长 △ADE 的周长即可求得BC 的长.
【详解】
如图:连接BE ,
DE ⊥AB ,
090BDE ∴∠=,
在Rt BDE ∆和Rt BCE ∆中,
BE BE BD BC =⎧⎨=⎩
, ∴Rt BDE ∆≅ Rt BCE ∆,
DE CE ∴=,
∴△ABC 的周长=AB+BC+AC=2BC+AD+AE+DE=12,
△ADE 的周长= AD+AE+DE =6,
∴BC=3,
故答案为3.
【点睛】
本题考查三角形全等的判定和性质以及和三角形有关的线段,连接BE 构造全等三角形是解答此题的关键.
14.如图,10AB =,45A B ∠=∠=︒,32AC BD ==.点E ,F 为线段AB 上两点.现存在以下条件:①4CE DF ==;②AF BE =;③CEB DFA ∠=∠;
④5CE DF ==.请在以上条件中选择一个条件,使得ACE △一定..
和BDF 全等,则这个条件可以为________.(请写出所有正确的答案)
【答案】②③④【解析】
【分析】
根据三角形全等的判定定理逐个判断即可.
【详解】
①如图1,过点C作CM AB
⊥,过点D作DN AB
⊥
32,45
A B
AC BD∠=∠
==
=︒
3
CM AM DN BN
∴====
4
CE DF
==
由勾股定理得:2222
7,7
ME CE CM NF DF DN
=-==-=
37,37
AE AM ME BF BN NF
∴=-=-=+=+,即AE BF
≠
此时,ACE
∆和BDF
∆不全等
②AF BE
=
AF EF BE EF
∴+=+,即AE BF
=
又452
,3
AC D
A B B
∠=∠=︒==
则由SAS定理可得,ACE BDF
∆≅∆
③
CEB DFA
CEB C A
DFA D B
∠=∠
⎧
⎪
∠=∠+∠
⎨
⎪∠=∠+∠
⎩
C A
D B
∴∠+∠=∠+∠
又A B
∠=∠
C D
∴∠=∠
32
AC BD
==
则由ASA定理可得,ACE BDF
∆≅∆
④由(1)知,当5
CE DF
==时,2222
4,4
ME CE CM NF DF DN
-=-=此时,
,
,
CE CA DF BD
ME AM NF BN
>>
⎧
⎨
>>
⎩
则点E在点M的右侧,点F在点N的左侧
又10
AM BN ME AM BN NF AB
++=++==
则点E与点N重合,点F与点M重合,如图2所示
因此必有347
AE BF
==+=
∆≅∆
由SSS定理可得,ACE BDF
故答案为:②③④.
【点睛】
本题考查了三角形全等的判定定理,熟记各判定定理是解题关键.
15.如图,∠ACB=90°,AC=BC,点C(1,2)、A(-2,0),则点B的坐标是__________.
【答案】(3,-1)
【解析】
分析:过C和B分别作CD⊥OD于D,BE⊥CD于E,利用已知条件可证明△ADC≌△CEB,再由全等三角形的性质和已知数据即可求出B点的坐标.
详解:过C和B分别作CD⊥OD于D,BE⊥CD于E,
∵∠ACB=90°,
∴∠ACD+∠CAD=90°,∠ACD+∠BCE=90°,
∴∠CAD=∠BCE,
在△ADC和△CEB中,
∠ADC=∠CEB=90°;∠CAD=∠BCE,AC=BC,
∴△ADC≌△CEB(AAS),
∴DC=BE,AD=CE,
∵点C的坐标为(1,2),点A的坐标为(−2,0),
∴AD=CE=3,OD=1,BE=CD=2,
∴则B点的坐标是(3,−1).
故答案为(3,−1).
点睛:本题主要考查了全等三角形的判定与性质,解题关键在于结合坐标、图形性质和已经条件.
16.如图,CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,AB=12cm,AC=6cm.动点E从A点出发以3cm/s沿射线AN运动,动点D在射线BM上,随着E点运动而运动,始终保持ED=CB.当点E经过______s时,△DEB与△BCA全等.
【答案】0、2、6、8
【解析】
∵CA⊥AB,垂足为点A,射线BM⊥AB,垂足为点B,
∴∠CAB=∠DBE=90°,
∴△CAB和△EBD都是Rt△,
∵点E运动过程中两三角形始终保持斜边ED=CB,
∴当BE=BA=12cm或BE=AC=6cm时,两三角形全等,
如图共有四种情形,此时AE分别等于0cm、6cm、18cm、24cm,
又∵点E每秒钟移动3cm,
∴当点E移动的时间分别为0秒、2秒、6秒和8秒时,两三角形全等.
17.如图,直线l上有三个正方形a,b,c,若a,c的边长分别为5和12,则b的面积为_________________.
【答案】169
【解析】
解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;
∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即
∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512 =169. 故答案为:169.
点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.
18.如图,△ABC 与△DEF 为等边三角形,其边长分别为a ,b ,则△AEF 的周长为___________.
【答案】a+b
【解析】
先根据全等三角形的判定AAS 判定△AEF≌△BFD,得出AE=BF ,从而得出△AEF 的周长=AF+AE+EF=AF+BF+EF=a+b .
故答案为:a+b
四、八年级数学全等三角形选择题(难)
19.如图,在△ABC 中,AB=AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形( )
A .8对
B .7对
C .6对
D .5对
【答案】B
【解析】
【分析】 易证△ABC 是关于AF 对称的图形,其中的小三角形也关于AF 对称,共可找出7对三角形.
【详解】
全等的三角形有:①△AFB≌△AFC;②△CEB≌△BDC;③△AEO≌△ADO;
④△EOB≌△DOC;⑤△OBF≌△OFC;⑥△AOB≌△AOC;⑦△AEC≌△ADB
证明①△AFB≌△AFC
∵AB=AC,CE⊥AB,BD⊥AC 又∵1122
ABC S AB CE AC BD == ∴CE=BD
∴在Rt△BCE 和Rt△CBD 中
BC BC CE BD =⎧⎨=⎩
∴△BCE≌△CBD
∴BE=CD,∴AE=AD
在Rt△AEO 和Rt△ADO 中
AE AD AO AO =⎧⎨=⎩
∴△AEO≌△ADO
∴∠EOD=∠DOA
在△BAF 和△CAF 中
AB AC BAF CAF AF AF =⎧⎪∠=∠⎨⎪=⎩
∴△BAF≌△CAF,得证
其余全等证明过程类似
故选:B
【点睛】
本题考查全等的证明,解题关键是利用等腰三角形的性质,推导出图形中边的关系,为证全等作准备
20.如图(1),已知AB AC =,D 为BAC ∠的角平分线上一点,连接BD ,CD ;如图(2),已知AB AC =,D ,E 为BAC ∠的角平分线上两点,连接BD ,CD ,BE ,CE ;如图(3),已知AB AC =,D ,E ,F 为BAC ∠的角平分线上三点,连接BD ,CD ,BE ,CE ,BF ,CF ;……,依此规律,第6个图形中有全等三角形的对数是( )
A .21
B .11
C .6
D .42
【答案】A
【解析】
【分析】 根据条件可得图1中△ABD ≌△ACD 有1对三角形全等;图2中可证出△ABD ≌△ACD ,△BDE ≌△CDE ,△ABE ≌△ACE 有3对三角形全等;图3中有6对三角形全等,根据数据可分析出第6个图形中全等三角形的对数.
【详解】
解:∵AD 是∠BAC 的平分线,
∴∠BAD=∠CAD .
在△ABD 与△ACD 中,
AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩
,
∴△ABD ≌△ACD .
∴图1中有1对三角形全等;
同理图2中,△ABE ≌△ACE ,
∴BE=EC ,
∵△ABD ≌△ACD .
∴BD=CD ,
又DE=DE ,
∴△BDE ≌△CDE ,
∴图2中有3对三角形全等,3=1+2;
同理:图3中有6对三角形全等,6=1+2+3;
∴第6个图形中有全等三角形的对数是1+2+3+4+5+6=21.
故选:A .
【点睛】
此题主要考查了三角形全等的判定以及规律的归纳,解题的关键是根据条件证出图形中有几对三角形全等,然后寻找规律.
21.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC-CD-DA 向终点A 运动,设点P 的运动时
间为t秒,当t的值为_____秒时,△ABP和△DCE全等.
A.1 B.1或3 C.1或7 D.3或7
【答案】C
【解析】
【分析】
分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.
【详解】
解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,
由题意得:BP=2t=2,
所以t=1,
因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,
由题意得:AP=16-2t=2,
解得t=7.
所以,当t的值为1或7秒时.△ABP和△DCE全等.
故选C.
【点睛】
本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.
22.在和中,,高,则和的关系是( ) A.相等B.互补
C.相等或互补D.以上都不对
【答案】C
【解析】
试题解析:当∠C′为锐角时,如图1所示,
∵AC=A′C′,AD=A′D′,AD⊥BC,A′D′⊥B′C′,
∴Rt△ADC≌Rt△A′D′C′,
∴∠C=∠C′;
当∠C为钝角时,如图3所示,
∵AC=A′C′,AD=A′D′,AD⊥BC,A′D′⊥B′C′,
∴Rt△ACD≌Rt△A′C′D′,
∴∠C=
∠A′C′D′,
∴∠C+∠A′C′B′=180°.
故选C.
23.如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作 EF∥AD,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连结DE 、 EH 、DH 、FH .下列结论:①EG=DF;②△EHF≌△DHC;③∠AEH+∠ADH=180°;④若23
AE AB =,则313
DHC
EDH S S =.其中结论正确的有( )
A .1个
B .2个
C .3个
D .4个
【答案】D
【解析】 分析:①根据题意可知∠ACD=45°,则GF=FC ,则EG=EF-GF=CD-FC=DF ;
②由SAS 证明△EHF ≌△DHC 即可;
③根据△EHF ≌△DHC ,得到∠HEF=∠HDC ,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=180°;
④若AE AB =23
,则AE=2BE ,可以证明△EGH ≌△DFH ,则∠EHG=∠DHF 且EH=DH ,则∠DHE=90°,△EHD 为等腰直角三角形,过H 点作HM 垂直于CD 于M 点,设HM=x ,则
DM=5x ,26x ,CD=6x ,则S △DHC =
12×HM×CD=3x 2,S △EDH =12
×DH 2=13x 2. 详解:①∵四边形ABCD 为正方形,EF ∥AD ,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°, ∴△CFG 为等腰直角三角形,
∴GF=FC ,
∵EG=EF−GF ,DF=CD−FC ,
∴EG=DF ,故①正确;
②∵△CFG 为等腰直角三角形,H 为CG 的中点,
∴FH=CH,∠GFH=12
∠GFC=45°=∠HCD , 在△EHF 和△DHC 中,
EF=CD ;∠EFH=∠DCH ;FH=CH ,
∴△EHF ≌△DHC(SAS),故②正确;
③∵△EHF ≌△DHC(已证),
∴∠HEF=∠HDC ,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠AD F−∠HDC=∠AEF+∠ADF=180°,故③正确;
④∵AE AB =23
, ∴AE=2BE , ∵△CFG 为等腰直角三角形,H 为CG 的中点,
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD ,
在△EGH 和△DFH 中,
EG=DF ;∠EGH=∠HFD ;GH=FH ,
∴△EGH ≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD 为等腰直角三角形,
如图,过H 点作HM ⊥CD 于M ,
设HM=x,则26x ,CD=6x ,
则S △DHC =
12×HM×CD=3x 2,S △EDH =12
×DH 2=13x 2, ∴3S △EDH =13S △DHC ,故④正确;
故选D. 点睛:本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解题关键在于根据题意熟练的运用相关性质.
24.已知:如图,ABC ∆、CDE ∆都是等腰三角形,且CA CB =,CD CE =,ACB DCE α∠=∠=,AD 、BE 相交于点O ,点M 、N 分别是线段AD 、BE 的中点.以下4个结论:①AD BE =;②180DOB α∠=-;③CMN ∆是等边三角形;④连OC ,则OC 平分AOE ∠.正确的是( )
A .①②③
B .①②④
C .①③④
D .①②③④
【答案】B
【解析】
【分析】 ①根据∠ACB=∠DCE 求出∠ACD=∠BCE,证出ACD BCE ≅△△即可得出结论,故可判断; ②根据全等求出∠CAD=∠CBE,根据三角形外角定理得∠DOB=∠OBA+∠BAO,通过等角代换能够得到∠DOB=∠CBA+∠BAC,根据三角形内角和定理即可求出∠CBA+∠BAC,即可求出∠DOB ,故可判断;
③根据已知条件可求出AM=BN,根据SAS 可求出CAM CBN ≅,推出CM=CN ,∠ACM=∠BCN,然后可求出∠MCN=∠ACB=α,故可判断CMN ∆的形状;
④在AD 上取一点P 使得DP=EO,连接CP ,根据ACD BCE ≅△△,可求出∠CEO=∠CDP ,根据SAS 可求出 CEO CDP ≅,可得∠COE=∠CPD,CP=CO,进而得到 ∠COP=∠COE ,故可判断.
【详解】
①正确,理由如下:
∵ACB DCE α∠=∠=,
∴∠ACB+∠BCD=∠DCE+∠BCD,
即∠ACD=∠BCE,
又∵CA=CB,CD=CE,
∴ACD BCE ≅△△(SAS),
∴AD=BE,
故①正确;
②正确,理由如下:
由①知,ACD BCE ≅△△,
∴∠CAD=∠CBE,
∵∠DOB 为ABO 的外角,
∴∠DOB=∠OBA+∠BAO=∠EBC+∠CBA+∠BAO=∠DAC+∠BAO+∠CBA=∠CBA+∠BAC, ∵∠CBA+∠BAC+∠ACB=180°,∠ACB=α,
∴∠CBA+∠BAC=180°-α,
即∠DOB=180°-α,
故②正确;
③错误,理由如下:
∵点M 、N 分别是线段AD 、BE 的中点,
∴AM=
12AD,BN= 12
BE, 又∵由①知,AD=BE,
∴AM=BN,
又∵∠CAD=∠CBE,CA=CB,
∴CAM CBN ≅(SAS), ∴CM=CN ,∠ACM=∠BCN,
∴∠MCN=∠MCB+∠CBN=∠MCB+∠ACM=∠ACB=α,
∴MCN △为等腰三角形且∠MCN=α,
∴MCN △不是等边三角形,
故③错误;
④正确,理由如下:
如图所示,在AD 上取一点P 使得DP=EO,连接CP ,
由①知,ACD BCE ≅△△,
∴∠CEO=∠CDP ,
又∵CE=CD,EO=DP ,
∴CEO CDP ≅(SAS),
∴∠COE=∠CPD,CP=CO,
∴∠CPO=∠COP ,
∴∠COP=∠COE,
即OC 平分∠AOE,
故④正确;
故答案为:B.
【点睛】
本题考查了三角形全等的判定和性质,三角形内角和定理和外角定理,等边三角形的判定,根据已知条件作出正确的辅助线,找出全等三角形是解题的关键.
五、八年级数学轴对称三角形填空题(难)
25.如图,已知△ABC 中,AB=AC ,∠BAC=90°,直角∠EPF 的顶点P 是BC 中点,两边PE 、PF 分别交AB 、AC 于点E 、F ,给出下列四个结论:
①AE=CF ;
②△EPF是等腰直角三角形;
③EF=AB;
④
1
2ABC
AEPF
S S
∆
=
四边形
,当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有________(把你认为正确的结论的序号都填上).
【答案】①②④
【解析】
试题分析:∵∠APE、∠CPF都是∠APF的余角,
∴∠APE=∠CPF,
∵AB=AC,∠BAC=90°,P是BC中点,
∴AP=CP,
∴∠PAE=∠PCF,
在△APE与△CPF中,
{?
PAE PCF
AP CP
EPA FPC
∠=∠
=
∠=∠
,
∴△APE≌△CPF(ASA),
同理可证△APF≌△BPE,
∴AE=CF,△EPF是等腰直角三角形,S四边形AEPF=1
2
S△ABC,①②④正确;
而AP=
1
2
BC,当EF不是△ABC的中位线时,则EF不等于BC的一半,EF=AP,
∴故③不成立.
故始终正确的是①②④.
故选D.
考点:1.全等三角形的判定与性质;2.等腰直角三角形.
26.如图,在ABC
∆中,ABC
∠和ACB
∠的平分线相交于点O,过点O 作//
EF BC交AB于E,交AC于F,过点O作OD AC
⊥于D下列结论:①EF BE CF
=+;
②点O到ABC
∆各边的距离相等;③
1
90
2
BOC A
∠=+∠;④设OD m
=,
AE AF n
+=,则AEF
S mn
∆
=;⑤
1
()
2
AD AB AC BC
=+-.其中正确的结论
是.__________.
【答案】①②③⑤
【解析】
【分析】
由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形内角
和定理,即可求得③∠BOC=90°+1
2
∠A正确;由平行线的性质和角平分线的定义得出
△BEO和△CFO是等腰三角形得出EF=BE+CF故①正确;由角平分线的性质得出点O到
△ABC各边的距离相等,故②正确;由角平分线定理与三角形面积的求解方法,即可求得
④设OD=m,AE+AF=n,则S△AEF=1
2
mn,故④错误,根据HL证明△AMO≌△ADO得到
AM=AD,同理可证BM=BN,CD=CN,变形即可得到⑤正确.【详解】
∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=1
2
∠ABC,
∠OCB=1
2
∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣
1
2
∠A,
∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+1
2
∠A;故③正确;
∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF.∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;
过点O作OM⊥AB于M,作ON⊥BC于N,连接OA.
∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,
∴S△AEF=S△AOE+S△AOF=1
2
AE•OM+
1
2
AF•OD=
1
2
OD•(AE+AF)=
1
2
mn;故④错误;
∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故②正确;
∵AO=AO,MO=DO,∴△AMO≌△ADO(HL),∴AM=AD;
同理可证:BM=BN,CD=CN.
∵AM+BM=AB,AD+CD=AC,BN+CN=BC,∴AD=1
2
(AB+AC﹣BC)故⑤正确.
故答案为:①②③⑤.
【点睛】
本题考查了角平分线的定义与性质,等腰三角形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.
27.如图,在ABC 中, 90,ACB ABD ︒
∠=是ABC 的轴对称图形,点E 在AD 上,点F 在AC 的延长线上.若点B 恰好在EF 的垂直平分线上,并且5AE =,13AF =,则DE =______.
【答案】4.
【解析】
【分析】
连接BE ,BF ,根据轴对称的性质可得△ABD ≌△ACB ,进而可得DB=CB ,AD=AC ,∠D=∠BCA=90°,再利用线段垂直平分线的性质可得BE=BF ,然后证明Rt △DBE ≌Rt △CBF 可得DE=CF ,然后可得ED 长.
【详解】
解:连接BE ,BF ,
∵△ABD 是△ABC 的轴对称图形,
∴△ABD ≌△ACB ,
∴DB=CB ,AD=AC ,∠D=∠BCA=90°,
∴∠BCF=90°,
∵点B 恰好在EF 的垂直平分线上,
∴BE=BF ,
在Rt △DBE 和Rt △CBF 中
BD BC EB FB =⎧⎨=⎩
,
∴Rt △DBE ≌Rt △CBF (HL ),
∴DE=CF ,
设DE=x ,则CF=x ,
∵AE=5,AF=13,
∴AC=AD=5+x ,
∴AF=5+2x ,
∴5+2x=13,
∴x=4,
∴DE=4,
故答案为:4.
【点睛】
此题主要考查了轴对称和线段垂直平分线的性质,关键是掌握成轴对称的两个图形全等.
28.已知等边△ABC 中,点D 为射线BA 上一点,作DE=DC ,交直线BC 于点E,∠ABC 的平分线BF 交CD 于点F ,过点A 作AH ⊥CD 于H ,当EDC=30︒,CF=43
,则DH=______.
【答案】
23
【解析】
连接AF.
∵△ABC 是等边三角形,
∴AB=BC ,∠ABC=∠ACB=∠BAC=60°.
∵DE=DC ,∠EDC=30°,
∴∠DEC=∠DCE=75°,
∴∠ACF=75°-60°=15°.
∵BF平分∠
ABC,∴∠ABF=∠CBF.
在△ABF和△CBF中,
AB BC
ABF CBF BF BF
⎧
⎪
∠∠
⎨
⎪
⎩
=
=
=
,
∴△ABF≌△CBF,
∴AF=CF,
∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°.∵AH⊥CD,
∴AH=1
2
AF=
1
2
CF=
2
3
.
∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,
∴DH=AH=2 3 .
故答案为2 3 .
点睛:本题考查了全等三角形的判定与性质;证明三角形全等是解决问题的关键,注意辅助线的作法.
29.如图,∠BOC=60°,点A是BO延长线上的一点,OA=10cm,动点P从点A出发沿AB 以2cm/s的速度移动,动点Q从点O出发沿OC以1cm/s的速度移动,如果点P、Q同时出发,用t(s)表示移动的时间,当t=_____s时,△POQ是等腰三角形.
【答案】10
3
或10
【解析】
【分析】
根据△POQ是等腰三角形,分两种情况进行讨论:点P在AO上,点P在BO上,分别计算,即可得解.
【详解】
当PO=QO时,△POQ是等腰三角形,如图1所示当点P在AO上时,
∵PO=AO-AP=10-2t,OQ=t
当PO=QO时,
102t t
-=
解得
10
3 t=
当PO=QO时,△POQ是等腰三角形,如图2所示当点P在BO上时
∵PO=AP-AO=2t-10,OQ=t
当PO=QO时,
210
t t
-=
解得10
t=
故答案为:10
3
或10
【点睛】
本题考查等腰三角形的性质及动点问题,熟练掌握等腰三角形的性质以及分类讨论思想是解题关键.
30.如图,D 为ABC ∆内一点,CD 平分ACB ∠,BD CD ⊥,A ABD ∠=∠,若8AC =,5BC =,则BD 的长为_______.
【答案】1.5
【解析】
【分析】
延长BD 交AC 边于点E ,根据BD⊥CD,CD 平分∠ACB,得到三角形全等,由此求出AE 的长,再根据A ABD ∠=∠,求出BE 的长即可求得BD.
【详解】
延长BD 交AC 于点E ,
∵BD⊥CD,
∴∠BDC=∠EDC=900,
∵CD 平分∠ACB,
∴∠BCD=∠ECD
又∵CD=CD
∴△BCD≌△ECD
∴BD=ED,CE=BC=5,
∴AE=AC -CE=8-5=3,
∵A ABD ∠=∠,
∴BE=AE=3,
∴BD=1.5
【点睛】
此题考察等腰三角形的性质,延长BD 构建全等三角形是证明此题的关键.
六、八年级数学轴对称三角形选择题(难)
31.如图,等腰 Rt △ABC 中,∠BAC =90°,AD ⊥BC 于D ,∠ABC 的平分线分别交 AC ,AD 于E ,F ,点M 为 EF 的中点,AM 的延长线交 BC 于N ,连接 DM ,NF ,EN .下列结论:①△AFE 为等腰三角形;②△BDF ≌△ADN ;③NF 所在的直线垂直平分AB ;④DM 平分∠BMN ;⑤AE =EN =NC ;⑥AE BN EC BC
=.其中正确结论的个数是( )
A .2个
B .3个
C .4个
D .5个
【答案】D
【解析】
【分析】 ①由等腰三角形的性质得∠BAD=∠CAD=∠C=45°,再根据三角形外角性质得
∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5°,则得到∠AEF=∠AFE ,可判断△AEF 为等腰三角形,于是可对①进行判断;求出BD=AD ,∠DBF=∠DAN ,∠BDF=∠ADN ,证△DFB ≌△DAN ,由题意可得BF>BD=AD,所以BF ≠AF,所以点F 不在线段AB 的垂直平分线上,所以③不正确,由
∠ADB=∠AMB=90°, 可知A 、B 、D 、M 四点共圆, 可求出∠ABM=∠ADM=22.5°,继而可得∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°, 即可求出DM 平分∠BMN ,所以④正确;根据全等三角形的性质可得△AFB ≌△CAN , 继而可得AE=CN ,根据线段垂直平分线的性质和等腰三角形的判定可得△ENC 是等腰直角三角形,继而可得AE=CN=EN ,所以⑤正确;根据等腰三角形的判定可得△BAN 是等腰三角形,可得BD=AB ,继而可得22BD BC A BC B ==,由⑤可得22
AE EN EC EC ==所以⑥正确. 【详解】
解:∵等腰Rt △ABC 中,∠BAC=90°,AD ⊥BC ,
∴∠BAD=∠CAD=∠C=45°,
∵BE 平分∠ABC ,
∴∠ABE=∠CBE=12
∠ABC=22.5°, ∴∠AEF=∠CBE+∠C=22.5°+45°=67.5°,∠AFE=∠FBA+∠BAF=22.5°+45°=67.5° ∴∠AEF=∠AFE ,
∴△AEF 为等腰三角形,所以①正确;
∵∠BAC=90°,AC=AB ,AD ⊥BC ,
∴∠ABC=∠C=45°,AD=BD=CD ,∠ADN=∠ADB=90°,
∴∠BAD=45°=∠CAD ,
∵BE 平分∠ABC ,
∴∠ABE=∠CBE= 12
∠ABC=22.5°, ∴∠BFD=∠AEB=90°-22.5°=67.5°,
∴AFE=∠BFD=∠AEB=67.5°,
∴AF=AE ,AM ⊥BE ,
∴∠AMF=∠AME=90°,
∴∠DAN=90°-67.5°=22.5°=∠MBN,
在△FBD和△NAD中,
∠FBD=∠DAN ,BD=AD ,∠BDF=∠ADN ,
∴△FBD≌△NAD,所以②正确;
因为BF>BD=AD,
所以BF AF,
所以点F不在线段AB的垂直平分线上,所以③不正确∵∠ADB=∠AMB=90°,
∴A、B、D、M四点共圆,
∴∠ABM=∠ADM=22.5°,
∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,
∴DM平分∠BMN ,所以④正确;
在△AFB和△CNA中,
∠BAF=∠C=45°,AB=AC, ∠ABF=∠CAN=22.5°,∴△AFB≌△CAN(ASA),
∴AF=CN,
∵AF=AE,
∴AE=CN,
∵AE=AF,FM=EM,
∴AM⊥EF,
∴∠BMA=∠BMN=90°,
∵BM=BM,∠MBA=∠MBN,
∴△MBA≌△MBN,
∴AM=MN,
∴BE垂直平分线段AN,
∴AB=BN,EA=EN,
∵BE=BE,
∴△ABE≌△NBE,
∴∠ENB=∠EAB=90°,
∴EN⊥NC.
∴△ENC是等腰直角三角形,
∴AE=CN=EN,所以⑤正确;
∵AF=FN,
所以∠FAN =∠FNA,
因为∠BAD =∠FND=45°,
所以∠FAN+ ∠BAD =∠FNA+∠FND, 所以∠BAN =∠BNA,
所以AB=BN,
所以22
BD BC A BC B ==, 由⑤可知,△ENC 是等腰直角三角形,AE=CN=EN ,
∴2AE EN EC EC ==, 所以
AE BN EC BC
=,所以⑥正确, 故选D.
【点睛】 本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,直角三角形斜质的应用,能正确证明推出两个三角形全等是解此题的关键.
32.如图,已知:30MON ∠=︒,点1A 、2A 、3A …在射线ON 上,点1B 、2B 、3B …在射线OM 上,112A B A △、223A B A △、334A B A △…均为等边三角形,若112
OA =,则667A B A 的边长为( )
A .6
B .12
C .16
D .32
【答案】C
【解析】
【分析】 先根据等边三角形的各边相等且各角为60°得:∠B 1A 1A 2=60°,A 1B 1=A 1A 2,再利用外角定理求∠OB 1A 1=30°,则∠MON=∠OB 1A 1,由等角对等边得:B 1A 1=OA 1=
12,得出△A 1B 1A 2的边长为12
,再依次同理得出:△A 2B 2A 3的边长为1,△A 3B 3A 4的边长为2,△A 4B 4A 5的边长为:22=4,△A 5B 5A 6的边长为:23=8,则△A 6B 6A 7的边长为:24=16.
【详解】
解:∵△A 1B 1A 2为等边三角形,
∴∠B 1A 1A 2=60°,A 1B 1=A 1A 2,
∵∠MON=30°,
∴∠OB1A1=60°-30°=30°,∴∠MON=∠OB1A1,
∴B1A1=OA1=1
2
,
∴△A1B1A2的边长为1
2
,
同理得:∠OB2A2=30°,
∴OA2=A2B2=OA1+A1A2=1
2
+
1
2
=1,
∴△A2B2A3的边长为1,
同理可得:△A3B3A4的边长为2,△A4B4A5的边长为:22=4,△A5B5A6的边长为:23=8,则△A6B6A7的边长为:24=16.
故选:C.
【点睛】
本题考查等边三角形的性质和外角定理,运用类比的思想,依次求出各等边三角形的边长,解题关键是总结规律,得出结论.
33.如图,在锐角△ABC中,AC=10,S△ABC=25,∠BAC的平分线交BC于点D,点M,N分别是AD和AB上的动点,则BM+MN的最小值是()
A.4 B.24
5
C.5 D.6
【答案】C
【解析】
试题解析:如图,
∵AD是∠BAC的平分线,
∴点B关于AD的对称点B′在AC上,
过点B′作B′N⊥AB于N交AD于M,
由轴对称确定最短路线问题,点M即为使BM+MN最小的点,B′N=BM+MN,
过点B作BE⊥AC于E,∵AC=10,S△ABC=25,
∴1
2
×10•BE=25,
解得BE=5,
∵AD是∠BAC的平分线,B′与B关于AD对称,
∴AB=AB′,
∴△ABB′是等腰三角形,
∴B′N=BE=5,
即BM+MN的最小值是5.
故选C.
34.如图,在Rt△ABC中,AC=BC,∠ACB=90°,D为AB的中点,E为线段AD上一点,过E点的线段FG交CD的延长线于G点,交AC于F点,且EG=AE,分别延长CE,BG交于点H,若EH平分∠AEG,HD平分∠CHG则下列说法:①∠GDH=45°;②GD=ED;③EF=2DM;④CG=2DE+AE,正确的是()
A.①②③B.①②④C.②③④D.①②③④
【答案】B
【解析】
【分析】
首先证明△AEC≌△GEC(SAS),推出CA=CG,∠A=∠CGE=45°,推出DE=DG,故②正确;再证明△EDC≌△GDB,推出∠CED=∠BGD,ED=GD,由三角形外角的性质得出
∠HDG=∠HDE,进而得出∠GDH=∠EDH=45°,即可判断①正确;
通过证明△EDC和△EMD是等腰直角三角形,得到ED2MD,再通过证明
△EFC≌△EDC,得到EF=ED,从而可判断③错误;由CG=CD+DG,CD=AD,ED=GD,变形即可判断④正确.
【详解】
∵AC=BC,∠ACB=90°,AD=DB,
∴CD⊥AB,CD=AD=DB,∠A=∠CBD=45°.
∵EH平分∠AEG,
∴∠AEH=∠GEH.
∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,∴∠AEC=∠CEG.
∵AE=GE,EC=EC,
∴△AEC≌△GEC(SAS),
∴CA=CG,∠A=∠CGE=45°.
∵∠EDG=90°,
∴∠DEG=∠DGE=45°,
∴DE=DG,∠AEF=∠DEG=∠A=45°,
故②正确;
∵DE=DG,∠CDE=∠BDG=90°,DC=DB,
∴△EDC≌△GDB(SAS),
∴∠CED=∠BGD,ED=GD.
∵HD平分∠CHG,
∴∠GHD=∠EHD.
∵∠CED=∠EHD+∠HDE,∠BGD=∠GHD+∠HDG,∴∠HDG=∠HDE.
∵∠EDG=∠ADC=90°,
∴∠GDH=∠EDH=45°,故①正确;
∵∠EDC=90°,ED=GD,
∴△EDC是等腰直角三角形,
∴∠DEG=45°.
∵∠GDH=45°,
∴∠EDH=45°,
∴△EMD是等腰直角三角形,
∴ED MD.
∵∠AEF=∠DEG=∠A=45°,
∴∠AFE=∠CFG=90°.
∵∠EDC=90°,
∴∠EFC=∠EDC=90°.
∵EH平分∠AEG,
∴∠AEH=∠GEH.
∵∠FEC=∠GEH,∠DEC=∠AEH,
∴∠FEC=∠DEC.
∵EC=EC,
∴△EFC≌△EDC,
∴EF=ED,
∴EF MD.
故③错误;
∵CG=CD+DG=AD+ED=AE+ED+ED,
∴CG =2DE +AE ,
故④正确.
故选B .
【点睛】
本题考查了等腰直角三角形的性质和判定,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.
35.如图,ABC △,AB AC =,56BAC ︒∠=,BAC ∠的平分线与AB 的垂直平分线交于O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与O 点恰好重合,则∠OEC 的度数为( )
A .132︒
B .130︒
C .112︒
D .110︒
【答案】C
【解析】
【分析】 连接OB 、OC ,根据角平分线的定义求出∠BAO ,根据等腰三角形两底角相等求出∠ABC ,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB ,根据等边对等角可得∠ABO=∠BAO ,再求出∠OBC ,然后判断出点O 是△ABC 的外心,根据三角形外心的性质可得OB=OC ,再根据等边对等角求出∠OCB=∠OBC ,根据翻折的性质可得OE=CE ,然后根据等边对等角求出∠COE ,再利用三角形内角和定理列式计算即可得出答案.
【详解】
如图,连接OB 、OC ,
∵56BAC ︒∠=,AO 为BAC ∠的平分线
∴11562822
BAO BAC ︒︒∠=∠=⨯= 又∵AB AC =, ∴()()
11180180566222ABC BAC ︒︒︒︒∠=-∠=-=。