最新高中物理经典题库-热学试题
2023高中物理热学应用复习 题集附答案

2023高中物理热学应用复习题集附答案2023高中物理热学应用复习题集附答案1. 选择题1. 常见的材料之间的导热性能从高到低的顺序是()。
A. 铜 > 铝 > 铁 > 纸B. 铜 > 铝 > 纸 > 铁C. 铜 > 铁 > 铝 > 纸D. 铝 > 铜 > 铁 > 纸答案:A. 铜 > 铝 > 铁 > 纸2. 下列能量转化过程中不符合能量守恒定律的是()。
A. 电能转化为热能B. 机械能转化为电能C. 光能转化为化学能D. 势能转化为动能答案:B. 机械能转化为电能3. 一个物体的热容量为1.5 J/℃,质量为200 g。
这个物体升高1℃所需要的热量为()。
A. 150 JB. 300 JC. 200 JD. 100 J答案:C. 200 J4. 根据热力学第一定律,某系统吸收50 J的热量,对外做30 J的功。
这个系统内部的能量变化为()。
A. 80 JB. 20 JC. -20 JD. -80 J答案:A. 80 J5. 一个容器内有1升水和1升冰块,初始温度都为0℃。
如果把冰块完全熔化,所需要的热量为()。
A. 334 JB. 4186 JC. 2093 JD. 6279 J答案:C. 2093 J2. 填空题1. 辐射热传播是通过()进行的。
答案:电磁波2. 热传导的速率与导体的()成正比,与导体的()成反比。
答案:横截面积,长度3. 某物体的质量为2 kg,比热容为2000 J/kg·℃,升高1℃所需要的热量为()J。
答案:4000 J4. 热机的效率可以用()来表示。
答案:热量转化为有效功的比例5. 升华是指物质直接从()转化为()。
答案:固态,气态3. 解答题1. 一个容器中有200 g水,温度为20℃。
将100 g的铁钉温度提高50℃后放入水中,最后水的温度为多少℃?(铁的比热容为448J/kg·℃,水的比热容为4186 J/kg·℃)解答:根据热平衡原理,铁钉释放的热量等于水吸收的热量。
2023年新高考II卷物理热力学题及答案

2023年新高考II卷物理热力学题及答案【2023年新高考II卷物理热力学题及答案】一、选择题1. 以下关于热力学第一定律的说法正确的是:A. 热力学第一定律是能量守恒定律的具体表述B. 热力学第一定律说明热量是一种不可逆转的能量转移方式C. 热力学第一定律仅适用于绝热系统D. 热力学第一定律和能量守恒定律意义相同【参考答案】A2. 一个物体温度从30°C升高到60°C,其摄氏温度变化为:A. 30°CB. 60°CC. -30°CD. 90°C【参考答案】A3. 一定质量水的比热容是c,若把温度为T的物体放入温度为0°C 的水中,物体的温度也降到0°C,那么物体的比热容为:A. cB. 2cC. 0.5cD. c/2【参考答案】B4. 空气中两个气体体积相等,压强分别是p和2p,则两者的温度比为:A. 1:2B. 2:1C. 1:4D. 4:1【参考答案】A5. 理想气体的内能只与其:A. 温度有关B. 压强有关C. 体积有关D. 分子数有关【参考答案】A二、计算题1. 一块质量为0.5 kg的铁板温度由20°C升至80°C,已知铁的比热容为460 J/(kg·°C),求此过程中铁板所吸收的热量。
【参考答案】Q = mcΔTQ = 0.5 kg × 460 J/(kg·°C) × (80°C - 20°C)Q = 0.5 kg × 460 J/(kg·°C) × 60°CQ = 13800 J2. 一个物体单位质量的比热量为c,其质量为m,温度由T1升至T2,请计算所需吸收或释放的热量Q。
【参考答案】Q = mcΔTQ = mc(T2 - T1)3. 一个容器内有一定质量的水,初始温度为20°C,加入一物体,使整个水体温度升至30°C,已知物体具有热容量C,求物体的热容量C。
(完整word版)高中物理经典题库热学试题

五、热学试题集粹(15+5+9+20=49 个)一、选择题(在每题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确)1.以下说法正确的选项是[]A.温度是物体内能大小的标记B.布朗运动反应分子无规则的运动C.分子间距离减小时,分子势能必定增大D.分子势能最小时,分子间引力与斥力大小相等2.对于分子势能,以下说法正确的选项是[]A.分子间表现为引力时,分子间距离越小,分子势能越大B.分子间表现为斥力时,分子间距离越小,分子势能越大C.物体在热胀冷缩时,分子势能发生变化D.物体在做自由落体运动时,分子势能愈来愈小3.对于分子力,以下说法中正确的选项是[]A.碎玻璃不可以拼合在一同,说明分子间斥力起作用B.将两块铅压紧此后能连成一块,说明分子间存在引力C.水和酒精混淆后的体积小于本来体积之和,说明分子间存在的引力D.固体很难拉伸,也很难被压缩,说明分子间既有引力又有斥力4.下边对于分子间的相互作使劲的说法正确的选项是[]A.分子间的相互作使劲是由构成分子的原子内部的带电粒子间的相互作用而惹起的B.分子间的相互作使劲是引力仍是斥力跟分子间的距离相关,当分子间距离较大时分子间就只有相互吸引的作用,当分子间距离较小时就只有相互推斥的作用C.分子间的引力和斥力老是同时存在的D.温度越高,分子间的相互作使劲就越大5.用r表示两个分子间的距离,Ep表示两个分子间的相互作用势能.当r=r0时两分子间的斥力等于引力.设两分子距离很远时Ep=0[]A.当r>r0时,Ep随r的增大而增添B.当r<r0时,Ep随r的减小而增添C.当r>r0时,Ep不随r而变D.当r=r0时,Ep=06.必定质量的理想气体,温度从0℃高升到t℃时,压强变化如图2-1 所示,在这一过程中气体体积变化状况是[]图 2-1A.不变B.增大C.减小D.没法确立7.将必定质量的理想气体压缩,一次是等温压缩,一次是等压压缩,一次是绝热压缩,那么[]A.绝热压缩,气体的内能增添B.等压压缩,气体的内能增添C.绝热压缩和等温压缩,气体内能均不变D.三个过程气体内能均有变化8.如图 2-2 所示,0.5 mol理想气体,从状态A变化到状态B,则气体在状态B时的温度为[]图 2- 2A. 273 KB. 546KC. 810KD.不知T因此没法确立A9.如图 2-3 是必定质量理想气体的p-V图线,若其状态由a→b→c→a(ab为等容过程,bc为等压过程,ca为等温过程),则气体在a、b、c三个状态时[]图2-3A.单位体积内气体分子数相等,即na=nb=ncB.气体分子的均匀速度va>vb>vcC.气体分子在单位时间内对器壁单位面积碰撞次数Na>Nb>NcD.气体分子在单位时间内对器壁单位面积作用的总冲量Ia>Ib=Ic10.必定质量的理想气体的状态变化过程如图2-4 所示,MN为一条直线,则气体从状态M到状态N的过程中[]图 2- 4A.温度保持不变B.温度先高升,后又减小到初始温度C.整个过程中气体对外不做功,气体要吸热D.气体的密度在不停减小题号12345678910答案BD BC BD C AB C A C CD BD11 .必定质量的理想气体自状态A经状态B变化到状态C,这一过程在V-T图中的表示如图2-5 所示,则[]A.在过程AB中,气体压强不停变大B.在过程BC中,气体密度不停变大C.在过程AB中,气体对外界做功D.在过程BC中,气体对外界放热12.如图 2-6 所示,一圆柱形容器上部圆筒较细,下部的圆筒较粗且足够长.容器的底是一可沿下圆筒无摩擦挪动的活塞S,用细绳经过测力计F将活塞提着,容器中盛水.开始时,水面与上圆筒的张口处在同一水平面上(如图),在提着活塞的同时使活塞迟缓地下移.在这一过程中,测力计的读数[]图 2- 6A.先变小,而后保持不变B.向来保持不变C.先变大,而后变小D.先变小,而后变大13 .如图 2-7 所示,粗细均匀的U形管,左管封闭一段空气柱,双侧水银面的高度差为h,U型管两管间的宽度为d,且d<h,现将U形管以O点为轴顺时针旋转90°至两个平行管水平,并保持U形管在竖直平面内,两管内水银柱的长度分别变成h1′和h2′.设温度不变,管的直径可忽视不计,则以下说法中正确的选项是[]图2-7A.h1增大,h2减小B.h1减小,h2增大,静止时h1′=h2′C.h1减小,h2增大,静止时h1′>h2′D.h1减小,h2增大,静止时h1′<h2′14.如图 2-8 所示,一根竖直的弹簧支持着一倒立气缸的活塞,负气缸悬空而静止,设活塞与缸壁间无摩擦且能够在缸内自由挪动,缸壁导热性能优秀使缸内气体总能与外界大气温度同样,则下述结论中正确的是[]A.若外界大气压增大,则弹簧将压缩一些B.若外界大气压增大,则气缸上底面距地面的高度将减小C.若气温高升,则气缸上底面距地面的高度将减小D.若气温高升,则气缸上底面距地面的高度将增大15 .如图 2-9 所示,导热气缸张口向下,内有理想气体,气缸固定不动,缸内活塞可自由滑动且不漏气.活塞下挂一个砂桶,砂桶装满砂子时,活塞恰巧静止.现给砂桶底部钻一个小洞,细砂慢慢漏出,外部环境温度恒定,则[]图2-9A.气体压强增大,内能不变B.外界对气体做功,气体温度不变C.气体体积减小,压强增大,内能减小D.外界对气体做功,气体内能增添题号1112131415答案ABD A A BD AB二、填空题1.估量一下,可知地球表面邻近空气分子之间的距离约为________m(取一位有效数字);某金属的摩尔质量为M,密度为ρ,阿伏加德罗常量为N.若把金属分子视为球形,经估量该金属的分子直径约为________.2.高压锅的锅盖经过几个牙齿似的锅齿与锅镶嵌旋紧,锅盖与锅之间有橡皮制的密封圈,不会漏气.锅盖中间有一排气孔,上边套上近似砝码的限压阀,将排气孔堵住.当加热高压锅,锅内气体压强增大到一定程度时,气体就把限压阀顶起来,蒸汽即从排气孔中排出锅外.已知某高压锅限压阀的质量为0.1kg,排气孔直径为 0.3cm,则锅内气体压强最大可达________Pa.3.圆筒内装有 100 升 1atm的空气,要使圆筒内空气压强增大到10atm,应向筒内打入同温度下 2atm的压缩气体 ________L.4.如图 2-10 所示为必定质量理想气体的状态变化过程的图线A→B→C→A,则B→C的变化是________过程,若已知TA=300K,TB=400K,则TC= ________K.图2-105.一圆柱形的牢固容器,高为h,上底有一能够翻开和封闭的密封阀门.现把此容器沉入水深为H 的湖底,并翻开阀门,让水充满容器,而后封闭阀门.设大气压强为p0,湖水密度为ρ.则容器内部底面遇到的向下的压强为________.而后保持容器状态不变,将容器从湖底移到湖面,这时容器内部底面遇到的向下压强为 ________.填空题参照答案1.3×10 -92.2.4×1053.4504.等压1600/35.p0+ρgHρgH三、实验题1.在“考证玻意耳定律”的实验中,对气体的初状态和末状态的丈量和计算都正确无误,结果末状态的pV值与初状态的p0V0值显然不等,造成这一结果的可能原由是实验过程中:[]A.气体温度发生变化B.气体与外界有热传达C.有气体泄露D.气体体积改变得太快速2.如图 2-11 所示为实验室常用的气压计构造表示图,它是依据托里拆里实验原理制成的,管中水银柱的高度(即为当时的大气压数值)经过带有游标的刻度尺读出,图中的读数部分被放大,从放大的图中读出,丈量的大气压强值为________mmHg.图 1-113.在利用带刻度的注射器做“考证玻意耳定律”的实验中.(1)甲同学用水银气压计测大气压强,读数时,察看发现气压计上20 分度的游标尺(游标尺上每平分刻度线间距为 1 .95 mm)上的第 6 条刻度线(第 6 条刻度线是从0 刻度线数起的第7 条线)与主尺上的77.1cm刻度线正好对齐.(1)此时大气压强为 ________mmHg.图2-12(2)乙、丙两同学各自对气体察看丈量计算后又改变气体状态,获得几组值,并在同一坐标内画出p-( 1/V)图线如图1-1 2 所示,由图线知,这是因为它们的________不一样使得两图线其实不重合.4.在“考证玻意耳定律”的实验中( 1)某同学列出所需要的实验器械:带框架的注射器(有刻度),橡皮帽,钩码(若干个),弹簧秤,天平(带砝码),铁架台(连铁夹),润滑油.问:该同学漏选了哪些器械?答: ________.( 2)图 2-13 是甲、乙两同学在同一次实验中获得的p-(1 /V)图.若两人实验时操作均正确无误,且选用坐标标度同样,那么两图线斜率不一样的主要原由是________.图2-135.在河畔,给你一根60cm左右的两头张口的均匀细玻璃管,米尺一把,请想法测定大气压的值,写出主要实验步骤及相应的所需丈量的物理量(不得下水丈量).答:.计算大气压的公式p0=.6.一位同学分别在两天用注射器做两次“考证玻意耳定律”的实验,操作过程和方法都正确,依据实验数据他在同一p-V坐标中画出了两条不重合的甲、乙两条双曲线,如图2-15 所示,产生这类状况的原由可能是:(1).(2).图 2-15图2-16,刻度全长为 L,7.用“考证玻意尔定律实验”的装置来丈量大气压强,所用注射器的最大容积为Vm活塞与钩码支架的总质量为M,注射器被固定在竖直方向上,如图2- 16.在活塞双侧各悬挂 1 个质量为m的钩码时注射器内空气体积为V1;除掉钩码后,用弹簧秤向上拉活塞,达到均衡时注射器内空气体积为V2,弹簧秤的读数为F(整个过程中,温度保持不变).由这些数据能够求出大气压强p0=.8.一学生用带有刻度的注射器做“考证玻意耳定律”的实验.他在做了必定的准备工作后,经过改变与活塞固定在一同的框架上所挂钩码的个数获得了几组对于封闭在注射器内部空气的压强p和体积V的数据.用横坐标表示体积的倒数,用纵坐标表示压强,由实验数据在座标系中画出了p-1/V图,其图线为一条延伸线与横轴有较大截距OA的直线,如图2-17 所示.由图线剖析以下四种状况,在实验中可能出现的是A.记录气压计指示的大气压强时,记录值比指示值显然减小B.记录气压计指示的大气压强时,记录值比指示值显然偏大C.丈量活塞和框架的质量时,丈量值比指示值显然偏小D.丈量活塞和框架的质量时,丈量值比指示值显然偏大答:.图 2- 17图2-189.考证查理定律的实验装置如图2- 18 所示,在这个实验中,测得压强和温度的数据中,一定测出的一组数据是和.第一要在环境温度条件下调理A、B管中水银面,此时烧瓶中空气压强为,再把烧瓶放进盛着冰水混淆物的容器里,瓶里空气的温度降落至跟冰水混淆物的温度同样,此时烧瓶中空气温度为K,B管中水银面将,再将A管,使B管中水银面.这时瓶内空气压强等于.实验题参照答案1.ACD2.756.53.759.30气体质量4.( 1)气压计,刻度尺(2)两人实验时封闭气体质量不一样5.①测玻璃管长l0 ;②将管部分插入水中,丈量管水上部分长度l 1 ;③手指封住上口,将管提出水面,测管内空气柱长l2.(l 0 -l 2 )l 2ρ水g/(l 2 -l 1 ) 6 .( 1)质量不一样;(2)温度不一样.7 .p0=L(MgV1-MgV2+ 2mgV1+FV2)/Vm(V2-V1)8.AC9 .当时大气压,当时温度,等高,大气压, 273,上移,降落,答复到本来标度的地点,大气压强减去A、B管中水银面高度差四、计算题1 .如图 2-14 所示,有一热气球,球的下端有一小口,使球内外的空气能够流通,以保持球内外压强相等,球内有温度调理器,以便调理球内空气的温度,负气球能够上涨或降落,设气球的整体积V0=5 003m(不计算壳体积),除球内空气外,气球质量M=180kg.已知地球表面大气温度T0=280K,密度3ρ0= 1.20kg/m,假如把大气视为理想气体,它的构成和温度几乎不随高度变化.问:为负气球从地面飘起,球内气温最低一定加热到多少开?图2-142.已知必定质量的理想气体的初始状态Ⅰ的状态参量为p1、V1、T1,终了状态Ⅱ的状态参量为p2、V2、T2,且p2>p1,V2>V1,如图 2-15 所示.试用玻意耳定律和查理定律推导出必定质量的理想气体状态方程.要求说明推导过程中每步的依据,最后结果的物理意义,且在p-V图上用图线表示推导中气体状态的变化过程.图2-153.在如图 2-16 中,质量为m的圆柱形气缸A位于水平川面,气缸内有一面积S=-32,5.00× 10mA质量mB=10.0kg的活塞B,把必定质量的气体封闭在气缸内,气体的质量比气缸的质量小得多,活塞与气缸的摩擦不计,大气压强=1.00× 105Pa.活塞B经越过定滑轮的轻绳与质量为mC=20.0kg的圆桶C相连.当活塞处于均衡时,气缸内的气柱长为L/4,L为气缸的深度,它比活塞的厚度大得多,现在渐渐向C桶内倒入细沙粒,若气缸A能走开地面,则气缸A的质量应知足什么条件?图2-164.如图 2-17 所示,一圆柱形气缸直立在水平川面上,内有质量不计的可上下挪动的活塞,在距缸底高为 2H0 的缸口处有固定的卡环,使活塞不会从气缸中顶出,气缸壁和活塞都是不导热的,它们之间没有摩擦.活塞下方距缸底高为H0处还有一固定的可导热的隔板,将容器分为A、B两部分,A、B中各封闭同种的理想气体,开始时A、B中气体的温度均为 27℃,压强等于外界大气压强p0,活塞距气缸底的高度为1.6H0,现经过B中的电热丝迟缓加热,试求:图2-17(1)与B中气体的压强为 1.5 p0时,活塞距缸底的高度是多少 ?(2)当A中气体的压强为 1.5 p0时,B中气体的温度是多少 ?5.如图 2-18 所示是一个容积计,它是丈量易溶于水的粉末物质的实质体积的装置,A容器的容积V3.S是通大气的阀门,C是水银槽,经过橡皮管与容器B相通.连通A、B的管道很细,容积A= 300cm能够忽视.下边是丈量的操作过程:(1)翻开S,挪动C,使B中水银面降低到与标记M相平.(2)关闭S,迟缓提高C,使B中水银面升到与标记N相平,量出C中水银面比标记N高h=25cm.( 3)打开S,将待测粉末装入容器A中,挪动C使B内水银面降到M标记处.(4)封闭S,提高C使B内水银面升到与N标记相平,量出C中水银面比标记N高h2= 75 cm.( 5)从气压计上读适当时大气压为p0=75cmHg.设整个过程温度保持不变.试依据以上数据求出A中待测粉末的实质体积.图2-186.某种喷雾器贮液筒的总容积为7.5 L,如图 2-19 所示,现翻开密封盖,装入6L的药液,与贮液3筒相连的活塞式打气筒,每次能压入 3 00cm、1atm的空气,若以上过程温度都保持不变,则图2-19(1)要使贮气筒中空气压强达到 4atm,打气筒应当拉压几次 ?(2)在贮气筒内气体压强达 4atm,才翻开喷嘴使其喷雾,直至内外气体压强相等,这时筒内还剩多少药液 ?7.( 1)必定质量的理想气体,初状态的压强、体积和温度分别为p1、V 1、T 1 ,经过某一变化过程,气体的末状态压强、体积和温度分别为p2、V 2、T 2 .试用玻意耳定律及查理定律推证:p 1 V1 /T 1=p 2V2/T 2 .(2)如图 2-19,竖直搁置的两头张口的U形管(内径均匀),内充有密度为ρ 的水银,开始两管内的水银面到管口的距离均为L.在大气压强为p0=2ρgL时,用质量和厚度均不计的橡皮塞将U形管的左边管口A封闭,用摩擦和厚度均不计的小活塞将U形管右边管口B封闭,橡皮塞与管口A内壁间的最大静摩擦力fm=ρgLS(S为管的内横截面积).现将小活塞向下推,设管内空气温度保持不变,要使橡皮塞不会从管口A被推出,求小活塞下推的最大距离.图2-198.用玻马定律和查理定律推出必定质量理想气体状态方程,并在图2- 20 的气缸表示图中,画出活塞地点,并注明变化原由,写出状态量.图2-209.如图 2- 21 所示装置中,A、B和C三支内径相等的玻璃管,它们都处于竖直地点,A、B两管的上端等高,管内装有水,A管上端封闭,内有气体,B管上端张口与大气相通,C管中水的下方有活塞顶住.A、B、C三管由内径很小的细管连结在一同.开始时,A管中气柱长L1=m,B管中气柱长L2=2.0 m,C管中水柱长L0=3m,整个装置处于均衡状态.现将活塞迟缓向上顶,直到C管中的水所有被顶到上边的管中,求此时A管中气柱的长度L1′,已知大气压强p0 =×105Pa,计算时取g=10m/s2.图2-2010.麦克劳真空计是一种丈量极稀疏气体压强的仪器,其基本部分是一个玻璃连通器,其上端玻璃管A与盛有待测气体的容器连结,其下端D经过橡皮软管与水银容器R 相通,如图2-22 所示.图中K1、K2 是相互平行的竖直毛细管,它们的内径皆为d,K 1 顶端封闭.在玻璃泡B与管C相通处刻有标记m.测量时,先降低R 使水银面低于m,如图2-22(a).渐渐提高R,直到K 2 中水银面与K 1 顶端等高,这时K1 中水银面比顶端低h,如图2- 22(b)所示.设待测容器较大,水银面起落不影响此中压强,丈量过程中温度不变.已知B(m以上)的容积为V,K 1 的容积远小于V,水银密度为ρ.(1)试导出上述过程上当算待测压强p的表达式.( 2)已知V= 628cm3,毛细管的直径d=0.30 mm,水银密度ρ=13.6 ×10 3kg/m3,h= 40mm,算出待测压强p(计算时取g=10m/s2,结果保存 2 位数字).图2-2111.如图 2-23 所示,容器A随和缸B都是透热的,A搁置在127℃的恒温箱中,而B搁置在27℃、 1atm的空气中,开始时阀门S封闭,A内为真空,其容器VA=L;B内轻活塞下方装有理想气体,=4.8 L,活塞上方与大气相通.设活塞与气缸壁之间无摩擦且不漏气,连结A和B的细管容其体积为VB积不计.若翻开S,使B内封闭气体流入A,活塞将发生挪动,待活塞停止挪动时,B内活塞下方节余气体的体积是多少?不计A与B之间的热传达.图 2-22图2-2312.如图 2-23 有一热空气球,球的下端有一小口,使球内外的空气能够流通,以保持球内外压强相等,球内有温度调理器,以便调理球内空气温度,负气球能够上涨或降落,设气球的整体积V0 =500m3(不计球壳体积),除球内空气外,气球质量M=180kg.已知地球表面大气温度T0=280K,密度ρ0=1.20 kg/m3,假如把大气视为理想气体,它的构成和温度几乎不随高度变化,问:为负气球从地面飘起,球内气温最低一定加热到多少开?13.如图 2-25 均匀薄壁U形管,左管上端封闭,右管张口且足够长,管的横截面积为S,内装密度为ρ 的液体.右管内有一质量为m的活塞搁在固定卡口上,卡口与左管上端等高,活塞与管壁间无摩擦且不漏气.温度为T0 时,左、右管内液面高度相等,两管内空气柱长度均为L,压强均为大气压强p0.现使两边温度同时渐渐高升,求:(1)温度高升到多少时,右管活塞开始走开卡口上涨?(2)温度高升到多少时,左管内液面降落h?图 2- 24图2-2514.如图 2- 26 所示的装置中,装有密度ρ=×102kg/m3的液体的均匀U形管的右端与体积很大的密闭贮气箱相连通,左端封闭着一段气体.在气温为-23℃时,气柱长62cm,右端比左端低40cm.当气温升至 27℃时,左管液面上涨了2cm.求贮气箱内气体在-23℃时的压强为多少?(g取10m/s2)15.两头张口、内表面圆滑的U形管处于竖直平面内,如图2- 27 所示,质量均为m=10kg的活塞A、B在外力作用下静止于左右管中同一高度h处,将管内空气封闭,此时管内外空气的压强均为p0=1.0 ×10 5Pa.左管和水平管横截面积S1=10cm2,右管横截面积S2=20cm2,水平管长为3h.现撤去外力让活塞在管中降落,求两活塞稳固后所处的高度.(活塞厚度略大于水平管直径,管内气体初末状态同温,g取 10m/s2)图 2- 26图2-2716.如图 2-28,圆筒固定不动,活塞A的横截面积是2S,活塞B的横截面积是S,圆筒内壁圆滑,圆筒左端封闭,右端与大气相通,大气压为p0 ,A、B将圆筒分为两部分,左半部分是真空,A、B之间是必定质量的气体,活塞B经过劲度系数为k的弹簧与圆筒左端相连,开始时粗筒和细筒的封闭的长度均为L,现用水平向左的力F=pS/ 2 作用在活塞A上,求活塞A挪动的距离?(设气体温度不变)17.如图 2-29 所示,圆柱形气缸内的活塞把气缸分开成A、B两部分,A内为真空,用细管将B与U形管相连,细管与U形管内气体体积可忽视不计.大气压强p0=76cmHg.开始时,U型管中左边水银面比右边高6cm,气缸中气体温度为27℃.(1)将活塞移到气缸左端,保持气体温度不变,稳固后U形管中左边水银面比右边高62cm.求开始时气缸中A、B两部分体积之比.(2)再将活塞从左端慢慢向右推进,并在推进过程中随时调理气缸B内气体的温度,负气体压强随活塞挪动的距离均匀增大,且最后当活塞回到原处时气体的压强和温度都恢复到最先的状态,求此过程中气体的最高温度.图 2-28图2-2918.如图 2-30 所示装置,C为一长方体容器,体积为1000cm3,C上端有一细玻璃管经过活栓S与大气相通,又经过细管A与球形容器B相连,B下端的玻璃管口用橡皮管接有一个水银压强计,压强计的动管为D.( 1)现翻开活栓S,这时管A、容器C、B皆与大气相通,上下挪动D使管内水银面在B下端的n处,这时再封闭S,上举D,使水银面达到B上端的m处,这时D管内水银面超出m点h1=12cm.(2)而后翻开S,把0.50 kg矿砂经过S放入C,同时挪动D,使水银面对齐n,而后封闭S,再上举D,使水银面再次达到m处,这时D管水银面超出m点h2=15cm.设容器内空气温度不变,求矿砂的密度.(连接C、B的细管A和连结C、S之间细管的容积都可忽视不计)19.如图 2- 31 所示,静止车厢内斜靠着一个长圆气缸,与车厢底板成θ 角,气缸上方活塞质量为M,缸内封有长为l0 的空气柱,活塞面积为S,不计摩擦,大气压强为p0.设温度不变,求:(1)当车厢在水平轨道上向右做匀加快运动时,发现缸内空气压强与p0同样,此时车厢加快度多大?(2)上述状况下,气缸内空气柱长度多大?图 2- 30图2-3120.如图 2-32 所示,在直立的圆柱形气缸内,有上、下两个活塞A和B,质量相等,连结两活塞的轻质弹簧的劲度系数k= 50N/m,活塞A上方气体的压强p= 100Pa,均衡时两活塞之间的气体的压强为p=100 Pa,气体的厚度l1= 0.20 m,活塞B下方的气体的厚度l2=0.24 m,气缸的横截面积S=m2.开初,气缸内气体的温度是T=300 K,现让气体的温度迟缓上涨,直到温度达到T′=500K.求在这一过程中,活塞A向上挪动的距离.计算题参照答案1.解:设负气球恰巧从地面飘起时球内空气密度为ρ,则由题意知ρ0gV0=Mg+ρgV0,设温度为T、密度为ρ、体积为V0的这部分气体在温度为T0,密度为ρ0时体积为V,即有ρV0=ρ0V.由等压变化有V/T=V/T0,解得T= 400K.02.解:设气体先由状态Ⅰ(p1、V1、T1),经等温变化至中间状态A(pA、V2、T1),由玻意耳定律,得p1V1=pAV2,①再由中间状态A(pA、V2、T1)经等容变化至终态Ⅱ(p2、V2、T2),由查理定律,得pA/T1=p2/T2,②由①×②消去pA,可得p1V1/T1=p2V2/T2,上式表示:必定质量的理想气体从初态(p1、V1、T1)变到终态(p2、V2、T2),压强和体积的乘积与热力学温度的比值是不变的.过程变化如图 6 所示.图63.解:取气缸内气柱长为L/ 4 的均衡态为状态1,气缸被迟缓提离地面时的均衡态为状态2.以p1、p2表示状态1、2 的压强,L2表示在状态 2 中气缸内气柱长度.由玻意耳定律,得p1L/ 4=p2L2,①在状态 1,活塞B处于力学均衡状态,由力学均衡条件获得p1S+mCg=p0S+mBg,②在状态 2,气缸A处于力学均衡状态,由力学均衡条件获得p2S+mAg=p0S,③由①、②、③三式解得mA=(p0S/g)-((p0S+mBg-mCg)/ 4g)(L/L2),以题给数据代入就获得mA=( 50-10(L/L2))kg,因为L2最大等于L.故由⑤式得悉,若想轻绳能把气缸A提离地面,气缸的质量应知足条件mA≤40kg.4.( 1)B中气体做等容变化,由查理定律pB /p′ B =TB /T′ B ,求得压强为 1. 5p0 时气体的温度T′ B= 450K.A中气体做等压变化,因为隔板导热,A、B中气体温度相等,A中气体温度也为450K.对A中气体 VA ′/V A =TA ′/T A ,VA ′=(T B ′/T A )V A =0. 9H 0 S,活塞距离缸底的高度为1.9H0 .(2)当A中气体压强为1.5p0 ,活塞将顶在卡环处,对A中气体pA VA /TA =p″ A V"A /T"A,得 T" A =(p" A V" A /p A VA )T A =750K.即B中气体温度也为 750 K.5.解:对于步骤①②,以A、B中气体为研究对象.初态 p1 =p 0,V 1 =V A+V B ,末态p2 =p0 +h1 ,V2 =VA ,依玻意耳定律 p1 V1 =p2 V2 ,解得3B=100cm .V 对于步骤③④,以A、B中气体为研究对象, 初态 p′ 1 =p0 ,V′ 1 =V,末态p′ 2 =p 0 +h 2 ,V′ 2 =V-V B ,依玻意耳定律 p′ 1 V′ 1=p′ 2 V′ 2 ,解得 V= 200cm 3,粉末体积V0 =V A +V B -V= 200 cm 3.6.解:( 1)贮液筒装入液体后的气体体积V1 =V总 -V 液①设拉力n次打气筒压入的气体体积V2 =nV 0 ,②依据分压公式:(温度T必定)pV1 =p1 V1 +p1 V2 ,③解①②③,可得n=(pV1-p 1 V 1 )/p 1 V0 =15(次),④(2)对充好气的贮液筒中的气体,m,T必定喷雾后至内外压强相等,贮液筒内气体体积为V 2,pV 1 =p2 V2 ,⑤贮液筒内还剩有药液体积V 剩=V 总 -V 2⑥解⑤⑥得:V 剩 = 1.5L.⑦7.( 1)证明:在如图 5 所示的p-V图中,必定质量的气体从初状态A(p 1,V 1,T 1 )变化至末状态B(p 2,V 2 ,T 2),假定气体从初状态先等温变化至C(p C,V 2,T 1),再等容变化至B(p2 ,V 2 ,T2).第一个变化过程依据玻耳定律有,p1V 1 =p C V2 .第二个变化过程依据查理定律有,pC/p 2 =T1/T 2.由以上两式可解得:p1V 1/T 1 =p 2V 2 /T 2.。
46道高中物理33题热学热门大题整理大全

1\如图5所示,厚度和质量不计、横截面积为S=10 cm2的绝热汽缸倒扣在水平桌面上,汽缸内有一绝热的“T”形活塞固定在桌面上,活塞与汽缸封闭一定质量的理想气体,开始时,气体的温度为T0=300 K,压强为p=0.5×105 Pa,活塞与汽缸底的距离为h=10 cm,活塞与汽缸可无摩擦滑动且不漏气,大气压强为p0=1.0×105 Pa。
图5(1)求此时桌面对汽缸的作用力F N;(2)现通过电热丝将气体缓慢加热到T,此过程中气体吸收热量为Q=7 J,内能增加了ΔU=5 J,整个过程活塞都在汽缸内,求T的值。
解析(1)对汽缸受力分析,由平衡条件有F N+pS=p0S,解得F N=(p0-p)S=(1.0×105 Pa-0.5×105 Pa)×10×10-4 m2=50 N。
(2)设温度升高至T时活塞距离汽缸底距离为H,则气体对外界做功W=p0ΔV=p0S(H-h),由热力学第一定律得ΔU=Q-W,解得H=12 cm。
气体温度从T0升高到T的过程,由理想气体状态方程得pShT0=p0SHT,解得T=p0Hph T0=105×0.120.5×105×0.10×300 K=720 K。
答案(1)50 N(2)720 K(等压变化,W=pΔV;只要温度发生变化,其内能就发生变化。
(4)结合热力学第一定律ΔU=W+Q求解问题。
2.如图8所示,用轻质活塞在汽缸内封闭一定质量的理想气体,活塞与汽缸壁间摩擦忽略不计,开始时活塞距离汽缸底部高度h 1=0.50 m ,气体的温度t 1=27 ℃。
给汽缸缓慢加热至t 2=207 ℃,活塞缓慢上升到距离汽缸底某一高度h 2处,此过程中缸内气体增加的内能ΔU =300 J ,已知大气压强p 0=1.0×105 Pa ,活塞横截面积S =5.0×10-3 m 2。
2023高中物理热学复习 题集附答案

2023高中物理热学复习题集附答案2023高中物理热学复习题集附答案一、选择题1.在以下哪一个状态下物体内能量变化最大?A. 0.5kg的物体被加热20℃B. 1kg的物体被加热10℃C. 0.5kg的物体被加热10℃D. 1kg的物体被加热20℃答案:D2.热机对外做功为3000J,吸收的热量为2000J,那么该热机的效率是多少?A. 33.3%B. 66.7%C. 100%D. 150%答案:B3.一个理想热机从200℃的高温热源吸收400J的热量,以300℃的低温热源释放一部分热量,再以100℃的低温热源释放剩余热量,如果效率为50%,释放给100℃低温热源的热量为多少?A. 100JB. 150JC. 200JD. 250J答案:C二、填空题1.一个加热器每秒向150g的流过它的水传递450J的能量,那么水的温升为____℃。
答案:3℃2.物体的摩尔热容量可以用____来表示。
答案:C3.物体的热容量是该物体吸收/释放1J的热量所引起的温度变化与____的比值。
答案:温度三、计算题1.一根长度为10cm,截面积为5cm²的铜棒,两端温度分别为300K 和600K,单位时间内通过横截面的净热量为180J,铜的热导率为394W/(m·K),求铜棒的导热系数。
答案:0.788W/(m·K)2.一台理想的汽轮机从高温热源吸收3000J的热量,向低温热源释放1200J的热量,求该汽轮机的效率。
答案:60%四、解答题1.简述热传导的原理及影响因素。
答:热传导是指物体之间由于分子热运动而传递热量的过程。
其原理是由于物质内部存在温度差,分子会发生碰撞,在碰撞过程中传递能量,从而使得热量从高温区传递到低温区。
热传导的影响因素包括物质的热导率、物体的面积、距离和温度差等。
2.简述热机的工作原理及其效率计算公式。
答:热机的工作原理是循环地吸收热量、转化热能为机械能并对外做功、释放余热至低温热源。
2024高考物理热学题

2024高考物理热学题一、关于热力学第一定律,以下说法正确的是?A、物体吸收热量,其内能一定增加B、物体对外做功,其内能一定减少C、物体吸收热量同时对外做功,其内能可能不变D、物体不做功也不吸收热量,其内能一定不变(答案)C解析:热力学第一定律表明,物体内能的变化等于物体吸收的热量与外界对物体所做的功之和。
因此,物体吸收热量时,如果同时对外做功,其内能可能并不增加,甚至可能减少。
同样,物体对外做功时,如果同时吸收热量,其内能也可能并不减少。
选项C正确,因为它涵盖了这种可能性。
二、在密闭容器中,一定量的理想气体进行等容变化,若气体温度升高,则?A、气体压强减小B、气体压强增大C、气体分子平均动能减小D、气体分子数密度减小(答案)B解析:根据查理定律,对于一定质量的理想气体,在体积不变的情况下,温度每升高1摄氏度,压强就增加原始压强的1/273.15。
因此,气体温度升高时,压强会增大。
选项B正确。
三、关于热传递,以下说法错误的是?A、热传递是热量从高温物体传向低温物体的过程B、热传递的方式有传导、对流和辐射三种C、热传递过程中,物体的内能一定发生变化D、热传递是热量转移的唯一方式(答案)D解析:热传递确实是热量从高温物体传向低温物体的过程,方式包括传导、对流和辐射。
在热传递过程中,物体的内能通常会发生变化。
然而,热量转移并不仅仅通过热传递实现,还可以通过做功等方式进行。
因此,选项D是错误的。
四、关于热力学第二定律,以下说法正确的是?A、热力学第二定律表明,热量不能自发地从低温物体传向高温物体B、热力学第二定律是能量守恒定律的另一种表述C、热力学第二定律只适用于气体,不适用于液体和固体D、热力学第二定律表明,所有热机的效率都可以达到100%(答案)A解析:热力学第二定律是热力学中的基本定律之一,它表明热量不能自发地从低温物体传向高温物体,这是热力学过程中的一个基本方向性规律。
选项A正确。
热力学第二定律并不是能量守恒定律的另一种表述,而是对能量转化和传递方向性的描述。
高中物理热学试题及答案

高中物理热学试题及答案一、选择题(每题3分,共30分)1. 热量的单位是()A. 焦耳B. 牛顿C. 瓦特D. 帕斯卡2. 热力学第一定律的数学表达式是()A. ΔU = Q + WB. ΔH = Q - WC. ΔS = Q/TD. ΔG = Q + W3. 温度是物体冷热程度的度量,其单位是()A. 米B. 千克C. 开尔文D. 秒4. 热传导的微观解释是()A. 粒子的布朗运动B. 粒子的碰撞C. 粒子的扩散D. 粒子的波动5. 物体的比热容是指()A. 单位质量的物体温度升高1℃所吸收的热量B. 单位质量的物体温度升高1℃所放出的热量C. 单位质量的物体温度降低1℃所吸收的热量D. 单位质量的物体温度降低1℃所放出的热量6. 理想气体的内能只与()有关A. 体积B. 温度C. 压力D. 质量7. 热机效率是指()A. 热机输出功率与输入功率的比值B. 热机输出功率与输入功率的差值C. 热机输入功率与输出功率的比值D. 热机输入功率与输出功率的差值8. 热力学第二定律的开尔文表述是()A. 不可能从单一热源吸热使之完全变为功而不产生其他影响B. 不可能使热量从低温物体传到高温物体而不产生其他影响C. 不可能从单一热源吸热使之完全变为功并产生其他影响D. 不可能使热量从高温物体传到低温物体而不产生其他影响9. 绝对零度是()A. -273.15℃B. 0℃C. 273.15℃D. 100℃10. 热力学第三定律表明()A. 绝对零度不可能达到B. 绝对零度可以轻易达到C. 绝对零度是温度的极限D. 绝对零度是温度的起点二、填空题(每题2分,共20分)1. 热力学第一定律表明,能量在转化和转移过程中______。
2. 热力学第三定律指出,当温度趋近于绝对零度时,所有纯物质的______趋于零。
3. 热传导、热对流和热辐射是热传递的三种基本方式,其中热辐射不需要______。
4. 物体吸收或放出热量时,其温度不一定变化,例如冰在熔化过程中______。
高一物理热学基础2023练习题及答案

高一物理热学基础2023练习题及答案第一部分:选择题1. 下列哪个物理量与热运动的速率相关?A) 温度B) 热容量C) 热量D) 功答案:A) 温度2. 一个物体的温度是300K,如果将其温度提高2倍,那么新的温度是多少?A) 600KB) 400KC) 900KD) 150K答案:C) 900K3. 下列哪个选项是热传导的最佳示例?A) 蒸发B) 空气对流C) 辐射D) 铁棒的两端被加热时导热答案:D) 铁棒的两端被加热时导热4. 以下哪个物体是最佳的热绝缘体?A) 金属B) 玻璃C) 木材D) 空气答案:B) 玻璃5. 一个热能转化器将2000J的热能从高温物体传递到低温物体,其中100J的热能被消耗。
这种转化器的效率是多少?A) 5%B) 10%C) 50%D) 90%答案:C) 50%第二部分:填空题1. 热平衡状态指的是两个物体之间没有热量的________。
答案:净传递2. 热容量的单位是________。
答案:焦耳/开尔文 (J/K)3. 热传导的过程中,热量从温度________物体传递到温度________物体。
答案:高、低4. 使用一个隔热材料包裹物体可以减少热量的________。
答案:损失5. 单位质量物质的比热量称为________。
答案:比热容第三部分:解答题1. 简述热平衡的概念及其在日常生活中的应用。
热平衡是指两个物体之间没有净热量的传递,即两物体的温度相等。
在日常生活中,热平衡的应用非常广泛。
例如,我们在冬天使用暖气时,通过调节室内温度使暖气与室内空气达到热平衡,以保持舒适的室内温度。
另外,如果我们将冷水和热水混合,最终达到的水温将是两者的平均温度,这也是热平衡的结果。
2. 解释什么是热传导,并提供一个热传导的实际例子。
热传导是指物质内部由高温区域向低温区域传递热量的过程。
在这个过程中,热量通过物质中的分子之间的碰撞传递。
一个实际的例子是,当我们将一根金属棒的两端加热时,棒子的一端会变热,然后逐渐传递热量到整个棒子,使得棒子整体变热。
热学试题库及答案解析

热学试题库及答案解析一、选择题1. 以下哪个选项是温度的微观含义?A. 温度是物体冷热程度的宏观表现B. 温度是物体分子平均动能的标志C. 温度是物体分子运动速度的标志D. 温度是物体分子运动方向的标志答案:B解析:温度是物体分子平均动能的标志,它反映了物体内部分子热运动的剧烈程度。
温度的高低与分子的平均动能成正比。
2. 理想气体状态方程为PV=nRT,其中R是?A. 气体常数B. 普朗克常数C. 光速D. 阿伏伽德罗常数答案:A解析:理想气体状态方程PV=nRT中,R代表气体常数,它是一个物理常数,用于描述理想气体的性质。
3. 以下哪个选项是热力学第一定律的表达式?A. ΔU = Q + WB. ΔH = Q - WC. ΔS = Q/TD. ΔG = Q - TΔS答案:A解析:热力学第一定律,也称为能量守恒定律,表达式为ΔU = Q + W,其中ΔU表示内能的变化,Q表示系统吸收的热量,W 表示系统对外做的功。
二、填空题4. 热量传递有三种基本方式:______、______和______。
答案:导热、对流、辐射解析:热量传递的三种基本方式是导热、对流和辐射。
导热是通过物体内部分子的碰撞传递热量;对流是通过流体的流动传递热量;辐射是通过电磁波传递热量。
5. 根据热力学第二定律,不可能从单一热源吸热使之完全变为功而不产生其他影响,这被称为______。
答案:开尔文-普朗克表述解析:热力学第二定律的开尔文-普朗克表述指出,不可能从单一热源吸热使之完全变为功而不产生其他影响,这是热力学第二定律的一种表述方式。
三、简答题6. 什么是比热容?并解释其物理意义。
答案:比热容是指单位质量的物质温度升高(或降低)1摄氏度所需要的热量。
其物理意义是描述物质吸收或释放热量时温度变化的难易程度。
解析:比热容是热学中一个重要的物理量,它反映了物质在吸收或释放热量时温度变化的特性。
比热容越大,物质的温度变化越不明显,即物质的热稳定性越好。
2024全国高考真题物理汇编:热力学定律章节综合

2024全国高考真题物理汇编热力学定律章节综合一、单选题1.(2024北京高考真题)一个气泡从恒温水槽的底部缓慢上浮,将气泡内的气体视为理想气体,且气体分子个数不变,外界大气压不变。
在上浮过程中气泡内气体()A.内能变大B.压强变大C.体积不变D.从水中吸热2.(2024重庆高考真题)某救生手环主要由高压气罐密闭。
气囊内视为理想气体。
密闭气囊与人一起上浮的过程中。
若气囊内气体温度不变,体积增大,则()A.外界对气囊内气体做正功B.气囊内气体压强增大C.气囊内气体内能增大D.气囊内气体从外界吸热3.(2024山东高考真题)一定质量理想气体经历如图所示的循环过程,a→b过程是等压过程,b→c过程中气体与外界无热量交换,c→a过程是等温过程。
下列说法正确的是()A.a→b过程,气体从外界吸收的热量全部用于对外做功B.b→c过程,气体对外做功,内能增加C.a→b→c过程,气体从外界吸收的热量全部用于对外做功D.a→b过程,气体从外界吸收的热量等于c→a过程放出的热量二、多选题4.(2024河北高考真题)如图,水平放置的密闭绝热汽缸被导热活塞分成左右两部分,左侧封闭一定质量的理想气体,右侧为真空,活塞与汽缸右壁中央用一根轻质弹簧水平连接。
汽缸内壁光滑且水平长度大于弹簧自然长度,弹簧的形变始终在弹性限度内且体积忽略不计。
活塞初始时静止在汽缸正中间,后因活塞密封不严发生缓慢移动,活塞重新静止后()A.弹簧恢复至自然长度B.活塞两侧气体质量相等C.与初始时相比,汽缸内气体的内能增加D.与初始时相比,活塞左侧单位体积内气体分子数减少5.(2024海南高考真题)一定质量的理想气体从状态a开始经ab、bc、ca三个过程回到原状态,已知ab 垂直于T轴,bc延长线过O点,下列说法正确的是()A .bc 过程外界对气体做功B .ca 过程气体压强不变C .ab 过程气体放出热量D .ca 过程气体内能减小6.(2024全国高考真题)如图,一定量理想气体的循环由下面4个过程组成:1→2为绝热过程(过程中气体不与外界交换热量),2→3为等压过程,3→4为绝热过程,4→1为等容过程。
高考物理考点《热力学定律》真题练习含答案

高考物理考点《热力学定律》真题练习含答案1.(多选)下列有关热学的说法中正确的是()A.气体温度升高,分子的平均动能一定增大B.随着科技的进步,物体的温度可以降低到-300 ℃C.热量可以从低温物体传递到高温物体D.不需要任何外界的动力而持续对外做功的机器——永动机不可能制成答案:ACD解析:温度是分子的平均动能的标志,物体温度升高,分子的平均动能一定增大,故A 正确;-273.15℃是一切低温的极限,B错误;热量可以从低温物体传递到高温物体,如电冰箱可以将热量从低温的内部传递到高温的外部,C正确;不需要任何外界的动力而持续对外做功的机器——永动机,违反了能量的转化和守恒定律,不可能制成,故D正确.2.夏天,从湖底形成的一个气泡,在缓慢上升到湖面的过程中没有破裂,若越接近水面,湖内水的温度越高,大气压强没有变化,气泡内的气体看作理想气体.则上升过程中()A.气泡内气体内能不变B.气泡内气体的压强不变C.气泡体积不变D.气泡内气体吸热答案:D解析:由理想气体的状态方程可知,气泡上升过程中,压强减小,温度升高,体积增大,B、C错误;气泡上升过程中,温度升高,内能一定增加,体积增大,对外做功,一定吸热,A错误,D正确.3.(多选)根据电冰箱的工作原理,当压缩机工作时,强迫制冷剂在冰箱内、外管道中不断循环,如图所示,那么下列说法中正确的是()A.在冰箱内的管道中,制冷剂迅速膨胀并吸收热量B.在冰箱外的管道中,制冷剂迅速膨胀并放出热量C.在冰箱内的管道中,制冷剂被剧烈压缩并吸收热量D.在冰箱外的管道中,制冷剂被剧烈压缩并放出热量答案:AD解析:氟利昂是一种既容易汽化又容易液化的物质;工作时电动压缩机使氟利昂蒸气压缩而液化,压入冰箱外的冷凝器管里将热量放出;冷凝器里的液态氟利昂,经过一段很细的毛细管进入冰箱内冷冻室的管子里,在这里迅速汽化,内能减小,从冰箱的内部吸收热量,使冰箱内部的温度降低,A、D正确.4.[2024·山东省普通高中考试模拟]中医拔罐疗法在中国有着悠久的历史,早在成书于西汉时期的帛书《五十二病方》中就有类似于后世的火罐疗法.其方法是以罐为工具,将点燃的纸片放入一个小罐内,当纸片燃烧完时,迅速将火罐开口端紧压在皮肤上,火罐就会紧紧地“吸”在皮肤上,造成局部瘀血,以达到通经活络、行气活血、消肿止痛、祛风散寒等作用的疗法.在将火罐压在皮肤上的很短时间内,以下说法正确的是() A.火罐“吸”在皮肤上的主要原因是火罐内的气体体积不变,温度降低,压强减小B.火罐“吸”在皮肤上的主要原因是火罐内的气体体积不变,温度升高,压强增大C.火罐内的气体吸收热量,内能增大D.火罐内气体分子单位时间内撞击火罐底部的次数增加答案:A解析:在刚开始的很短时间内,火罐内部气体体积不变,由于火罐导热性良好,所以火罐内气体温度迅速降低,根据pVT=C可知,气体压强减小,在外界大气压的作用下火罐“吸”在皮肤上,A正确,B错误;因气体的体积不变,则W=0,而温度迅速降低,则气体内能减小ΔU<0,根据热力学第一定律ΔU=Q+W可得Q<0,即气体向外放热,故C错误;因气体的体积不变,则单位体积内的分子数不变,而气体的温度降低,则分子的平均动能减小,每个分子的平均速率变小,则火罐内气体分子单位时间内撞击火罐底部的次数变少,D错误.5.[2024·江西省鹰潭市第二次模拟](多选)一定质量的理想气体,经过一个压缩过程后,体积减小为原来的一半,这个过程可以是等温的、绝热的或等压的过程,如图所示,关于这三个过程,下列说法正确的是()A.绝热过程不做功B.a、b、c、d中d的温度最高C.等压过程内能减小D.等温过程要吸热答案:BC解析:由pV图像知ab是等压过程,a、c两状态的压强与体积乘积为一个定值2pV,即ac是等温过程,则ad是绝热过程;pV图像中面积表示气体做功,由图像知W ab<W ac<W ad,即绝热过程外界对气体做功,A错误;比较b、c、d三个状态,由于体积相等,根据pT=C,由图像可知b、c、d三个状态的温度高低关系为T d>T c>T b,由于a、c两状态的温度相等,则a、b、c、d中d的温度最高,B正确;等压过程,气体的体积减小,根据VT=C可知气体的温度降低,则气体的内能减小,C正确;等温ac过程,气体的内能不变,根据热力学第一定律有ΔU=W+Q,气体体积减小,外界对气体做功,则气体放热,D错误.6.[2024·浙江省台州市质量评估]一个容积为V0=9.9 L的导热汽缸下接一圆柱形管,二者总质量为M=900 g,现用质量m=100 g、横截面积S=10 cm2、厚度可忽略不计的活塞封闭一定质量的理想气体,活塞与圆管管壁间摩擦不计.活塞下端连接弹簧,弹簧下端与地面固定,气缸始终保持竖直.开始时气体温度为T1=297 K,活塞处在A位置,气缸内气体压强为p1.随着环境温度缓慢升高到T2,活塞恰能缓慢移至容器底部B位置处,已知A、B间距离h=10 cm,外界大气压强p0=1.01×105 Pa.(1)环境温度由T1缓慢升高到T2过程中,气缸内气体压强________(选填“变化”或“不变”);(2)求汽缸内的气体压强p1及环境温度T2;(3)升温过程中,若气体内能增加了ΔU=25 J,求气体需要向外界吸收的热量.答案:(1)不变(2)p1=1.1×105 Pa T2=300 K(3)Q=36 J解析:(1)对气缸受力分析,变化前有Mg+p0S=p1S变化后有Mg+p0S=p′1S可知p 1=p ′1则可知,环境温度由T 1缓慢升高到T 2过程中,气缸内气体压强不变.(2)以气缸为研究对象,根据平衡条件可知Mg +p 0S =p 1S 解得p 1=1.1×105 Pa气体升温膨胀过程为等压过程,由盖吕萨克定律有V 0T 1 =V 0+Sh T 2解得T 2=300 K(3)由热力学第一定律可知ΔU =W +Q气体膨胀对外做功,则可得W =-p 1Sh =-11 J 所以气体需要向外界吸收热量Q =36 J。
五年2024_2025高考物理真题专题点拨__专题14热学含解析

部大气压相同,温度为 450 K,最终降到 300 K,因皮肤凸起,内部气体体积变为罐容积的 20 。 21
若换用抽气拔罐,抽气后罐内剩余气体体积变为抽气拔罐容积的 20 ,罐内气压与火罐降温 21
后的内部气压相同。罐内气体均可视为志向气体,忽视抽气过程中气体温度的变更。求应抽
出气体的质量与抽气前罐内气体质量的比值。
结合 A 选项可知Wab Wbc 0 ,所以 Qbc Qab 。 b c 过程气体汲取的热量大于 a b 过程汲取的热量,B 错误;气体从 c a ,温度降低,所以 Uca 0 ,气体体积减 小,外界对气体做功,所以Wca 0 ,依据热力学第肯定律可知 Qca ,放出热量,C 正 确;志向气体的内能只与温度有关,依据Ta Tb 可知从 Tca Tbc ,所以气体从 c a 过程中内能的削减量等于 b c 过程中内能的增加量,D 错误。故选 C。
p1 p0 pgh 0 , p2 p0 pgh
V1 S 2H l h0 ,V2 SH
联立以上式子并代入题给数据得 h=12.9cm; (ii)密封气体再经等压膨胀过程体积变为 V3,温度变为 T2,由盖一吕萨克定律有
V2 V3 T1 T2
按题设条件有V3 S(2H h) ,代入题给数据得 T2=363K。
则
pV
1 2
p 2V
( p1
p2 ) 3V
则甲乙中气体最终压强
p'
p1
p2
2 3
p
(ii)若调配后将甲气体再等温压缩到气体原来的压强为 p,则 p 'V pV ' ,计算可
得V ' 2V 3
由密度定律可得,质量之比等于 m现 V ' 2 m原 V 3
2023高考物理真题分类汇编(热学部分)

2023年高考真题(热学部分)一、单选题1.(北京卷)夜间由于气温降低,汽车轮胎内的气体压强变低。
与白天相比,夜间轮胎内的气体()A.分子的平均动能更小B.单位体积内分子的个数更少C.所有分子的运动速率都更小D.分子对轮胎内壁单位面积的平均作用力更大2.(海南卷)下列关于分子力和分子势能的说法正确的是()A.分子间距离大于r0时,分子间表现为斥力B.分子从无限远靠近到距离r0处过程中分子势能变大C.分子势能在r0处最小D.分子间距离小于r0且减小时,分子势能在减小3.(江苏卷)如图所示,密闭容器内一定质量的理想气体由状态A变化到状态B。
该过程中()A.气体分子的数密度增大B.气体分子的平均动能增大C.单位时间内气体分子对单位面积器壁的作用力减小D.单位时间内与单位面积器壁碰撞的气体分子数减小4.(江苏卷)在“探究气体等温变化的规律”的实验中,实验装置如图所示。
利用注射器选取一段空气柱为研究对象。
下列改变空气柱体积的操作正确的是()A.把柱塞快速地向下压B.把柱塞缓慢地向上拉C.在橡胶套处接另一注射器,快速推动该注射器柱塞D.在橡胶套处接另一注射器,缓慢推动该注射器柱塞5.(重庆卷)密封于气缸中的理想气体,从状态a依次经过ab、bc和cd三个热力学过程达到状态d。
若该气体的体积V随热力学温度T变化的V-T图像如图所示,则对应的气体压强p随T变化的p-T图像正确的是()A.B.C.D.二、多选题6.(全国乙卷)对于一定量的理想气体,经过下列过程,其初始状态的内能与末状态的内能可能相等的是()A .等温增压后再等温膨胀B .等压膨胀后再等温压缩C .等容减压后再等压膨胀D.等容增压后再等压压缩E .等容增压后再等温膨胀7.(全国甲卷)在一汽缸中用活塞封闭着一定量的理想气体,发生下列缓慢变化过程,气体一定与外界有热量交换的过程是()A .气体的体积不变,温度升高B .气体的体积减小,温度降低C .气体的体积减小,温度升高D.气体的体积增大,温度不变E .气体的体积增大,温度降低8.(新课标卷)如图,一封闭着理想气体的绝热汽缸置于水平地面上,用轻弹簧连接的两绝热活塞将汽缸分为f 、g 、h 三部分,活塞与汽缸壁间没有摩擦。
高中物理热学试题 及答案

热学试题一选择题:1.只知道下列那一组物理量,就可以估算出气体中分子间的平均距离A.阿伏加徳罗常数,该气体的摩尔质量和质量B.阿伏加徳罗常数,该气体的摩尔质量和密度C.阿伏加徳罗常数,该气体的质量和体积D.该气体的质量、体积、和摩尔质量2.关于布朗运动下列说法正确的是A.布朗运动是液体分子的运动B.布朗运动是悬浮微粒分子的运动C.布朗微粒做无规则运动的原因是由于它受到水分子有时吸引、有时排斥的结果D.温度越高,布朗运动越显著3.铜的摩尔质量为μ(kg/ mol),密度为ρ(kg/m3),若阿伏加徳罗常数为N A,则下列说法中哪个是错误..的A.1m3铜所含的原子数目是ρN A/μ B.1kg铜所含的原子数目是ρN AC.一个铜原子的质量是(μ / N A)kg D.一个铜原子占有的体积是(μ / ρN A)m3 4.分子间同时存在引力和斥力,下列说法正确的是A.固体分子间的引力总是大于斥力B.气体能充满任何仪器是因为分子间的斥力大于引力C.分子间的引力和斥力都随着分子间的距离增大而减小D.分子间的引力随着分子间距离增大而增大,而斥力随着距离增大而减小5.关于物体内能,下列说法正确的是A.相同质量的两种物体,升高相同温度,内能增量相同B.一定量0℃的水结成0℃的冰,内能一定减少C.一定质量的气体体积增大,既不吸热也不放热,内能减少D.一定质量的气体吸热,而保持体积不变,内能一定减少6.质量是18g的水,18g的水蒸气,32g的氧气,在它们的温度都是100℃时A.它们的分子数目相同,分子的平均动能相同B.它们的分子数目相同,分子的平均动能不相同,氧气的分子平均动能大C.它们的分子数目相同,它们的内能不相同,水蒸气的内能比水大D.它们的分子数目不相同,分子的平均动能相同7.有一桶水温度是均匀的,在桶底部水中有一个小气泡缓缓浮至水面,气泡上升过程中逐渐变大,若不计气泡中空气分子的势能变化,则A.气泡中的空气对外做功,吸收热量 B.气泡中的空气对外做功,放出热量C.气泡中的空气内能增加,吸收热量 D.气泡中的空气内能不变,放出热量8.关于气体压强,以下理解不正确的是A.从宏观上讲,气体的压强就是单位面积的器壁所受压力的大小B.从微观上讲,气体的压强是大量的气体分子无规则运动不断撞击器壁产生的C.容器内气体的压强是由气体的重力所产生的D.压强的国际单位是帕,1Pa=1N/m29.一定质量的理想气体处于平衡状态Ⅰ,现设法使其温度降低而压强升高,达到平衡状态Ⅱ,则( )A .状态Ⅰ时气体的密度比状态Ⅱ时的大B .状态Ⅰ时分子的平均动能比状态Ⅱ时的大C .状态Ⅰ时分子的平均距离比状态Ⅱ时的大D .状态Ⅰ时每个分子的动能都比状态Ⅱ时分子平均动能大10.如图所示,气缸内装有一定质量的气体,气缸的截面积为S ,其活塞为梯形,它的一个面与气缸成θ角,活塞与器壁间的摩擦忽略不计,现用一水平力F 推活塞,汽缸不动,此时大气压强为P 0,则气缸内气体的压强P 为A .P=P 0+θcos S F B .P=P 0+S FC .P=P 0+S F θcosD .P=P 0+SF θsin11.如图所示,活塞质量为m ,缸套质量为M ,通过弹簧吊在天花板上,气缸内封住一定质量的空气 ,缸套与活塞无摩擦,活塞截面积为S ,大气压强为p 0,则 A. 气缸内空气的压强为p 0-Mg /S B .气缸内空气的压强为p 0+mg /SC .内外空气对缸套的作用力为(M +m )gD .内外空气对活塞的作用力为Mg12.关于热力学温度的下列说法中, 不正确的是( ) A. B.热力学温度的零度等于-273.15 C. D.气体温度趋近于绝对零度时,13.若在水银气压计上端混入少量空气, 气压计的示数与实际大气压就不一致, 在这种情况下( )A.气压计的读数可能大于外界大B.C.只要外界大气压不变,D.14、根据分子动理论,下列关于气体的说法中正确的是 A .气体的温度越高,气体分子无规则运动越剧烈 B .气体的压强越大,气体分子的平均动能越大 C .气体分子的平均动能越大,气体的温度越高D .气体的体积越大,气体分子之间的相互作用力越大15. .如图所示,绝热隔板K 把绝热的气缸分隔成体积相等的两部分,K 与气缸壁的接触是光滑的。
高中热学试题及答案

高中热学试题及答案一、单项选择题(每题3分,共30分)1. 以下哪种物质的比热容最大?A. 水银B. 铜C. 冰D. 水答案:D2. 热力学第一定律表明能量守恒,以下哪个选项正确描述了这个定律?A. 能量可以被创造或毁灭B. 能量可以从一个物体转移到另一个物体C. 能量可以在不同形式之间转换,但总量保持不变D. 能量只能从高温物体转移到低温物体答案:C3. 在理想气体状态方程PV=nRT中,P代表什么?A. 温度B. 体积C. 压力D. 气体的量答案:C4. 以下哪种情况下,气体的压强不会改变?A. 体积增加,温度不变B. 体积不变,温度增加C. 体积和温度都增加D. 体积和温度都减少答案:B5. 以下哪种现象不属于热传递?A. 热辐射B. 热传导C. 热对流D. 摩擦生热答案:D6. 绝对零度是多少开尔文?A. 0 KB. -273.15 KC. 273.15 KD. 373.15 K答案:B7. 以下哪种物质的熔点最高?A. 铁B. 铜C. 金D. 铅答案:A8. 以下哪种物质的热膨胀系数最大?A. 钢B. 水C. 铝D. 玻璃答案:B9. 以下哪种情况下,物体的内能会增加?A. 物体吸收热量B. 物体对外做功C. 物体放出热量D. 物体吸收热量同时对外做功答案:A10. 以下哪种情况下,理想气体的体积会减小?A. 温度增加,压力不变B. 温度不变,压力增加C. 温度和压力都增加D. 温度和压力都减少答案:B二、填空题(每题2分,共20分)11. 热力学第二定律表明,不可能从单一热源吸热使之完全转化为功而不引起其他变化,这是______的表述。
答案:热力学第二定律12. 理想气体的内能只与______有关。
答案:温度13. 物体的比热容是指单位质量的物体温度升高1摄氏度所需吸收的热量,单位是______。
答案:焦耳/(千克·摄氏度)14. 热机的效率是指热机所做的功与______之比。
高考物理考点《热学》真题练习含答案

高考物理考点《热学》真题练习含答案1.[2023·新课标卷](多选)如图,一封闭着理想气体的绝热汽缸置于水平地面上,用轻弹簧连接的两绝热活塞将汽缸分为f 、g 、h 三部分,活塞与汽缸壁间没有摩擦.初始时弹簧处于原长,三部分中气体的温度、体积、压强均相等.现通过电阻丝对f 中的气体缓慢加热,停止加热并达到稳定后( )A .h 中的气体内能增加B .f 与g 中的气体温度相等C .f 与h 中的气体温度相等D .f 与h 中的气体压强相等答案:AD解析:当电阻丝对f 中的气体缓慢加热时,f 中的气体内能增大,温度升高,根据理想气体状态方程可知f 中的气体压强增大,会缓慢推动左边活塞,则弹簧被压缩.与此同时弹簧对右边活塞有弹力作用,缓慢向右推动右边活塞,故活塞对h 中的气体做正功,且是绝热过程,由热力学第一定律可知,h 中的气体内能增加,A 正确;未加热前,三部分中气体的温度、体积、压强均相等,当系统稳定时,活塞受力平衡,可知弹簧处于压缩状态,对左边活塞分析p f S =F 弹+p g S则p f >p g分别对f 、g 内的气体分析,根据理想气体状态方程有p 0V 0T 0 =p f V f T fp 0V 0T 0 =p g V g T g由题意可知,因弹簧被压缩,则V f >V g ,联立可得T f >T g ,B 错误;对弹簧、活塞及g 中的气体组成的系统分析,根据平衡条件可知,f 与h 中的气体压强相等,D 正确.在达到稳定过程中h中的气体体积变小,f中的气体体积变大,即V f>V h.根据理想气体状态方程对h气体分析可知p0V0T0=p h V h T h联立可得T f>T h,C错误;故选AD.2.[2023·全国甲卷,节选](多选)在一汽缸中用活塞封闭着一定量的理想气体,发生下列缓慢变化过程,气体一定与外界有热量交换的过程是()A.气体的体积不变,温度升高B.气体的体积减小,温度降低C.气体的体积减小,温度升高D.气体的体积增大,温度不变E.气体的体积增大,温度降低答案:ABD解析:气体的体积不变,温度升高,则气体的内能升高,体积不变气体做功为零,因此气体吸收热量,A正确;气体的体积减小温度降低,则气体的内能降低,体积减小.外界对气体做功,由热力学第一定律ΔU=W+Q可知气体对外界放热,B正确;气体的体积减小,温度升高,则气体的内能升高,体积减小外界对气体做功,由热力学第一定律ΔU=W+Q可知Q可能等于零,即没有热量交换过程,C错误;气体的体积增大,温度不变则气体的内能不变,体积增大气体对外界做功,由热力学第一定律ΔU=W+Q可知Q>0即气体吸收热量,D正确;气体的体积增大,温度降低则气体的内能降低,体积增大气体对外界做功,由热力学第一定律ΔU=W+Q可知Q可能等于零,即没有热量交换过程,E错误.故选ABD.3.[2023·湖南卷]汽车刹车助力装置能有效为驾驶员踩刹车省力.如图,刹车助力装置可简化为助力气室和抽气气室等部分构成,连杆AB与助力活塞固定为一体,驾驶员踩刹车时,在连杆AB上施加水平力推动液压泵实现刹车.助力气室与抽气气室用细管连接,通过抽气降低助力气室压强,利用大气压与助力气室的压强差实现刹车助力.每次抽气时,K1打开,K2闭合,抽气活塞在外力作用下从抽气气室最下端向上运动,助力气室中的气体充满抽气气室,达到两气室压强相等;然后,K1闭合,K2打开,抽气活塞向下运动,抽气气室中的全部气体从K2排出,完成一次抽气过程.已知助力气室容积为V0,初始压强等于外部大气压强p0,助力活塞横截面积为S,抽气气室的容积为V1.假设抽气过程中,助力活塞保持不动,气体可视为理想气体,温度保持不变.(1)求第1次抽气之后助力气室内的压强p1;(2)第n次抽气后,求该刹车助力装置为驾驶员省力的大小ΔF.答案:(1)p0V0V0+V1(2)[1-(V0V0+V1)n]p0S解析:(1)以助力气室内的气体为研究对象,则初态压强p0,体积V0,第一次抽气后,气体体积V=V0+V1根据玻意耳定律p0V0=p1V解得p1=p0V0V0+V1(2)同理第二次抽气p1V0=p2V解得p2=p1V0V0+V1=(V0V0+V1)2p0以此类推……则当n次抽气后助力气室内的气体压强p n=(V0)n p0V0+V1则刹车助力系统为驾驶员省力大小为ΔF=(p0-p n)S=[1-(V0)n]p0SV0+V14.[2024·全国甲卷,节选]如图,一竖直放置的汽缸内密封有一定量的气体,一不计厚度的轻质活塞可在汽缸内无摩擦滑动,移动范围被限制在卡销a、b之间,b与汽缸底部的距离bc=10ab,活塞的面积为1.0×10-2m2.初始时,活塞在卡销a处,汽缸内气体的压强、温度与活塞外大气的压强、温度相同,分别为1.0×105Pa和300 K.在活塞上施加竖直向下的外力,逐渐增大外力使活塞缓慢到达卡销b处(过程中气体温度视为不变),外力增加到200 N并保持不变.(ⅰ)求外力增加到200 N时,卡销b对活塞支持力的大小;(ⅱ)再将汽缸内气体加热使气体温度缓慢升高,当活塞刚好能离开卡销b时气体的温度.答案:(ⅰ)100 N(ⅱ)327 K解析:(ⅰ)活塞从位置a到b过程中,气体做等温变化,初态p1=1.0×105Pa、V1=S·11ab 末态p2=?、V2=S·10ab根据p1V1=p2V2解得p2=1.1×105Pa此时对活塞根据平衡条件F+p1S=p2S+N解得卡销b对活塞支持力的大小N=100 N;(ⅱ)将汽缸内气体加热使气体温度缓慢升高,当活塞刚好能离开卡销b时,气体做等容变化,初态p2=1.1×105Pa,T2=300 K末态,对活塞根据平衡条件p3S=F+p1S解得p3=1.2×105Pa 设此时温度为T3,根据p2T2=p3T3解得T3≈327 K.。
2024高考物理热力学温度计算习题及答案

2024高考物理热力学温度计算习题及答案高考物理试卷中,热力学是一个重要的考点,其中温度计算题目也是必考内容之一。
了解并掌握温度计算的方法,能够帮助同学们在考试中取得更好的成绩。
本文将为大家提供2024年高考物理热力学温度计算习题及答案,帮助同学们进行复习和巩固知识。
一、选择题1. 一根铁杆在100℃时的长度是1m,温度升高到200℃后,它的长度变为多少?A. 1mB. 2mC. 3mD. 4m答案:C. 3m解析:根据线膨胀公式ΔL= αL0ΔT,代入已知数值计算,ΔL =αL0ΔT = 1m × (12 × 10^-6 K^-1) × (200℃ - 100℃) = 1m × 10^-4 = 0.1m,因此铁杆的长度从1m增加到1m + 0.1m = 3m。
2. 某物体在0℃时的长度为L0,在100℃时的长度为L100,该物体的线膨胀系数是α,则它在200℃时的长度是多少?A. L100 + αL0 × 100℃B. L0 + αL100 × 100℃C. L0 + αL0 × 200℃D. L100 + αL100 × 200℃答案:B. L0 + αL100 × 100℃解析:根据线膨胀公式ΔL = αL0ΔT,代入已知数值计算,ΔL =αL100 × 100℃ = α × L0 × 100℃,所以某物体在200℃时的长度为L0 + ΔL = L0 + αL100 × 100℃。
二、计算题1. 一个气缸的初始容积为1m³,所含气体的温度为25℃。
如果将气缸加热至1000℃,气体的体积变为多少?解析:根据理想气体状态方程PV = nRT,假设温度为T1时的体积为V1,温度为T2时的体积为V2,代入已知数值计算,可以得到(V2/T2) = (V1/T1),即V2 = V1 × T2/T1。
高中物理热学试题及答案

高中物理热学试题及答案一、选择题1. 热力学第一定律的数学表达式是:A. ΔU = Q + WB. ΔU = Q - WC. ΔU = W - QD. ΔU = Q / W答案:B2. 理想气体的内能只与温度有关,这是因为:A. 气体分子的平动动能B. 气体分子的转动动能C. 气体分子的振动动能D. 气体分子的平动和转动动能答案:D3. 根据热力学第二定律,下列哪种情况是不可能发生的?A. 在没有外界影响的情况下,热量从低温物体自发地传递到高温物体B. 热量从高温物体传递到低温物体C. 气体自发地从高压区扩散到低压区D. 气体自发地从低压区扩散到高压区答案:A二、填空题4. 热力学温度T与气体的压强P、体积V和物质的量n之间的关系可以用_________定律来描述。
答案:理想气体状态5. 当气体发生绝热膨胀时,气体的内能_________,温度_________。
答案:减小;降低三、简答题6. 什么是熵?熵在热力学第二定律中扮演着什么角色?答案:熵是热力学中表示系统无序程度的物理量,通常用符号S表示。
熵在热力学第二定律中扮演着核心角色,第二定律可以表述为在孤立系统中,熵总是倾向于增加,这意味着自发过程总是朝着熵增的方向进行。
四、计算题7. 一个理想气体在等压过程中,从体积V1=2m³增加到V2=4m³,压强P=1atm,气体常数R=8.31J/(mol·K),求气体的温度变化。
答案:首先,根据盖-吕萨克定律,PV/T = 常数。
由于是等压过程,我们有V1/T1 = V2/T2。
将已知数值代入,得到2/T1 = 4/T2,解得T1 = 0.5T2。
又因为T1 = P1V1/(nR),T2 = P2V2/(nR),由于是等压过程,P1 = P2 = P,所以T1 = T2。
将T1 = 0.5T2代入T1 = P1V1/(nR),解得T1 = 283K,T2 = 566K。
高中物理《热学》练习题(附答案解析)

高中物理《热学》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.关于两类永动机和热力学的两个定律,下列说法正确的是( )A .第二类永动机不可能制成是因为违反了热力学第一定律B .第一类永动机不可能制成是因为违反了热力学第二定律C .由热力学第一定律可知做功不一定改变内能,热传递也不一定改变内能,但同时做功和热传递一定会改变内能D .由热力学第二定律可知从单一热源吸收热量,完全变成功是可能的2.下列关于系统是否处于平衡态的说法,正确的是( )A .将一根铁丝的一端插入100℃的水中,另一端插入0℃的冰水混合物中,经过足够长的时间,铁丝处于平衡态B .两个温度不同的物体相互接触时,这两个物体组成的系统处于非平衡态C .0℃的冰水混合物放入1℃的环境中,冰水混合物处于平衡态D .压缩密闭容器中的空气,空气处于平衡态3.分子直径和分子的质量都很小,它们的数量级分别为( )A .102610m,10kg d m --==B .102910cm,10kg d m --==C .102910m,10kg d m --==D .82610m,10kg d m --==4.下列现象中,通过传热的方法来改变物体内能的是( )A .打开电灯开关,灯丝的温度升高,内能增加B .太阳能热水器在阳光照射下,水的温度逐渐升高C .用磨刀石磨刀时,刀片的温度升高,内能增加D .打击铁钉,铁钉的温度升高,内能增加5.图甲是一种导热材料做成的“强力吸盘挂钩”,图乙是它的工作原理图。
使用时,按住锁扣把吸盘紧压在墙上(图乙1),吸盘中的空气(可视为理想气体)被挤出一部分。
然后把锁扣缓慢扳下(图乙2),让锁扣以盘盖为依托把吸盘向外拉出。
在拉起吸盘的同时,锁扣对盘盖施加压力,致使盘盖以很大的压力压住吸盘,保持锁扣内气体密闭,环境温度保持不变。
下列说法正确的是( )A .锁扣扳下后,吸盘与墙壁间的摩擦力增大B .锁扣扳下后,吸盘内气体分子平均动能增大C .锁扣扳下过程中,锁扣对吸盘中的气体做正功,气体内能增加D .锁扣扳下后吸盘内气体分子数密度减小,气体压强减小6.以下说法正确的是( )A .气体对外做功,其内能一定减小B .分子势能一定随分子间距离的增加而增加C .烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明蜂蜡是晶体D .在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体7.在汽缸右侧封闭一定质量的理想气体,压强与大气压强相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、热学试题集粹(15+5+9+20=49个)一、选择题(在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确)1.下列说法正确的是[]A.温度是物体内能大小的标志B.布朗运动反映分子无规则的运动C.分子间距离减小时,分子势能一定增大D.分子势能最小时,分子间引力与斥力大小相等2.关于分子势能,下列说法正确的是[]A.分子间表现为引力时,分子间距离越小,分子势能越大B.分子间表现为斥力时,分子间距离越小,分子势能越大C.物体在热胀冷缩时,分子势能发生变化D.物体在做自由落体运动时,分子势能越来越小3.关于分子力,下列说法中正确的是[]A.碎玻璃不能拼合在一起,说明分子间斥力起作用B.将两块铅压紧以后能连成一块,说明分子间存在引力C.水和酒精混合后的体积小于原来体积之和,说明分子间存在的引力D.固体很难拉伸,也很难被压缩,说明分子间既有引力又有斥力4.下面关于分子间的相互作用力的说法正确的是[]A.分子间的相互作用力是由组成分子的原子内部的带电粒子间的相互作用而引起的B.分子间的相互作用力是引力还是斥力跟分子间的距离有关,当分子间距离较大时分子间就只有相互吸引的作用,当分子间距离较小时就只有相互推斥的作用C.分子间的引力和斥力总是同时存在的D.温度越高,分子间的相互作用力就越大5.用r表示两个分子间的距离,Ep表示两个分子间的相互作用势能.当r=r0时两分子间的斥力等于引力.设两分子距离很远时Ep=0 []A.当r>r0时,Ep随r的增大而增加B.当r<r0时,Ep随r的减小而增加C.当r>r0时,Ep不随r而变D.当r=r0时,Ep=06.一定质量的理想气体,温度从0℃升高到t℃时,压强变化如图2-1所示,在这一过程中气体体积变化情况是[]图2-1A.不变B.增大C.减小D.无法确定7.将一定质量的理想气体压缩,一次是等温压缩,一次是等压压缩,一次是绝热压缩,那么[]A.绝热压缩,气体的内能增加B.等压压缩,气体的内能增加C.绝热压缩和等温压缩,气体内能均不变D.三个过程气体内能均有变化8.如图2-2所示,0.5mol理想气体,从状态A变化到状态B,则气体在状态B时的温度为[]图2-2A.273KB.546KC.810KD.不知TA所以无法确定9.如图2-3是一定质量理想气体的p-V图线,若其状态由a→b→c→a(ab为等容过程,bc为等压过程,ca为等温过程),则气体在a、b、c三个状态时[]图2-3A.单位体积内气体分子数相等,即na=nb=ncB.气体分子的平均速度va>vb>vcC.气体分子在单位时间内对器壁单位面积碰撞次数Na>Nb>NcD.气体分子在单位时间内对器壁单位面积作用的总冲量Ia>Ib=Ic10.一定质量的理想气体的状态变化过程如图2-4所示,MN为一条直线,则气体从状态M到状态N的过程中[]图2-4A.温度保持不变B.温度先升高,后又减小到初始温度C.整个过程中气体对外不做功,气体要吸热D.气体的密度在不断减小11.一定质量的理想气体自状态A经状态B变化到状态C,这一过程在V-T图中的表示如图2-5所示,则[]A.在过程AB中,气体压强不断变大B.在过程BC中,气体密度不断变大C.在过程AB中,气体对外界做功D.在过程BC中,气体对外界放热12.如图2-6所示,一圆柱形容器上部圆筒较细,下部的圆筒较粗且足够长.容器的底是一可沿下圆筒无摩擦移动的活塞S,用细绳通过测力计F将活塞提着,容器中盛水.开始时,水面与上圆筒的开口处在同一水平面上(如图),在提着活塞的同时使活塞缓慢地下移.在这一过程中,测力计的读数[]图2-6A.先变小,然后保持不变B.一直保持不变C.先变大,然后变小D.先变小,然后变大13.如图2-7所示,粗细均匀的U形管,左管封闭一段空气柱,两侧水银面的高度差为h,U型管两管间的宽度为d,且d<h,现将U形管以O点为轴顺时针旋转90°至两个平行管水平,并保持U形管在竖直平面内,两管内水银柱的长度分别变为h1′和h2′.设温度不变,管的直径可忽略不计,则下列说法中正确的是[]图2-7A.h1增大,h2减小B.h1减小,h2增大,静止时h1′=h2′C.h1减小,h2增大,静止时h1′>h2′D.h1减小,h2增大,静止时h1′<h2′14.如图2-8所示,一根竖直的弹簧支持着一倒立气缸的活塞,使气缸悬空而静止,设活塞与缸壁间无摩擦且可以在缸内自由移动,缸壁导热性能良好使缸内气体总能与外界大气温度相同,则下述结论中正确的是[]A.若外界大气压增大,则弹簧将压缩一些B.若外界大气压增大,则气缸上底面距地面的高度将减小C.若气温升高,则气缸上底面距地面的高度将减小D.若气温升高,则气缸上底面距地面的高度将增大15.如图2-9所示,导热气缸开口向下,内有理想气体,气缸固定不动,缸内活塞可自由滑动且不漏气.活塞下挂一个砂桶,砂桶装满砂子时,活塞恰好静止.现给砂桶底部钻一个小洞,细砂慢慢漏出,外部环境温度恒定,则[]图2-9A.气体压强增大,内能不变B.外界对气体做功,气体温度不变C.气体体积减小,压强增大,内能减小D.外界对气体做功,气体内能增加二、填空题1.估算一下,可知地球表面附近空气分子之间的距离约为________m(取一位有效数字);某金属的摩尔质量为M,密度为ρ,阿伏加德罗常量为N.若把金属分子视为球形,经估算该金属的分子直径约为________.2.高压锅的锅盖通过几个牙齿似的锅齿与锅镶嵌旋紧,锅盖与锅之间有橡皮制的密封圈,不会漏气.锅盖中间有一排气孔,上面套上类似砝码的限压阀,将排气孔堵住.当加热高压锅,锅内气体压强增大到一定程度时,气体就把限压阀顶起来,蒸汽即从排气孔中排出锅外.已知某高压锅限压阀的质量为0.1kg,排气孔直径为0.3cm,则锅内气体压强最大可达________Pa.3.圆筒内装有100升1atm的空气,要使圆筒内空气压强增大到10atm,应向筒内打入同温度下2atm的压缩气体________L.4.如图2-10所示为一定质量理想气体的状态变化过程的图线A→B→C→A,则B→C的变化是________过程,若已知TA=300K,TB=400K,则TC=________K.图2-105.一圆柱形的坚固容器,高为h,上底有一可以打开和关闭的密封阀门.现把此容器沉入水深为H 的湖底,并打开阀门,让水充满容器,然后关闭阀门.设大气压强为p0,湖水密度为ρ.则容器内部底面受到的向下的压强为________.然后保持容器状态不变,将容器从湖底移到湖面,这时容器内部底面受到的向下压强为________.填空题参考答案1.3×10-9 2.2.4×105 3.450 4.等压1600/3 5.p0+ρgHρgH三、实验题1.在“验证玻意耳定律”的实验中,对气体的初状态和末状态的测量和计算都正确无误,结果末状态的pV值与初状态的p0V0值明显不等,造成这一结果的可能原因是实验过程中:[]A.气体温度发生变化B.气体与外界有热传递C.有气体泄漏D.气体体积改变得太迅速2.如图2-11所示为实验室常用的气压计结构示意图,它是根据托里拆里实验原理制成的,管中水银柱的高度(即为当时的大气压数值)通过带有游标的刻度尺读出,图中的读数部分被放大,从放大的图中读出,测量的大气压强值为________mmHg.图1-113.在利用带刻度的注射器做“验证玻意耳定律”的实验中.(1)甲同学用水银气压计测大气压强,读数时,观察发现气压计上20分度的游标尺(游标尺上每等分刻度线间距为1.95mm)上的第6条刻度线(第6条刻度线是从0刻度线数起的第7条线)与主尺上的77.1cm刻度线正好对齐.(1)此时大气压强为________mmHg.图2-12(2)乙、丙两同学各自对气体观察测量计算后又改变气体状态,得到几组值,并在同一坐标内画出p-(1/V)图线如图1-12所示,由图线知,这是由于它们的________不同使得两图线并不重合.4.在“验证玻意耳定律”的实验中(1)某同学列出所需要的实验器材:带框架的注射器(有刻度),橡皮帽,钩码(若干个),弹簧秤,天平(带砝码),铁架台(连铁夹),润滑油.问:该同学漏选了哪些器材?答:________.(2)图2-13是甲、乙两同学在同一次实验中得到的p-(1/V)图.若两人实验时操作均正确无误,且选取坐标标度相同,那么两图线斜率不同的主要原因是________.图2-135.在河边,给你一根60cm左右的两端开口的均匀细玻璃管,米尺一把,请设法测定大气压的值,写出主要实验步骤及相应的所需测量的物理量(不得下水测量).答:.计算大气压的公式p0=.6.一位同学分别在两天用注射器做两次“验证玻意耳定律”的实验,操作过程和方法都正确,根据实验数据他在同一p-V坐标中画出了两条不重合的甲、乙两条双曲线,如图2-15所示,产生这种情况的原因可能是:(1).(2).图2-15 图2-167.用“验证玻意尔定律实验”的装置来测量大气压强,所用注射器的最大容积为Vm,刻度全长为L,活塞与钩码支架的总质量为M,注射器被固定在竖直方向上,如图2-16.在活塞两侧各悬挂1个质量为m的钩码时注射器内空气体积为V1;除去钩码后,用弹簧秤向上拉活塞,达到平衡时注射器内空气体积为V2,弹簧秤的读数为F(整个过程中,温度保持不变).由这些数据可以求出大气压强p0=.8.一学生用带有刻度的注射器做“验证玻意耳定律”的实验.他在做了一定的准备工作后,通过改变与活塞固定在一起的框架上所挂钩码的个数得到了几组关于封闭在注射器内部空气的压强p和体积V的数据.用横坐标表示体积的倒数,用纵坐标表示压强,由实验数据在坐标系中画出了p-1/V图,其图线为一条延长线与横轴有较大截距OA的直线,如图2-17所示.由图线分析下列四种情况,在实验中可能出现的是A.记录气压计指示的大气压强时,记录值比指示值明显减小B.记录气压计指示的大气压强时,记录值比指示值明显偏大C.测量活塞和框架的质量时,测量值比指示值明显偏小D.测量活塞和框架的质量时,测量值比指示值明显偏大答:.图2-17 图2-189.验证查理定律的实验装置如图2-18所示,在这个实验中,测得压强和温度的数据中,必须测出的一组数据是和.首先要在环境温度条件下调节A、B管中水银面,此时烧瓶中空气压强为,再把烧瓶放进盛着冰水混合物的容器里,瓶里空气的温度下降至跟冰水混合物的温度一样,此时烧瓶中空气温度为K,B管中水银面将,再将A管,使B管中水银面.这时瓶内空气压强等于.实验题参考答案1.ACD2.756.5 3.759.30 气体质量4.(1)气压计,刻度尺(2)两人实验时封闭气体质量不同 5.①测玻璃管长l0;②将管部分插入水中,测量管水上部分长度l1;③手指封住上口,将管提出水面,测管内空气柱长l2.(l0-l2)l2ρ水g/(l2-l1) 6.(1)质量不同;(2)温度不同. 7.p0=L(MgV1-MgV2+2mgV1+FV2)/Vm(V2-V1) 8.AC 9.当时大气压,当时温度,等高,大气压,273,上移,下降,回复到原来标度的位置,大气压强减去A、B管中水银面高度差四、计算题1.如图2-14所示,有一热气球,球的下端有一小口,使球内外的空气可以流通,以保持球内外压强相等,球内有温度调节器,以便调节球内空气的温度,使气球可以上升或下降,设气球的总体积V0=500m3(不计算壳体积),除球内空气外,气球质量M=180kg.已知地球表面大气温度T0=280K,密度ρ0=1.20kg/m3,如果把大气视为理想气体,它的组成和温度几乎不随高度变化.问:为使气球从地面飘起,球内气温最低必须加热到多少开?图2-142.已知一定质量的理想气体的初始状态Ⅰ的状态参量为p1、V1、T1,终了状态Ⅱ的状态参量为p2、V2、T2,且p2>p1,V2>V1,如图2-15所示.试用玻意耳定律和查理定律推导出一定质量的理想气体状态方程.要求说明推导过程中每步的根据,最后结果的物理意义,且在p-V图上用图线表示推导中气体状态的变化过程.图2-153.在如图2-16中,质量为mA的圆柱形气缸A位于水平地面,气缸内有一面积S=5.00×10-3m2,质量mB=10.0kg的活塞B,把一定质量的气体封闭在气缸内,气体的质量比气缸的质量小得多,活塞与气缸的摩擦不计,大气压强=1.00×105Pa.活塞B经跨过定滑轮的轻绳与质量为mC=20.0kg的圆桶C相连.当活塞处于平衡时,气缸内的气柱长为L/4,L为气缸的深度,它比活塞的厚度大得多,现在徐徐向C桶内倒入细沙粒,若气缸A能离开地面,则气缸A的质量应满足什么条件?图2-164.如图2-17所示,一圆柱形气缸直立在水平地面上,内有质量不计的可上下移动的活塞,在距缸底高为2H0的缸口处有固定的卡环,使活塞不会从气缸中顶出,气缸壁和活塞都是不导热的,它们之间没有摩擦.活塞下方距缸底高为H0处还有一固定的可导热的隔板,将容器分为A、B两部分,A、B中各封闭同种的理想气体,开始时A、B中气体的温度均为27℃,压强等于外界大气压强p0,活塞距气缸底的高度为1.6H0,现通过B中的电热丝缓慢加热,试求:图2-17(1)与B中气体的压强为1.5p0时,活塞距缸底的高度是多少?(2)当A中气体的压强为1.5p0时,B中气体的温度是多少?5.如图2-18所示是一个容积计,它是测量易溶于水的粉末物质的实际体积的装置,A容器的容积VA=300cm3.S是通大气的阀门,C是水银槽,通过橡皮管与容器B相通.连通A、B的管道很细,容积可以忽略.下面是测量的操作过程:(1)打开S,移动C,使B中水银面降低到与标记M相平.(2)关闭S,缓慢提升C,使B中水银面升到与标记N相平,量出C中水银面比标记N高h1=25cm.(3)打开S,将待测粉末装入容器A中,移动C使B内水银面降到M标记处.(4)关闭S,提升C使B内水银面升到与N标记相平,量出C中水银面比标记N高h2=75cm.(5)从气压计上读得当时大气压为p0=75cmHg.设整个过程温度保持不变.试根据以上数据求出A中待测粉末的实际体积.图2-186.某种喷雾器贮液筒的总容积为7.5L,如图2-19所示,现打开密封盖,装入6L的药液,与贮液筒相连的活塞式打气筒,每次能压入300cm3、1atm的空气,若以上过程温度都保持不变,则图2-19(1)要使贮气筒中空气压强达到4atm,打气筒应该拉压几次?(2)在贮气筒内气体压强达4atm,才打开喷嘴使其喷雾,直至内外气体压强相等,这时筒内还剩多少药液?7.(1)一定质量的理想气体,初状态的压强、体积和温度分别为p1、V1、T1,经过某一变化过程,气体的末状态压强、体积和温度分别为p2、V2、T2.试用玻意耳定律及查理定律推证:p1V1/T1=p2V2/T2.(2)如图2-19,竖直放置的两端开口的U形管(内径均匀),内充有密度为ρ的水银,开始两管内的水银面到管口的距离均为L.在大气压强为p0=2ρgL时,用质量和厚度均不计的橡皮塞将U形管的左侧管口A封闭,用摩擦和厚度均不计的小活塞将U形管右侧管口B封闭,橡皮塞与管口A内壁间的最大静摩擦力fm=ρgLS(S为管的内横截面积).现将小活塞向下推,设管内空气温度保持不变,要使橡皮塞不会从管口A被推出,求小活塞下推的最大距离.图2-198.用玻马定律和查理定律推出一定质量理想气体状态方程,并在图2-20的气缸示意图中,画出活塞位置,并注明变化原因,写出状态量.图2-209.如图2-21所示装置中,A、B和C三支内径相等的玻璃管,它们都处于竖直位置,A、B两管的上端等高,管内装有水,A管上端封闭,内有气体,B管上端开口与大气相通,C管中水的下方有活塞顶住.A、B、C三管由内径很小的细管连接在一起.开始时,A管中气柱长L1=3.0m,B管中气柱长L2=2.0m,C管中水柱长L0=3m,整个装置处于平衡状态.现将活塞缓慢向上顶,直到C管中的水全部被顶到上面的管中,求此时A管中气柱的长度L1′,已知大气压强p0=1.0×105Pa,计算时取g=10m/s2.图2-2010.麦克劳真空计是一种测量极稀薄气体压强的仪器,其基本部分是一个玻璃连通器,其上端玻璃管A与盛有待测气体的容器连接,其下端D经过橡皮软管与水银容器R相通,如图2-22所示.图中K1、K2是互相平行的竖直毛细管,它们的内径皆为d,K1顶端封闭.在玻璃泡B与管C相通处刻有标记m.测量时,先降低R使水银面低于m,如图2-22(a).逐渐提升R,直到K2中水银面与K1顶端等高,这时K1中水银面比顶端低h,如图2-22(b)所示.设待测容器较大,水银面升降不影响其中压强,测量过程中温度不变.已知B(m以上)的容积为V,K1的容积远小于V,水银密度为ρ.(1)试导出上述过(2)已知V=628cm3,毛细管的直径d=0.30mm,水银密度ρ=13.6×103程中计算待测压强p的表达式.kg/m3,h=40mm,算出待测压强p(计算时取g=10m/s2,结果保留2位数字).图2-2111.如图2-23所示,容器A和气缸B都是透热的,A放置在127℃的恒温箱中,而B放置在27℃、1atm的空气中,开始时阀门S关闭,A内为真空,其容器VA=2.4L;B内轻活塞下方装有理想气体,其体积为VB=4.8L,活塞上方与大气相通.设活塞与气缸壁之间无摩擦且不漏气,连接A和B的细管容积不计.若打开S,使B内封闭气体流入A,活塞将发生移动,待活塞停止移动时,B内活塞下方剩余气体的体积是多少?不计A与B之间的热传递.图2-22 图2-2312.如图2-23有一热空气球,球的下端有一小口,使球内外的空气可以流通,以保持球内外压强相等,球内有温度调节器,以便调节球内空气温度,使气球可以上升或下降,设气球的总体积V0=500 m3(不计球壳体积),除球内空气外,气球质量M=180kg.已知地球表面大气温度T0=280K,密度ρ0=1.20kg/m3,如果把大气视为理想气体,它的组成和温度几乎不随高度变化,问:为使气球从地面飘起,球内气温最低必须加热到多少开?13.如图2-25均匀薄壁U形管,左管上端封闭,右管开口且足够长,管的横截面积为S,内装密度为ρ的液体.右管内有一质量为m的活塞搁在固定卡口上,卡口与左管上端等高,活塞与管壁间无摩擦且不漏气.温度为T0时,左、右管内液面高度相等,两管内空气柱长度均为L,压强均为大气压强p0.现使两边温度同时逐渐升高,求:(1)温度升高到多少时,右管活塞开始离开卡口上升?(2)温度升高到多少时,左管内液面下降h?图2-24 图2-2514.如图2-26所示的装置中,装有密度ρ=7.5×102kg/m3的液体的均匀U形管的右端与体积很大的密闭贮气箱相连通,左端封闭着一段气体.在气温为-23℃时,气柱长62cm,右端比左端低40cm.当气温升至27℃时,左管液面上升了2cm.求贮气箱内气体在-23℃时的压强为多少?(g取10m/s2)15.两端开口、内表面光滑的U形管处于竖直平面内,如图2-27所示,质量均为m=10kg的活塞A、B在外力作用下静止于左右管中同一高度h处,将管内空气封闭,此时管内外空气的压强均为p0=1.0×105Pa.左管和水平管横截面积S1=10cm2,右管横截面积S2=20cm2,水平管长为3h.现撤去外力让活塞在管中下降,求两活塞稳定后所处的高度.(活塞厚度略大于水平管直径,管内气体初末状态同温,g取10m/s2)图2-26 图2-2716.如图2-28,圆筒固定不动,活塞A的横截面积是2S,活塞B的横截面积是S,圆筒内壁光滑,圆筒左端封闭,右端与大气相通,大气压为p0,A、B将圆筒分为两部分,左半部分是真空,A、B之间是一定质量的气体,活塞B通过劲度系数为k的弹簧与圆筒左端相连,开始时粗筒和细筒的封闭的长度均为L,现用水平向左的力F=pS/2作用在活塞A上,求活塞A移动的距离?(设气体温度不变)17.如图2-29所示,圆柱形气缸内的活塞把气缸分隔成A、B两部分,A内为真空,用细管将B与U形管相连,细管与U形管内气体体积可忽略不计.大气压强p0=76cmHg.开始时,U型管中左边水银面比右边高6cm,气缸中气体温度为27℃.(1)将活塞移到气缸左端,保持气体温度不变,稳定后U形管中左边水银面比右边高62cm.求开始时气缸中A、B两部分体积之比.(2)再将活塞从左端缓缓向右推动,并在推动过程中随时调节气缸B内气体的温度,使气体压强随活塞移动的距离均匀增大,且最后当活塞回到原处时气体的压强和温度都恢复到最初的状态,求此过程中气体的最高温度.图2-28 图2-2918.如图2-30所示装置,C为一长方体容器,体积为1000cm3,C上端有一细玻璃管通过活栓S与大气相通,又通过细管A与球形容器B相连,B下端的玻璃管口用橡皮管接有一个水银压强计,压强计的动管为D.(1)现打开活栓S,这时管A、容器C、B皆与大气相通,上下移动D使管内水银面在B下端的n处,这时再关闭S,上举D,使水银面达到B上端的m处,这时D管内水银面高出m点h1=12cm.(2)然后打开S,把0.50kg矿砂通过S放入C,同时移动D,使水银面对齐n,然后关闭S,再上举D,使水银面再次达到m处,这时D管水银面高出m点h2=15cm.设容器内空气温度不变,求矿砂的密度.(连接C、B的细管A和连接C、S之间细管的容积都可忽略不计)19.如图2-31所示,静止车厢内斜靠着一个长圆气缸,与车厢底板成θ角,气缸上方活塞质量为M,缸内封有长为l0的空气柱,活塞面积为S,不计摩擦,大气压强为p0.设温度不变,求:(1)当车厢在水平轨道上向右做匀加速运动时,发现缸内空气压强与p0相同,此时车厢加速度多大?(2)上述情况下,气缸内空气柱长度多大?图2-30 图2-3120.如图2-32所示,在直立的圆柱形气缸内,有上、下两个活塞A和B,质量相等,连接两活塞的轻质弹簧的劲度系数k=50N/m,活塞A上方气体的压强p=100Pa,平衡时两活塞之间的气体的压强为p=100Pa,气体的厚度l1=0.20m,活塞B下方的气体的厚度l2=0.24m,气缸的横截面积S=0.10m2.起初,气缸内气体的温度是T=300K,现让气体的温度缓慢上升,直到温度达到T′=500K.求在这一过程中,活塞A向上移动的距离.计算题参考答案1.解:设使气球刚好从地面飘起时球内空气密度为ρ,则由题意知ρ0gV0=Mg+ρgV0,设温度为T、密度为ρ、体积为V0的这部分气体在温度为T0,密度为ρ0时体积为V,即有ρV0=ρ0V.由等压变化有V0/T=V/T0,解得T=400K.2.解:设气体先由状态Ⅰ(p1、V1、T1),经等温变化至中间状态A(pA、V2、T1),由玻意耳定律,得p1V1=pAV2,①再由中间状态A(pA、V2、T1)经等容变化至终态Ⅱ(p2、V2、T2),由查理定律,得pA/T1=p2/T2,②由①×②消去pA,可得p1V1/T1=p2V2/T2,上式表明:一定质量的理想气体从初态(p1、V1、T1)变到终态(p2、V2、T2),压强和体积的乘积与热力学温度的比值是不变的.过程变化如图6所示.图63.解:取气缸内气柱长为L/4的平衡态为状态1,气缸被缓慢提离地面时的平衡态为状态2.以p1、p2表示状态1、2的压强,L2表示在状态2中气缸内气柱长度.由玻意耳定律,得p1L/4=p2L2,①在状态1,活塞B处于力学平衡状态,由力学平衡条件得到p1S+mCg=p0S+mBg,②在状态2,气缸A处于力学平衡状态,由力学平衡条件得到p2S+mAg=p0S,③由①、②、③三式解得mA=(p0S/g)-((p0S+mBg-mCg)/4g)(L/L2),以题给数据代入就得到mA=(50-10(L/L2))kg,由于L2最大等于L.故由⑤式得知,若想轻绳能把气缸A提离地面,气缸的质量应满足条件mA≤40kg.4.(1)B中气体做等容变化,由查理定律pB/p′B=TB/T′B,求得压强为1.5p0时气体的温度T′B=450K.A中气体做等压变化,由于隔板导热,A、B中气体温度相等,A中气体温度也为450K.对A中气体VA′/VA=TA′/TA,VA′=(TB′/TA)VA=0.9H0S,活塞距离缸底的高度为1.9H0.(2)当A中气体压强为1.5p0,活塞将顶在卡环处,对A中气体pAVA/TA=p″AV"A/T"A,得T"A=(p"AV"A/pAVA)TA=750K.即B中气体温度也为750K.5.解:对于步骤①②,以A、B中气体为研究对象.初态p1=p0,V1=VA+VB,末态p2=p0+h1,V2=VA,依玻意耳定律p1V1=p2V2,解得VB=100cm3.对于步骤③④,以A、B中气体为研究对象,初态p′1=p0,V′1=V,末态p′2=p0+h2,V′2=V-VB,依玻意耳定律p′1V′1=p′2V′2,解得V=200cm3,粉末体积V0=VA+VB-V=200cm3.6.解:(1)贮液筒装入液体后的气体体积V1=V总-V液①设拉力n次打气筒压入的气体体积V2=nV0,②根据分压公式:(温度T一定)pV1=p1V1+p1V2,③解①②③,可得n=(pV1-p1V1)/p1V0=15(次),④(2)对充好气的贮液筒中的气体,m,T一定喷雾后至内外压强相等,贮液筒内气体体积为V2,pV1=p2V2,⑤贮液筒内还剩有药液体积V剩=V总-V2⑥解⑤⑥得:V剩=1.5L.⑦7.(1)证明:在如图5所示的p-V图中,一定质量的气体从初状态A(p1,V1,T1)变化至末状态B(p2,V2,T2),假设气体从初状态先等温变化至C(pC,V2,T1),再等容变化至B(p2,V2,T2).第一个变化过程根据玻耳定律有,p1V1=pCV2.第二个变化过程根据查理定律有,pC/p2=T1/T2.由以上两式可解得:p1V1/T1=p2V2/T2.图5(2)解:设小活塞下推最大距离L1时,左管水银面上升的距离为x,以p0表示左右两管气体初态的压强,p1、p2表示压缩后左右两管气体的压强.根据玻意耳定律,左管内气体p0LS=p1(L-x)S,右管内气体p0LS=p2(L+x-L1)S,左、右两管气体末状态压强关系p2=p1+ρg·2x.橡皮塞刚好不被推出时,根据共点力平衡条件p1S=p0S+fm=3ρgLS,由上四式解得x=L/3,L1=26L/33.8.图略.由等温变化的玻意耳定律,得p1V2=pCV2,再由等容变化的查理定律,得pC/T1=p2/T2,两式联立,化简得:p1V1/T1=p2V2/T2.9.解:设活塞顶上后,A、B两管气柱长分别为L1′和L2′,则[p0+ρg(L1-L2)]L1=[p0+ρg(L1′-L2′)]L1′,且L1-L1′+L2-L2′=L0,解得L1′=2.5m.表明A管中进水0.5m,因C管中原有水3.0m,余下的2.5m水应顶入B管,而B管上方空间只有2.0m,可知一定有水溢出B管.按B管上方有水溢出列方程,对封闭气体p1=p0-ρg(L1-L2),p1′=p0+ρgL1′,p1L1=p1′L1′,。