完整word高考圆锥曲线经典大题

合集下载

(word完整版)圆锥曲线综合试题(全部大题目)含答案,文档.docx

(word完整版)圆锥曲线综合试题(全部大题目)含答案,文档.docx

1.平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线x2 2 py 外一点 P(x0 , y0 ) 的任一直线与抛物线的两个交点为C、 D ,与抛物线切点弦 AB的交点为 Q。

(1)求证:抛物线切点弦的方程为x0 x p( y+ y0 ) ;(2)求证:112.PC| PD || PQ |2. 已知定点F( 1,0 ),动点 P 在 y 轴上运动,过点 P 作 PM 交 x 轴于点 M ,并延长MP 到点 N,且PM PF 0,| PM | | PN |.(1)动点 N 的轨迹方程;(2)线 l 与动点 N 的轨迹交于 A,B 两点,若OA OB4, 且4 6| AB | 4 30 ,求直线 l 的斜率 k 的取值范围 .3. 如图,椭圆C1:x2y21的左右顶点分别为A、B,P 为双曲线C2: x 2y 21右支4343上( x 轴上方)一点,连AP 交 C1于 C,连 PB 并延长交1于 D,且△ ACD与△ PCD的面积C相等,求直线 PD 的斜率及直线CD 的倾斜角 .4. 已知点M ( 2,0), N (2,0),动点P满足条件| PM || PN | 2 2 .记动点 P 的轨迹为W.(Ⅰ)求 W 的方程;uuur uuur(Ⅱ)若 A, B 是W上的不同两点,O 是坐标原点,求OA OB 的最小值.5.已知曲线 C的方程为 : kx2+(4-k)y2=k+1,(k∈ R)(Ⅰ)若曲线 C是椭圆,求 k的取值范围;(Ⅱ)若曲线 C是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程;(Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P,Q关于直线 l: y=x-1对称,若存在,求出过 P,Q的直线方程;若不存在,说明理由。

6. 如图( 21)图,M(-2,0)和 N( 2,0)是平面上的两点,动点P满足:PM PN 6.(1)求点 P 的轨迹方程;2(2)若PM·PN=1 cos MPN,求点 P 的坐标 .x2y21 (a b x 2y217. 已知F为椭圆b20) 的右焦点,直线l过点 F 且与双曲线b2a2a 的两条渐进线 l1, l2分别交于点M , N,与椭圆交于点A, B.(I)若MON,双曲线的焦距为4。

(完整word版)圆锥曲线经典练习题及答案

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答大足二中 欧国绪直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3(C) I (D ) 2.设F 为抛物线 c : y 2=4x 的焦点, 曲线 ky= ( k>0)与C 交于点P , PF 丄x 轴,则k= x(B )1 3 (C)—2(D )23•双曲线 2 x C : Ta 2y_1(a 0,b 0)的离心率为2,焦点到渐近线的距离为'、3,贝U C的焦距等于 A. 2 B. 2、2 C.4D.4•已知椭圆 C :0)的左右焦点为 F i ,F 2,离心率为丄3,过F 2的直线l3交C 与A 、B 两点, 若厶AF i B 的周长为4、、3,则C 的方程为()2 A. x_3 B. 2x 2彳 xr y 1C.2 x 12 D. 2 x 12 5. y 2 b 2线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2a 1(a 0,b 0)的一条渐近线平行于直线 I :y 2x 10,双曲 2 B — 20 2为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 21 C.— 25 占 八、、的焦点, uu uuuOA OB A 、2 (其中O 为坐标原点),则-1^/2 87.抛物线 =X 2的准线方程是4(A) y (B)2(C)) D M 辽.100 25 ABO 与 AFO 面积之和的最小值是( )x 1(D)8•已知点A( 2,3)在抛物线C:2px的准线上,记C的焦点为F,则直线AF的斜率为A. 4B. 13C.D.9.设F为抛物线C A, B两点,贝S AB =(A)旦3 2 c:y =3x(B)10.已知抛物线C: 的焦点,过F且倾斜角为30°的直线交于C于(C) 12 (D)7、、3x的焦点为F , A X o, y0是C上一点, AF 5 冲4X0,则X o ()A. 1B. 2C. 4x2 11.已知双曲线—a拆A. 2 B.- D. 82y3、5C. -D.121(a 0)的离心率为2,则a20)与C 交于点P , PF 丄x 轴,所以- 2,所以k=2 ,1选D.3.C4.A5.A••• - 2,0 2c 10, A c 5, a 2 5, b 2 20, a2 2A x- y_ 1.5206. B试卷答案 1.B试题分析:如图,在椭圆中, OF c, OB b, OD 2b -b2在 Rt OFB 中,| OF | |OB| |BF | |OD |,且 a 2 b 22c ,代入解得x2 2 a 4c ,所以椭圆的离心率为: e 1,故选B. k焦点F(1,0),又因为曲线y (k xy2= x ••• F(],0),设人(%2,%)弋(『22°2),%>0, y2<0, B=v OAOB>4OAOB= y^y^ + y』2 = 2 • (y』2+ 2)(%丫2-1) = 0,即yy = -21 1 1 1 - •…S从OF = ?- ?y1, S^A OB = ?OA?OB?sin 0= -?OAOB?tan 0= tan 0cos0=驴!. 4 22 4 2= < 222|OA||OB| W + y1 肛 + y2 2讥%+1)(y2 +1)1_______ = 1/2 2 2 2 - ,i'~2 2 - ■ y1 y2 + y1 + y2 + 1 , y1 + y2 +5i14 2 i14 2 2,— ----------- 川+4y1 +4 卩+4y1 +4 % + 2 2--tan 0= 比+ y2 + 4 = = = 一= y1 +y1 *y1 y1 + S 从OB =鲁+ %+ —= 98y1+ —8 y1 8 y17. A8. C【答SIC【解析】试題分析;由已知得,抛物柱於=2四的谁竝方程为兀=一彳,且过点故一彳=一2,则左二4,2 2-r 3-0 3戸(2卫>则直线AF的斜率肛=-- =—「选U-2-24【考点定位】1、抛物线的标准方程和简单几何性质;2、直线的斜率.9. C3设AF = 2m, BF = 2n, F(-,0).则由抛物线的定义和直角三角形知识可得,43 3 3 32m=2?—+ ..3m,2n=2?—- 3n,解得m= —(2+、3),n 二(2八3), • m+n =6.4 4 2 2AB= AF + BF = 2m+ 2n = 12故选C.10. A根据抛物线的定义可知AF1 5X0 - - X0,解之得X0 1 .选A4 411.D 注??:=3.选 BS AAOF2 3由双曲线的离心率可得7a------- 2,解得a 1,选D.a。

(完整版)高考圆锥曲线经典真题

(完整版)高考圆锥曲线经典真题

高考圆锥曲线经典真题知识整合:直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.1.(江西卷15)过抛物线22(0)x py p =>的焦点F 作倾角为30o 的直线,与抛物线分别交于A 、B 两点(A 在y 轴左侧),则AFFB= .132 (2008年安徽卷)若过点A(4,0)的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 ( ) A. [3,3] B. (3,3) C.33[33-D. 33(,33-3(2008年海南---宁夏卷)设双曲线221916x y -=的右顶点为A,右焦点为F,过点F平行双曲线的一条渐近线的直线与双曲线交于点B,则三角形AFB 的面积为-___________. 热点考点探究:考点一:直线与曲线交点问题例1.已知双曲线C :2x2-y2=2与点P(1,2)(1)求过P(1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点.解:(1)当直线l 的斜率不存在时,l 的方程为x=1,与曲线C 有一个交点.当l的斜率存在时,设直线l 的方程为y -2=k(x -1),代入C 的方程,并整理得 (2-k2)x2+2(k2-2k)x -k2+4k -6=0 (*) (ⅰ)当2-k2=0,即k=±2时,方程(*)有一个根,l 与C 有一个交点(ⅱ)当2-k2≠0,即k ≠±2时Δ=[2(k2-2k)]2-4(2-k2)(-k2+4k -6)=16(3-2k) ①当Δ=0,即3-2k=0,k=23时,方程(*)有一个实根,l 与C 有一个交点.②当Δ>0,即k <23,又k ≠±2,故当k <-2或-2<k <2或2<k <23时,方程(*)有两不等实根,l 与C 有两个交点. ③当Δ<0,即k >23时,方程(*)无解,l与C 无交点.综上知:当k=±2,或k=23,或k 不存在时,l 与C 只有一个交点; 当2<k <23,或-2<k <2,或k <-2时,l 与C 有两个交点;当k >23时,l与C 没有交点.(2)假设以Q 为中点的弦存在,设为AB ,且A(x1,y1),B(x2,y2),则2x12-y12=2,2x22-y22=2两式相减得:2(x1-x2)(x1+x2)=(y1-y2)(y1+y2) 又∵x1+x2=2,y1+y2=2 ∴2(x1-x2)=y1-y1 即kAB=2121x x y y --=2但渐近线斜率为±2,结合图形知直线AB 与C 无交点,所以假设不正确,即以Q 为中点的弦不存在.(2)若Q(1,1),试判断以Q 为中点的弦是否存在. 考点二:圆锥曲线中的最值问题对于圆锥曲线问题上一些动点,在变化过程中会引入一些相互联系、相互制约的变量,从而使变量与其中的参变量之间构成函数关系,此时,用函数思想与函数方法处理起来十分方便。

(完整版)圆锥曲线大题20道(含标准答案)

(完整版)圆锥曲线大题20道(含标准答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。

(完整版)圆锥曲线经典题目(含答案)

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。

(完整word版)圆锥曲线压轴解答题22题(含详细答案,可直接打印)

(完整word版)圆锥曲线压轴解答题22题(含详细答案,可直接打印)

圆锥曲线压轴22题及答案一.解答题(共22小题)1.已知抛物线C :y 2=2px (p >0)的焦点是椭圆M :+=1(a >b >0)的右焦点,且两曲线有公共点(,).(1)求椭圆M 的方程;(2)O 为坐标原点,A ,B ,C 是椭圆M 上不同的三点,并且O 为△ABC 的重心,试探究△ABC 的面积是否为定值.若是,求出这个定值;若不是,请说明理由. 2.已知直线11:ax ﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l 2的交点为M,当a 变化时,求点M 的轨迹C 的方程:(2)已知点D (2,0),过点E (﹣2,0)的直线1与C 交于A ,B 两点,求△ABD 面积的最大值. 3.已知椭圆C:+=1(a >b >0)的四个顶点围成的菱形的面积为4,点M 与点F 分别为椭圆C 的上顶点与左焦点,且△MOF 的面积为(点O 为坐标原点).(1)求C 的方程;(2)直线l 过F 且与椭圆C 交于P ,Q 两点,点P 关于O 的对称点为P′,求△PP′Q 面积的最大值.4.如图所示,椭圆C 1:+y 2=1,抛物线C 2:y=x 2﹣1,其中C 2与y 轴的交点为M,过坐标原点O的直线l 与C 2相交于点A ,B,直线MA ,MB 分别与C 1相交于点D ,E . (Ⅰ)证明:MA ⊥MB;(Ⅱ)记△MAB ,△MDE 的面积分别是S 1,S 2.问:是否存在直线l ,使得=.若存在,求出直线l 的方程,若不存在,请说明理由.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B 两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y轴上是否存在异于点P的定点Q,使得直线l变化时,总有∠PQA=∠PQB?若存在,求出点Q的坐标;若不存在,请说明理由.7.已知椭圆,点在椭圆C上,椭圆C的四个顶点的连线构成的四边形的面积为.(1)求椭圆C的方程;(2)设点A为椭圆长轴的左端点,P、Q为椭圆上异于椭圆C长轴端点的两点,记直线AP、AQ斜率分别为k1、k2,若k1k2=2,请判断直线PQ是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由.8.已知椭圆Γ:=1(0<b<2)的左右焦点分别为F1、F2,上顶点为B,O为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q(1,0),点P是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B的直线l与椭圆Γ相交于M、N两点,且直线BM、BN的斜率之和为1,证明:直线l过定点.9.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.10.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x 轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围. 12.已知椭圆经过点,离心率为,过右焦点F 且与x 轴不垂直的直线l 交椭圆于P ,Q 两点. ( I )求椭圆C 的方程; ( II )当直线l 的斜率为时,求△POQ 的面积;( III )在椭圆C 上是否存在点M ,使得四边形OPMQ 为平行四边形?若存在,求出直线l 的方程;若不存在,请说明理由. 13.已知F 1、F 2是椭圆C :(a >b >0)的左、右焦点,过F 2作x 轴的垂线与C 交于A 、B两点,F 1B 与y 轴交于点D ,AD ⊥F 1B ,且|OD|=1,O 为坐标原点. (1)求C 的方程;(2)设P 为椭圆C 上任一异于顶点的点,A 1、A 2为C 的上、下顶点,直线PA 1、PA 2分别交x 轴于点M 、N .若直线OT 与过点M 、N 的圆切于点T .试问:|OT|是否为定值?若是,求出该定值;若不是,请说明理由. 14.已知椭圆C :+=1的两个焦点分别是F 1(﹣,0),F 2(,0),点E(,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是y 轴上的一点,若椭圆C 上存在两点M ,N 使=2,求以F 1P 为直径的圆面积取值范围. 15.已知椭圆的右焦点为F ,离心率为,平行于x 轴的直线交椭圆于A ,B 两点,且.(I )求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由. 16.已知椭圆C :(a >b >0)的离心率,抛物线E :的焦点恰好是椭圆C的一个顶点.(1)求椭圆C 的标准方程;(2)过点P (0,1)的动直线与椭圆C 交于A,B 两点,设O 为坐标原点,是否存在常数λ,使得恒成立?请说明理由.17.在平面直角坐标系中,点F 1、F 2分别为双曲线C :的左、右焦点,双曲线C 的离心率为2,点(1,)在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形PF 1QF 2的周长为.(1)求动点P 的轨迹方程;(2)在动点P 的轨迹上有两个不同的点M (x 1,y 1)、N (x 2,y 2),线段MN 的中点为G ,已知点(x 1,x 2)在圆x 2+y 2=2上,求|OG |•|MN |的最大值,并判断此时△OMN 的形状. 18.已知抛物线C :y 2=2px (p >0),其内接△ABC 中∠A=90°. (I)当点A 与原点重合时,求斜边BC 中点M 的轨迹方程;(II )当点A 的纵坐标为常数t 0(t 0∈R )时,判断BC 所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由. 19.如图,已知F 1,F 2分别是椭圆的左、右焦点,点P (﹣2,3)是椭圆C上一点,且PF 1⊥x 轴. (1)求椭圆C 的方程;(2)设圆M :(x ﹣m )2+y 2=r 2(r >0).①设圆M 与线段PF 2交于两点A,B ,若,且AB=2,求r 的值;②设m=﹣2,过点P 作圆M 的两条切线分别交椭圆C 于G ,H 两点(异于点P ).试问:是否存在这样的正数r,使得G,H 两点恰好关于坐标原点O 对称?若存在,求出r 的值;若不存在,请说明理由.20.己知椭圆在椭圆上,过C 的焦点且与长轴垂直的弦的长度为.(1)求椭圆C 的标准方程;.(2)过点A (﹣2,0)作两条相交直线l 1,l 2,l 1与椭圆交于P ,Q 两点(点P 在点Q 的上方),l 2与椭圆交于M ,N 两点(点M 在点N 的上方),若直线l 1的斜率为,,求直线l 2的斜率.21.在平面直角坐标系xOy 中,抛物线C :x 2=2py (p >0),直线y=x 与C 交于O ,T 两点,|OT |=4.(Ⅰ)求C 的方程; (Ⅱ)斜率为k (0)的直线l 过线段OT 的中点,与C 交于A,B 两点,直线OA,OB 分别交直线y=x ﹣2于M ,N 两点,求|MN|的最大值.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.参考答案与试题解析一.解答题(共22小题)1.已知抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,且两曲线有公共点(,).(1)求椭圆M的方程;(2)O为坐标原点,A,B,C是椭圆M上不同的三点,并且O为△ABC的重心,试探究△ABC的面积是否为定值.若是,求出这个定值;若不是,请说明理由.【解答】解:(1)抛物线C:y2=2px(p>0)的焦点是椭圆M:+=1(a>b>0)的右焦点,∴=c,∵两曲线有公共点(,),∴=2p•,+=1,解得p=2,∴c=1,∴c2=a2﹣b2=1,∴a2=4,b2=3,∴椭圆的方程为+=1;(2)设直线AB的方程为y=kx+m,代入椭圆方程3x2+4y2=12,可得(3+4k2)x2+8kmx+4m2﹣12=0,设A(x1,y1),B(x2,y2),则x1x2=,x1+x2=﹣,y1+y2=k(x1+x2)+2m=,由O为△ABC的重心,可得=﹣(+)=(,﹣),由C在椭圆上,则有3()2+4(﹣)2=12,化简可得4m2=3+4k2,|AB|=•=•=•==,C到直线AB的距离d═,S△ABC=|AB|•d=••=.当直线AB的斜率不存在时,|AB|=3,d=3,S△ABC=|AB|•d=.综上可得,△ABC的面积为定值.2.已知直线11:ax﹣y+1=0,直线12:x+5ay+5a=0.(1)直线11与l2的交点为M,当a变化时,求点M的轨迹C的方程:(2)已知点D(2,0),过点E(﹣2,0)的直线1与C交于A,B两点,求△ABD面积的最大值.【解答】解:(1)由题意设M(x,y),M满足直线11、直线12:可得,消去a,可得x2+5y2=5,即点M的轨迹C的方程为:(2)设直线l的方程x=my﹣2.E(﹣2,0)在M的轨迹C内.ED=4,直线1与C交于A,B两点,A(x1,y1).B(x2,y2)∴,可得(m2+5)y2﹣4my﹣1=0.∴y1+y2=.y1y2=∴△ABD面积s=×|y1﹣y2|•|ED=×4×=2×==2×≤2×=2×=,当且仅当m=时,表达式取得最大值.△ABD面积的最大值:.3.已知椭圆C:+=1(a>b>0)的四个顶点围成的菱形的面积为4,点M与点F分别为椭圆C的上顶点与左焦点,且△MOF的面积为(点O为坐标原点).(1)求C的方程;(2)直线l过F且与椭圆C交于P,Q两点,点P关于O的对称点为P′,求△PP′Q面积的最大值.【解答】解:(1)∵△MOF的面积为,∴bc=,即bc=.又∵椭圆C的四个顶点围成的菱形的面积为4,∴=4,即ab=2.∴==,∴=,∴a=2,b=,∴C的方程为:=1.(2)由题意可知,点O为PP′的中点,则=2S△POQ.设直线l的方程为:x=my﹣1,P(x1,y1),Q(x2,y2),联立,可得(3m2+4)y2﹣6my﹣9=0,∴y1+y2=,y1y2=,∴|y1﹣y2|===,∴S△POQ =|OF|•|y1﹣y2|=.设=t≥1,=.∵函数g(t)=在[1,+∞)上单调递减,∴当t=1时,△PP′Q面积取得最大值=3.4.如图所示,椭圆C1:+y2=1,抛物线C2:y=x2﹣1,其中C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A,B,直线MA,MB分别与C1相交于点D,E.(Ⅰ)证明:MA⊥MB;(Ⅱ)记△MAB,△MDE的面积分别是S1,S2.问:是否存在直线l,使得=.若存在,求出直线l的方程,若不存在,请说明理由.【解答】解:(Ⅰ)证明:由题得,直线l 的斜率存在,设为k,则直线l 的方程为:y=kx, 由y=kx 和y=x 2﹣1,得x 2﹣kx ﹣1=0.设A(x 1,y 1),B(x 2,y 2), 于是x 1+x 2=k ,x 1•x 2=﹣1,又点M 的坐标为(0,﹣1). 所以k MA •k MB =•====﹣1.故MA ⊥MB ,即MD ⊥ME;(Ⅱ)设直线MA 的斜率为k 1,则直线MA 的方程为y=k 1x ﹣1. 联立y=x 2﹣1可得或则点A 的坐标为(k 1,k 12﹣1). 又直线MB 的斜率为﹣,同理可得点B 的坐标为(﹣,﹣1).于是S 1=|MA |•|MB |=|k 1|•••|﹣|•=.由椭圆方程x 2+4y 2=4和y=k 1x ﹣1, 得(1+4k 12)x 2﹣8k 1x=0,解得,或,则点D的坐标为(,).又直线ME的斜率为﹣,同理可得点E的坐标为(﹣,).于是S2=|MD|•|ME|=.故=(4k12++17)=,解得k12=4,或k12=.又由点A,B的坐标得,k==k1﹣.所以k=±.故满足条件的直线l存在,且有两条,其方程为y=±x.5.已知椭圆C1:的左右顶点是双曲线的顶点,且椭圆C1的上顶点到双曲线C2的渐近线距离为.(1)求椭圆C1的方程;(2)点F为椭圆的左焦点,不垂直于x轴且不过F点的直线l与曲线C1相交于A、B两点,若直线FA、FB的斜率之和为0,则动直线l是否一定经过一定点?若存在这样的定点,则求出该定点的坐标;若不存在这样的定点,请说明理由.【解答】解:(1)由题意可知:a=2……………………………………1分又椭圆的上顶点为(0,b)双曲线的渐近线为:2y±x=0由点到直线的距离公式有:得……………………3分所以椭圆的方程为.……………………4分(2)设直线线l的方程为y=kx+m,A(x1,y1)、B(x2,y2)联立得(3+4k2)x2+8kmx+4m2﹣12=0……………………5分则……………………7分由已知直线FA、FB的斜率之和为0,有,2kx1x2+(k+m)(x1+x2)+2m=0…………………9分所以化简得m=4k………………11分此时△=(8km)2﹣4×(3+4k2)(4m2﹣12)=(32k2)2﹣4×(3+4k2)(64k2﹣12)=16×64k4﹣16(4k2+3)(16k2﹣3)=16×9(1﹣4k2)显然△=16×9(1﹣4k2)>0有机会成立.所以直线l的方程为:y=kx+m=k(x+4)所以存在这样的定点(﹣4,0)符合题意.…………12分6.椭圆的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点,当直线l与x轴平行时,直线l被椭圆C截得的线段长为.(1)求椭圆C的方程;(2)在y 轴上是否存在异于点P 的定点Q,使得直线l 变化时,总有∠PQA=∠PQB?若存在,求出点Q 的坐标;若不存在,请说明理由. 【解答】解:(1)∵,∴a 2=2c 2=b 2+c 2,b=c,a 2=2b 2,椭圆方程化为:,由题意知,椭圆过点,∴,解得b 2=4,a 2=8,所以椭圆C 的方程为:;(2)当直线l 斜率存在时,设直线l 方程:y=kx+1, 由得(2k 2+1)x 2+4kx ﹣6=0,△=16k 2+24(2k 2+1)>0,设,假设存在定点Q (0,t)符合题意,∵∠PQA=∠PQB ,∴k QA =﹣k QB , ∴=,∵上式对任意实数k 恒等于零,∴4﹣t=0,即t=4,∴Q (0,4),当直线l 斜率不存在时,A ,B 两点分别为椭圆的上下顶点(0,﹣2),(0,2), 显然此时∠PQA=∠PQB ,综上,存在定点Q (0,4)满足题意. 7.已知椭圆,点在椭圆C 上,椭圆C 的四个顶点的连线构成的四边形的面积为.(1)求椭圆C 的方程;(2)设点A 为椭圆长轴的左端点,P 、Q 为椭圆上异于椭圆C 长轴端点的两点,记直线AP 、AQ 斜率分别为k 1、k 2,若k 1k 2=2,请判断直线PQ 是否过定点?若过定点,求该定点坐标,若不过定点,请说明理由. 【解答】解:(1)由点在椭圆C 上可得:,整理为:9a 2+4b 2=4a 2b 2, 由椭圆C 的四个顶点的连接线构成的四边形的面积为可得:,即,可得,由a >b >0可解得:,故椭圆C 的方程为:.(2)设点P 、Q 的坐标分别为(x 1,y 1),(x 2,y 2),点A 的坐标为(﹣2,0), 故,可得y 1y 2=2(x 1+2)(x 2+2),设直线PQ 的方程为y=kx+m (直线PQ 的斜率存在), 可得(kx 1+m)(kx 2+m )=2(x 1+2)(x 2+2), 整理为:,联立,消去y 得:(4k 2+3)x 2+8kmx+(4m 2﹣12)=0,由△=64k 2m 2﹣4(4k 2+3)(4m 2﹣12)=48(4k 2﹣m 2+3)>0,有4k 2+3>m 2, 有,,故有:,整理得:44k 2﹣32km+5m 2=0,解得:m=2k 或,当m=2k 时直线PQ 的方程为y=kx+2k,即y=k(x+2),过定点(﹣2,0)不合题意, 当时直线PQ 的方程为,即,过定点.8.已知椭圆Γ:=1(0<b <2)的左右焦点分别为F 1、F 2,上顶点为B ,O 为坐标原点,且向量与的夹角为.(1)求椭圆Γ的方程;(2)设Q (1,0),点P 是椭圆Γ上的动点,求的最大值和最小值;(3)设不经过点B 的直线l 与椭圆Γ相交于M 、N 两点,且直线BM 、BN 的斜率之和为1,证明:直线l 过定点. 【解答】解:(1)椭圆Γ:=1(0<b <2)的a=2,向量与的夹角为,可得|BF 1|=|BF 2|=a==2b=2,即b=1,则椭圆方程为+y 2=1;(2)设P (m ,n ),可得+n 2=1,即n 2=1﹣,•=(1﹣m ,﹣n )•(﹣m ,﹣n )=m 2﹣m+n 2=m 2﹣m+1=(m ﹣)2+,由﹣2≤m ≤2可得m=时,上式取得最小值;m=﹣2时,取得最大值6, 则•的范围是[,6];(3)证明:当直线l 的斜率不存在时,设M (x 1,y 1),N(x 2,y 2), 由k BM +k BN =+==1,x 1=x 2,y 1=﹣y 2,得x 1=﹣2,此时M ,N 重合,不符合题意;设不经过点P 的直线l 方程为:y=kx+m ,M (x 1,y 1),N (x 2,y 2), 由得(1+4k 2)x 2+8ktx+4t 2﹣4=0,x 1+x 2=﹣,x 1x 2=,k BM +k BN =+==1,⇒(kx1﹣1+t)x2+(kx2﹣1+t)x1=x1x2⇒(2k﹣1)x1x2+(t﹣1)(x1+x2)=0⇒(t﹣1)(2k﹣t﹣1)=0,∵t≠1,∴t=2k﹣1,∴y=k(x+2)﹣1,直线l必过定点(﹣2,﹣1).9.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A,C两点,与x轴交于点H,设AC的中点为Q,试问|AQ|2+|QH|2是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,∵Q为AC的中点,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|AQ|2+|HQ|2为定值10.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)10.椭圆E:的左、右焦点分别为、,过F1且斜率为的直线与椭圆的一个交点在x轴上的射影恰好为F2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)设直线与椭圆E交于A、C两点,以AC为对角线作正方形ABCD,记直线l与x 轴的交点为H,试问|BH|是否为定值?若是,求出定值;若不是,请说明理由.【解答】(本小题满分12分)解:(Ⅰ)过且斜率为的直线方程为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1分)令,则y=1﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)由题意可得,解得a2=16,b2=4,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(4分)所以椭圆E的标准方程.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)(Ⅱ)由可得x2+2mx+2m2﹣8=0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)设A(x1,y1),C(x2,y2)则有,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)又,设AC的中点为Q,则﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)直线l与x轴的交点为H(﹣2m,0),所以,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)=,所以|BH|为定值.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)11.设椭圆M:+=1(a>b>0)经过点P(,),F1,F2是椭圆M的左、右焦点,且△PF1F2的面积为.(1)求椭圆M的方程;(2)设O为坐标原点,过椭圆M内的一点(0,t)作斜率为k的直线l与椭圆M交于A,B两点,直线OA,OB的斜率分别为k1,k2,若对任意实数k,存在实m,使得k1+k2=mk,求实数m的取值范围.【解答】解:(1)设M的焦点F1(﹣c,0),F2(c,0),∵,△PF1F2面积为,∴,∴c=1,由,得∴椭圆M的方程为.(2)设直线l的方程为y=kx+t,由•得(3+4k2)x2+8ktx+4t2﹣12=0,设A(x1•y2),B(x2•y2),则..由k1+k2=mk对任意k成立,得,∴,又(0,t)在椭圆内部,∴0≤t2<3,∴m≥2,即m∈[2,+∞).12.已知椭圆经过点,离心率为,过右焦点F且与x轴不垂直的直线l交椭圆于P,Q两点.( I)求椭圆C的方程;( II)当直线l的斜率为时,求△POQ的面积;( III)在椭圆C上是否存在点M,使得四边形OPMQ为平行四边形?若存在,求出直线l的方程;若不存在,请说明理由.【解答】解:(I) 根据题意,解得,故椭圆C的方程为.…(5分)( II) 根据题意,直线l的方程为.设P(x1,y1),Q(x2,y2).由得15x2﹣24x=0.解得.法一:.法二:,原点O到直线l的距离.所以…(10分)( III)设直线l的方程为y=k(x﹣1)(k≠0).设P(x1,y1),Q(x2,y2),由得(3+4k2)x2﹣8k2x+4k2﹣12=0.由韦达定理得,.所以PQ 的中点.要使四边形OPMQ 为平行四边形,则N 为OM 的中点,所以.要使点M 在椭圆C 上,则,即12k 2+9=0,此方程无解.所以在椭圆C 上不存在点M ,使得四边形OPMQ 为平行四边形.….(14分) 13.已知F 1、F 2是椭圆C :(a >b >0)的左、右焦点,过F 2作x 轴的垂线与C 交于A 、B 两点,F 1B 与y 轴交于点D ,AD ⊥F 1B ,且|OD |=1,O 为坐标原点. (1)求C 的方程;(2)设P 为椭圆C 上任一异于顶点的点,A 1、A 2为C 的上、下顶点,直线PA 1、PA 2分别交x 轴于点M 、N .若直线OT 与过点M 、N 的圆切于点T .试问:|OT |是否为定值?若是,求出该定值;若不是,请说明理由.【解答】解:(1)如图:AF 2⊥x 轴,|OD|=1, ∴AB ∥OD,∵O 为F 1F 2为的中点, ∴D 为BF 1的中点, ∵AD ⊥F 1B ,∴|AF 1|=|AB |=2|AF 2|=4|OD |=4, ∴2a=|AF 1|+|AF 2|=4+2=6, ∴a=3, ∴|F 1F 2|==2,∴c=,a=3,∴b2=a2﹣c2=6,∴+=1,(2)由(1)可知,A1(0,),A2(0,﹣).设点P(x0,y),直线PA1:y﹣=x,令y=0,得xM=;直线PA2:y+=x,令y=0,得xN=;|OM|•|ON|=,∵+=1,∴6﹣y02=x2,∴|OM|•|ON|=.由切割线定理得OT2=OM•ON=.∴OT=,即线段OT的长度为定值.14.已知椭圆C :+=1的两个焦点分别是F 1(﹣,0),F 2(,0),点E (,)在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是y 轴上的一点,若椭圆C 上存在两点M,N 使=2,求以F 1P 为直径的圆面积取值范围.【解答】解:(Ⅰ)由已知,c=, ∴2a=|EF 1|+|EF 2|=+=4,∴a=2,∴b 2=a 2﹣c 2=8﹣2=6, ∴椭圆方程为+=1,(Ⅱ)设点P 的坐标为(0,t),当直线MN 的斜率不存在时,可得M,N 分别是椭圆的两端点,可得t=±,当直线MN 的斜率存在时,设直线MN 的方程为y=kx+t ,M(x 1,y 1),N (x 2,y 2), 则由=2可得x 1=﹣2x 2,①,由,消y 可得(3+4k 2)x 2+8ktx+4t 2﹣24=0,由△>0,可得64k 2t 2﹣4(3+4k 2)(4t 2﹣24)>0,整理可得t 2<8k 2+6,由韦达定理可得x 1+x 2=﹣,x 1x 2=,②,由①②,消去x 1,x 2可得k 2=,由,解得<t 2<6, 综上得≤t 2<6,又以F 1P 为直径的圆面积S=π•,∴S 的范围为[,2π).15.已知椭圆的右焦点为F ,离心率为,平行于x 轴的直线交椭圆于A,B 两点,且.(I)求椭圆C 的方程;(Ⅱ)过点F 且斜率不为零的直线l 与椭圆C 交于M ,N 两点,在x 轴上是否存在定点E ,使得是定值?若存在,请求出该点的坐标;若不存在,请说明理由. 【解答】解:(Ⅰ)由题意可得:,∵平行于x 轴的直线交椭圆于A ,B 两点,且.∴,a=,∴c=2,b 2=a 2=﹣c 2=2. ∴椭圆C 的方程为(Ⅱ)设直线l 的方程为y=k (x ﹣2), 代入椭圆C 的方程,得(3k 2+1)x 2﹣12k 2x+12k 2﹣6=0,设M(x3,y3),N(x4,y4),则,,x3x4=.根据题意,假设x轴上存在定点E(t,0),使得是为定值,=(x3﹣t,y3)•(x4﹣t,y4)=(x3﹣t)•(x4﹣t)+y3y4,=(x3﹣t)•(x4﹣t)+k2(x3﹣2)•(x4﹣2),=(k2+1)x3x4﹣(2k2+t)(x3+x4)+4k2+t2,=要使上式为定值,即与k无关,则应3t2﹣12t+10=3(t2﹣6),即t=,故当点E的坐标为(,0)时,使得为定值.16.已知椭圆C:(a>b>0)的离心率,抛物线E:的焦点恰好是椭圆C 的一个顶点.(1)求椭圆C的标准方程;(2)过点P(0,1)的动直线与椭圆C交于A,B两点,设O为坐标原点,是否存在常数λ,使得恒成立?请说明理由.【解答】解:(1)由抛物线E:的焦点(0,),椭圆的C的焦点在x轴,由题意可知:b=,椭圆的离心率e===,则a=2,∴椭圆的标准方程:;(2)当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立,整理得(4k 2+3)x 2+8kx ﹣8=0.其判别式△>0,x 1+x 2=﹣,x 1x 2=﹣.∴•+λ•=x 1x 2+y 1y 2+λ[x 1x 2+(y 1﹣1)(y 2﹣1)],=(1+λ)(1+k 2)x 1x 2+k (x 1+x 2)+1==﹣2λ﹣3,当λ=2时,﹣2λ﹣3=﹣7,即•+λ•=﹣7为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD ,此时•+λ•=•+2•=﹣3﹣4=﹣7,故存在常数λ=2,使得•+λ•为定值﹣7.17.在平面直角坐标系中,点F 1、F 2分别为双曲线C :的左、右焦点,双曲线C 的离心率为2,点(1,)在双曲线C 上.不在x 轴上的动点P 与动点Q 关于原点O 对称,且四边形PF 1QF 2的周长为.(1)求动点P 的轨迹方程;(2)在动点P 的轨迹上有两个不同的点M (x 1,y 1)、N (x 2,y 2),线段MN 的中点为G,已知点(x 1,x 2)在圆x 2+y 2=2上,求|OG |•|MN|的最大值,并判断此时△OMN 的形状. 【解答】解:(1)设F 1,F 2分别为(﹣c ,0),(c ,0) 可得,b 2=c 2﹣a 2=3a 2,又点(1,)在双曲线C 上,∴,解得,c=1.连接PQ ,∵OF 1=OF 2,OP=OQ ,∴四边形PF 1QF 2的周长为平行四边形. ∴四边形PF 1+PF 2=2>2,∴动点P 的轨迹是以点F 1、F 2分别为左右焦点的椭圆(除左右顶点),∴动点P 的轨迹方程(y ≠0);(2)∵x 12+x 22=2,,∴y 12+y 22=1.∴|OG |•|MN|=•=•=.∴当3﹣2x 1x 2﹣2y 1y 2=3+2x 1x 2+2y 1y 2⇒x 1x 2+y 1y 2=0时取最值, 此时OM ⊥ON ,△OMN 为直角三角形.18.已知抛物线C:y 2=2px (p >0),其内接△ABC 中∠A=90°. (I )当点A 与原点重合时,求斜边BC 中点M 的轨迹方程;(II)当点A 的纵坐标为常数t 0(t 0∈R )时,判断BC 所在直线是否过定点?过定点求出定点坐标;不过定点,说明理由. 【解答】解:(I )设B (,y 1),C (,y 2),∵AB ⊥AC ,∴+y 1y 2=0,∴y 1y 2=﹣4p 2.∴设BC 的中点M (x ,y ),则=x ,y 1+y 2=2y ,∵y 12+y 22=(y 1+y 2)2﹣2y 1y 2, ∴px=4y 2+8p 2,∴M 的轨迹方程为:y 2=(x ﹣8p ). (II )A (,t 0),设直线BC 的方程为y=kx+b,B (,y 1),C (,y 2),∴k AB ==,k AC ==,∵AB⊥AC,∴•=﹣1.即y1y2+t(y1+y2)+t2+4p2=0.联立方程组,消去x可得y2﹣y+=0,∴y1y2=,y1+y2=,∴+t0+t2+4p2=0.解得b=﹣t﹣﹣2pk,∴直线BC的方程为:y=kx﹣t0﹣﹣2pk=k(x﹣2p﹣)﹣t,∴直线BC过定点(2p+,﹣t).19.如图,已知F1,F2分别是椭圆的左、右焦点,点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴.(1)求椭圆C的方程;(2)设圆M:(x﹣m)2+y2=r2(r>0).①设圆M与线段PF2交于两点A,B,若,且AB=2,求r的值;②设m=﹣2,过点P作圆M的两条切线分别交椭圆C于G,H两点(异于点P).试问:是否存在这样的正数r,使得G,H两点恰好关于坐标原点O对称?若存在,求出r的值;若不存在,请说明理由.【解答】解:(1)因点P(﹣2,3)是椭圆C上一点,且PF1⊥x轴,所以椭圆的半焦距c=2,由,得,所以,……(2分)化简得a2﹣3a﹣4=0,解得a=4,所以b2=12,所以椭圆C的方程为.……(4分)(2)①因,所以,即,所以线段PF2与线段AB的中点重合(记为点Q),由(1)知,……(6分)因圆M与线段PF2交于两点A,B,所以,所以,解得,……(8分)所以,故.……(10分)②由G,H两点恰好关于原点对称,设G(x0,y),则H(﹣x,﹣y),不妨设x<0,因P(﹣2,3),m=﹣2,所以两条切线的斜率均存在,设过点P与圆M相切的直线斜率为k,则切线方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,由该直线与圆M相切,得,即,……(12分)所以两条切线的斜率互为相反数,即kGP =﹣kHP,所以,化简得x0y=﹣6,即,代入,化简得,解得x=﹣2(舍),,所以,……(14分)所以,,所以,所以.故存在满足条件的,且.……(16分)20.己知椭圆在椭圆上,过C的焦点且与长轴垂直的弦的长度为.(1)求椭圆C的标准方程;.(2)过点A(﹣2,0)作两条相交直线l1,l2,l1与椭圆交于P,Q两点(点P在点Q的上方),l2与椭圆交于M,N两点(点M在点N的上方),若直线l1的斜率为,,求直线l2的斜率.【解答】解:(1)由已知得:,…………………………(2分)解得a=6,b=1.故椭圆C的方程为.………………………(4分)(2)由题设可知:l1的直线方程为x=﹣7y﹣2.联立方程组,整理得:85y2+28y﹣32=0..…………………………(6分)∴.…………………………………………(7分)∵,∴,即.…………………………………………(8分)设l2的直线方程为x=my﹣2(m≠0).将x=my﹣2代入+y2=1得(m2+36)y2﹣4my﹣32=0.设M(x1,y1),N(x2,y2),则.……………………………………(10分)又∵,∴.解得m2=4,∴m=±2.故直线l2的斜率为.………………………(12分)21.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0),直线y=x与C交于O,T两点,|OT|=4.(Ⅰ)求C的方程;(Ⅱ)斜率为k(0)的直线l过线段OT的中点,与C交于A,B两点,直线OA,OB分别交直线y=x﹣2于M,N两点,求|MN|的最大值.【解答】解:(Ⅰ)由方程组得x2﹣2px=0,解得x1=0,x2=2p,所以O(0,0),T(2p,2p),则|OT|=2p,又|OT|=2p=4,所以p=2.故C的方程为x2=4y.(Ⅱ)由(Ⅰ)O(0,0),T(4,4),则线段OT的中点坐标(2,2).故直线l的方程为y﹣2=k(x﹣2).由方程组得x2﹣4kx+8k﹣8=0.设A(x1,x12),B(x2,x22),则x1+x2=4k,x1x2=8k﹣8,直线OA的方程y=x,代入y=x﹣2,解得x=,所以M(,),同理得N(,),所以|MN|=•|﹣|=||=×|=4•因为0<k≤,所以8<|MN|≤4.当k=时,|MN|取得最大值4.22.已知椭圆C的中心在原点,焦点在x轴上,焦距为4,离心率为.(1)求椭圆C的方程;(2)已知直线l经过点P(0,﹣1),且与椭圆交于A,B两点,若,求直线l的方程.【解答】(本小题满分12分)解:(1)依题意可设椭圆方程为(a>b>0),由2c=4,c=2,e==,则a=2,b2=a2﹣c2=4,∴椭圆C的方程为:.(2)由题意可知直线l的斜率存在,设l的方程为:y=kx﹣1,A(x1,y1),B(x2,y2),由,整理得(2k2+1)x2﹣4kx﹣6=0,且△>0,则x1+x2=,x1x2=﹣,由,即(﹣x1,﹣1﹣y1)=2(x2,y2+1),x1=﹣2x2,,消去x2并解关于k的方程得:k=±,∴l的方程为:y=±x﹣1.。

全国一卷圆锥曲线高考题汇编含答案#(精选.)

全国一卷圆锥曲线高考题汇编含答案#(精选.)

圆锥曲线部分高考试题汇编(椭圆部分)1、(2016全国Ⅰ卷)(20)(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.2、(2015全国Ⅰ卷)(14)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴上,则该圆的标准方程为 。

3、(2014全国Ⅰ卷)20.(本小题满分12分)已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.4、(2016山东卷)(21)(本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 的离心率是32,抛物线E :22x y =的焦点F 是C 的一个顶点. (I )求椭圆C 的方程;(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M. (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG 的面积为1S ,PDM 的面积为2S ,求12S S 的最大值及取得最大值时点P 的坐标.5、(2015山东卷)(20) (本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>12,F F ,以1F 为圆心,以3为半径的圆与以2F 为圆心,以1为半径的圆相交,交点在椭圆C 上. (Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上的任意一点,过点P 的直线y kx m =+交椭圆E 于A,B 两点,射线PO 交椭圆E 于点Q. (ⅰ)求||||OQ OP 的值;(ⅱ)求ABQ ∆面积最大值.圆锥曲线部分高考试题汇编(双曲线部分)1、(2016全国Ⅰ卷)(5)已知方程x 2m 2+n –y 23m 2–n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3)2、(2015全国Ⅰ卷)(5)已知M (x 0,y 0)是双曲线C :2212x y -=上的一点,F 1、F 2是C 上的两个焦点,若1MF •2MF <0,则y 0的取值范围是( )(A )( (B )((C )(3-,3) (D )(3-,3)3、(2014全国Ⅰ卷)4. 已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A .B .3CD .3m4、(2016山东卷)(13)已知双曲线E 1:22221x y a b-=(a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______ .5、(2015山东卷)(15)平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .6、(2014山东卷)(10)已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C与2C 2C 的渐近线方程为( )(A )0x ±= (B 0y ±= (C )20x y ±= (D )20x y ±=圆锥曲线部分高考试题汇编(抛物线部分)1、(2016全国Ⅰ卷)(10)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=|DE|=C 的焦点到准线的距离为( )(A )2 (B )4 (C )6 (D )8 2、(2015全国Ⅰ卷)(20)(本小题满分12分)在直角坐标系xoy 中,曲线C :y =24x 与直线y kx a =+(a >0)交与M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由。

word完整版圆锥曲线综合试题全部大题目含答案推荐文档

word完整版圆锥曲线综合试题全部大题目含答案推荐文档

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦•设过抛物线2x 2py外一点P(X o,y°)的任一直线与抛物线的两个交点为C、D,与抛物线切点弦AB的交点为Q。

(1 )求证:抛物线切点弦的方程为x0x p(y+ y0);(2)求证:1 12 PC |PD | |PQ |2. 已知定点F( 1, 0),动点P在y轴上运动,过点P作PM交x轴于点M,并延长MP到点N 且PM PF 0,| PM | | PN |.(1)动点N的轨迹方程;(2)线I与动点N的轨迹交于A, B两点,若OA OB 4,且4,6 | AB | 4 30,求直线I的斜率k的取值范围.3.如图,椭圆G :1的左右顶点分别为A、B, P为双曲线C2 :1右支上(x轴上方)一点,连AP交C1于C,连PB并延长交C1于。

,且厶ACD与厶PCD的面积相等,求直线PD的斜率及直线CD的倾斜角.4.已知点M ( 2,0), N(2,0),动点P满足条件| PM | | PN | 2-2.记动点P的轨迹为W.(I)求W的方程;uuu uun(n)若 AB 是W 上的不同两点,O 是坐标原点,求 OA OB 的最小值.2 25.已知曲线 C 的方程为:kx 2+(4-k)y 2=k+1,(k € R)(I)若曲线C 是椭圆,求k 的取值范围;(n)若曲线c 是双曲线,且有一条渐近线的倾斜角是 60°,求此双曲线的方程; (川)满足(n)的双曲线上是否存在两点 P , Q 关于直线I : y=x-1对称,若存在,求出过 P,Q 的直线方程;若不存在,说明理由。

6.如图(21)图,M (-2, 0)和N (2, 0)是平面上的两点, 动点P 满足:PM PN 6.(1)求点P 的轨迹方程;2 ⑵若PM -PN l = --------------------- ,求点P 的坐标.1 cos MPN的两条渐进线|仆12分别交于点M,N ,与椭圆交于点 A,B . ⑴若 MON ―,双曲线的焦距为3UUUU UULU(II )若OM MN 0 ( O 为坐标原点)2 x7.已知F 为椭圆—a 2b 2 1(a b0)的右焦点,直线I 过点F 且与双曲线b 24。

(完整版)高二圆锥曲线经典练习题含答案(可编辑修改word版)

(完整版)高二圆锥曲线经典练习题含答案(可编辑修改word版)

一.求离心率问题1.已知椭圆和直线,若过C 的左焦点和下顶点的直线与平行,则椭圆C 的离心率为()A. B. C. D.2.设椭圆E 的两焦点分别为F1,F2,以F1 为圆心,|F1F2|为半径的圆与E 交于P,Q 两点.若△PF1F2 为直角三角形,则E 的离心率为()A.﹣1 B. C. D.+13.在直角坐标系xOy 中,F 是椭圆C:=1(a>b>0)的左焦点,A,B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P,Q 两点,连接PB 交y 轴于点E,连接AE 交PQ 于点M,若M 是线段PF 的中点,则椭圆C 的离心率为()A. B. C. D.4.过原点的一条直线与椭圆=1(a>b>0)交于A,B 两点,以线段AB 为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.[ )B.[ ] C.[)D.[ ]5.设F 为双曲线C:﹣=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x2+y2=a2 交于P,Q 两点.若|PQ|=|OF|,则C 的离心率为()A. B. C.2 D.6.已知双曲线的右焦点为F,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A,B,若,则该双曲线的离心率为()A.B.C.D.7.若双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直,则该双曲线的离心率为()A.2 B. C. D.28.已知F1,F2 是双曲线的左、右焦点,若点F1 关于双曲线渐近线的对称点P 满足∠OPF2=∠POF2(O 为坐标原点),则双曲线的离心率为()A. B.2 C. D.二、圆锥曲线小题综合9.若抛物线y2=2px(p>0)的焦点是椭圆+=1 的一个焦点,则p=()A.2 B.3 C.4 D.810.已知抛物线x2=16y 的焦点为F,双曲线=1 的左、右焦点分别为F1、F2,点P是双曲线右支上一点,则|PF|+|PF1|的最小值为()A.5 B.7 C.9 D.1111.已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A. B.C. D.12.已知抛物线y2=2px(p>0)的焦点为F,其准线与双曲线﹣x2=1 相交于M,N两点,若△MNF 为直角三角形,其中F 为直角顶点,则p=()A.2 B. C.3 D.613.已知椭圆与双曲线有相同的焦点F1,F2,点P 是两曲线的一个公共点,且PF1⊥PF2,e1,e2 分别是两曲线C1,C2 的离心率,则的最小值是()A.4 B.6 C.8 D.1614.已知点M(1,0),A,B 是椭圆+y2=1 上的动点,且=0,则•的取值是()A.[ ,1] B.[1,9] C.[ ,9] D.[ ,3]15.已知双曲线的右焦点与抛物线y2=12x 的焦点相同,则此双曲线的渐近线方程为()A.B.C.D.16.已知抛物线y2=2px (p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线一条渐近线与直线AM 平行,则实数a 等于()A. B. C.3 D.917.已知椭圆E 的中心在坐标原点,离心率为,E 的右焦点与抛物线C:y2=8x 的焦点重合,A,B 是C 的准线与E 的两个交点,则|AB|=()A.3 B.6 C.9 D.1218.若双曲线的渐近线与抛物线y=x2+2 有公共点,则此双曲线的离心率的取值范围是()A.[3,+∞)B.(3,+∞)C.(1,3] D.(1,3)19.中心在原点,焦点在x 轴上的双曲线C1的离心率为e,直线l 与双曲线C1交于A,B 两点,线段AB 中点M 在一象限且在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,则l 的斜率为()A. B.e2﹣1 C. D.e2+120.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是()A.B.C.D.三.求轨迹方程问题21.已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离比等于5.(Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形;(Ⅱ)记(Ⅰ)中的轨迹为C,过点A(﹣2,3)的直线l 被C 所截得弦长为8,求直线l 的方程.22.已知在平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为F(﹣),右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程.23.已知抛物线y2=4x,焦点为F,顶点为O,点P 在抛物线上移动,Q 是OP 的中点,M是FQ 的中点,求点M 的轨迹方程.24.在平面直角坐标系xOy 中,已知点A(﹣,0),B(),E 为动点,且直线EA与直线EB 的斜率之积为﹣.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设过点F(1,0)的直线l 与曲线C 相交于不同的两点M,N.若点P 在y 轴上,且|PM|=|PN|,求点P 的纵坐标的取值范围.25.已知点A(﹣2,0),B(2,0),直线AP 与直线BP 相交于点P,它们的斜率之积为﹣,求点P 的轨迹方程(化为标准方程).四、直线和圆锥的关系问题26.已知椭圆E:=1(a>b>0)过点(2,0),且其中一个焦点的坐标为(1,0).(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l:x=my+1(m∈R)与椭圆交于两点A,B,在x 轴上是否存在点M,使得为定值?若存在,求出点M 的坐标;若不存在,请说明理由.27.已知椭圆的四个顶点围成的四边形的面积为,原点到直线的距离为.(1)求椭圆C 的方程;(2)已知定点P(0,2),是否存在过P 的直线l,使l 与椭圆C 交于A,B 两点,且以|AB|为直径的圆过椭圆C 的左顶点?若存在,求出l 的方程;若不存在,请说明理由.28.已知椭圆C:=1(a>b>0)的一个焦点与上下顶点构成直角三角形,以椭圆C的长轴长为直径的圆与直线x+y﹣2=0 相切.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过椭圆右焦点且不重合于x 轴的动直线与椭圆C 相交于A、B 两点,探究在x 轴上是否存在定点E,使得•为定值?若存在,试求出定值和点E 的坐标;若不存在,请说明理由.29.已知椭圆的左右顶点分别为A1,A2,右焦点F 的坐标为,点P 坐标为(﹣2,2),且直线PA1⊥x 轴,过点P 作直线与椭圆E 交于A,B 两点(A,B 在第一象限且点 A 在点B 的上方),直线OP 与AA2交于点Q,连接QA1.(1)求椭圆E 的方程;(2)设直线QA1 的斜率为k1,直线A1B 的斜率为k2,问:k1k2 的斜率乘积是否为定值,若是求出该定值,若不是,说明理由.30.已知抛物线C:y2=2px(p>0)的焦点为F(1,0),O 为坐标原点,A,B 是抛物线C上异于O 的两点.(I)求抛物线C 的方程;(Ⅱ)若直线OA,OB 的斜率之积为,求证:直线AB 过定点.31.已知椭圆C:(a>b>0)的左右焦点分别为F1,F2,离心率为,点A 在椭圆C 上,|AF1|=2,∠F1AF2=60°,过F2 与坐标轴不垂直的直线l 与椭圆C 交于P,Q 两点.(Ⅰ)求椭圆C 的方程;(Ⅱ)若P,Q 的中点为N,在线段OF2上是否存在点M(m,0),使得MN⊥PQ?若存在,求实数m 的取值范围;若不存在,说明理由.32.已知椭圆C:(a>b>0)的离心率为,且抛物线y2=4 x 的焦点恰好使椭圆C 的一个焦点.(1)求椭圆C 的方程(2)过点D(0,3)作直线l 与椭圆C 交于A,B 两点,点N 满足=(O 为原点),求四边形OANB 面积的最大值,并求此时直线l 的方程.33.已知椭圆C:+=1(a>b>0)的右焦点到直线x﹣y+3 =0 的距离为5,且椭圆C 的一个长轴端点与一个短轴端点间的距离为.(1)求椭圆C 的标准方程;(2)给出定点Q(,0),对于椭圆C 的任意一条过Q 的弦AB,+是否为定值?若是,求出该定值,若不是,请说明理由.34.已知椭圆C:+=1(a>b>0)的短轴的一个顶点与两个焦点构成正三角形,且该三角形的面积为.(1)求椭圆C 的方程;(2)设F1,F2 是椭圆C 的左右焦点,若椭圆C 的一个内接平行四边形的一组对边过点F1和F2,求这个平行四边形的面积最大值.35.如图,已知椭圆C:=1(a>b>0)的离心率是,一个顶点是B(0,1).(Ⅰ)求椭圆C 的方程;(Ⅱ)设P,Q 是椭圆C 上异于点B 的任意两点,且BP⊥BQ.试问:直线PQ 是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.36.已知椭圆+=1(a>b>0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O 的直线l:y=kx+m(k≠0),与该椭圆交于P、Q 两点,直线OP、OQ 的斜率依次为k1、k2,满足4k=k1+k2,试问:当k 变化时,m2 是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.37.在平面直角坐标系xOy 中,已知椭圆C:+=1(a>b>0)的离心率e=,直线l:x﹣my﹣1=0(m∈R)过椭圆C 的右焦点F,且交椭圆C 于A,B 两点.(1)求椭圆C 的标准方程;(2)已知点D(,0),连结BD,过点A 作垂直于y 轴的直线l1,设直线l1与直线BD 交于点P,试探索当m 变化时,是否存在一条定直线l2,使得点P 恒在直线l2上?若存在,请求出直线l2的方程;若不存在,请说明理由.38.已知动点P 到定点F(1,0)和直线l:x=2 的距离之比为,设动点P 的轨迹为曲线E,过点F 作垂直于x 轴的直线与曲线E 相交于A,B 两点,直线l:y=mx+n 与曲线E 交于C,D 两点,与线段AB 相交于一点(与A,B 不重合)(Ⅰ)求曲线E 的方程;(Ⅱ)当直线l 与圆x2+y2=1 相切时,四边形ACBD 的面积是否有最大值,若有,求出其最大值,及对应的直线l 的方程;若没有,请说明理由.39.已知椭圆C 的中心在坐标原点,焦点在x 轴上,其左、右焦点分别为F1,F2,短轴长为2.点P 在椭圆C 上,且满足△PF1F2 的周长为6.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点(﹣1,0)的直线l 与椭圆C 相交于A,B 两点,试问在x 轴上是否存在一个定点M,使得•恒为定值?若存在,求出该定值及点M 的坐标;若不存在,请说明理由.40.已知椭圆C:的离心率为,右焦点F2 到直线l1:3x+4y=0 的距离为.(Ⅰ)求椭圆C 的方程;(Ⅱ)过椭圆右焦点F2斜率为k(k≠0)的直线l 与椭圆C 相交于E、F 两点,A 为椭圆的右顶点,直线AE,AF 分别交直线x=3 于点M,N,线段MN 的中点为P,记直线PF2 的斜率为k′,求证:k•k′为定值.一.选择题(共20 小题)1.已知椭圆和直线,若过C 的左焦点和下顶点的直线与平行,则椭圆C 的离心率为()A. B. C. D.【分析】求出椭圆的左焦点与下顶点坐标连线的斜率,然后求解椭圆的离心率即可.【解答】解:椭圆和直线,若过C 的左焦点和下顶点的直线与平行,直线l 的斜率为,所以,又b2+c2=a2,所以,故选:A.【点评】本题考查椭圆的简单性质的应用,是基本知识的考查.2.设椭圆E 的两焦点分别为F1,F2,以F1 为圆心,|F1F2|为半径的圆与E 交于P,Q 两点.若△PF1F2 为直角三角形,则E 的离心率为()A.﹣1 B. C. D.+1【分析】如图所示,△PF1F2 为直角三角形,可得∠PF1F2=90°,可得|PF1|=2c,|PF2=2 c,利用椭圆的定义可得2c+2c=2a,即可得出.【解答】解:如图所示,∵△PF1F2为直角三角形,∴∠PF1F2=90°,∴|PF1|=2c,|PF2=2 c,则2c+2c=2a,解得e==﹣1.故选:A.【点评】本题考查了椭圆与圆的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.3.在直角坐标系xOy 中,F 是椭圆C:=1(a>b>0)的左焦点,A,B 分别为左、右顶点,过点F 作x 轴的垂线交椭圆C 于P,Q 两点,连接PB 交y 轴于点E,连接AE 交PQ 于点M,若M 是线段PF 的中点,则椭圆C 的离心率为()A. B. C. D.【分析】利用已知条件求出P 的坐标,然后求解E 的坐标,推出M 的坐标,利用中点坐标公式得到双曲线的离心率即可.【解答】解:可令F(﹣c,0),由x=﹣c,可得y=±b =±,由题意可设P(﹣c,),B(a,0),可得BP 的方程为:y=﹣(x﹣a),x=0 时,y=,E(0,),A(﹣a,0),则AE 的方程为:y=(x+a),则M(﹣c,﹣),M 是线段PF 的中点,可得2•(﹣)=,即2a﹣2c=a+c,即a=3c,可得e==.故选:C.【点评】本题考查椭圆的简单性质的应用,考查转化思想以及计算能力.4.过原点的一条直线与椭圆=1(a>b>0)交于A,B 两点,以线段AB 为直径的圆过该椭圆的右焦点F2,若∠ABF2∈[],则该椭圆离心率的取值范围为()A.[ )B.[ ] C.[)D.[ ] 【分析】由题意画出图形,可得四边形AF2BF1 为矩形,则AB=F1F2=2c,结合AF2+BF2=2a,AF2=2c•sin∠ABF2,BF2=2c•cos∠ABF2,列式可得e 关于∠ABF2 的三角函数,利用辅助角公式化积后求解椭圆离心率的取值范围.【解答】解:如图,设椭圆的另一焦点为F1,连接AF1,AF2,BF1,则四边形AF2BF1 为矩形,∴AB=F1F2=2c,∵AF2+BF2=2a,AF2=2c•sin∠ABF2,BF2=2c•cos∠ABF2,∴2c•sin∠ABF2+2c•cos∠ABF2=2a,得e==.∵∠ABF2∈[ ],∴,则∈[].则椭圆离心率的取值范围为[].故选:B.【点评】本题考查椭圆的简单性质,考查直线与椭圆位置关系的应用,考查数学转化思想方法,训练了三角函数最值的求法,是中档题.5.设F 为双曲线C:﹣=1(a>0,b>0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x2+y2=a2 交于P,Q 两点.若|PQ|=|OF|,则C 的离心率为()A. B. C.2 D.【分析】由题意画出图形,先求出PQ,再由|PQ|=|OF|列式求C 的离心率.【解答】解:如图,由题意,把x=代入x2+y2=a2,得PQ=,再由|PQ|=|OF|,得,即2a2=c2,∴,解得e=.故选:A.【点评】本题考查双曲线的简单性质,考查数形结合的解题思想方法,是中档题.6.已知双曲线的右焦点为F,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A,B,若,则该双曲线的离心率为()A. B. C. D.【分析】不妨设直线l 的斜率为﹣,∴直线l 的方程为y=﹣(x﹣c),联立直线方程与双曲线方程,化为关于y 的一元二次方程,求出两交点纵坐标,由题意列等式求解.【解答】解:如图,不妨设直线l 的斜率为﹣,∴直线l 的方程为y=﹣(x﹣c),联立,得(b2﹣a2)c2y2﹣2ab3cy+a2b4=0.∴.由题意,方程得(b2﹣a2)c2y2﹣2ab3cy+a2b4=0 的两根异号,则a>b,此时<0,>0.则,即a=2b.∴a2=4b2=4(c2﹣a2),∴4c2=5a2,即e=.故选:B.【点评】本题考查双曲线的简单性质,考查计算能力,是中档题.7.若双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直,则该双曲线的离心率为()A.2 B. C. D.2【分析】渐近线与直线x+3y+1=0 垂直,得a、b 关系,再由双曲线基本量的平方关系,得出a、c 的关系式,结合离心率的定义,可得该双曲线的离心率.【解答】解:∵双曲线=1(a>0,b>0)的一条渐近线与直线x﹣3y+1=0 垂直.∴双曲线的渐近线方程为y=±3x,∴=3,得b2=9a2,c2﹣a2=9a2,此时,离心率e==.故选:C.【点评】本题给出双曲线的渐近线方程,求双曲线的离心率,考查了双曲线的标准方程与简单几何性质等知识,属于基础题.8.已知F1,F2 是双曲线的左、右焦点,若点F1 关于双曲线渐近线的对称点P 满足∠OPF2=∠POF2(O 为坐标原点),则双曲线的离心率为()A. B.2 C. D.【分析】连接OP,运用等边三角形的定义和垂直平分线的性质,以及点到直线的距离公式,可得|OP|=c,O 到PF1的距离为a,再由锐角三角函数的定义可得所求离心率的值.【解答】解:连接OP,可得|OP|=|OF1|=|OF2|=|PF2|=c,F1到渐近线bx+ay=0 的距离为d==b,在等腰三角形OPF1 中,O 到PF1 的距离为a,即sin∠OPF1=sin30°==,可得e==2.故选:B.【点评】本题考查双曲线的方程和性质,主要是渐近线方程和离心率的求法,考查垂直平分线的性质以及化简运算能力,属于基础题.9.若抛物线y2=2px(p>0)的焦点是椭圆+=1 的一个焦点,则p=()A.2 B.3 C.4 D.8【分析】根据抛物线的性质以及椭圆的性质列方程可解得.【解答】解:由题意可得:3p﹣p=()2,解得p=8.故选:D.【点评】本题考查了抛物线与椭圆的性质,属基础题.10.已知抛物线x2=16y 的焦点为F,双曲线=1 的左、右焦点分别为F1、F2,点P是双曲线右支上一点,则|PF|+|PF1|的最小值为()A.5 B.7 C.9 D.11【分析】由双曲线方程求出a 及c 的值,利用双曲线定义把|PF|+|PF1|转化为|PF1|+|PF2|+2a,连接FF2 交双曲线右支于P,则此时|PF|+|PF2|最小等于|FF2|,由两点间的距离公式求出|FF2|,则|PF|+|PF1|的最小值可求.【解答】解:如图由双曲线双曲线=1,得a2=3,b2=5,∴c2=a2+b2=9,则c=3,则F2(3,0),∵|PF1|﹣|PF2|=4,∴|PF1|=4+|PF2|,则|PF|+|PF1|=|PF|+|PF2|+4,连接FF2交双曲线右支于P,则此时|PF|+|PF2|最小等于|FF2|,∵F 的坐标为(0,4),F2(3,0),∴|FF2|=5,∴|PF|+|PF1|的最小值为5+4=9.故选:C.【点评】本题考查双曲线的标准方程,考查了双曲线的简单性质,训练了双曲线中最值问题的求法,体现了数学转化思想方法,是中档题.11.已知双曲线(a>0,b>0)与椭圆有共同焦点,且双曲线的一条渐近线方程为,则该双曲线的方程为()A. B.C. D.【分析】求出双曲线的渐近线方程可得,①求出椭圆的焦点坐标,可得c=2 ,即a2+b2=8,②,解方程可得a,b 的值,进而得到双曲线的方程.【解答】解:曲线(a>0,b>0)的一条渐近线方程为,可得,①,椭圆的焦点为(±2 ,0),可得c=2,即a2+b2=8,②由①②可得a=,b=,则双曲线的方程为.故选:D.【点评】本题考查双曲线的方程的求法,注意运用双曲线的渐近线方程和椭圆的焦点,考查运算能力,属于基本知识的考查.12.已知抛物线y2=2px(p>0)的焦点为F,其准线与双曲线﹣x2=1 相交于M,N两点,若△MNF 为直角三角形,其中F 为直角顶点,则p=()A.2 B. C.3 D.6【分析】利用抛物线方程求出准线方程,然后代入双曲线方程求出M,N.利用三角形是直角三角形,转化求解即可.1 2 1 21 2 1 2 【解答】解:由题设知抛物线 y 2=2px 的准线为 x =﹣ ,代入双曲线方程﹣x 2=1 解得 y =±,由双曲线的对称性知△MNF 为等腰直角三角形,∴∠FMN =,∴tan ∠FMN = =1,∴p 2=3+ ,即 p =2 ,故选:A .【点评】本题考查抛物线的定义及抛物线的几何性质,双曲线方程的应用,考查计算能力.13. 已 知 椭 圆 与 双 曲 线有相同的焦点 F 1,F 2,点 P 是两曲线的一个公共点,且 PF 1⊥PF 2,e 1,e 2 分别是两曲线 C 1,C 2 的离心率,则的最小值是( )A .4B .6C .8D .16【分析】由题意设焦距为 2c ,椭圆长轴长为 2a 1,双曲线实轴为 2a 2,令 P 在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出 a 2+a 2=2c 2,由此能求出 9e 2+e 2 的最小值.【解答】解:由题意设焦距为 2c ,椭圆长轴长为 2a 1,双曲线实轴为 2a 2, 令 P 在双曲线的右支上,由双曲线的定义|PF 1|﹣|PF 2|=2a 2,① 由椭圆定义|PF 1|+|PF 2|=2a 1,② 又∵PF 1⊥PF 2, ∴|PF 1|2+|PF 2|2=4c 2,③①2+②2,得|PF 1|2+|PF 2|2=2a 2+2a 2,④将④代入③,得 a 2+a 2=2c 2,∴9e 12+e 22=+=5++≥8,即的最小值是 8.1 2 故选:C .【点评】本题考查 9e 2+e 2的最小值的求法,是中档题,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用. 14. 已知点 M (1,0),A ,B 是椭圆+y 2=1 上的动点,且=0,则 • 的取值是()A .[ ,1]B .[1,9]C .[ ,9]D .[,3]【分析】利用=0,可得 •=•(﹣)=,设 A (2cos α,sin α),可得=(2cos α﹣1)2+sin 2α,即可求解数量积的取值范围.【解答】解:∵=0,可得•=•(﹣)=,设 A (2cos α,sin α), 则=(2cos α﹣1)2+sin 2α=3cos 2α﹣4cos α+2=3(cos α﹣ )2+,∴cos α= 时, 的最小值为;cos α=﹣1 时,的最大值为 9,故选:C .【点评】本题考查椭圆方程,考查向量的数量积运算,考查学生分析解决问题的能力, 属于中档题. 15. 已知双曲线的右焦点与抛物线 y 2=12x 的焦点相同,则此双曲线的渐近线方程为( ) A .B .C .D .【分析】由已知条件求出双曲线的一个焦点为(3,0),可得 m +5=9,求出 m =4,由此能求出双曲线的渐近线方程.【解答】解:∵抛物线 y 2=12x 的焦点为(3,0), ∴双曲线的一个焦点为(3,0),即 c =3.双曲线可得∴m +5=9,∴m =4,∴双曲线的渐近线方程为:.故选:A.【点评】本题主要考查圆锥曲线的基本元素之间的关系问题,同时双曲线、椭圆的相应知识也进行了综合性考查.16.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线一条渐近线与直线AM 平行,则实数a 等于()A. B. C.3 D.9【分析】根据抛物线的焦半径公式得1+=5,p=8.取M(1,4),双曲线的左顶点为A(﹣a,0),AM 的斜率为,双曲线的渐近线方程是,由已知得,由双曲线一条渐近线与直线AM 平行能求出实数a.【解答】解:∵抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,∴抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其准线的距离为5,根据抛物线的焦半径公式得1+=5,p=8.∴抛物线y2=16x,∴M(1,±4),∵m>0,∴取M(1,4),∵双曲线的左顶点为A(﹣,0),∴AM 的斜率为,双曲线的渐近线方程是,由已知得,解得a=.故选:A.【点评】本题考查圆锥曲线的综合应用,解题时要认真审题,仔细解答,注意双曲线和抛物线性质的灵活运用.17.已知椭圆E 的中心在坐标原点,离心率为,E 的右焦点与抛物线C:y2=8x 的焦点重合,A,B 是C 的准线与E 的两个交点,则|AB|=()A.3 B.6 C.9 D.12【分析】利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A,B 坐标,即可求解所求结果.【解答】解:椭圆E 的中心在坐标原点,离心率为,E 的右焦点(c,0)与抛物线C:y2=8x 的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=﹣2,由,解得y=±3,所以A(﹣2,3),B(﹣2,﹣3).|AB|=6.故选:B.【点评】本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.18.若双曲线的渐近线与抛物线y=x2+2 有公共点,则此双曲线的离心率的取值范围是()A.[3,+∞)B.(3,+∞)C.(1,3] D.(1,3)【分析】先根据双曲线方程表示出渐近线方程与抛物线方程联立,利用判别式等于0 求得 a 和 b 的关系,进而求得 a 和 c 的关系,则双曲线的离心率可得.【解答】解:依题意可知双曲线渐近线方程为y=±x,与抛物线方程联立消去y 得x2± x+2=0∵渐近线与抛物线有交点∴△=﹣8≥0,求得b2≥8a2,∴c=≥3a∴e=≥3.则双曲线的离心率 e 的取值范围:e≥3.故选:A.【点评】本题主要考查了双曲线的简单性质和圆锥曲线之间位置关系.常需要把曲线方程联立根据判别式和曲线交点之间的关系来解决问题.19.中心在原点,焦点在x 轴上的双曲线C1的离心率为e,直线l 与双曲线C1交于A,B 两点,线段AB 中点M 在一象限且在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,则l 的斜率为()A. B.e2﹣1 C. D.e2+1【分析】利用抛物线的定义,确定M 的坐标,利用点差法将线段AB 中点M 的坐标代入,即可求得结论.【解答】解:∵M 在抛物线y2=2px(p>0)上,且M 到抛物线焦点的距离为p,∴M 的横坐标为,∴M(,p)设双曲线方程为(a>0,b>0),A(x1,y1),B(x2,y2),则,两式相减,并将线段AB 中点M 的坐标代入,可得∴∴故选:A.【点评】本题考查双曲线与抛物线的综合,考查点差法的运用,考查学生的计算能力,属于中档题.20.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A,若双曲线的一条渐近线与直线AM 平行,则实数a 的值是()A.B.C.D.【分析】根据抛物线的定义,可得点M 到抛物线的准线x=﹣的距离也为5,即即|1+|=5,解可得p=8,可得抛物线的方程,进而可得M 的坐标;根据双曲线的性质,可得A 的坐标与其渐近线的方程,根据题意,双曲线的一条渐近线与直线AM 平行,可得=,解可得a 的值,即可得答案.【解答】解:根据题意,抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,则点M 到抛物线的准线x=﹣的距离也为5,即|1+ |=5,解可得p=8;即抛物线的方程为y2=16x,易得m2=2×8=16,则m=4,即M 的坐标为(1,4)双曲线的左顶点为A,则a>0,且A 的坐标为(﹣,0),其渐近线方程为y=±x;而K AM=,又由若双曲线的一条渐近线与直线AM 平行,则有=,解可得a=;故选:B.【点评】本题综合考查双曲线与抛物线的性质,难度一般;需要牢记双曲线的渐近线方程、定点坐标等.二.解答题(共20 小题)21.已知坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离比等于5.(Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形;(Ⅱ)记(Ⅰ)中的轨迹为C,过点A(﹣2,3)的直线l 被C 所截得弦长为8,求直线l 的方程.【分析】(Ⅰ)直接利用距离的比,列出方程即可求点M 的轨迹方程,然后说明轨迹是什么图形;(Ⅱ)设出直线方程,利用圆心到直线的距离,半径与半弦长满足的勾股定理,求出直线l 的方程.【解答】解:(1)由题意坐标平面上点M(x,y)与两个定点M1(26,1),M2(2,1)的距离之比等于5,得=5,即=5,化简得x2+y2﹣2x﹣2y﹣23=0.即(x﹣1)2+(y﹣1)2=25.∴点M 的轨迹方程是(x﹣1)2+(y﹣1)2=25,所求轨迹是以(1,1)为圆心,以5 为半径的圆.(Ⅱ)当直线l 的斜率不存在时,过点A(﹣2,3)的直线l:x=﹣2,此时过点A(﹣2,3)的直线l 被圆所截得的线段的长为:2=8,∴l:x=﹣2 符合题意.当直线l 的斜率存在时,设过点A(﹣2,3)的直线l 的方程为y﹣3=k(x+2),即kx﹣y+2k+3=0,圆心到l 的距离d=,由题意,得()2+42=52,解得k=.∴直线l 的方程为x﹣y+ =0.即5x﹣12y+46=0.综上,直线l 的方程为x=﹣2,或5x﹣12y+46=0.【点评】本题考查曲线轨迹方程的求法,直线与圆的位置关系的应用,考查计算能力,属于中档题.22.已知在平面直角坐标系xoy 中的一个椭圆,它的中心在原点,左焦点为F(﹣),右顶点为D(2,0),设点A(1,).(1)求该椭圆的标准方程;(2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程.【分析】(1)由左焦点为F(﹣),右顶点为D(2,0),得到椭圆的半长轴a,半焦距c,再求得半短轴b,最后由椭圆的焦点在x 轴上求得方程.(2)设线段PA 的中点为M(x,y),点P 的坐标是(x0,y0),由中点坐标公式可知,将P 代入椭圆方程,即可求得线段PA 中点M 的轨迹方程【解答】解:(1)由题意可知:椭圆的焦点在x 轴上,设+ =1(a>b>0),由椭圆的左焦点为F(﹣,0),右顶点为D(2,0),即a=2,c=,则b2=a2﹣c2=1,∴椭圆的标准方程为:+y2=1(2)设线段PA 的中点为M(x,y),点P 的坐标是(x0,y0),由中点坐标公式可知,整理得:,由点P 在椭圆上,∴+(2y﹣)2=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣(10 分)∴线段PA 中点M 的轨迹方程是:(x﹣)2+4(y﹣)2=1.【点评】本题考查椭圆的标准方程与性质,考查轨迹方程的求法,中点坐标公式的应用,考查计算能力,属于中档题.23.已知抛物线y2=4x,焦点为F,顶点为O,点P 在抛物线上移动,Q 是OP 的中点,M是FQ 的中点,求点M 的轨迹方程.【分析】欲求点M 的轨迹方程,设M(x,y),只须求得坐标x,y 之间的关系式即可.再设P(x1,y1),Q(x2,y2),易求y2=4x 的焦点F 的坐标为(1,0)结合中点坐标公式即可求得x,y 的关系式.【解答】解:设M(x,y),P(x1,y1),Q(x2,y2),易求y2=4x 的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴⇒,又Q 是OP 的中点∴⇒,∵P 在抛物线y2=4x 上,∴(4y)2=4(4x﹣2),所以M 点的轨迹方程为【点评】本题主要考查了直线与圆锥曲线的综合问题.考查了学生综合运用基础知识解决问题的能力.24.在平面直角坐标系xOy 中,已知点A(﹣,0),B(),E 为动点,且直线EA与直线EB 的斜率之积为﹣.(Ⅰ)求动点E 的轨迹C 的方程;(Ⅱ)设过点F(1,0)的直线l 与曲线C 相交于不同的两点M,N.若点P 在y 轴上,且|PM|=|PN|,求点P 的纵坐标的取值范围.【分析】(Ⅰ)设动点E 的坐标为(x,y),由点A(﹣,0),B(),E 为动点,且直线EA 与直线EB 的斜率之积为﹣,知,由此能求出动点E 的轨迹C 的方程.(Ⅱ)设直线l 的方程为y=k(x﹣1),将y=k(x﹣1)代入,得(2k2+1)x2﹣4k2x+2k2﹣2=0,由题设条件能推导出直线MN 的垂直平分线的方程为y+=﹣,由此能求出点P 纵坐标的取值范围.【解答】解:(Ⅰ)设动点E 的坐标为(x,y),∵点A(﹣,0),B(),E 为动点,且直线EA 与直线EB 的斜率之积为﹣,∴,整理,得,x≠,∴动点E 的轨迹C 的方程为,x .(Ⅱ)当直线l 的斜率不存在时,满足条件的点P 的纵坐标为0,当直线l 的斜率存在时,设直线l 的方程为y=k(x﹣1),将y=k(x﹣1)代入,并整理,得(2k2+1)x2﹣4k2x+2k2﹣2=0,△=8k2+8>0,设M(x1,y1),N(x2,y2),则,x1x2=,设MN 的中点为Q,则,,∴Q(,﹣),由题意知k≠0,又直线MN 的垂直平分线的方程为y+=﹣,令x=0,得y P=,当k>0 时,∵2k+ ,∴0<;当k<0 时,因为2k+≤﹣2 ,所以0>y P≥﹣=﹣.综上所述,点P 纵坐标的取值范围是[﹣].【点评】本题考查动点的轨迹方程的求法,考查点的纵坐标的取值范围的求法,解题时要认真审题,仔细解答,注意直线与椭圆位置的综合运用.25.已知点A(﹣2,0),B(2,0),直线AP 与直线BP 相交于点P,它们的斜率之积为﹣,求点P 的轨迹方程(化为标准方程).【分析】利用斜率的计算公式即可得出.【解答】解:设点P(x,y),则直线AP 的斜率,直线BP 的斜率.由题意得.化简得:.∴点P 的轨迹方程是椭圆.【点评】熟练掌握斜率的计算公式及椭圆的标准方程是解题的关键.只有去掉长轴的两个端点.26.已知椭圆E:=1(a>b>0)过点(2,0),且其中一个焦点的坐标为(1,0).(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l:x=my+1(m∈R)与椭圆交于两点A,B,在x 轴上是否存在点M,使得为定值?若存在,求出点M 的坐标;若不存在,请说明理由.【分析】(Ⅰ)利用已知条件求解a,b,然后求解椭圆的方程.(Ⅱ)假设存在点M(x0,0),使得为定值,联立,设A(x1,y1),B(x2,y2),利用韦达定理,结合向量的数量积,转化求解即可.【解答】解:(Ⅰ)由已知得a=2,c=1,∴,则E 的方程为;… ....................... (4 分)(Ⅱ)假设存在点M(x0,0),使得为定值,联立,得(3m2+4)y2+6my﹣9=0…(6 分)设A(x1,y1),B(x2,y2),则,… ...... (7 分),∴。

(完整word版)圆锥曲线高考大题

(完整word版)圆锥曲线高考大题

圆锥曲线1.已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.2. 如图,在平面直角坐标系xOy 中,已知椭圆()222210x y a b a b +=>>,且右焦点F 到左准线l 的距离为3. (1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于 点P ,C ,若PC =2AB ,求直线AB 的方程.3..已知椭圆E :22221(a 0)x yb a b过点. (Ⅰ)求椭圆E 的方程;(Ⅱ)设直线1xmy m R ,()交椭圆E 于A ,B 两点,判断点G 9(4-,0)与以线段AB 为直径的圆的位置关系,并说明理由.xy BAOG4.已知椭圆2212x y +=上两个不同的点A ,B 关于直线12y mx =+对称.(1)求实数m 的取值范围;(2)求AOB ∆面积的最大值(O 为坐标原点).5.平面直角坐标系xoy 中,已知椭圆()2222:10x y C a b a b +=>>的离心率为32,左、右焦点分别是12,F F ,以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆2222:144x y E a b+=,P 为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于,A B 两点,射线PO 交椭圆E 于点Q . ( i )求OQ OP的值; (ii )求ABQ ∆面积的最大值.6.设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为510. (I )求E 的离心率e ;(II )设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求 E 的方程.7.已知椭圆2222+=1(0)x y a b a b 的左焦点为(,0)F c -,离心率为33,点M 在椭圆上且位于第一象限,直线FM被圆422+4b x y截得的线段的长为c ,43|FM|=3.(I)求直线FM 的斜率;(II)求椭圆的方程;(III)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.8.如图,椭圆()222210x y a b a b+=>>的左、右焦点分别为12,,F F 过2F 的直线交椭圆于,P Q 两点,且1PQ PF ⊥(1)若1222,22PF PF =+=-,求椭圆的标准方程 (2)若1,PF PQ =求椭圆的离心率.e9.如图,椭圆E :2222+1(0)x y a b a b =>>的离心率是22,过点P (0,1)的动直线l 与椭圆相交于A ,B 两点,当直线l 平行与x 轴时,直线l 被椭圆E 截得的线段长为22. (1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得QA PAQB PB=恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.F 2F 1PQyxO10.一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带.动.N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程; (Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究:OQP ∆的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.11.已知椭圆:E 22221x y a b +=(0a b >>)的半焦距为c ,原点O 到经过两点(),0c ,()0,b 的直线的距离为12c .(I )求椭圆E 的离心率;(II )如图,AB 是圆:M ()()225212x y ++-=的一条直径,若椭圆E 经过A ,B 两点,求椭圆E 的 方程.BADOMN xD OMN y12.在直角坐标系xoy 中,曲线C :y =24x 与直线y kx a =+(a >0)交与M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.13.已知椭圆C :()222210x y a b a b +=>>,点()01P ,和点()A m n ,()0m ≠都在椭圆C 上,直线PA 交x 轴于点M .(Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.14.已知抛物线21:4C x y =的焦点F 也是椭圆22222:1(0)y x C a b a b+=>>的一个焦点,1C 与2C 的公共弦的长为.(1)求2C 的方程;(2)过点F 的直线l 与1C 相交于A ,B 两点,与2C 相交于C ,D 两点,且AC 与BD 同向(ⅰ)若||||AC BD =,求直线l 的斜率(ⅱ)设1C 在点A 处的切线与x 轴的交点为M ,证明:直线l 绕点F 旋转时,MFD ∆总是钝角三角形15.已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别于椭圆交于A 、B 和C 、D ,记得到的平行四边形CD AB 的面积为S .(1)设()11,x y A ,()22C ,x y ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明11212S x y x y =-; (2)设1l 与2l 的斜率之积为12-,求面积S 的值.1.【答案】(Ⅰ)详见解析;(Ⅱ)能,47-或47+.【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y . 将y kx b =+代入2229x y m +=得2222(9)20k x kbx b m +++-=,故12229M x x kbx k +==-+, 2(3)23(9)mk k k -⨯+.解得147k =-247k =+.因为0,3i i k k >≠,1i =,2,所以当l 的斜率为 4747+OAPB 为平行四边形.2.【答案】(1)2212x y +=(2)1yx =-或1y x =-+.(1)由题意,得22ca=23a c c+=,解得2a =,1c =,则1b =,所以椭圆的标准方程为2212x y +=.(2)当x AB ⊥轴时,2AB =C 3P =,不合题意.当AB与x 轴不垂直时,设直线AB 的方程为()1y k x =-,()11,x y A ,()22,x y B ,将AB 的方程代入椭圆方程,得()()2222124210k xk x k +-+-=,则()221,2222112k k x k±+=+,C 的坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭,且()()()()()222222121212221112k x x y y k xx k+AB =-+-=+-=+若0k =,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意.3.【答案】(Ⅰ)22142x y ;(Ⅱ) G 9(4-,0)在以AB 为直径的圆外.【解析】解法一:(Ⅰ)由已知得2222,2,2,b c a a b c 解得222a b c ,所以椭圆E 的方程为22142x y .(Ⅱ)设点1122(y ),B(,y ),A x x AB 中点为00H(,y )x .由22221(m 2)y 230,142x my my x y 得所以12122223y +y =,y y =m 2m 2m ,从而022y m 2.所以222222200000095525GH|()y (my )y (m +1)y +my +44216x .22222121212()(y )(m +1)(y )|AB|444x x y y22221212012(m +1)[(y )4y ](m +1)(y y )4y y y ,故222222012222|AB|52553(m +1)25172|GH|my (m +1)y 042162(m 2)m 21616(m 2)m m y所以|AB||GH|>2,故G 9(4-,0)在以AB 为直径的圆外. 解法二:(Ⅰ)同解法一.(Ⅱ)设点1122(y ),B(,y ),A x x ,则112299GA(,),GB (,).x y x y 由22221(m 2)y 230,x my my x y 得所以12122223y +y =,y y =m 2m 2m ,从而121212129955GA GB ()()(my )(my )4444x x y y y y 22212122252553(m +1)25(m +1)y (y )4162(m 2)m 216m y m y 22172016(m 2)m 所以cosGA,GB 0,GA GB又,不共线,所以AGB 为锐角.故点G 9(4-,0)在以AB 为直径的圆外.4.【答案】(1)m <m >(2.(1)由题意知0m ≠,可设直线AB 的方程为1y x b m=-+,由22121x y y x bm ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222112()102b x x b m m +-+-=,∵直线1y x b m =-+与椭圆2212x y +=有两个不同的交点,∴224220b m ∆=-++>,①,将AB 中点2222(,)22mb m b M m m ++代入直线方程12y mx =+解得2222m b m +=-,②。

新课标高考《圆锥曲线》大题专题含答案.doc

新课标高考《圆锥曲线》大题专题含答案.doc

全国高考理科数学试题分类汇编9:圆锥曲线一、选择题1 .(2013年高考江西卷(理))过点引直线l与曲线y =A,B 两点,O 为坐标原点,当∆AOB 的面积取最大值时,直线l 的斜率等于 ( )A .y EB BC CD=++3B.3-C.3±D.2 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))双曲线2214x y -=的顶点到其渐近线的距离等于 ( )A .25B .45CD3 .(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知中心在原点的双曲线C 的右焦点为()3,0F ,离心率等于32,在双曲线C 的方程是( )A.2214x = B .22145x y -=C .22125x y -=D.2212x -=4 .(2013年高考新课标1(理))已知双曲线C :22221x y a b -=(0,0a b >>)则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =±5 .(2013年高考湖北卷(理))已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的 ( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等6 .(2013年高考四川卷(理))抛物线24y x =的焦点到双曲线2213y x -=的渐近线的距离是 ( ) A .12BC .1 D7 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是[来源:12999数学网]( )A .2B .3C .23D .268 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知双曲线22221(0,0)x y a b a b-=>>的两条渐近线与抛物线22(0)px p y =>的准线分别交于A , B 两点, O 为坐标原点. 若双曲线的离心率为2, △AOB则p = ( )A .1B .32C .2D .39 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是 ( )A .1324⎡⎤⎢⎥⎣⎦,B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦,D .314⎡⎤⎢⎥⎣⎦,10.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知抛物线2:8C y x=与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k = ( )A .12B.2CD .211.(2013年高考北京卷(理))若双曲线22221x y a b-=则其渐近线方程为( )A .y =±2xB .y= C .12y x =±D.y x = 12.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知抛物线1C :212y xp =(0)p >的焦点与双曲线2C :2213x y -=的右焦点的连线交1C 于第一象限的点M .若1C 在点M 处的切线平行于2C 的一条渐近线,则p =( )A.B.C.D.13.(2013年高考新课标1(理))已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 14.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))设抛物线2:2(0)C y px p =>的焦点为F ,点M 在C 上,5MF =,若以MF 为直径的圆过点)2,0(,则C 的方程为( )A .24y x =或28y x =B .22y x =或28y x =C .24y x =或216y x =D .22y x =或216y x =15.(2013年上海市春季高考数学试卷(含答案))已知 A B 、为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若2MN AN NB λ=⋅,其中λ为常数,则动点M 的轨迹不可能是 ( )A .圆B .椭圆C .抛物线D .双曲线16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为 ( )A.4 B1C.6-D二、填空题17.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))双曲线191622=-y x 的两条渐近线的方程为_____________.18.(2013年高考江西卷(理))抛物线22(0)x py p =>的焦点为F,其准线与双曲线22133x y -=相交于,A B 两点,若ABF ∆为等边三角形,则P =_____________19.(2013年高考湖南卷(理))设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___.20.(2013年高考上海卷(理))设AB 是椭圆Γ的长轴,点C 在Γ上,且4CBA π∠=,若AB=4,BC =,则Γ的两个焦点之间的距离为________24.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________25.(2013年高考陕西卷(理))双曲线22116x y m-=的离心率为54, 则m 等于_______.26.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为,F C 与过原点的直线相交于,A B 两点,连接,A F B F ,若410,6,cos ABF 5AB AF ==∠=,则C 的离心率e =______.27.(2013年上海市春季高考数学试卷(含答案))抛物线28yx =的准线方程是_______________三、解答题30.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分4分,第2小题满分9分.已知椭圆C 的两个焦点分别为1(10)F -,、2(1 0)F ,,短轴的两个端点分别为12 B B 、(1)若112F B B ∆为等边三角形,求椭圆C 的方程;(2)若椭圆C 的短轴长为2,过点2F 的直线l 与椭圆C 相交于 P Q 、两点,且11F P FQ ⊥,求直线l 的方程.31.(2013年高考四川卷(理))已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;32.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别是12,F F ,,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (Ⅰ)求椭圆C 的方程;36.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D (1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.37.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))如题(21)图,椭圆的中心为原点O ,长轴在x 轴上,离心率e =过左焦点1F 作x 轴的垂线交椭圆于,A A '两点,4AA '=.(1)求该椭圆的标准方程;38.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设椭圆2222:11x y E a a +=-的焦点在x 轴上(Ⅰ)若椭圆E 的焦距为1,求椭圆E 的方程; .39.(2013年高考新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|.40.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))设椭圆22221(0)x y a b a b+=>>的左焦点为F ,过点F 且与x.(Ⅰ) 求椭圆的方程; 【答案】41.(2013年高考江西卷(理))如图,椭圆2222+=1(>>0)x y C a b a b:经过点3(1,),2P 离心率1=2e ,直线l的方(第21题图)程为=4x .(1) 求椭圆C 的方程;42.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线l :20x y --=设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.(Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程;43.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))平面直角坐标系xOy中,过椭圆2222:1(0)x y M a b a b+=>>的右焦点F 作直0x y +=交M 于,A B 两点,P 为AB 的中点,且OP 的斜率为12. (Ⅰ)求M 的方程;(Ⅱ),C D 为M 上的两点,若四边形ABCD 的对角线CD AB ⊥,求四边形ABCD 面积的最大值.【答案】46.(2013年高考陕西卷(理))已知动圆过定点A (4,0), 且在y 轴上截得的弦MN 的长为8.(Ⅰ) 求动圆圆心的轨迹C 的方程;47.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))如图,抛物线()2212:4,:20C x y C x py p ==->,点()00,M x y 在抛物线2C 上,过M 作1C 的切线,切点为,A B (M 为原点O 时,,A B 重合于O )01x =,切线.MA 的斜率为12-.(I)求p 的值;(II)当M 在2C 上运动时,求线段AB 中点N 的轨迹方程.(),,.A B O O 重合于时中点为48.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为12F F ,,离心率为3,直线2y =与C 的两个交点间. (I)求,;a b ;49.(2013年上海市春季高考数学试卷(含答案))本题共有2个小题,第1小题满分6分,第2小题满分6分.已知抛物线24C y x =: 的焦点为F .(1) 点 A P 、满足2AP FA =-.当点A 在抛物线C 上运动时,求动点P 的轨迹方程; 全国高考理科数学试题分类汇编9:圆锥曲线【答案】B 【答案】C 【答案】B 【答案】C 【答案】D 【答案】B 【答案】D 【答案】C 【答案】B 【答案】D 【答案】B 【答案】D 【答案】D 【答案】C 【答案】C 【答案】A 二、填空题【答案】 【答案】6 【答案】 【答案】.【答案】【答案】9 【答案】 【答案】三、解答题【答案】[解](1)设椭圆的方程为. 根据题意知, 解得,故椭圆的方程为.(2)容易求得椭圆的方程为.当直线的斜率不存在时,其方程为,不符合题意;当直线的斜率存在时,设直线的方程为.由得.设,则因为,所以,即,解得,即.故直线的方程为或.【答案】解:所以,.又由已知,, [来源:]所以椭圆C的离心率【答案】解:(Ⅰ)由于,将代入椭圆方程得由题意知,即又所以,所以椭圆方程为【答案】解:(Ⅰ)由已知得到,且,所以椭圆的方程是;(Ⅱ)因为直线,且都过点,所以设直线,直线,所以圆心到直线的距离为,所以直线被圆所截的弦;由,所以,所以,当时等号成立,此时直线答案】解: (Ⅰ)【答案】由已知得圆的圆心为(-1,0),半径=1,圆的圆心为(1,0),半径=3.设动圆的圆心为(,),半径为R. [来源:](Ⅰ)∵圆与圆外切且与圆内切,∴|PM|+|PN|===4,由椭圆的定义可知,曲线C是以M,N为左右焦点,场半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为.(Ⅱ)对于曲线C上任意一点(,),由于|PM|-|PN|=≤2,∴R≤2,当且仅当圆P的圆心为(2,0)时,R=2.∴当圆P的半径最长时,其方程为,当的倾斜角为时,则与轴重合,可得|AB|=.当的倾斜角不为时,由≠R知不平行轴,设与轴的交点为Q,则=,可求得Q(-4,0),∴设:,由于圆M相切得,解得.当=时,将代入并整理得,解得=,∴|AB|==.当=-时,由图形的对称性可知|AB|=,综上,|AB|=或|AB|=.【答案】(Ⅰ) 依题意,设抛物线的方程为,由结合,解得. 所以抛物线的方程为.(Ⅱ) 抛物线的方程为,即,求导得设,(其中),则切线的斜率分别为,,所以切线的方程为,即,即同理可得切线的方程为因为切线均过点,所以,所以为方程的两组解.所以直线的方程为.47.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))【答案】【答案】(1)设动点的坐标为,点的坐标为,则, 因为的坐标为,所以,由得.即解得代入,得到动点的轨迹方程为.。

(完整版)圆锥曲线经典题目(含答案)

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。

(完整word版)圆锥曲线专题

(完整word版)圆锥曲线专题

圆锥曲线的综合问题直线和圆锥曲线问题解法的一般规律“联立方程求交点,根与系数的关系求弦长,根的分布找范围,曲线定义不能忘”.【一】.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点.(2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断. 1。

设直线l 的方程为Ax +By +C =0,圆锥曲线方程f (x ,y )=0.由Ax+0(,)0{By c f x y +==,消元。

如消去y 后得ax 2+bx +c =0. ①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行或重合. ②若a ≠0,设Δ=b 2-4ac 。

a .Δ > 0时,直线和圆锥曲线相交于不同两点;b .Δ = 0时,直线和圆锥曲线相切于一点;c .Δ < 0时,直线和圆锥曲线没有公共点.2。

“点差法”的常见题型求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ〉0是否成立.3.直线与圆锥曲线相交时的弦长问题(1)斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长|P 1P 2| = 或|P 1P 2|= .(2)当斜率k 不存在时,可求出交点坐标,直接运算(利用轴上两点间距离公式).1+k 2|x 1-x 2|1+1k 2|y 1-y 2|4.圆锥曲线的中点弦问题遇到中点弦问题常用“根与系数的关系”或“点差法”求解.在椭圆错误!+错误!=1中,以P(x0,y0)为中点的弦所在直线的斜率k=-错误!;在双曲线错误!-错误!=1中,以P(x0,y0)为中点的弦所在直线的斜率k =错误!;在抛物线y2=2px (p〉0)中,以P(x0,y0)为中点的弦所在直线的斜率k=错误!.题型一圆锥曲线中的范围、最值问题【例1】已知抛物线C:y2=4x,过点A(-1,0)的直线交抛物线C于P、Q两点,设错误!=λ错误!.(1)若点P关于x轴的对称点为M,求证:直线MQ经过抛物线C的焦点F;(2)若λ∈错误!,求|PQ|的最大值.[思维启迪](1)可利用向量共线证明直线MQ过F;(2)建立|PQ|和λ的关系,然后求最值.解析:(1)证明设P(x1,y1),Q(x2,y2),M(x1,-y1).∵错误!=λ错误!,∴x1+1=λ(x2+1),y1=λy2,∴y错误!=λ2y错误!,y错误!=4x1,y错误!=4x2,x1=λ2x2,∴λ2x2+1=λ(x2+1),λx2(λ-1)=λ-1,∵λ≠1,∴x2=错误!,x1=λ,又F(1,0),∴错误!=(1-x1,y1)=(1-λ,λy2)=λ错误!=λ错误!,∴直线MQ经过抛物线C的焦点F。

(完整word版)高中数学——圆锥曲线试题精选(含答案),推荐文档

(完整word版)高中数学——圆锥曲线试题精选(含答案),推荐文档

高考圆锥曲线试题精选、选择题:(每小题5分,计 1、 2. 50分)2 2x y102 C.3 3 2x (2004全国卷I 文、理) 椭圆一4(2008海南、宁夏文)双曲线 直线与椭圆相交,一个交点为 A .22 B. .3C .P,1的焦距为( )D. 4 .31的两个焦点为F i 、F 2,过F 1作垂直于x 轴的| PF 2 |=()(2006辽宁文)方程2x 5x A. —椭圆和一双曲线的离心率 C. 一椭圆和一抛物线的离心率 2006四川文、理) 直线y = x — 抛物线的准线作垂线,垂足分别为(A ) 48.( B ) 56X 25.(2007福建理)以双曲线 9 D. 44. 0的两个根可分别作为()E.两抛物线的离心率 D.两椭圆的离心率23与抛物线y 4x 交于A 、B 两点,过A 、B 两点向 P 、Q ,则梯形APQB 的面积为( ))A 皆lfii+9=0i C . I ' —' (C ) 2 y1664 (D ) 72. 1的右焦点为圆心,且与其渐近线相切的圆的方程是 B.样 +护一1血+16= 0 D. ' —— (2004全国卷W 理) 已知椭圆的中心在原点, 离心率1,且它的一个焦点与抛物线2 A . 4x 的焦点重合,则此椭圆方程为(x 2 2 x B.—8C .x 2 D . x 2 y 21 (2005湖北文、理)2 x 双曲线一 mA . 4x 的焦点重合,则 色B . 16 mn 3 16 C.82y_ n 的值为( 8 3 1(mn D. 0)离心率为2, 有一个焦点与抛物线 2 x 8. (2008重庆文)若双曲线 — 16y 22~ P 1的左焦点在抛物线 y 2=2px 的准线上,则p 的值为() (A)2 (B)3 (C)4 9. ( 2002北京文)已知椭圆 双曲线的渐近线方程是( A . x y2 2 x 3m 2 ) (D)4、一 2 2 y 5n 21和双曲线 2 X 2m 2 2 器1有公共的焦点,那么 B . 15 x 2 C. 10. (2003春招北京文、 理) 在同一坐标系中, 、3 T y2y_D .1与ax的曲线大致是( ) 2、“ x 万程飞by 20(a b 0)二、填空题:(每小题5分,计20分)11. (2005上海文)若椭圆长轴长与短轴长之比为2,它的一个焦点是2.15,0,则椭圆的标准方程是____________________________ ”2 212. (2008江西文)已知双曲线笃爲1(a 0,b 0)的两条渐近线方程为ya b若顶点到渐近线的距离为1,则双曲线方程为______________________ .2 213. (2007上海文)以双曲线——1的中心为顶点,且以该双曲线的右焦点为焦点的4 5抛物线方程是___________________ .214. (2008天津理)已知圆C的圆心与抛物线y 4x的焦点关于直线y x对称.直线4x 3y 2 0与圆C相交于A, B两点,且AB 6 ,则圆C的方程为____________________ .三、解—3分,19、20题各14分)X y215. (2006北京文)椭圆C:r 2 1(a b 0)的两个焦点为F1,F2,点P在椭圆C上,a b4 14且PF1 F1F2,| PF1I」PF2 | . (I)求椭圆C的方程;3 3(D )若直线I过圆x2+y2+4x-2y=0的圆心M,交椭圆C于A, B两点,且A B关于点M对称,求直线l 的方程..16. (2005重庆文)已知中心在原点的双曲线C的右焦点为(2, 0),右顶点为&3,0)(1)求双曲线C的方程;(2)若直线l : y kx . 2与双曲线C恒有两个不同的交点A和B,且OA OB 2 (其中O为原点).求k的取值范围.17. (2007安徽文)设F是抛物线Gx2=4y的焦点.(I )过点P( 0, -4 )作抛物线G的切线,求切线方程:(II )设A B为抛物线G上异于原点的两点,且满足F A FB 0,延长AF、BF分别交抛物线G于点C D,求四边形ABCD面积的最小值.18. (2008辽宁文)在平面直角坐标系xOy中,点P到两点(0, 、.3) , (0, 3)的距离之和等于4,设点P的轨迹为C .(I )设直线y kx 1与C交于A, B两点.(I )写出C的方程;muk为何值时OAuuu uuuOB ?此时AB的值是多少?219. (2002广东、河南、江苏) A 、B 是双曲线X 2 — 2 = 1上的两点,点 N(1,2)是线段AB 的中占I 八、、(1) 求直线AB 的方程;(2) 如果线段AB 的垂直平分线与双曲线相交于 C D 两点,那么A 、B C 、D 四点是否共圆?为什么?20. (2007福建理)如图,已知点 巳1,_0)」线 线I 的垂线,垂足为点 Q ,且门 门匚=2 •:V 。

(完整版)圆锥曲线大题综合测试(含详细答案)

(完整版)圆锥曲线大题综合测试(含详细答案)

圆锥曲线1.设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF F A =u u u r u u u r(其中O为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求⋅的最大值.2 . 已知椭圆E :()222210x y a b a b +=>>的一个焦点为()1F ,而且过点12H ⎫⎪⎭.(Ⅰ)求椭圆E 的方程;(Ⅱ)设椭圆E 的上下顶点分别为12,A A ,P 是椭圆上异于12,A A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.3、已知圆O:222=+y x 交x 轴于A,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F,若P 是圆O上一点,连结PF,过原点O 作直线PF 的垂线交直线x=-2于点Q.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切; (Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.4设)0(1),(),,(22222211>>=+b a b x x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点.(1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5 、直线l :y = mx + 1,双曲线C :3x 2 - y 2 = 1,问是否存在m 的值,使l 与C 相交于A , B 两点,且以AB 为直径的圆过原点6 已知双曲线C :22221(0,0)x y a b a b-=>>的两个焦点为F 1(-2,0),F 2(2,0),点P 在曲线C 上。

圆锥曲线大题综合测试(含详细答案)

圆锥曲线大题综合测试(含详细答案)

.xy1A 2ATG PMON 圆锥曲线1.设椭圆222:12x y M a +=()2a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF F A =(其中O为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求PF PE ⋅的最大值.2 . 已知椭圆E :()222210x y a b a b +=>>的一个焦点为()13,0F -,而且过点13,2H ⎛⎫ ⎪⎝⎭.(Ⅰ)求椭圆E 的方程;(Ⅱ)设椭圆E 的上下顶点分别为12,A A ,P 是椭圆上异于12,A A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.3、已知圆O:222=+y x 交x 轴于A,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F,若P 是圆O上一点,连结PF,过原点O 作直线PF 的垂线交直线x=-2于点Q.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切; (Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系?若是,请证明;若不是,请说明理由.4设)0(1),(),,(22222211>>=+b a b x x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点.(1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.xy O PF QA B5 、直线l:y = mx + 1,双曲线C:3x2- y2 = 1,问是否存在m的值,使l与C相交于A , B两点,且以AB为直径的圆过原点6 已知双曲线C:22221(0,0)x ya ba b-=>>的两个焦点为F1(-2,0),F2(2,0),点P(3,7)在曲线C上。

(完整版)历年圆锥曲线高考题(带答案)

(完整版)历年圆锥曲线高考题(带答案)

历年高考圆锥曲线2000年:(10)过原点的直线与圆相切,若切点在第三象限,则该直03422=+++x y x 线的方程是( )(A ) (B ) (C )(D )x y 3=x y 3-=x 33x 33-(11)过抛物线的焦点F 作一条直线交抛物线于P 、Q 两点,若线()02>=a ax y段PF 与FQ 的长分别是、,则等于( )p q qp 11+(A )(B )(C ) (D )a 2a21a 4a4(14)椭圆的焦点为、,点P 为其上的动点,当为钝角14922=+y x 1F 2F 21PF F ∠ 时,点P 横坐标的取值范围是________。

(22)(本小题满分14分)如图,已知梯形ABCD 中,点E 分有向线段所成的比为,CD AB 2=AC λ双曲线过C 、D 、E 三点,且以A 、B 为焦点。

当时,求双曲线离心率4332≤≤λ的取值范围。

e 2004年3.过点(-1,3)且垂直于直线的直线方程为( )032=+-y x A .B .C .D .12=-+y x 052=-+y x 052=-+y x 072=+-y x 8.已知圆C 的半径为2,圆心在轴的正半轴上,直线与圆C 相切,则圆x 0443=++y x C 的方程为( )A .B .03222=--+x y x 0422=++x y x C .D .3222=-++x y x 0422=-+x y x 8.(理工类)已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线21=e 的焦点重合,x y 42-= 则此椭圆方程为( )A .B .13422=+y x 16822=+y x C .D .1222=+y x 1422=+y x 22.(本小题满分14分)双曲线的焦距为2c ,直线过点(a ,0)和(0,b ),且点)0,1(12222>>=-b a by a x l (1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e l l .54c s ≥的取值范围.2005年:9.已知双曲线的焦点为,点在双曲线上且则点1222=-y x 12,F F M 120,MF MF ⋅= 到M 轴的距离为(x )A .B .CD435310.设椭圆的两个焦点分别为过作椭圆长轴的垂线交椭圆于点P ,若△为12,,F F 2F 12F PF等腰直角三角形,则椭圆的离心率是()A B C .D 2121、(理工类)(本小题满分12分)设,两点在抛物线上,是的垂直平分线。

(完整版)全国卷高考数学圆锥曲线大题集大全,推荐文档

(完整版)全国卷高考数学圆锥曲线大题集大全,推荐文档

高考二轮复习专项:圆锥曲线大题集1.如图,直线 l1与l2是同一平面内两条互相垂直的直线,交点是 A,点 B、D 在直线 l1上(B、D 位于点 A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l1上的射影点是 N,且|BN|=2|DM|.(Ⅰ) 建立适当的坐标系,求动点 M 的轨迹 C 的方程.(Ⅱ)过点 D 且不与 l1、l2垂直的直线 l 交(Ⅰ)中的轨迹 C 于E、F 两点;另外平面上的点G、H 满足:①AG =AD(∈ R); ②GE +GF ③求点 G 的横坐标的取值范围.e =2.设椭圆的中心是坐标原点,焦点在x 轴上,离心率上的点的最远距离是 4,求这个椭圆的方程. ,已知点P(0,3) 到这个椭圆x 2 y 2 253.已知椭圆C1 :2+2= 1(a >b > 0) x =的一条准线方程是,4 其左、右顶点分别3l2MA D NB l1a b是A、B;双曲线x 2 y 2C2 :a 2-b 2= 1的一条渐近线方程为 3x-5y=0.(Ⅰ)求椭圆 C1的方程及双曲线 C2的离心率;(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP 交椭圆C1于点M,连结PB 并延长交椭圆C1于点 N,若 AM =MP . 求证: MN •AB = 0.4.椭圆的中心在坐标原点 O,右焦点 F(c,0)到相应准线的距离为 1,倾斜角为45°的直线交椭圆于 A,B 两点.设 AB 中点为 M,直线 AB 与OM 的夹角为 a.(1)用半焦距 c 表示椭圆的方程及 tan;(2)若2<tan<3,求椭圆率心率 e 的取值范围.x2 +y2 e =65.已知椭圆a2b2 (a>b>0)的离心率 3 ,过点 A(0,-b)和 B(a,0)的直3线与原点的距离为2(1)求椭圆的方程(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D 两点问:是否存在k 的值,使以CD 为直径的圆过E 点?请说明理由6. 在直角坐标平面中, ∆ABC 的两个顶点 A , B 的坐标分别为 A (-1,0) , B (1,0) ,平面内两点G , M 同时满足下列条件:① GA + GB + GC = 0 ;② == ;③ GM ∥ AB (1) 求∆ABC 的顶点C 的轨迹方程; (2) 过点P (3,0) 的直线l 与(1)中轨迹交于 E , F 两点,求 PE ⋅ PF 的取值范围x , y ∈ Ri , j7.设,为直角坐标平面内 x 轴.y 轴正方向上的单位向量,若= a = xi + ( y + 2) j , bxi + ( y - 2) j | a ,且 | +| b |= 8 (Ⅰ)求动点 M(x,y)的轨迹 C 的方程;(Ⅱ)设曲线 C 上两点 A .B ,满足(1)直线 AB 过点(0,3),(2)若OP = OA + OB ,则 OAPB为矩形,试求 AB 方程.yD CEAO A 1 xD 1C 1y 2= m (x + n ),(m ≠ 0, n > 0) 8. 已知抛物线 C :的焦点为原点,C 的准线与直线l : kx - y + 2k = 0(k ≠ 0) 的交点 M 在x 轴上, l 与 C 交于不同的两点 A 、B ,线段 AB 的垂直平分线交 x 轴于点 N (p ,0).(Ⅰ)求抛物线 C 的方程; (Ⅱ)求实数 p 的取值范围;(Ⅲ)若 C 的焦点和准线为椭圆 Q 的一个焦点和一条准线,试求 Q 的短轴的端点的轨迹方程.9. 如图,椭圆的中心在原点,长轴 AA 1 在x 轴上.以 A 、A 1 为焦点的双曲线交椭圆于1 AE =C 、D 、D 1、C 1 四点,且|CD|= 2 |AA 1|.椭圆的一条弦 AC 交双曲线于E ,设 EC ,当 2 ≤ ≤ 334 时,求双曲线的离心率 e 的取值范围.4x 2+ 5 y =2 80 10. 已知三角形 ABC 的三个顶点均在椭圆点(点 A 在 y 轴正半轴上).上,且点 A 是椭圆短轴的一个端 若三角形 ABC 的重心是椭圆的右焦点,试求直线 BC 的方程; 若角 A 为900,AD 垂直 BC 于 D ,试求点 D 的轨迹方程.x 2 = 4 yP (0, m ) (m > 0)11.如图,过抛物线的对称轴上任一点作直线与抛物线交于A ,B 两点,点Q 是点 P 关于原点的对称点.(1) 设点 P 分有向线段 AB 所成的比为,证明:QP ⊥ (QA -QB ) ;(2) 设直线 AB 的方程是 x - 2 y +12 = 0 ,过 A , B 两点的圆C 与抛物线在点 A 处有共同的切线,求圆C 的方程.1 +p 2 p12. 已知动点 P (p ,-1),Q (p , 2 ),过 Q 作斜率为 2 的直线 l ,P Q 中点 M 的轨迹为曲线 C.(1) 证明:l 经过一个定点而且与曲线 C 一定有两个公共点; (2) 若(1)中的其中一个公共点为 A ,证明:AP 是曲线 C 的切线; (3) 设直线 AP 的倾斜角为,AP 与l 的夹角为,证明:+ 或- 是定值.7 3 113.在平面直角坐标系内有两个定点F 1、F 2 和动点 P , F 1、F 2 坐标分别为 F 1 (-1,0) 、| PF 1 | =F 2 (1,0) ,动点 P 满足| PF 2 | 2 ,动点 P 的轨迹为曲线C ,曲线C 关于直线 y = x 的对称曲线为曲线C ' ,直线 y = x + m - 3 与曲线C' 交于 A 、B 两点,O 是坐标原点,△ABO 的 面积为 ,(1)求曲线 C 的方程;(2)求m 的值。

(完整word版)圆锥曲线高考真题汇编(2013--2019新课标卷)(2019)

(完整word版)圆锥曲线高考真题汇编(2013--2019新课标卷)(2019)

解析几何高考真题1、【2019年新2文理】若抛物线22y px =(p>0)的焦点是椭圆2213x y p p+=的一个焦点,则p=( ) A.2 B.3 C.4 D.82、【2019年新2文理】设F 为双曲线C:22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点,若PQ OF =,则C 的离心率为( )B.C. 23、【2019新1文理】已知双曲线C:22221(0,0)x y a b a b-=>>D 的左、右焦点分别为12,F F ,过1F 的直线与C的两条渐近线分别交于A,B 两点,若112,0F A AB FB F B =⋅=u u u r u u u r u u u r u u u u r,则C 的离心率为________4、【2019新1文理】已知椭圆C 的焦点为12(1,0),(1,0)F F -,过2F 的直线与C 交于A,B 两点2212,AF F B AB BF ==,则C 的方程为( )A.2212x y += B.22132x y += C.22143x y += D.22154x y += 5、【2019新3文理】10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )ABC.D.6、【2019新3文理】15.设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.7、【2018新2文理】5.双曲线,则其渐近线方程为( )A .B .C .D .22221(0,0)x y a ba b-=>>y =y =2y x =y =8、【2018新2理】12.已知,是椭圆的左、右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为( ) A .B .C .D .9、【2018新2文】11.已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为() A . B .CD10、【2018新1理】8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则=()A .5B .6C .7D .811、【2018新1理】11.已知双曲线C:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M、N .若为直角三角形,则|MN |=( ) A .B .3C .D .412、【2018新1文】4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B.12C D 13、【2018新1文】15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________ 14、【2018新3文理】6.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是( ) A .B .C .D .15、【2018新3理】11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为( )A B .2 C D16、【2018新3理】16.已知点和抛物线,过的焦点且斜率为的直线与交于,1F 2F 22221(0)x y C a b a b+=>>:A C PA 12PF F △12120F F P ∠=︒C 231213141F 2F C P C 12PF PF ⊥2160PF F ∠=︒C 12-123FM FN ⋅u u u u r u u u r2213x y -=OMN △3220x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣12F F ,22221x y C a b-=:00a b >>,O 2F C P 1PF =C ()11M -,24C y x =:C k C A两点.若,则________.17、【2018新3文】10.已知双曲线,则点到的渐近线的距离为() AB .CD .18、【2017新2理】9. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2BCD 19、【2017新2理】16. 已知F 是抛物线C :28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则FN = .20、【2017新1理】10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .1021、【2017新1理】15.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线经典大题
1•已知过点A(— 4,0)的动直线I与抛物线G: x2 = 2py(p>0)相交于B、C两点•当直线I的斜率是2时,AC = 4AB.
(1)求抛物线G的方程;
(2)设线段BC的中垂线在y轴上的截距为b,求b的取值范围.
2.如图,已知F(1,0),直线l:x 1,点P为平面上的动点,过点P作I的垂线, ujur
uuir urn uuu
垂足为点Q,且QP QF FP FQ .
(I)求动点P的轨迹C的方程。

(n)过点F的直线交轨迹C于A, B两点,交直线I于点M .
UULT luur ULUT (1)已知MA 1AF,MB
uuu
2BF,求i 2的值;
uuur (2)求MA HIT
MB的最小值.
3.设点F是抛物线G:x2=4y的焦点.
(1)过点P (0, -4)作抛物线G的切线,求切线的方程;
(2)设A, B为抛物线G上异于原点的两点,且满足FA^B o,分别延长AF,BF交抛物线G于C,D两点,求四边形ABCD面积的最小值.
4.设抛物线方程为x2 2py(p 0) , M为直线y 2p上任意一点,过M引抛物线的切线,
切点分别为A, B .
(I)求证:A, M , B三点的横坐标成等差数列;
(U)已知当M点的坐标为(2, 2p)时,AB 4/10 .求此时抛物线的方程;
2 2 2
5.设椭圆M:笃 y 1 a .2的右焦点为F i ,直线l:x a 2 uuur uuur A ,若OF , 2AF 1 0 (其中O 为坐标原点). (1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆 N : x 2 y 2 2 1的任意一条直径(E 、F 为直径的两个端点),求PE PF 的
最大值.
一a 与x 轴交于点 ..a 2 2
6•已知双曲线C的方程为爲笃1(a 0,b 0),离心率e丄5
,顶点到渐近线a b 2
的距离为。

5
(I)求双曲线C的方程;
(II)如图,P是双曲线C上一点,A,B两点在双曲线C的两条渐近线上,且分
uuu uu 1
别位于第一、二象限,若AP PB, [-,2],求AOB面积的取值范围。

3
7.—条双曲线—y2 1的左、右顶点分别为A I,A2,点P(x i, y i), Q(x i, yj是双
2
曲线上不同的两个动点。

(1)求直线A i P与A2Q交点的轨迹E的方程式;(2)若过点H(0, h)(h>1)的两条直线l i和12与轨迹E都只有一个交点,且l i I2求h的值
8
1(…0),过点A( a,0),B(0, b)的直线倾斜角.已知:椭圆令討

为—,原点到该直线的距离为12 .(1)求椭圆的方程;(2)斜率大于零的直
6 2
线过D( 1, 0)与椭圆交于E,F两点,若ED 2DF,求直线EF的方程;(3)是否存在实数k,直线y kx 2交椭圆于P,Q两点,以PQ为直径的圆过点
D( 1, 0)?若存在,求出k的值;若不存在,请说明理由.。

相关文档
最新文档