高中数学 随机变量及概率分布

合集下载

苏教版选修2《随机变量及其概率分布》评课稿

苏教版选修2《随机变量及其概率分布》评课稿

苏教版选修2《随机变量及其概率分布》评课稿一、课程概述本门选修课程为苏教版高中数学课程中的《随机变量及其概率分布》,主要介绍随机变量的概念、性质以及常见的概率分布,旨在帮助学生掌握相关概念和计算方法,提高学生的数据分析能力和解决实际问题的能力。

该课程通过理论讲解和实例演练相结合的方式,生动形象地呈现了随机变量和概率分布的基本知识,引导学生从实际问题出发,运用数学方法进行分析和求解。

二、课程特色1. 知识内容的合理安排该课程内容安排合理,区分随机变量的离散和连续两种情况,详细讲解各种概率分布的概念、性质、密度函数以及计算方法。

顺序清晰,层层递进,避免了知识点的重叠和跳跃,有利于学生的学习和理解。

2. 简洁明了的讲解教师采用简洁明了的语言,对难点和重点进行突出强调,避免了知识的繁琐和冗余,提高了学生对知识点的掌握度。

教师还通过举例讲解的方式,对理论知识进行实际运用,使学生更好地理解随机变量和概率分布的应用场景。

3. 多种教学方法的灵活运用除了传统的黑板讲解,教师还采用了多种教学方法,如多媒体演示、小组讨论等,促进了学生的积极参与和思维交流。

在实例演练环节,教师引导学生提前准备,并在课堂上解答学生遇到的问题,鼓励学生独立思考和解决问题的能力。

4. 考试复习资源的提供课程结束后,教师提供了丰富的考试复习资源,包括习题集和模拟试卷,并组织了复习讲解班,帮助学生进行针对性的复习。

这些资源为学生复习提供了便利,帮助学生查漏补缺,提高了学生的考试成绩。

三、教学效果评价1. 学生学习兴趣的提高通过课程的细致设计和生动的讲解,学生的学习兴趣得到了有效激发。

教师采用多种教学方法,让学生更加主动参与到课堂中,提高了学生对数学知识的兴趣和学习的积极性。

2. 知识掌握的提高经过本课程的学习,学生对随机变量和概率分布的概念和计算方法有了更深入的理解,掌握了常见概率分布的性质和应用。

学生能够通过学到的知识,解决实际问题,并在考试中取得了良好的成绩。

高中数学备课教案概率与统计中的随机变量与分布

高中数学备课教案概率与统计中的随机变量与分布

高中数学备课教案概率与统计中的随机变量与分布高中数学备课教案:概率与统计中的随机变量与分布概率与统计是高中数学重要的内容之一,而在这个领域中,随机变量和分布的概念更是关键。

随机变量是代表随机试验中的某个特定数量的变量,而分布则描述了该随机变量所有可能取值的概率。

教师在备课过程中,应该注重学生对随机变量和分布的理解与应用。

本教案将详细介绍随机变量和分布的概念、分类以及例题应用,帮助教师更好地备课教学。

一、随机变量的概念及分类1.1 随机变量的概念随机变量是在随机试验中可能取到的各个结果所对应的数值,可分为离散型和连续型两种。

1.2 离散型随机变量离散型随机变量是只能取一些特定值的随机变量,其取值通常是整数或有限个数。

常见离散型随机变量有二项分布、泊松分布等。

1.3 连续型随机变量连续型随机变量是可以取得一切可能值的随机变量,其取值通常是实数。

常见连续型随机变量有均匀分布、正态分布等。

二、随机变量的分布2.1 离散型随机变量的分布离散型随机变量具有离散型分布,常见的分布有二项分布、泊松分布等。

在教学中,可以通过实际例题帮助学生理解离散型随机变量的分布特点和应用方法。

2.2 连续型随机变量的分布连续型随机变量具有连续型分布,常见的分布有均匀分布、正态分布等。

通过实际例题,教师可以引导学生探究连续型随机变量的分布特点和应用方法,并与离散型随机变量进行对比。

三、随机变量与分布的应用3.1 随机变量的应用随机变量的应用广泛存在于生活和科学研究中。

例如,在概率论、统计学、物理学等领域,通过引入随机变量来描述和研究不确定的或随机的现象。

3.2 随机变量与分布的问题解答在教学中,可以通过练习题和案例分析等方式,培养学生运用随机变量与分布解决实际问题的能力。

引导学生分析问题,运用相应的分布模型,计算概率或期望,从而得出正确的结论。

四、教学策略与方法4.1 清晰明了的讲解教师应以简洁明了的语言对随机变量和分布的概念进行讲解,避免使用过多的专业术语,使学生能够迅速掌握关键概念。

高考数学一轮离散型随机变量及其概率分布

高考数学一轮离散型随机变量及其概率分布

第60课离散型随机变量及其概率分布[最新考纲]1.离散型随机变量随着试验结果变化而变化的变量称为随机变量,所有取值可以一一列出的随机变量,称为离散型随机变量.2.离散型随机变量的分布列及性质(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,则下表称为离散型随机变量X的概率分布.①p i≥0(i=1,2,…,n);②p1+p2+p3+…+p n=1.3.常见离散型随机变量的概率分布(1)两点分布:若随机变量X服从两点分布,其概率分布为(2)超几何分布一般地,设有N件产品,其中有M(M≤N)件次品.从中任取n(n≤N)件产品,用X表示取出的n件产品中次品的件数,那么P(X=r)=C r M C n-rN-MC n N(r=0,1,2,…,l).即其中+如果一个随机变量X的概率分布具有上表的形式,则称随机变量X服从超几何分布.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)离散型随机变量的概率分布中,各个概率之和可以小于1.()(2)离散型随机变量的各个可能值表示的事件是彼此互斥的.()(3)如果随机变量X的概率分布由下表给出,则它服从两点分布.()(4)服从超几何分布.()[答案](1)×(2)√(3)×(4)√2.(教材改编)抛掷甲、乙两颗骰子,所得点数之和为X,那么X=4表示的基本事件是________.(填序号)①一颗是3点,一颗是1点②两颗都是2点③一颗是3点,一颗是1点或两颗都是2点④甲是3点,乙是1点或甲是1点,乙是3点或两颗都是2点④[甲是3点,乙是1点与甲是1点,乙是3点是试验的两个不同结果.]3.设随机变量X的概率分布如下:14[由分布列的性质,112+16+13+16+p=1.∴p=1-34=14.]4.设随机变量X等可能取值1,2,3,…,n,如果P(X<4)=0.3,那么n=________.10[由于随机变量X等可能取1,2,3,…,n,∴取到每个数的概率均为1 n,∴P(X<4)=P(X=1)+P(X=2)+P(X=3)=3n=0.3,∴n=10.]5.从装有3个红球,2个白球的袋中随机取出2个球,设其中有X个红球,则随机变量X的概率分布为________.[依题意,随机变量X的可能取值为0,1,2.则P(X=0)=C22C25=0.1,P(X=1)=C13C12C25=0.6,P(X=2)=C23C25=0.3.故X的概率分布为][解] 由概率分布的性质,知0.2+0.1+0.1+0.3+m =1,∴m =0.3. 列表∴P (η=1)=P (X =0)+P (X =2)=0.2+0.1=0.3, P (η=0)=P (X =1)=0.1,P (η=2)=0.3,P (η=3)=0.3. 因此η=|X -1|的概率分布为[规律方法] 1.利用分布列中各概率之和为“1”可求参数的值,此时要注意检验,以保证两个概率值均为非负数.2.若X 是随机变量,则η=|X 一1|仍然是随机变量,求它的分布列可先求出相应随机变量的值,再根据互斥事件概率加法求对应的事件概率,进而写出概率分布.[变式训练1] 随机变量X 的概率分布如下:其中a ,b ,c 成等差数列,则P (|X |=1)=________. 【导学号:62172326】 23 [由题意知⎩⎪⎨⎪⎧2b =a +c ,a +b +c =1,所以2b +b =1,则b =13,因此a +c =23.所以P(|X|=1)=P(X=-1)+P(X=1)=a+c=2 3.]通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的概率分布.[解](1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,P(A)=A12A13A25=310.(2)X的可能取值为200,300,400.P(X=200)=A22A25=110,P(X=300)=A33+C12C13A22A35=310,P(X=400)=1-P(X=200)-P(X=300)=1-110-310=610=35.故X的概率分布为[(1)明确随机变量的取值,并确定随机变量服从何种概率分布;(2)求每一个随机变量取值的概率;(3)列成表格,写出概率分布,其中的关键是第(2)步.2.本题在计算中注意两点:(1)充分利用排列与组合知识准确计算古典概型的概率;(2)灵活运用概率分布的性质求P(X=400)的概率,简化了计算.[变式训练2](2016·天津高考改编)某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的概率分布.[解](1)由已知,有P(A)=C13C14+C23C210=13.所以,事件A发生的概率为1 3.(2)随机变量X的所有可能取值为0,1,2.P(X=0)=C23+C23+C24C210=415,P(X=1)=C13C13+C13C14C210=715,P(X=2)=C13C14C210=415.所以,随机变量X的概率分布为队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(2)设X为选出的4人中种子选手的人数,求随机变量X的概率分布. 【导学号:62172327】[解](1)由已知,有P(A)=C22C23+C23C23C48=635.所以,事件A发生的概率为6 35.(2)随机变量X的所有可能取值为1,2,3,4.P(X=k)=C k5C4-k3C48(k=1,2,3,4).则P(X=1)=C15C33C48=114,P(X=2)=C25C23C48=37,P(X=3)=C35C13C48=37,P(X=4)=C45C03C48=114.所以随机变量X的概率分布为[给出.具有两个特点:(1)是不放回抽样问题;(2)随机变量为抽到的某类个体的个数.2.超几何分布应用的条件:(1)考察对象分两类;(2)已知各类对象的个数;(3)从中抽取若干个个体,考查某类个体个数ξ的概率分布,其实质是古典概型问题.[变式训练3]端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的概率分布.[解](1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)=C12C13C15C310=14.(2)X的所有可能值为0,1,2,且P(X=0)=C38C310=715,P(X=1)=C12C28C310=715,P(X=2)=C22C18C310=115.综上知,X的概率分布为[思想与方法]1.对于随机变量X的研究,需要了解随机变量能取哪些值以及取这些值或取某一个集合内的值的概率,对于离散型随机变量,它的分布正是指出了随机变量X的取值范围以及取这些值的概率.2.求离散型随机变量的概率分布,首先要根据具体情况确定X的取值情况,然后利用排列、组合与概率知识求出X取各个值的概率.[易错与防范]1.对于分布列易忽视其性质p 1+p 2+…+p n =1及p i ≥0(i =1,2,…,n ),其作用是求随机变量取某个值的概率或检验所求离散型随机变量的概率分布是否正确.2.确定离散型随机变量的取值时,易忽视各个可能取值表示的事件是彼此互斥的.3.概率分布的结构为两行,第一行为随机变量X 所有可能取得的值;第二行是对应于随机变量X 的值的事件发生的概率.课时分层训练(四)A 组 基础达标 (建议用时:30分钟)1.设随机变量X 的概率分布为P ⎝ ⎛⎭⎪⎫X =k 5=ak (k =1,2,3,4,5).(1)求a ; (2)求P ⎝ ⎛⎭⎪⎫X ≥35;(3)求P ⎝ ⎛⎭⎪⎫110<X ≤710. 【导学号:62172328】[解] (1)由概率分布的性质,得P ⎝ ⎛⎭⎪⎫X =15+P ⎝ ⎛⎭⎪⎫X =25+P ⎝ ⎛⎭⎪⎫X =35+P ⎝ ⎛⎭⎪⎫X =45+P (X =1)=a +2a +3a +4a +5a=1,所以a =115.(2)P ⎝ ⎛⎭⎪⎫X ≥35=P ⎝ ⎛⎭⎪⎫X =35+P ⎝ ⎛⎭⎪⎫X =45+P (X =1)=3×115+4×115+5×115=45. (3)P ⎝ ⎛⎭⎪⎫110<X ≤710=P ⎝ ⎛⎭⎪⎫X =15+P ⎝ ⎛⎭⎪⎫X =25+P ⎝ ⎛⎭⎪⎫X =35=115+215+315=615=25.2.一袋中装有10个大小相同的黑球和白球,已知从袋中任意摸出2个球,至少得到1个白球的概率是7 9.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的概率分布.[解](1)记“从袋中任意摸出2个球,至少得到1个白球”为事件A,设袋中白球的个数为x,则P(A)=1-C210-xC210=79,得到x=5.故白球有5个.(2)X服从超几何分布,P(X=k)=C k5C3-k5C310,k=0,1,2,3.于是可得其概率分布为3.(2017·南京模拟)十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X的概率分布.[解](1)个位数是5的“三位递增数”有125,135,145,235,245,345.(2)由题意知,全部“三位递增数”的个数为C39=84,随机变量X的取值为:0,-1,1,因此P(X=0)=C38C39=23,P(X=-1)=C24C39=114,P(X=1)=1-114-23=1142.所以X的概率分布为4.盒内有大小相同的9个白色球,4个黑色球.规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分.现从盒内任取3个球.(1)求取出的3个球中至少有一个红球的概率;(2)求取出的3个球得分之和恰好为1分的概率;(3)设ξ为取出的3个球中白色球的个数,求ξ的概率分布.【导学号:62172329】[解](1)P=1-C 3 7C39=7 12.(2)记“取出1个红色球,2个白色球”为事件B,“取出2个红色球,1个黑色球”为事件C,则P(B+C)=P(B)+P(C)=C12C23C39+C22C14C39=542.(3)ξ可能的取值为0,1,2,3,ξ服从超几何分布,P(ξ=k)=C k3C3-k6C39,k=0,1,2,3.故P(ξ=0)=C36C39=521,P(ξ=1)=C13C26C39=1528,P(ξ=2)=C23C16C39=314,P(ξ=3)=C33C39=184,ξ的概率分布为:(建议用时:15分钟)1.设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1,求随机变量ξ的概率分布.[解]若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C23对相交棱,因此P(ξ=0)=8C23C212=8×366=411.若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对,故P(ξ=2)=6C212=111,于是P(ξ=1)=1-P(ξ=0)-P(ξ=2)=1-411-111=611,所以随机变量ξ的概率分布是2.300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回地每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(1)求1名顾客摸球3次停止摸奖的概率;(2)记X为1名顾客摸奖获得的奖金数额,求随机变量X的概率分布.[解] (1)设“1名顾客摸球3次停止摸奖”为事件A ,则P (A )=A 23A 34=14,故1名顾客摸球3次停止摸球的概率为14. (2)随机变量X 的所有取值为0,5,10,15,20. P (X =0)=14,P (X =5)=2A 24=16,P (X =10)=1A 24+A 22A 34=16,P (X =15)=C 12·A 22A 34=16,P (X =20)=A 33A 44=14.所以,随机变量X 的概率分布为3.x +y =6),乙箱中只放有2个红球、1个白球与1个黑球(球除颜色外,无其他区别).若从甲箱中任取2个球,从乙箱中任取1个球.(1)记取出的3个球的颜色全不相同的概率为P ,求当P 取得最大值时x ,y 的值;(2)当x =2时,求取出的3个球中红球个数ξ的概率分布.[解] (1)由题意知P =C 1x C 1y C 11C 26C 14=xy 60≤160⎝⎛⎭⎪⎫x +y 22=320, 当且仅当x =y 时等号成立, 所以,当P 取得最大值时x =y =3.(2)当x =2时,即甲箱中有2个红球与4个白球, 所以ξ的所有可能取值为0,1,2,3.则P (ξ=0)=C 24C 12C 26C 14=15,P(ξ=1)=C12C14C12+C24C12C26C14=715,P(ξ=2)=C22C12+C12C14C12C26C14=310,P(ξ=3)=C22C12C26C14=130.所以红球个数ξ的概率分布为4.PM2.5入肺颗粒物.根据现行国家标准GB3 095—2 012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2013年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的概率分布.[解](1)记“从10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A,则P(A)=C13C27C310=2140.(2)依据条件,ξ服从超几何分布,其中N=10,M=3,n=3,且随机变量ξ的可能取值为0,1,2,3.P(ξ=k)=C k3C3-k7C310(k=0,1,2,3).∴P(ξ=0)=C03C37C310=724,P(ξ=1)=C13C27C310=2140,P(ξ=2)=C23C17C310=740,P(ξ=3)=C33C07C310=1120.因此ξ的概率分布为。

高中数学高考73第十二章 概率、随机变量及其分布 12 1 事件与概率、古典概型

高中数学高考73第十二章 概率、随机变量及其分布 12 1 事件与概率、古典概型
以频率估计概率得 P(A)=1105000=0.15,P(B)=1102000=0.12.
由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为 3 000元和4 000元, 所以其概率为P(A)+P(B)=0.15+0.12=0.27.
②在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆 中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000 元的概率. 解 设C表示事件“投保车辆中新司机获赔4 000元”, 由已知,可得样本车辆中车主为新司机的有0.1×1 000=100(辆), 而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆), 所以样本车辆中新司机车主获赔金额为 4 000 元的频率为12040=0.24, 由频率估计概率得P(C)=0.24.
6.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相 1
等,那么每一个基本事件的概率都是_n_;如果某个事件A包括的结果有m个, m
那么事件A的概率P(A)=_n_.
7.古典概型的概率公式
A包含的基本事件的个数 P(A)=_____基__本__事__件__的__总__数______.
最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40]
天数
2
16
36
25
7
4
以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
Байду номын сангаас
解 这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格 数据知,
1234567

高中数学概率论中的随机变量与分布函数

高中数学概率论中的随机变量与分布函数

高中数学概率论中的随机变量与分布函数在高中数学的概率论领域中,随机变量与分布函数是两个极为重要的概念。

它们不仅是解决概率问题的有力工具,也为我们理解和描述随机现象提供了严谨的数学语言。

首先,我们来聊聊什么是随机变量。

简单来说,随机变量就是一个把随机试验的结果与实数对应起来的函数。

比如说,掷一枚骰子,出现的点数就是一个随机变量。

它的取值可能是 1、2、3、4、5 或者 6。

再比如,一批灯泡的使用寿命,也是一个随机变量,其取值范围是大于零的实数。

随机变量可以分为离散型随机变量和连续型随机变量。

离散型随机变量的取值是可以一一列举出来的,像上面提到的掷骰子的点数。

而连续型随机变量的取值则充满了某个区间,比如灯泡的使用寿命,它可以是 1000 小时,也可以是 10001 小时,100001 小时等等,取值是连续不断的。

那么,为什么要引入随机变量这个概念呢?这是因为通过将随机现象转化为数学上的变量,我们可以运用数学工具对其进行更深入的研究和分析。

有了随机变量,我们就能够更方便地计算概率、描述分布特征等等。

接下来,我们再看看分布函数。

分布函数是一个非常重要的概念,它完整地描述了随机变量的概率分布情况。

对于一个随机变量 X,其分布函数 F(x) 定义为 F(x) =P(X ≤ x),也就是随机变量 X 取值小于等于 x 的概率。

分布函数具有一些重要的性质。

首先,它是单调不减的。

这意味着随着 x 的增大,F(x) 不会减小。

其次,它的取值范围在 0 到 1 之间,即0 ≤ F(x) ≤ 1。

而且,当 x 趋向于负无穷时,F(x) 趋近于 0;当 x 趋向于正无穷时,F(x) 趋近于 1。

对于离散型随机变量,其分布函数是一个阶梯函数。

比如说,对于一个取值为 1、2、3,概率分别为 02、05、03 的离散型随机变量,当x < 1 时,F(x) = 0;当1 ≤ x < 2 时,F(x) = 02;当2 ≤ x < 3 时,F(x) = 07;当x ≥ 3 时,F(x) = 1。

高中数学随机变量及其分布内容简介

高中数学随机变量及其分布内容简介

高中数学随机变量及其分布内容简介
随机变量是概率论中的重要概念,指的是一个变量的取值由随机试验的结果决定。

在高中数学中,我们常常接触到一些常见的随机变量及其分布,这些内容是数学学习中的重要一环。

首先,我们要了解离散随机变量及其分布。

离散随机变量是指只取有限个或可数无限个可能值的随机变量。

在离散随机变量的分布中,最常见的是二项分布和泊松分布。

二项分布是指在n次独立重复的伯努利试验中成功的次数的概率分布,而泊松分布则是用于描述单位时间(或单位面积、单位体积)内随机事件发生的次数的分布。

另外,连续随机变量及其分布也是我们需要了解的内容。

连续随机变量是指取值在一段或多段连续区间内的随机变量。

在连续随机变量的分布中,最常见的是正态分布和指数分布。

正态分布是一种在数学、物理、工程领域中非常常见的分布,其形状呈钟形曲线,具有均值和标准差这两个参数。

而指数分布则是描述独立随机事件发生的时间间隔的分布。

在学习高中数学中的随机变量及其分布时,我们需要掌握如何计算随机变量的期望值、方差以及概率分布等重要性质。

通过学习随机变量及其分布,我们可以更好地理解概率论中的概念,为后续的数学学习打下坚实的基础。

总的来说,高中数学中的随机变量及其分布是一项重要的内容,通过学习这一部分知识,我们可以更好地理解概率论的相关概念,提高数学分析和问题解决的能力。

希望同学们能够认真学习这一部分内容,掌握其中的关键知识点,为未来的学习和发展打下良好的基础。

高中数学 第2章 概率 2.1 随机变量及其概率分布讲义 苏教版选修2-3-苏教版高二选修2-3数学

高中数学 第2章 概率 2.1 随机变量及其概率分布讲义 苏教版选修2-3-苏教版高二选修2-3数学

2.1 随机变量及其概率分布学习目标核心素养1.了解取有限值的离散型随机变量及其分布列的概念,了解分布列刻画随机现象的重要性,会求某些简单离散型随机变量的分布列.(重点、难点)2.掌握离散型随机变量分布列的性质,掌握两点分布的特征.(重点)1.通过对离散型随机变量的学习,提升数学抽象素养.2.借助随机变量的分布列,提升逻辑推理素养.1.随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量.通常用大写拉丁字母X,Y,Z(或小写希腊字母ξ,η,ζ)等表示.思考1:随机变量是自变量吗?[提示] 不是,它是随试验结果变化而变化的,不是主动变化的.思考2:离散型随机变量的取值必须是有限个吗?[提示] 不一定.离散型随机变量的取值可以一一列举出来,所取值可以是有限个,也可以是无限个.2.概率分布列假定随机变量X有n个不同的取值,它们分别是x1,x2,…,x n,且P(X=x i)=p i,i=1,2,…,n,①则称①为随机变量X的概率分布列,简称为X的分布列.称表X x1x2…x nP p1p2…p np i(i =1,2,…,n)满足条件:①p i≥0(i=1,2,…,n);②p1+p2+…+p n=1.思考3:在离散型随机变量分布列中,每一个可能值对应的概率可以为任意的实数吗?[提示] 错误.每一个可能值对应的概率为[0,1]中的实数.思考4:离散型随机变量的分布列中,各个概率之和可以小于1吗?[提示] 不可以.由离散型随机变量的含义与分布列的性质可知不可以.思考5:离散型随机变量的各个可能值表示的事件是彼此互斥的吗?[提示] 是.离散型随机变量的各个可能值表示的事件不会同时发生,是彼此互斥的.3.两点分布如果随机变量X的分布表为X 10P p q其中0<p<1,q=1-p,这一类分布称为0­1分布或两点分布,并记为X~0­1分布或X~两点分布.1.掷均匀硬币一次,随机变量为( )A.掷硬币的次数B.出现正面向上的次数C.出现正面向上的次数或反面向上的次数D.出现正面向上的次数与反面向上的次数之和B[掷一枚硬币,可能出现的结果是正面向上或反面向上,以一个标准如正面向上的次数来描述这一随机试验,那么正面向上的次数就是随机变量ξ,ξ的取值是0,1.A项中,掷硬币的次数就是1,不是随机变量;C项中的标准模糊不清;D项中,出现正面向上的次数和反面向上的次数的概率的和必是1,对应的是必然事件,所以不是随机变量.] 2.设离散型随机变量ξ的分布列如下:ξ-1012 3P 0.100.200.100.200.40 Pξ0.40 [P(ξ<1.5)=P(ξ=-1)+P(ξ=0)+P(ξ=1)=0.10+0.20+0.10=0.40.] 3.设某项试验的成功率是失败率的2倍,用随机变量X描述一次试验成功与否(记X=0为试验失败,记X=1为试验成功),则P(X=0)等于________.1 3[设试验失败的概率为p,则2p+p=1,∴p=13.]随机变量的概念【例1】(1)国际机场候机厅中2019年5月1日的旅客数量;(2)2019年1月1日至5月1日期间所查酒驾的人数;(3)2019年6月1日某某到的某次列车到站的时间;(4)体积为1 000 cm3的球的半径长.[思路探究] 利用随机变量的定义判断.[解] (1)旅客人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(2)所查酒驾的人数可能是0,1,2,…,出现哪一个结果是随机的,因此是随机变量.(3)列车到达的时间可在某一区间内任取一值,是随机的,因此是随机变量.(4)球的体积为1 000 cm3时,球的半径为定值,不是随机变量.随机变量的辨析方法(1)随机试验的结果具有可变性,即每次试验对应的结果不尽相同.(2)随机试验的结果具有确定性,即每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.如果一个随机试验的结果对应的变量具有以上两点,则该变量即为随机变量.1.(1)下列变量中,是随机变量的是________.(填上所有正确的序号)①某人掷硬币1次,正面向上的次数;②某音乐歌曲《小苹果》每天被点播的次数;③标准大气压下冰水混合物的温度;④你每天早晨起床的时间.(2)一个口袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X,则X的可能取值构成集合________.事件{X=k}表示取出________个红球,________个白球,k=0,1,2,3,4.(1)①②④(2){0,1,2,3,4} k4-k[(1)①②④中每个事件的发生是随机的,具有可变性,故①②④是随机变量;标准大气压下冰水混合物的温度为0 ℃,是必然的,不具有随机性.(2)由题意可知,X的可能取值为0,1,2,3,4.{X=k}表示取出的4个球中含k个红球,4-k个白球.]随机变量的分布列及应用【例2】ξ表示取出的3只球中的最大,写出随机变量ξ的概率分布.[思路探究] 由本例中的取球方式可知,随机变量ξ与球的顺序无关,其中球上的最大只有可能是3,4,5,可以利用组合的方法计算其概率.[解] 随机变量ξ的可能取值为3,4,5.当ξ=3时,即取出的三只球中最大为3,则其他两只球的编号只能是1,2,故有P(ξ=3)=C22C35=110;当ξ=4时,即取出的三只球中最大为4,则其他两只球只能在编号为1,2,3的3只球中取2只,故有P(ξ=4)=C23C35=310;当ξ=5时,即取出的三只球中最大为5,则其他两只球只能在编号为1,2,3,4的4只球中取2只,故有P(ξ=5)=C24C35=610=35.因此,ξ的分布列为ξ34 5P11031035利用分布列及其性质解题时要注意以下两个问题:(1)X的各个取值表示的事件是互斥的.(2)不仅要注意∑i=1np i=1,而且要注意p i≥0,i=1,2,…,n.2.设随机变量ξ的概率分布为P⎝⎛⎭⎪⎫ξ=k5=ak(k=1,2,3,4,5).求:(1)常数a的值;(2)P ⎝ ⎛⎭⎪⎫ξ≥35; (3)P ⎝ ⎛⎭⎪⎫110<ξ<710.[解] 题目所给的ξ的概率分布表为ξ 15 25 35 45 55 Pa2a3a4a5a(1)由a +2a +3a +4a +5a =1,得a =15.(2)P ⎝ ⎛⎭⎪⎫ξ≥35=P ⎝ ⎛⎭⎪⎫ξ=35+P ⎝ ⎛⎭⎪⎫ξ=45+P ⎝ ⎛⎭⎪⎫ξ=55=315+415+515=45或P ⎝⎛⎭⎪⎫ξ≥35=1-P ⎝⎛⎭⎪⎫ξ≤25=1-⎝ ⎛⎭⎪⎫115+215=45.(3)因为110<ξ<710,所以ξ=15,25,35.故P ⎝ ⎛⎭⎪⎫110<ξ<710=P ⎝ ⎛⎭⎪⎫ξ=15+P ⎝ ⎛⎭⎪⎫ξ=25+P ⎝ ⎛⎭⎪⎫ξ=35=a +2a +3a =6a =6×115=25.随机变量的可能取值及试验结果[1.抛掷一枚质地均匀的硬币,可能出现正面向上、反面向上两种结果.这种试验结果能用数字表示吗?[提示] 可以.用数字1和0分别表示正面向上和反面向上.2.在一块地里种10棵树苗,设成活的树苗数为X ,则X 可取哪些数字? [提示] X =0,1,2,3,4,5,6,7,8,9,10.3.抛掷一枚质地均匀的骰子,出现向上的点数为ξ,则“ξ≥4”表示的随机事件是什么?[提示] “ξ≥4”表示出现的点数为4点,5点,6点.【例3】 写出下列随机变量可能取的值,并说明随机变量所取的值和所表示的随机试验的结果.(1)袋中有大小相同的红球10个,白球5个,从袋中每次任取1个球,直到取出的球是白球为止,所需要的取球次数;(2)从标有1,2,3,4,5,6的6X卡片中任取2X,所取卡片上的数字之和.[思路探究] 分析题意→写出X可能取的值→分别写出取值所表示的结果[解] (1)设所需的取球次数为X,则X=1,2,3,4,…,10,11,X=i表示前i-1次取到红球,第i次取到白球,这里i=1,2, (11)(2)设所取卡片上的数字和为X,则X=3,4,5, (11)X=3,表示“取出标有1,2的两X卡片”;X=4,表示“取出标有1,3的两X卡片”;X=5,表示“取出标有2,3或标有1,4的两X卡片”;X=6,表示“取出标有2,4或1,5的两X卡片”;X=7,表示“取出标有3,4或2,5或1,6的两X卡片”;X=8,表示“取出标有2,6或3,5的两X卡片”;X=9,表示“取出标有3,6或4,5的两X卡片”;X=10,表示“取出标有4,6的两X卡片”;X=11,表示“取出标有5,6的两X卡片”.用随机变量表示随机试验的结果问题的关键点和注意点(1)关键点:解决此类问题的关键是明确随机变量的所有可能取值,以及取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果.(2)注意点:解答过程中不要漏掉某些试验结果.3.写出下列各随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果.(1)在2018年大学的自主招生中,参与面试的5名考生中,通过面试的考生人数X;(2)射手对目标进行射击,击中目标得1分,未击中目标得0分,该射手在一次射击中的得分用ξ表示.[解] (1)X可能取值0,1,2,3,4,5,X=i表示面试通过的有i人,其中i=0,1,2,3,4,5.(2)ξ可能取值为0,1,当ξ=0时,表明该射手在本次射击中没有击中目标;当ξ=1时,表明该射手在本次射击中击中目标.1.本节课重点是随机变量的概念及随机变量的分布列及其性质,以及两点分布,难点是随机变量的取值及概率.2.判断一个试验是否为随机试验,依据是这个试验是否满足以下三个条件:(1)试验在相同条件下是否可以重复;(2)试验的所有可能结果是否是明确的,并且试验的结果不止一个;(3)每次试验的结果恰好是一个,而且在一次试验前无法预知出现哪个结果.3.本节课的易错点:在利用分布列的性质解题时要注意:①X=xi的各个取值所表示的事件是互斥的;②不仅要注意i=1np i=1,而且要注意0≤p i≤1,i=1,2,…,n.1.判断(正确的打“√”,错误的打“×”)(1)随机变量的取值可以是有限个,也可以是无限个.( )(2)在概率分布列中,每一个可能值对应的概率可以为任意的实数.( )(3)概率分布列中每个随机变量的取值对应的概率都相等.( )(4)在概率分布列中,所有概率之和为1.( )[解析] (1)√因为随机变量的每一个取值,均代表一个试验结果,试验结果有限个,随机变量的取值就有有限个,试验结果有无限个,随机变量的取值就有无限个.(2)×因为在概率分布列中每一个可能值对应随机事件的概率均在[0,1]X围内.(3)×因为分布列中的每个随机变量能代表的随机事件,并非都是等可能发生的事件.(4)√由分布列的性质可知,该说法正确.[答案] (1)√(2)×(3)×(4)√2.下列叙述中,是随机变量的为( )A.某人早晨在车站等出租车的时间B.把一杯开水置于空气中,让它自然冷却,每一时刻它的温度C.射击十次,命中目标的次数D .袋中有2个黑球,6个红球,任取2个,取得1个红球的可能性 C [根据随机变量的含义可知,选C.] 3.随机变量η的分布列如下:则x 0 0.55 [由分布列的性质得 0.2+x +0.35+0.1+0.15+0.2=1,解得x =0.故P (η≤3)=P (η=1)+P (η=2)+P (η=3)=0.2+0.35=0.55.] 4.袋中有相同的5个球,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸1个,当两种颜色的球都被摸到时,即停止摸球,记随机变量X 为此时已摸球的次数,求随机变量X 的概率分布列.[解] 随机变量X 可取的值为2,3,4, P (X =2)=C 12C 13C 12C 15C 14=35;P (X =3)=A 22C 13+A 23C 12C 15C 14C 13=310;P (X =4)=A 33C 12C 15C 14C 13C 12=110;所以随机变量X 的概率分布列为:。

2022年人教A版高中数学选择性必修第三册第七章随机变量及其分布列 章末知识梳理

2022年人教A版高中数学选择性必修第三册第七章随机变量及其分布列 章末知识梳理

返回导航
第七章 随机变量及其分布列
数学(选择性必修·第3册 RJA)
事实上,对于具体问题,若能设出 n 个事件 Ai(i=1,2,…,n),使之 满足AA1iA+j=A2∅+…+An=Ω,(任意两个事件互斥,i,j=1,2,…,n,i≠j).(1) 就可得 B=BΩ=BA1+BA2+…+BAn.(2)这样就便于应用概率的加法公 式和乘法公式.
返回导航
第七章 随机变量及其分布列
数学(选择性必修·第3册 RJA)
③二项分布与超几何分布的区别:有放回抽样,每次抽取时的总体 没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复 试验,此种抽样是二项分布模型.而不放回抽样,取出一个则总体中就 少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模 型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回 抽样还是不放回抽样.
i=1
i=1
返回导航
第七章 随机变量及其分布列
数学(选择性必修·第3册 RJA)
P(Ai|B)=PAPiPBB |Ai

PAiPB|Ai
k
,i=1,2,…,n
PAkPB|Ak
i=1
3.独立性与条件概率的关系:当 P(B)>0 且 P(AB)=P(A)P(B)时,
有 P(A|B)=PPABB=PAPPBB=P(A)
率公式求解.
返回导航
第七章 随机变量及其分布列
数学(选择性必修·第3册 RJA)
[解析] 解法一:记“至少出现 2 枚正面朝上”为事件 A,“恰好出 现 3 枚正面朝上”为事件 B,所求概率为 P(B|A),事件 A 包含的基本事 件的个数为 n(A)=C52+C53+C54+C55=26,

高中数学第二章概率2.1离散型随机变量及其分布列课件新人教B版选修2308292102

高中数学第二章概率2.1离散型随机变量及其分布列课件新人教B版选修2308292102
随机变量.
答案:B
第四页,共26页。
1
2
3
4
2.分布列
(1)将离散型随机变量X所有可能取的不同值x1,x2,…,xn和X取每
一个值xi(i=1,2,…,n)的概率p1,p2,…,pn列成下面的表:
X
P
x1
p1
x2
p2


xi
pi


xn
pn
称这个表为离散型随机变量X的概率分布,或称为离散型随机变
量X的分布列.
解析:X=0表示取到一个合格品,其概率为0.95,这是一个二点分布问题.
答案:0.95 0.05
第二十五页,共26页。
1
2
3
4
5
5.一个袋子里装有大小相同(xiānɡ tónɡ)的3个红球和2个黄球,从中同时取
出2个,则其中含红球个数X的可能取值

,P(X=2)=
.
C23 ·C02
解析:P(X=2)=
X
0
1
P
4a-1
3a2+a
则 a 等于(
1
A. 2
)
1
B. 3
2
3
C. 3
D. 4
解析:由二点分布的性质,得(4a-1)+(3a2+a)=1,即 3a2+5a-2=0,
解得
1
a1= ,a2=-2,又由概率值非负得
3
1
a= .
3
答案(dáàn):B
第九页,共26页。
1
2
3
4
【做一做3-2】 一个盒子中装有3个红球和2个绿球,从中随机(suí jī)摸出

高中 概率、随机变量及其概率分布教案 知识点+例题+练习

高中 概率、随机变量及其概率分布教案 知识点+例题+练习

教学过程(4)性质①E(aξ+b)=aE(ξ), V(aξ+b)=a2V(ξ);②X~B(n, p), 则E(X)=np, V(X)=np(1-p);③X~两点分布, 则E(X)=p, V(X)=p(1-p).考点一古典概型与几何概型例1已知关于x的一元二次函数f(x)=ax2-4bx+1.(1)设集合P={1,2,3}和Q={-1,1,2,3,4}, 分别从集合P和Q中随机取一个数作为a和b, 求函数y=f(x)在区间[1, +∞)上是增函数的概率;(2)设点(a, b)是区域内的随机点, 求函数y=f(x)在区间[1, +∞)上是增函数的概率.(1)解答有关古典概型的概率问题, 关键是正确求出基本事件总数和所求事件包含的基本事件数, 这常用到计数原理与排列、组合的相关知识.(2)在求基本事件的个数时, 要准确理解基本事件的构成, 这样教学效果分析教学过程(3)当构成试验的结果的区域为长度、面积、体积、弧长、夹角等时, 应考虑使用几何概型求解.(1)(2013·江苏)现有某类病毒记作XmYn, 其中正整数m, n(m≤7, n≤9)可以任意选取, 则m, n都取到奇数的概率为________.(2)(2013·四川)节日前夕, 小李在家门前的树上挂了两串彩灯, 这两串彩灯的第一次闪亮相互独立, 且都在通电后的4秒内任一时刻等可能发生, 然后每串彩灯以4秒为间隔闪亮, 那么这两串彩灯同时通电后, 它们第一次闪亮的时刻相差不超过2秒的概率是________.考点二相互独立事件和独立重复试验例2 甲、乙、丙三个同学一起参加某高校组织的自主招生考试, 考试分笔试和面试两部分, 笔试和面试均合格者将成为该高校的预录取生(可在高考中加分录取), 两次考试过程相互独立.根据甲、乙、丙三个同学的平时成绩分析, 甲、乙、丙三个同学能通过笔试的概率分别是0.6.0.5.0.4, 能通过面试的概率分别是0.6.0.6.0.75.(1)求甲、乙、丙三个同学中恰有一人通过笔试的概率;(2)求经过两次考试后, 至少有一人被该高校预录取的概率.教学效果分析概率模型的应用, 需熟练掌握以下常考的五种模型: (1)基本事件的发生具有等可能性, 一般可以抽象转化为古典概型问题, 解决古典概型问题的关键是分清基本事件个数n与事件A中包含的基本事件个数m;(2)与图形的长度、面积或体积有关的概率应用问题, 一般可以应用几何概型求解, 即随机事件A的概率可用“事件A包含的基本事件所占图形的度量(长度、面积或体积)”与“试验的基本事件所占图形的度量(长度、面积或体积)”之比表示;(3)两个事件或几个事件不能同时发生的应用问题, 可转化为互斥事件来解决, 解决这类问题的关键是分清事件是否互斥;(4)事件是否发生相互不影响的实际应用问题, 可转化为独立事件的概率问题, 其中在相同条件下独立重复多次的可转化为二项分布问题, 应用独立事件同时发生的概率和二项分布公式求解;(5)有关平均值和稳定性的实际应用问题, 一般可抽象为随机变量的期望与方差问题, 先求出事件在各种情况下发生的概率, 再应用公式求随机变量的期望和方差.课堂练习1. 如图, 用K、A1.A2三类不同的元件连结成一个系统. 当K正常工作且A1.A2至少有一个正常工作时, 系统正常工作. 已知K、A1.A2正常工作的概率依次为0.9、0.8、0.8, 则系统正常工作的概率为________.2. 某保险公司新开设了一项保险业务, 若在一年内事件E发生, 该公司要赔偿a元. 设在一年内E发生的概率为p, 为使公司收益的期望值等于a的百分之十, 公司应要求顾客交保险金为________元.3.甲乙两支球队进行总决赛, 比赛采用七场四胜制, 即若有。

高中数学知识点总结:随机变量及其分布2页

高中数学知识点总结:随机变量及其分布2页

高中数学知识点总结:随机变量及其分布2页1.随机变量随机变量是定义在样本空间上的函数,它的取值是随机的。

如果随机变量只取有限个或无限个可列值,称为离散随机变量。

3.离散概率分布离散随机变量的取值及其对应的概率称为离散概率分布。

4.期望离散随机变量X的期望是各个取值与其对应的概率乘积之和,用E(X)表示。

5.方差6.二项分布重复独立地进行n次相同的试验,每次试验只有成功和失败两种可能,成功概率为p,失败概率为1-p,记X为n次试验中成功的次数,则X服从二项分布,用B(n,p)表示。

7.泊松分布在一定时间或空间内,事件发生的次数服从泊松分布,如果事件在单位时间或单位空间内出现的概率是λ,则X在一个时间或空间区间内出现x次的概率为e^(-λ)λ^x/x!。

9.概率密度函数连续随机变量X的概率密度函数是一个非负可积函数f(x),满足积分从负无穷到正无穷等于1,即∫f(x) dx=1。

连续随机变量X的期望是∫xf(x) dx。

12.正态分布在许多自然界现象中,随机变量的分布往往服从正态分布,其概率密度函数为f(x)=1/(σ√(2π)) e^((-(x-μ)^2)/(2σ^2)),其中μ是期望,σ是标准差。

13.中心极限定理如果n个独立随机变量的和服从某个分布,当n趋于无穷大时,它们的和近似服从正态分布。

这就是中心极限定理。

14.卡方分布卡方分布是一种重要的概率分布,它是二项分布的极限情况。

在统计学中广泛应用,用于检验样本方差是否符合正态分布。

t分布是一种重要的概率分布,常用于小样本的统计推断,如t检验。

F分布是一种概率分布,广泛用于方差分析,也用于卡方检验、t检验等。

17.统计量统计量是由样本数据计算出来的统计量,是样本的函数,可以用于对总体进行推断,如均值、方差、相关系数等。

18.抽样分布抽样分布是一个统计量的分布,由样本数据计算得到,用于总体参数的估计和假设检验。

19.点估计点估计是使用样本数据得到总体参数的点估计值,如样本均值、样本标准差等。

高中数学中的概率分布规律总结

高中数学中的概率分布规律总结

高中数学中的概率分布规律总结在高中数学课程中,概率分布是一个关键的主题,对于我们理解随机事件的规律,以及在实际问题中做出判断和决策,都有着至关重要的作用。

本文旨在对高中数学中的概率分布规律进行总结和回顾,帮助读者更好地掌握概率分布的基本知识和应用。

1. 随机变量和概率分布函数概率分布的核心在于随机变量的定义。

随机变量是指可能取多个不同值的变量,在概率分布中,我们将其与相应的概率联系起来,得到概率分布函数。

离散型随机变量的概率分布函数可以表示为:P(X=x_i)=p_i (i=1, 2, …, n)其中P(X=x_i)表示随机变量X等于x_i的概率,而p_i则为对应的概率值。

连续型随机变量的概率分布函数则采用概率密度函数的形式表示,通常记作f(x)。

在这种情况下,我们不可能计算出X等于某个具体数值的概率,而只能计算出在某个区间内的概率。

2. 期望和方差在概率分布的计算中,期望和方差是十分重要的概念。

期望是指随机变量在一定条件下取得各种可能的值所乘以对应概率后再相加得到的数学期望值,可以简单地理解为加权平均值。

离散型随机变量的期望计算公式为:E(X)=∑[x_i*P(X=x_i)]连续型随机变量的期望计算公式为:E(X)=∫xf(x)dx方差则是在期望的基础上计算随机变量取值与期望的差值的平方与对应概率的乘积,实际上是对随机变量的分布范围波动情况的度量。

若约离散型随机变量来讲,有:D(X)=∑(x_i-E(X))^2P(X=x_i)连续型随机变量的方差计算公式为:D(X)=∫(x-E(X))^2f(x)dx3. 常见概率分布类型概率分布有很多种类型,以下列举一些常见类型的概率分布:1. 伯努利分布伯努利分布是一种特殊的离散型概率分布。

这个分布的性质是,在只有两种可能结果的试验中,其中一种结果的概率为p,另一种结果的概率为1-p。

2. 二项分布二项分布是在n次独立重复试验中,成功的次数X的概率分布,其中每次试验的概率为p。

高中数学 概率与统计知识点总结

高中数学 概率与统计知识点总结

概率与统计一、概率及随机变量的分布列、期望与方差 (一)概率及其计算1.几个互斥事件和事件概率的加法公式①如果事件A 与事件B 互斥,则()P A B =()()P A P B +.推广:如果事件1A ,2A ,…,n A 两两互斥(彼此互斥),那么事件12n A A A +++发生的概率,等于这n 个事件分别发生的概率的和,即()12n P A A A +++=()()()12n P A P A P A ++. ②若事件B 与事件A 互为对立事件,则()P A =()1P B -. 2.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.(二)随机变量的分布列、期望与方差 1. 常用的离散型随机变量的分布列 (1)二项分布如果随机变量X 的可能取值为0,1,2,…,n ,且X 取值的概率()P X k ==C k k n kn p q-(其中0,1,2,,,1k n q p ==-),其随机变量分布列为X1 … k… nPC nnp q111C n np q- …C k kn knp q- …C n n n p q则称X ,X B n p ~(2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为C CC k n kM N M n N--()0,1,2,,k m =,其中{}min ,m M n =,且n N ,M N ,n ,M ,*N ∈N .此时称随机变量X 的分布列为超几何分布列,称随机变量X 服从超几何分布.2.条件概率及相互独立事件同时发生的概率 I.条件概率一般地,设A ,B 为两个事件,且()0P A >,称()()()P AB P B A P A =为事件A 发生的条件下,事件B 发生的条件概率.在古典概型中,若用()n A 表示事件A 中基本事件的个数,则()()()()()n AB P AB P B A n A P A ==. II .相互独立事件(1)若,A B 相互独立.则()P AB =()()P A P B .(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. III .独立重复试验与二项分布在n 次独立重复试验中,事件A 发生k 次的概率为(每次试验中事件A 发生的概率为p )()C 1n kk kn p p --,事件A 发生的次数是一个随机变量X ,其分布列为()01)2()C 1(n kk k nP X k k n p p -===-⋯,,,,,此时称随机变量X 服从二项分布. 学科*网3.离散型随机变量的数学期望(均值)与方差 (1)若离散型随机变量X 的概率分布列为Xx 1 x 2 … x i … x nP p 1 p 2 … p i … p n则称EX =1122i i n n x p x p x p x p ++++⋯+⋯X . (2)若Y aX b =+,则EY =aEX b +,) (D aX b +=2a DX . (3)若()X B n p ~,,则EX np =.()(1)D X np p -=. 4.正态分布(1)正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,它关于直线x μ=对称;③曲线在x μ=2πσ;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)服从正态分布的变量在三个特殊区间内取值的概率 ①0().6826P X μσμσ-<+=;②2209().544P X μσμσ-<+=; ③3309().974P X μσμσ-<+=. 二、统计与统计案例 (一)抽样方法 1.简单随机抽样设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本()n N ,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,最常用的简单随机抽样的方法:抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.(1)先将总体的N 个个体编号.(2)确定分段间隔k ,对编号进行分段,当Nn是整数时,取N k n =.如果遇到Nn不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除(3)在第1段用简单随机抽样确定第一个个体编号()l l k .(4)按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号()l k +,再加k 得到第3个个体编号()2l k +,依次进行下去,直到获取整个样本.3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.分层抽样的应用范围:当总体是由差异明显的几个部分组成的,往往选用分层抽样.注:不论哪种抽样方法,总体中的每一个个体入样的概率是相同的. (二)统计图表的含义 1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距和组数.(3)将数据分组.(4)列频率分布表. (5)画频率分布直方图. (三)样本的数字特征1.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.2.中位数:将一组数据按大小依次排列,把处在中间位置的一个数据(或中间两个数据的平均数)叫做这组数据的中位数3.平均数:样本数据的算术平均数,即x =()121n x x x n+++.4.方差:()()()2222121ns x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦(nx 是样本数据,n 是样本容量,x 是样本平均数).5.标准差:()()()222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦. (四)线性回归直线方程 1.两个变量的线性相关(1)如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫回归直线.(2)从散点图上看,如果点分布在从左下角到右上角的区域内,那么两个变量的这种相关关系称为正相关;如果点分布在从左上角到右下角的区域内,那么两个变量的这种相关关系称为负相关. (3)相关系数r =∑∑∑===----ni nj jini iiy yx x y yx x 11221)()())((,当0r >时,表示两个变量正相关;当0r <时,表示两个变量负相关.r 的绝对值越接近1,表示两个变量的线性相关性越强;r 的绝对值越接近0,表示两个变量的线性相关性越弱.通常当r 的绝对值大于0.75时,便认为两个变量具有很强的线性相关关系.当1r =时,两个变量在回归直线上 2.回归直线方程(1)通过求21()ni i i Q y x αβ==--∑的最小值而得出回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.该式取最小值时的α,β的值即分别为aˆ,b ˆ. (2)两个具有线性相关关系的变量的一组数据:11(,)x y ,22(,)x y ,…,()n n x y ,,其回归方程为a x b y ˆˆˆ+=,则1122211()()ˆ()ˆˆnni i i ii i n ni ii i x x y y x ynx y b x x xnx ay bx ====⎧---⋅⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑.注:样本点的中心(),x y 一定在回归直线上.(3)相关系数22121ˆ()1()ni i i n i i y yR y y ==-∑=--∑.2R 越大,说明残差平方和越小,即模型的拟合效果越好;2R 越小,残差平方和越大,即模型的拟合效果越差.在线性回归模型中,2R 表示解释变量对于预报变量变化的贡献率,2R 越接近于1,表示回归的效果越好. (六)独立性检验(1)变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量. (2)像下表所示列出两个分类变量的频数表,称为列联表.假设有两个分类变量X 和Y ,它们的可能取值分别为12(,)x x 和12(,)y y ,其样本频数列联表(称为22⨯列联表)为y 1 y 2 总计x 1 a b a b + x 2 cdc d +总计a c +b d +a b c d +++构造一个随机变量()()()()()22n ad bc K a b c d a c b d -=++++ ,其中n a b c d =+++为样本容量.确定临界值0k ,如果2K 的观测值0k k ,就认为“两个分类变量之间有关系”;否则就认为“两个分类变量之间没有关系”.。

高中数学选修2-3(人教B版)第二章随机变量及其分布2.2知识点总结含..

高中数学选修2-3(人教B版)第二章随机变量及其分布2.2知识点总结含..

描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第二章 随机变量及其分布 2.2 条件概率与事件的独立性一、学习任务1. 了解条件概率的定义及计算公式,并会利用条件概率解决一些简单的实际问题.2. 能通过实例理解相互独立事件的定义及概率乘法公式,并能综合利用互斥事件的概率加法公式及独立事件的概率乘法公式.3. 理解独立重复试验的概率及意义,理解事件在 次独立重复试验中恰好发生 次的概率公式,并能利用 次独立重复试验的模型模拟 次独立重复试验.二、知识清单事件的独立性与条件概率独立重复试验与二项分布三、知识讲解1.事件的独立性与条件概率条件概率的概念一般地,设 ,为两个事件,且 ,称为在事件 发生的条件下,事件 发生的条件概率(conditional probability).读作 发生的条件下 发生的概率.条件概率的性质①条件概率具有概率的性质,任何事件的条件概率都在 和 之间,即.②如果 和 是两个互斥事件,则相互独立事件的概念设 ,为两个事件,若 ,则称事件 与事件 相互独立(mutually independent).相互独立事件同时发生的概率:如果事件 ,,, 相互独立,那么这 个事件同时发生的概率等于每个事件发生概率的积,即n k n n A B P (A )>0P (B |A )=P (AB )P (A )A B P (B |A )A B 0 1 0≤P (B|A)≤1 B CP (B ∪C |A )=P (B |A )+P (C |A ).A B P (AB )=P (A )P (B )A B A 1A 2⋯A n n P (⋯)=P ()P ()⋯P ().A 1A 2A n A 1A 2A n 甲、乙两地都位于长江下游,根据一百多年气象记录,知道甲、乙两地一年中雨天占的比例分别20%18%12%为 和 ,两地同时下雨的比例为 ,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?解:设“甲地为雨天”, “ 乙地为雨天”,则根据题意有(1)乙地为雨天时甲地也为雨天的概率(2)甲地为雨天时乙地也为雨天的概率是20%18%12%A =B =P (A )=0.20,P (B )=0.18,P (AB )=0.12.P (A |B )==≈0.67.P (AB )P (B )0.120.18P (B |A )===0.60.P (AB )P (A )0.120.20如图,四边形 是以 为圆心,半径 的圆内接正方形,将一颗豆子随机地扔到该圆内,用 表示事件“豆子落在正方形 内”, 表示事件“豆子落在扇形 (阴影部分)内”,则(1)______;(2)______.解:;圆 的面积是,正方形 的面积是 ,扇形 的面积是 ,由几何概型概率公式得 ,由条件概率公式得EFGH O 1A EFGH B OHE P (A )=P (B |A )=2π14O πEF GH 2OHE π4P (A )=2πP (B |A)===.P (AB )P (A)12π2π14掷一枚正方体骰子一次,设事件 :“出现偶数点”,事件 :“出现 点或 点”,则事件 , 的关系是( )A.互斥但不相互独立 B.相互独立但不互斥 C.互斥且相互独立 D.既不相互独立也不互斥解:B事件 ,事件 ,事件 ,基本事件空间 .所以,,,即 ,因此,事件 与 相互独立.当“出现 点”,事件 , 同时发生,所以 , 不是互斥事件.A B 36A B A ={2,4,6}B ={3,6}AB ={6}Ω={1,2,3,4,5,6}P (A )==3612P (B )==2613P (AB )==×161213P (AB )=P (A )P (B )A B 6A B A B 甲、乙两人在罚球线投球命中的概率分别为与 .(1)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(2)甲、乙两人在罚球线各投球二次,求这四次投球均不命中的概率.解:记“甲投一次命中”为事件 ,“乙投一次命中”为事件 ,则 ,1225A B P (A )=12213,,.(1)恰好命中一次的概率为(2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 ,则2P (B )=25P ()=A ¯¯¯12P ()=B ¯¯¯35P =P (A ⋅)+P (⋅B )B ¯¯¯A ¯¯¯=P (A )⋅P ()+P ()⋅P (B )B ¯¯¯A ¯¯¯=×+×12351225=.12P 1P 1=P (∩∩∩)A ¯¯¯A ¯¯¯B ¯¯¯B ¯¯¯=P ()⋅P ()⋅P ()⋅P ()A ¯¯¯A ¯¯¯B ¯¯¯B ¯¯¯=(1−(1−12)225)2=9100在一个选拔项目中,每个选手都需要进行 轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为,,,,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率;解:设事件 ( ,,, )表示“该选手能正确回答第 轮问题”,由已知得,,,.(1)设事件 表示“该选手进入第三轮才被淘汰”,则(2)设事件 表示“该选手至多进入第三轮考核”,则456453413A i i =1234i P ()=A 156P ()=A 245P ()=A 334P ()=A 413B P (B )=P ()A 1A 2A ¯¯¯3=P ()P ()P ()A 1A 2A ¯¯¯3=××(1−)564534=.16C P (C )=P (++)A ¯¯¯1A 1A ¯¯¯2A 1A 2A ¯¯¯3=P ()+P ()+P ()A ¯¯¯1A 1A ¯¯¯2A 1A 2A ¯¯¯3=+×+××(1−)165615564534=.12描述:例题:2.独立重复试验与二项分布独立重复试验一般地,在相同条件下重复做的 次试验,称为次独立重复试验(independent andrepeated trials).二项分布一般地,在 次独立重复试验中,用表示事件发生的次数,设每次试验中事件发生的概率为,则此时称随机变量服从二项分布(binnomial distribution),记作 ),并称为成功概率.n n n X A A p P (X =k )=(1−p ,k=0,1,2,⋯,n .C kn pk )n −k X X ∼B (n ,p ) p 下列随机变量 的分布列不属于二项分布的是( )A.投掷一枚均匀的骰子 次, 表示点数 出现的次数B.某射手射中目标的概率为 ,设每次射击是相互独立的, 为从开始射击到击中目标所需要的射击次数C.实力相等的甲、乙两选手举行了 局乒乓球比赛, 表示甲获胜的次数D.某星期内,每次下载某网站数据后被病毒感染的概率为 , 表示下载 次数据后电脑被病毒感染的次数解:B选项 A,试验出现的结果只有两个:点数为 和点数不为 ,且点数为 的概率在每一次试验都为 ,每一次试验都是独立的,故随机变量 服从二项分布;选项 B,,故随机变量 不服从二项分布;选项 C,甲、乙的获胜率都相等,举行 次比赛,相当于进行了 次独立重复试验,故 服从二项分布;选项 D,由二项分布的定义可知,被感染次数 .X 5X 6p X 5X 0.3X n 66616X P (X =1)=p ,P (X =2)=(1−p )p ,P (X =k )=(1−p p )(k −1)X 55X X ∼B (n ,0.3)口袋中有 个白色乒乓球, 个黄色乒乓球,从中选取 次,每次取 个后又放回,则 次中恰有 次取到白球的概率是( )A. B. C. D . 解:D任意取球 次,取得白球 次的概率是5551531235C 35C 510⋅C 350.5553P (X =3)=(1−0.5=⋅C 350.53)5−3C 350.55甲、乙两名同学进行三分球投篮比赛,甲每次投中的概率为 ,乙每次投中的概率为 ,每人分别进行三次投篮.(1)设甲投中的次数为 ,求 的分布列;(2)求乙至多投中 次的概率;(3)求乙恰好比甲多投中 次的概率.1312ξξ221四、课后作业 (查看更多本章节同步练习题,请到快乐学)解:(1), 的可能取值为 ,,,. 的分布列为:(2)设“乙至多投中 次”为事件 ,则(3)设“乙比甲多投中 次”为事件 ,“乙恰投中 次且甲恰投中 次”为事件,“乙恰投中 次且甲恰投中 次”为事件 ,则 ,, 为互斥事件,则所以乙恰好比甲多投中 次的概率为.ξ∼B (3,)13ξ0123P(ξ=0)=(=,C 0323)3827P (ξ=1)=()(=,C 131323)249P (ξ=2)=(()=,C 2313)22329P (ξ=3)=(=.C 3313)3127ξξP082714922931272A P (A )=1−(=.C 3312)3782A 120B 131B 2=∪A 1B 1B 2B 1B 2P (A )=P ()+P ()=×+×=.B 1B 282738491816216答案:解析:1. 某一批花生种子,如果每 粒发芽的概率为 ,那么播下 粒种子恰有 粒发芽的概率是 A .B .C .D .B 概率为 .14542()1662596625192625256625=C 24()452(1−)45296625答案:2. 某地区空气质量监测资料表明,一天的空气质量为优良的概率是 ,连续两天为优良的概率是,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 A .B .C .D .A0.750.6()0.80.750.60.453. 某厂生产电子元件,其产品的次品率为 ,现从一批产品中任意地连续取出 件,其中次品数 的5%2ξ高考不提分,赔付1万元,关注快乐学了解详情。

高中数学随机变量知识点总结

高中数学随机变量知识点总结

高中数学随机变量知识点总结高中数学中的随机变量是一个非常重要的概念,涉及到概率论、统计学等多个学科。

在考试中,随机变量也是常见的考点。

下面是随机变量的一些知识点总结。

一、随机变量的定义随机变量是表示随机事件的数学量,用字母 X、Y、Z 等表示。

随机变量的定义域是实数集 R,取值集是任意的实数集或者复数集。

例如,X 表示掷一枚硬币的结果,正面为 1,反面为 0,则 X 是一个随机变量,其定义域为实数集 R,取值集为{0,1}。

二、随机变量的分布随机变量 X 的分布指的是 X 的所有可能的取值以及它们出现的概率。

例如,掷一枚硬币,正面为 1,反面为 0,则 X 的分布为{0,1}。

在概率论中,随机变量的分布又称为概率分布。

三、离散型和连续型随机变量离散型随机变量指的是取值有限或者可数个,例如掷一枚硬币,正面为 1,反面为 0,则 X 是一个离散型随机变量,其取值集为{0,1}。

连续型随机变量指的是取值无限个,例如掷一枚硬币,正面为 1,反面为 0,则 X 是一个连续型随机变量,其取值集为实数集 R。

四、随机变量的函数随机变量的函数指的是将一个随机变量的取值映射到另一个随机变量的取值上。

例如,设 X 是一个随机变量,Y 是 X 的函数,则Y 的取值集为{Y|Y=X(k),k=1,2,...}。

在概率论中,随机变量的函数也被称为概率函数。

五、随机变量的期望和方差随机变量的期望指的是随机变量平均值,即 E(X)=Σ(Xi)/n,其中Σ表示求和,n 表示样本容量。

随机变量的方差指的是随机变量平均值的平方与平均值之差的平方的平均值,即Var(X)=E(X^2)-[E(X)]^2,其中 [E(X)]^2 表示 E(X) 的平方。

以上是随机变量的一些知识点总结。

在考试中,考生需要熟练掌握随机变量的定义、分布、函数、期望和方差等知识点,并能够熟练运用它们解决实际问题。

高中数学《概率、随机变量及其分布列》课件

高中数学《概率、随机变量及其分布列》课件

23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )
1
1
A.12
B.14
1
1
C.15
D.18
18
(2)(2019·雅礼中学模拟)如图,边长为1的正方形ABCD中,点E,F分别是AB,BC的中点, 在正方形ABCD内随机取一个点Q,则点Q取自阴影部分的概率等于( )
A.25
B.34
2
真题感悟
1.(2019·全国Ⅰ卷)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从
下到上排列的6个爻组成,爻分为阳爻“——”和“阴爻“— —”,如图恰有3个阳爻的概率是( )
5
11
A.16
B.32
C.2312
D.1116
3
解析 在所有重卦中随机取一重卦,其基本事件总数 n=26=64,恰有 3 个阳爻的基本事 件数为 C36=20,所以在所有重卦中随机取一重卦,该重卦恰有 3 个阳爻的概率 p=2604=156. 故选 A. 答案 A

P(A)=1-P(A).
14
2.独立重复试验与二项分布 如果事件 A 在一次试验中发生的概率是 p,那么它在 n 次独立重复试验中恰好发生 k 次 的概率为 Pn(k)=Cknpk(1-p)n-k,k=0,1,2,…,n.用 X 表示事件 A 在 n 次独立重复试 验中发生的次数,则 X 服从二项分布,即 X~B(n,p)且 P(X=k)=Cnkpk(1-p)n-k. 3.超几何分布
7
4.(2019·全国Ⅰ卷)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有 效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验. 对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后, 再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停 止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验, 若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施 以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈 或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲 药的得分记为X.

高中数学第七章随机变量及其分布7.1.1条件概率教师用书教案新人教A版选择性必修第三册

高中数学第七章随机变量及其分布7.1.1条件概率教师用书教案新人教A版选择性必修第三册

第七章随机变量及其分布7.1 条件概率与全概率公式7.1.1 条件概率新版课程标准学业水平要求1.结合古典概型,了解条件概率,能计算简单随机事件的条件概率.2.结合古典概型,会利用乘法公式计算概率. 1.通过对具体情境的分析,了解条件概率的定义.(数学抽象)2.掌握简单的条件概率的计算问题.(数学运算)3.能利用条件概率公式、概率的乘法公式解决简单的实际问题.(数学模型、数学运算)必备知识·素养奠基1.条件概率(1)定义:一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.1.P(B|A)和P(A|B)的意义相同吗?为什么?提示:不同.P(B|A)是指在事件A发生的条件下,事件B发生的概率,而P(A|B)是指在事件B发生的条件下,事件A发生的概率,因此P(B|A)和P(A|B)的意义不同.2.古典概型中的条件概率还可以怎样计算?提示:P(B|A)=(2)特例:当P(A)>0时,当且仅当事件A与B相互独立时,有P(B|A)=P(B).2.概率的乘法公式对任意两个事件A与B,若P(A)>0,则P(AB)=P(A)·P(B|A).3.条件概率的性质设P(A)>0,则(1)P(Ω|A)=1;(2)如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A);(3)设和B互为对立事件,则P(|A)=1-P(B|A).1.思维辨析(对的打“√”,错的打“×”)(1)P(A∩B)= P(AB).()(2)若事件A,B互斥,则P(B|A)=1.( )(3)P=P P.( )提示:(1)√.事件A和B同时发生所构成的事件称为事件A与B的交(或积),记作A∩B(或AB),所以P(A∩B)= P(AB).(2)×.若事件A,B互斥,则事件A∩B是不可能事件,P(A∩B)=0,所以P(B|A)=0.(3)×.P=P P.2.设A,B为两个事件,若P(A∩B)=,P(B)=,则P(A|B)=( )A. B. C. D.【解析】选C.由P(A|B)===.3.某产品长度合格的概率为,质量合格的概率为,长度、质量都合格的概率为,任取一件产品,已知其质量合格,则它的长度也合格的概率为________.【解析】令A:产品的长度合格,B:产品的质量合格,A∩B:产品的长度、质量都合格,则P(A)=,P(B)=,P(A∩B)=.任取一件产品,已知其质量合格,它的长度也合格,即为A|B,其概率P(A|B)===.答案:关键能力·素养形成类型一条件概率的计算角度1 利用条件概率公式计算【典例】在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求在第1次抽到理科题的条件下,第2次抽到理科题的概率.【思维·引】设出事件,利用条件概率公式求解.【解析】设第1次抽到理科题为事件A,第2次抽到理科题为事件B,则第1次和第2次都抽到理科题为事件A∩B.从5道题中不放回地依次抽取2道题的样本空间总数为=20.事件A所含样本点的总数为×=12.故P(A)==.因为事件A∩B含=6个样本点.所以P(A∩B)==.所以在第1次抽到理科题的条件下,第2次抽到理科题的概率为P(B|A)===.【素养·探】★本例考查条件概率的计算,同时考查了数学抽象与数学运算的核心素养.若本例条件不变,求第1次抽到文科题的条件下,第2次抽到理科题的概率.【解析】设第1次抽到文科题为事件A,第2次抽到理科题为事件B,则第1次抽到文科题且第2次抽到理科题为事件A∩B.从5道题中不放回地依次抽取2道题的样本空间总数为=20.事件A所含样本点的总数为×=8.故P(A)==.因为事件A∩B含×=6个样本点.所以P(A∩B)==.所以在第1次抽到文科题的条件下,第2次抽到理科题的概率为P(B|A)===.角度2 利用缩小样本空间计算【典例】集合A={1,2,3,4,5,6},甲、乙两人各从A中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.【思维·引】正确理解条件概率的特点,结合古典概型求解.【解析】将甲抽到数字a,乙抽到数字b,记作(a,b),甲抽到奇数的情形有(1,2),(1,3),(1,4),(1,5),(1,6),(3,1),(3,2),(3,4),(3,5),(3,6),(5,1),(5,2),(5,3),(5,4),(5,6),共15个样本点,在这15个样本点中,乙抽到的数比甲抽到的数大的有(1,2),(1,3),(1,4),(1,5),(1,6),(3,4),(3,5),(3,6),(5,6),共9个,所以所求概率P==.【类题·通】条件概率计算的关注点1.原型:在题目条件中,若出现“在……发生的条件下……发生的概率”时,一般可认为是条件概率.2.方法:(1)在原样本空间中,先计算P(AB),P(A),再利用公式P(B|A)=计算求得P(B|A);(2)若事件为古典概型,可利用公式P(B|A)=,即在缩小后的样本空间中计算事件B发生的概率.【习练·破】抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”.(1)求P(A),P(B),P(A∩B);(2)当已知蓝色骰子的点数为3或6时,问两颗骰子的点数之和大于8的概率为多少?【解析】(1)设x为掷红骰子得的点数,y为掷蓝骰子得的点数,则所有可能的事件为(x,y),建立一一对应的关系,由题意作图如图显然:P(A)==,P(B)==,P(A∩B)=.(2)方法一:P(B|A)==.方法二:P(B|A)===.类型二条件概率的实际应用【典例】有一批灯泡寿命超过500小时的概率为0.9,寿命超过800小时的概率为0.8,在寿命超过500小时的灯泡中寿命能超过800小时的概率为________.【思维·引】仔细阅读分析题意,利用条件概率公式解题.【解析】记“寿命超过500小时”为事件A,“寿命超过800小时”为事件B,则所求事件为B|A,因为B⊆A,所以B∩A=B,又P(A)=0.9,P(B∩A)=P(B)=0.8,所以P(B|A)= =.答案:【内化·悟】条件概率的实际应用问题的解题的难点是什么?提示:条件概率是指事件A发生的条件下,事件B发生的概率,需正确分析事件A,B并计算其概率.【类题·通】解决条件概率问题的关注点(1)关键:理清条件和结论,建立条件概率模型;(2)注意:B∩A事件的含义;(3)公式:P(A|B)=,P(B|A)= .【习练·破】某种元件用满6 000小时未坏的概率是,用满10 000小时未坏的概率是.现有1个此种元件,已经用过6 000小时未坏,求它能用到10 000小时的概率.【解析】设A:用满10 000小时未坏,B:用满6 000小时未坏,显然AB=A,所以P(A|B)====.类型三利用乘法公式求概率【典例】有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取1粒,则这粒种子能长成幼苗的概率为________.【思维·引】认真分析题意,利用乘法公式求解.【解析】记“种子发芽”为事件A,“种子长成幼苗”为事件AB(发芽,又成活),出芽后的幼苗成活率为P(B|A)=0.8,又P(A)=0.9.故P(AB)=P(B|A)·P(A)=0.72.答案:0.72【内化·悟】乘法公式与条件概率公式是什么关系?提示:乘法公式是条件概率公式的变形式.【类题·通】应用乘法公式的关注点1.功能:已知事件A发生的概率和事件A发生的条件下事件B发生的概率,求事件A与B同时发生的概率.2.推广:设A,B,C为三个事件,且P(AB)>0,则有P(ABC)=P(C|AB)P(AB)=P(C|AB)P(B|A)P(A). 【习练·破】某项射击游戏规定:选手先后对两个目标进行射击,只有两个目标都射中才能过关.某选手射中第一个目标的概率为0.8,继续射击,射中第二个目标的概率为0.5,则这个选手过关的概率为________.【解析】记“射中第一个目标”为事件A,“射中第二个目标”为事件B,则P(A)=0.8,P(B|A)=0.5. 所以P(AB)=P(B|A)·P(A)=0.8×0.5=0.4,即这个选手过关的概率为0.4.答案:0.4【加练·固】一批彩电,共100台,其中有10台次品,采用不放回抽样依次抽取3次,每次抽一台,求第3次才抽到合格品的概率.【解析】设A i(i=1,2,3)为第i次抽到合格品的事件,则有P(A3)=P()P()P(A3) =××≈0.008 3.课堂检测·素养达标1.某班学生的考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%,已知一学生数学不及格,则他的语文也不及格的概率是( )A. B. C. D.【解析】选A.设A为事件“数学不及格”,B为事件“语文不及格”,P(B|A)===,所以当数学不及格时,该学生语文也不及格的概率为.2.4张奖券中只有1张能中奖,现分别由4名同学无放回地抽取.若已知第一名同学没有抽到中奖券,则最后一名同学抽到中奖券的概率是( )A. B. C. D.1【解析】选B.因为第一名同学没有抽到中奖券,所以问题变为3张奖券,1张能中奖,最后一名同学抽到中奖券的概率显然是.3.甲、乙两市都位于长江下游,根据一百多年来的气象记录,知道一年中下雨天的比例甲市占20%,乙市占18%,两地同时下雨占12%,记P(A)=0.2,P(B)=0.18,P(AB)=0.12,则P(A|B)和P(B|A)分别等于( )A.,B.,C.,D.,【解析】选C.P(A|B)===,P(B|A)===.4.第一个袋中有黑、白球各2只,第二个袋中有黑、白球各 3 只.先从第一个袋中任取一球放入第二个袋中,再从第二个袋中任取一球.则第一、二次均取到白球的概率为( )A. B. C. D.【解析】选B.记A i:第i次取得白球,i=1,2,则P=,P=,由乘法公式求得,P(A1A2)=P(A2|A1)P(A1)=×=.【新情境·新思维】高三毕业时,小红、小鑫、小芸等五位同学站成一排合影留念,已知小红、小鑫二人相邻,则小鑫、小芸相邻的概率是________.【解析】设“小红、小鑫二人相邻”为事件A,“小鑫、小芸二人相邻”为事件B,则所求概率为P(B|A),而P(A)==,AB表示事件“小鑫与小红、小芸都相邻”,故P(AB)==,于是P(B|A)==.答案:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.4 随机变量及概率分布
一、填空题
1.下列变量为离散型随机变量的是_______. ①掷10枚硬币出现的正面个数与负面个数之和
② 某机场每天正常情况下起飞的飞机数
③某公司办公室每天收到电话的次数 ④ 高三(9)班某学生的身高
解析 ①、②、④ 中的随机变量结果无法按一定次序一一列出,故X 不是离散型随机变量; ③中的随机变量的可能取的值都可以按一定次序一一列出,故它是离散型随机变量. 答案 ③
2. 袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为_______.
解析 X 的可能取值为1+2=3,1+3=4,1+4=5=2+3,1+5=6=4+2,2+5=7=3+4,3+5=8,4+5=9,共7种. 答案 7
3.已知随机变量X 的分布列为P(X =k)=
2k
a
(k =1,2,3),则P(X =2)等于_______.
解析 ∵12a +22a +32a =1,∴a =3,P(X =2)=1
3.
答案 1
3
4.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,则P (X =4)的值为________.
解析 用完后装回盒中,此时盒中旧球个数X 是一个随机变量.
当X =4时,说明取出的3个球有2个旧球,1个新球,∴P (X =4)=C 19C 23
C 312=27220
.
答案
27220
5.设随机变量X 的概念分布P (X =k )=
c k +1
,k =0、1、2、3,则c =________.
解析 由P (X =0)+P (X =1)+P (X =2)+P (X =3)=1得:c 1+c 2+c 3+c
4=1,
∴c =1225. 答案
1225
6.设某项试验的成功率为失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)的值为________. 解析 设X 的概率分布为:
即“X =0”表示试验失败,“X p ,成功的概率为2p .由p +2p =1,则p =1
3.
答案
13
7.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于________.
解析 “X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球,因此P (X =12)=38C 911⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫582=C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582
.
答案 C 911
⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭
⎪⎫582
8.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量X 表示所选3人中女生的人数,则P (X ≤1)等于________. 解析 P (X ≤1)=1-P (X =2)=1-C 14C 2
2C 36=4
5.
答案
45
9.连续向一目标射击,直至击中为止,已知一次射击命中目标的概率为3
4,则射
击次数为3的概率为________.
解析 “X =3”表示“前两次未击中,且第三次击中”这一事件, 则P (X =3)=14×14×34=3
64.
答案 3
64
10.设随机变量X 的分布列为P (X =i )=i
10,(i =1,2,3,4),则P ⎝ ⎛⎭⎪⎫1
2<X <72=
________.
解析 P ⎝ ⎛⎭⎪⎫1
2<X <72=P (X =1)+P (X =2)+P (X =3)=35.
答案
3
5
11.如图所示,A 、B 两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内通过的最大信息总量为X ,则P (X ≥8)=________.
解析 法一 由已知,X 的取值为7,8,9,10,
∵P (X =7)=C 22C 12C 35=15,P (X =8)=C 22C 11+C 22C 12
C 35=310,
P (X =9)=C 12C 12C 11C 35=25,P (X =10)=C 22C 11
C 35=110

∴X 的概率分布为
X 7 8 9 10 P
1
5
310
25
110
∴P (X ≥8)=P (X =8)+P (X =9)+P (X =10)=
10+5+10=45
.
法二P(X≥8)=1-P(X=7)=1-C2
2
C1
2
C3
5

4
5
.
答案4 5
12.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分).若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是________.
解析X=-1,甲抢到一题但答错了.
X=0,甲没抢到题,或甲抢到2题,但答时一对一错.
X=1时,甲抢到1题且答对或甲抢到3题,且一错两对,
X=2时,甲抢到2题均答对.
X=3时,甲抢到3题均答对.
答案-1,0,1,2,3
13.从三名男同学和n名女同学中任选三人参加一场辩论赛,已知三人中至少有
1人是女生的概率是34
35
.则n=________.
解析三人中没有女生的概率为
C3
3
C3n
+3
.
∴三人中至少有一人是女生的概率为:1-
C3
3 C3n
+3
由题意得:1-
C3
3
C3n
+3

34
35
.解得n=4.
答案 4
二、解答题
14.设离散型随机变量X的分布列为
(2)|X-1|的分布列.
解析由分布列的性质知:0.2+0.1+0.1+0.3+m=1,∴m=0.3.
首先列表为:
(1)2X+1的分布列:
15.某射手有5发子弹,射击一次命中概率为0.9.如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数X的分布列.
解析容易求出X取1,2,3,4时的概率分别为0.9,0.09,0.009,0.0009,当X=5时,只要前四次射不中,都要射第5发子弹,不必考虑第5发子弹射中与否,所以P(X=5)=0.000 1,从而知耗用子弹数X的分布列为
1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:
(1)该顾客中奖的概率;
(2)该顾客获得的奖品总价值X元的概率分布.
解析(1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张
或2张,由于是等可能地抽取,所以该顾客中奖的概率
P =C 14C 16+C 24C 210
=3045=23.

⎛⎭⎪⎫或用间接法,即P =1-C 26
C 210=1-1545=23.
(2)依题意可知,X 的所有可能取值为0,10,20,50,60(元),且
P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 1
6
C 210=25,
P (X =20)=C 23C 210=115,P (X =50)=C 11C 16
C 210=215,
P (X =60)=C 11C 13
C 210=115
.
所以X 的概率分布为:
17.个岗位至少有一名志愿者.
(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率;
(3)设随机变量X 为这五名志愿者中参加A 岗位服务的人数,求X 的概率分布. 解析 (1)记甲、乙两人同时参加A 岗位服务为事件E A ,那么P (E A )=A 33
C 25A 44=140,
即甲、乙两人同时参加A 岗位服务的概率是1
40
.
(2)记甲、乙两人同时参加同一个岗位服务为事件E ,那么P (E )=A 44
C 25A 44=110,
所以甲、乙两人不在同一个岗位服务的概率
P (E )=1-P (E )=910
.
(3)随机变量X 可能取的值为1,2,事件“X =2”是指有两人同时参加A 岗位服
务,则P (X =2)=C 25A 33
C 25A 44=14
.
所以P(X=1)=1-P(X=2)=3
4
,X的概率分布是
18.4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9.求在一年内李明参加驾照考试次数X的概率分布,并求李明在一年内领到驾照的概率.
解析X的取值分别为1,2,3,4.
X=1,表明李明第一次参加驾照考试就通过了,
故P(X=1)=0.6.
X=2,表明李明在第一次考试未通过,第二次通过了,
故P(X=2)=(1-0.6)×0.7=0.28.
X=3,表明李明在第一、二次考试未通过,第三次通过了,
故P(X=3)=(1-0.6)×(1-0.7)×0.8=0.096.
X=4,表明李明第一、二、三次考试都未通过,
故P(X=4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024.
∴李明实际参加考试次数X的概率分布为
1-(1-0.6)(1-0.7)(1-0.8)(1-0.9)=0.997 6.。

相关文档
最新文档