计量经济学第五章 协整与误差修正模型

合集下载

协整和误差修正模型

协整和误差修正模型

协整和误差修正模型一、协整理论 1. d 阶单整序列对不平稳时间序列{}t Y 进行d 阶差分如下(d =1,2,…n):1t t t Y Y Y -∆=- 一阶差分21()t t t t Y Y Y Y -∆=∆∆=∆-∆ 二阶差分……1111()d d d d t t t t Y Y Y Y ----∆=∆∆=∆-∆ d 阶差分若{}t Y 进行d 阶差分后成为平稳序列, 则称{}t Y 为d 阶单整序列。

记为{}~()t Y I d2. 协整定义如果时间序列{}{}{}(1)(2)(),,...,r tttY Y Y 都是d 阶单整序列,即,{}~(),1,2,...,jtY I d j r =,且存在12,,...,rβββ使得(1)(2)()12...~()r t t r t Y Y Y I d b βββ+++-其中b>0, 称序列{}{}{}(1)(2)(),,...,r t tt Y Y Y 存在(d,b) 阶协整关系。

3. 协整的意义若序列{}{}{}(1)(2)(),,...,r t tt Y Y Y 存在协整关系,则它们之间存在长期稳定关系,对它们进行回归,可排除伪回归现象。

4. 协整检验EG 两步法( see p.275)二、误差修正模型 ECM 方法:若{}{},t t X Y 都是1阶单整序列,它们存在协整关系,建立自回归模型 012131t t t t t Y X Y X ββββμ--=++++ (1) 整理得:011t ttt Y X e ββγμ-∆=+∆++ (2) 其中t e 为残差序列, 1t e -为误差修正项。

(1) 或(2) 称为ECM模型,用于短期分析。

它们的Eviews命令分别为:LS Y C X Y(-1) X(-1),或:GENR T=Y-Y(-1)GENR H=X-X(-1)GENR e= residLS T C H e(-1)三、实例根据下表,讨论时间序列的平稳性、协整关系以及它们的误差修正模型。

5.3 协整与误差修正模型 计量经济学PPT课件

5.3 协整与误差修正模型  计量经济学PPT课件
• 如果X与Y间的长期均衡关系正确,该式表述的非 均衡误差应是一平稳时间序列,并且具有零期望值, 即是具有0均值的I(0)序列。
• 非平稳的时间序列,它们的线性组合也可能成为 平稳的。称变量X与Y是协整的(cointegrated)。
3、协整
• 如果序列{X1t,X2t,…,Xkt}都是d阶单整,存在向量 =(1,2,…,k),使得Zt=XT ~ I(d-b), 其中,b>0,X=(X1t,X2t,…,Xkt)T,则认为序列 {X1t,X2t,…,Xkt}是(d,b)阶协整,记为Xt~CI(d,b), 为协整向量(cointegrated vector)。
5%的显著性水平下协 整的ADF检验临界值
为-3.521
注意:查什么临 界值表?
结论:中国居民总量消费的对数序 列lnY与总可支配收入的对数序列 lnX之间存在(1,1)阶协整。
注意:
这里采用由协整检 验临界值表算得的 临界值(-3.521 ),没有采用ADF 检验给出的临界值 (-1.953),是 正确的。但是,在 很多应用研究中忽 视了这一点,而直 接采用ADF检验给 出的临界值,则是 错误的,容易产生
• 均衡方程中应该包含均衡系统中的所有时间序 列,而协整方程中可以只包含其中的一部分时 间序列。
• 协整方程的随机扰动项是平稳的,而均衡方程 的随机扰动项必须是白噪声。
• 不能由协整导出均衡,只能用协整检验均衡。
五、误差修正模型 Error Correction Model, ECM
1、一般差分模型的问题
• 对于非稳定时间序列,可通过差分的方法将其 化为稳定序列,然后才可建立经典的回归分析 模型。
Yt 0 1 X t t
Yt 1X t vt vt t t1

协整与误差修正模型

协整与误差修正模型

协整与误差修正模型有些时间序列,虽然他们本身非平稳,但是其线形组合确实平稳。

这个线形组合反映了变量之间的长期稳定的比例关系,称为协整关系。

第一节协整的定义与协整检验1、协整的定义如果时间序列nt t t y y y ,,21都是d 阶单整,即)(d I ,存在一个向量),(21n αααα =,使得)(~b d I y -'α,这里),,(21nt t t t y y y y =,0≥≥b d ,则称序列nt t t y y y ,,21是),(b d 阶协整的,记为),(~b d CI y t ,α为协整向量。

本部分只是介绍两个时间序列的协整关系,关于三个以上变量的协整关系将在另外一章予以讨论。

关于两个变量t x 和t y 是否协整,Engle 和Granger 于1987年提出了两步检验法,称为EG 检验。

序列t x 和t y 若都是d 阶单整的,用一个变量对另一个变量进行回归,即有t t t u x y ++=βα用αˆ和βˆ表示回归系数的估计值,则模型残差估计值为 tt t x y u βαˆˆˆ--= 若)0(~ˆI u,则t x 和t y 具有协整关系,且)ˆ(β-I 为协整向量,上式即为协整回归方程。

实例待定误差修正模型误差修正模型是由Davidsom 、Hendry 、Srba 和Yeo 于1978年提出的,称为DHSY 模型。

对)1,1(ADL 模型t t t t t x y x y αββββ++++=--131210移项后整理可得t t t t x y x y αββββββ+⎪⎪⎭⎫ ⎝⎛-+--+∆+=∆-12312101)1( 该方程即为ECM ,其中x y 2311βββ-+-是误差修正项,记为ecm 。

模型解释了因变量t y 的短期波动t y ∆是如何被决定的。

一方面,它受到自变量短期波动t x ∆的影响,另一方面,取决于ecm 。

如果变量t x 和t y 间存在着长期均衡关系,即有x y α=,式中的ecm 可以改写为x y 2311βββ-+= 可见,ecm 反映了变量在短期波动中偏离它们长期均衡关系的程度,称为均衡误差。

协整和误差修正模型

协整和误差修正模型

(6)取 1 0,则模型变为 yt = 0 + 1 yt -1 + 0 xt + ut.
此模型称为局部调整模型(偏调整模型)。
(7)取 0 0,则模型变为 yt = 0 + 1 yt -1 + 1 xt -1 + ut .
模型中只有变量的滞后值作解释变量,yt的值仅 依靠滞后信息。这种模型称为“盲始”模型。
从上式两侧同时减 yt-1,在右侧同时加减 0xt -1 得:
yt = 0 + 0 xt + (1 -1) yt-1 + (0 + 1) xt-1 + ut
上式右侧第三、四项合并得:
yt = 0 + 0 xt + (1 - 1 ) ( yt-1 - k1 xt-1) + ut 其中k1 = (0 + 1) / (1 - 1 )。在上述变换中没有破坏恒
n
yt = 0 + i xti + ut , ut IID (0, 2 ) i0
上述模型的一个明显问题是xt与xt -1 , xt-2, …, xt - n 高
度相关,从而使 j的OLS估计值很不准确。
3.动态分布滞后模型(自回归分布滞后模型)
如果在分布滞后模型中包括被解释变量的若干个滞
长期趋势模型: yt = k0 + k1 xt + ut
短期波动模型: yt = 0 xt + (1- 1 ) ECMt + ut
ECMt = yt-1 - k0 - k1 xt-1
三、误差修正模型(ECM)的建立
(2) ECM模型中的参数 k0 , k1 估计方法有 : ① 若变量为平稳变量或者为非平稳变量但存在长期

误差修正模型

误差修正模型

样本容量 25 50 100 ∝
表 9.3.1 双变量协整 ADF 检验临界值
显著性水平
0.01
0.05
-4.37
-3.59
-4.12
-3.46
-4.01
-3.39
-3.90
-3.33
0.10 -3.22 -3.13 -3.09 -3.05
Page 15
例9.3.1 检验中国居民人均消费水平CPC与人均国内生 产总值GDPPC的协整关系。
在前文已知CPC与GDPPC都是I(2)序列,而§2.10中已 给出了它们的回归式
CPCt 49.764106 0.45831 GDPPC t
R2=0.9981
通过对该式计算的残差序列作ADF检验,得适当检验
模型
eˆt 1.55eˆt1 1.49eˆt1 2.27eˆt3
反之,如果Y的值大于其均衡值,则Y的变化往往会小 于第一种情形下的Yt 。
可见,如果Yt=0+1Xt+t正确地提示了X与Y间的长 期稳定的“均衡关系”,则意味着Y对其均衡点的偏离从 本质上说是“临时性”的。
因此,一个重要的假设就是:随机扰动项t必须是平稳 序列。
显然,如果t有随机性趋势(上升或下降),则会导 致Y对其均衡点的任何偏离都会被长期累积下来而不能被 消除。
从这里已看到,非稳定的时间序列,它们的线性组合也可 能成为平稳的。
例如:假设Yt=0+1Xt+t式中的X与Y是I(1)序列,如果
该式所表述的它们间的长期均衡关系成立的话,则意味着由 非均衡误差(*)式给出的线性组合是I(0)序列。这时我们称 变量X与Y是协整的(cointegrated)。
Page 7

Eviews:协整与误差修正模型

Eviews:协整与误差修正模型

LnC一阶差分单位根检验结果
LnGDP一阶差分单位根检验结果
协整检验
建立lnC 与lnGDP的回归模型,采用OLS法进行估计,得到结果如下:
期均衡关系
经济理论指出,某些经济变量间确实存在长 期均衡关系。这种均衡关系意味着经济系统不 存在破坏均衡的内在机制。如果变量在某时期 受到干扰后偏离其长期均衡点,则均衡机制将 会在下一期进行调整以使其重新回到均衡状态。
协整
尽管许多经济变量是非平稳的,即它们是一阶或高阶的单 整时间序列。但是,由于长期均衡关系的存在,非平稳的 时间序列,它们的线性组合也能成为平稳的。 一般地,如果序列 X1t , X 2t , .X kt 都是d阶单整的,存在向 量 1,2 , ,k ,使得 Z X ~ I d b,其中 b 0, X X , X , , X 则认为序列 X1t , X 2t , .X kt 是(d, b)阶协整,记为 X t ~ CI d , b 为协整向量(co integrated vector)。
et 的单整性检验
通常使用DF检验或者ADF检验来检验et的单整性。由于协整回归中 已含有截距项,则检验模型中无需再用截距项。如使用模型1:
et et 1 i et i i
i 1
p
进行检验时,拒绝零假设 H : 是平稳序列,从而说明X与Y是协整的。
0
0
,意味着残差项et
时间序列计量经济学模型

——协整与误差修正模型
经典回归模型是以平稳的数据变量为基 础的。对于非平稳变量,如果使用经典 回归模型,就容易出现虚假回归等诸多 问题,即变量之间不存在因果关系,只 是这些非平稳的经济时间序列表现出了 共同的变化趋势,因此,使用经典回归 模型进行分析没有了任何实际意义。

26_协整与误差修正模型的研究

26_协整与误差修正模型的研究

协整与误差修正模型的研究第一部分协整理论概述 (2)第二部分误差修正模型介绍 (4)第三部分协整与误差修正关系 (7)第四部分模型构建与检验方法 (9)第五部分实证分析应用案例 (13)第六部分结果解释与经济含义 (16)第七部分模型局限性与改进方向 (18)第八部分研究展望与未来趋势 (22)第一部分协整理论概述协整理论概述在经济学和金融学中,我们常常遇到时间序列数据之间的长期均衡关系。

然而,在实际经济活动中,这种均衡关系并不总是能够得到严格的保持,而是存在着一定程度的波动和偏差。

为了解决这一问题,经济学家们提出了协整理论。

协整理论是指两个或多个非平稳的时间序列之间存在一种长期稳定的关系。

换言之,即使各时间序列本身是随机游走的过程,它们之间也可能存在一个稳定的线性组合,使得这个组合呈现出平稳性质。

协整理论的发展为研究经济变量之间的长期动态关系提供了一个强有力的工具。

协整理论的核心思想是由 Engle 和Granger 于1987 年提出的。

他们认为,如果两个非平稳的时间序列之间存在协整关系,则这两个时间序列可以通过一个线性组合达到长期均衡状态,且这个线性组合具有零均值、有限方差和恒定自相关等特性。

在这个意义上,我们可以将协整关系看作是一种长期均衡关系的表现形式。

为了检验两个时间序列之间是否存在协整关系,Engle 和 Granger 提出了一种两步法:首先检验每个时间序列是否为非平稳过程;然后,如果这两个时间序列都是非平稳过程,再通过回归分析来检验它们之间是否存在协整关系。

这种方法被称为 Engle-Granger 两步协整检验。

除了 Engle-Granger 两步协整检验之外,还有许多其他的方法可以用来检验协整关系,例如 Johansen 检验和 Pedroni 检验等。

这些方法都可以有效地帮助我们确定不同时间序列之间的协整关系。

协整理论不仅用于检验不同时间序列之间的长期均衡关系,还可以用于构建误差修正模型。

协整分析与误差修正模型

协整分析与误差修正模型

协整分析与误差修正模型1.协整分析协整分析用于找到两个或多个非平稳时间序列之间的长期关系。

当两个变量之间存在协整关系时,它们的线性组合将是平稳的。

协整关系可以解释为变量之间长期的平衡关系,即存在一种平衡机制使得变量保持在一个相对稳定的范围内。

协整分析的步骤如下:1)对非平稳时间序列进行单位根检验,例如ADF检验。

2)如果两个或多个时间序列都是非平稳的,那么可以进行线性组合,得到一个平稳的时间序列,通过单位根检验确定这个线性组合是否是平稳的。

3)如果线性组合是平稳的,那么就可以认为存在协整关系。

协整分析的优点是可以探索多个非平稳时间序列之间的关系,并且提供了具体的数值关系,能够描述长期平衡关系。

但是,协整分析不能提供因果关系,只能提供关联关系。

2.误差修正模型(ECM)误差修正模型是一种用于描述非平稳变量之间长期关系的模型。

它是在协整分析的基础上发展而来的。

误差修正模型的基本思想是,如果两个变量之间存在协整关系,那么它们之间的误差会随着时间的推移逐渐修正,回归到长期平衡关系。

因此,误差修正模型可以用来分析变量之间的动态行为。

基本的误差修正模型可以表示为:△Y_t=α+βX_t-1+γE_t-1+ε_t其中,△表示时间差分,Y_t和X_t分别表示被解释变量和解释变量,E_t表示长期误差修正项,ε_t表示短期误差项。

α、β和γ分别表示模型的截距和参数。

误差修正模型的步骤如下:1)进行协整分析,确定变量之间的协整关系。

2)构建误差修正模型,通过估计模型参数来描述长期关系。

3)进行模型检验,包括参数显著性检验、拟合优度检验等。

4)根据模型结果进行解释和预测。

误差修正模型的优点是能够同时分析长期和短期关系,提供了关于变量之间回归到长期平衡的速度信息。

同时,误差修正模型还可以用于预测和政策分析等方面。

但是,误差修正模型的局限性在于假设模型中的所有变量都是线性关系,不能很好地处理非线性关系。

综上所述,协整分析和误差修正模型是非平稳时间序列分析中常用的方法,它们能够揭示非平稳变量之间的长期关系,并对其动态行为进行建模和分析。

协整分析与误差修正模型

协整分析与误差修正模型

单整阶数是使序列平稳而差分的次数。一般 而言,表示存量的数据,如以不变价格测算的 资产总值、储蓄余额等存量数据经常表现为2阶 单整I(2) ;以不变价格表示的消费额、收入等 流量数据经常表现为1阶单整I(1) ;而像利率、 收益率等变化率的数据则经常表现为0阶单整
I(0) 。
时间序列 的平稳性检验方法—单位根检验
因此计量经济模型的建立首先要进行经济变 量之间是否具有协整关系的检验。因此现代计量 经济建模的步骤一般包括: 一、经济(金融)变量的平稳性检验 二、经济(金融)变量的协整检验 三、协整方程及误差修正模型的建立及实证结
果分析
一、经济变量的平稳性检验
在建模过程中广泛使用的是时间序列数据,因此 这里我们称为时间序列的平稳性检验。 设时间序列 {Xt}满足下列条件: (1)均值E ( Xt )是与t无关的常数 (2)方差Var( Xt )是与t无关的常数
若所构建模型估计结果不能通过上述某个方面的 检验,我们有必要考虑前面几个步骤是否存在 问题并重新建立模型;若能通过检验,则可进 一步进行计量模型的应用阶段。
步骤5:模型应用。若模型能够通过检验,则说 明所构建的计量模型具有适用性,这样就可以 将模型应用于特定的研究。通常所构建的模型 主要有以下三个方面的应用:
2.统计检验在于检验模型的统计性质。主要 包括拟合优度检验、整体方程的显著性检验 和变量的显著性检验。 3.计量经济学检验,包括模型的序列相关性 检验、异方差性检验和多重共线性检验等。 4.模型预测检验,主要检验模型参数估计量 的稳定性,模型是否可以用于样本观测值以 外的范围;如果建模的目的用于对未来进行 预测,还要做模型的预测性能检验)。
因此,判断一个序列是否平稳,可以通过检验 是
否严格小于1来实现。也就是说: 原假设H0: =1,备选假设H1: < 1 从方程两边同时减去 yt-1 得,

“协整与误差修正模型”基本内容

“协整与误差修正模型”基本内容

“协整与误差修正模型”基本内容Abstract本部分我们要介绍时间序列计量经济学模型中的“协整与误差修正模型”内容。

对于时间序列数据而言,若其为非平稳的,那么我们无法使用经典的回归模型,而若变量之间是协整关系(即它们之间有着长期稳定的关系),那么经典的回归模型方法仍然是valid。

简单差分未必能解决非平稳时间序列的所有问题,因此误差修正模型也就应运而生了。

Problem:对于时间序列数据,如果通过平稳性检验为非平稳序列,能否建立经典计量经济学模型?Answer:需要对模型采用的非平稳时间序列进行协整检验。

一、长期均衡关系与协整经济理论指出,某些经济变量间确实存在着长期均衡关系这种均衡关系意味着经济系统不存在破坏均衡的内在机制。

假设和之间的长期“均衡关系”由下式描述:其中,是随机干扰项。

值得注意的是,在期末,存在下述三种情形之一:(1) 等于它的均衡值,即.(2) 小于它的均衡值,即.(3) 大于它的均衡值,即.注意到,如果正确地提示了与之间的长期稳定的"均衡关系",则意味着对其均衡点的偏离从本质上来说是"临时性"的,这个时候自然假设随机干扰项必须是平稳序列。

另外,非平稳的时间序列,它们的线性组合也可能成为平稳的。

Definition3.1一般地,如果序列都是阶单整的,存在向量,使得,其中,则认为序列是阶协整,记为,为协整向量。

注:(1)如果两个变量都是单整变量,只有它们的单整阶相同时,才有可能协整;(2)三个以上的变量,如果具有不同的单整阶,有可能经过线性组合构成低阶单整变量。

阶协整的经济意义:两个变量,虽然具有各自的长期波动规律,但是如果它们是阶协整的,则它们之间存在着一个长期稳定的比例关系。

二、协整的检验1.两变量的Engle-Granger检验(1987年恩格尔和格兰杰提出的两步检验法/EG检验法)(1,1)阶协整最令人关注,EG检验法正是为了检验两个均呈现1阶单整的变量是否为协整的。

计量经济学第五章 协整与误差修正模型

计量经济学第五章   协整与误差修正模型
协整向量: (ai)=(a1 a2 … ak )’ 协整系数: ai
思考

当变量个数大于等于3时,协整方程可能 能否有多个?当变量个数为2呢?
2 协整关系的经济含义




当很多变量都含有单位根时,除非有一种机制把 这些变量联系在一起,否则这些变量会不受约束 的各自漫游。 问题是存在这种机制吗?经济学理论经常表明变 量间存在某种长期均衡关系。 如果情况确实如此,那么各变量对这种长期均衡 关系的偏离不会持久。 因此,经济学理论所表明的长期均衡关系往往暗 示了一种把各变量联系在一起的内在机制。这种 机制就是变量间的协整关系。


一、时间序列的单整性

如果一个时间序列yt,去除确定性成分以后, 经过d阶差分后成为平稳序列,则称该时间 序列为d阶单整序列——yt~I(d)。
时间序列单整性的性质:
1. yt ~ I ( d ) a byt ~ I (d ) a, b 0
2. yt ~ I (d ), xt ~ I (c), d c ayt bxt ~ I (d ) 3. yt ~ I (d ), xt ~ I (d ) ayt bxt ~ I (d * ), d * d
考虑时间序列模型(自回归分布滞后模型)
yt 0 xt 1 xt 1 2 yt 1 t 两边减去yt 1后,可以变型为 yt 0 xt ( 0 1)xt 1 ( 2 1 )yt 1 t
0 1 0 xt ( 2 1 ) [ yt 1 xt 1 ] t ( 1 2)( 1 2) 0 xt (yt 1 0 1 xt 1) t
EG两步法的具体检验步骤: xt , yt ~ I (1)

协整和误差修正模型

协整和误差修正模型

在式(5.4.3)两端减去 yt-1,在右边加减 2xt-1 得到 :
yt 0 (1 1) yt1 2xt (2 3 )xt1 ut
(5.4.7)
利用 2 + 3 = k1 (1 - 1), 0 = k0 (1 - 1),式
(5.4.7)又可改写成
yt (1 1)( yt1 k0 k1xt1) 2xt ut
(5.4.8)
令 = 1-1,则式(5.4.8) 可写成
yt ( yt1 k0 k1xt1) 2xt ut
(5.4.9) 上式称为误差修正模型 (error correction model,
简记ECM)。当长期平衡关系是 y* = k0 + k1x* 时,误 差修正项是如 (yt - k0- k1xt) 的形式,它反映了 yt 关于 xt 在第 t 时点的短期偏离。一般地,由于式(5.4.3)中
| 1|<1 ,所以误差项的系数 = ( 1-1) < 0,通常称
为调整系数,表示在 t-1 期 yt-1 关于 k0 + k1xt-1 之间
利用ADF的协整检验方法来判断残差序列是否平稳, 如果残差序列是平稳的,则回归方程的设定是合理的, 说明回归方程的因变量和解释变量之间存在稳定的均衡 关系。反之,说明回归方程的因变量和解释变量之间不 存在稳定均衡的关系,即便参数估计的结果很理想,这 样的一个回归也是没有意义的,模型本身的设定出现了 问题,这样的回归是一个伪回归。
y1t 2 y2t 3 y3t k ykt ut
模型估计的残差为Biblioteka uˆt y1t ˆ2 y2t ˆ3 y3t ˆk ykt
(2)检验残差序列ût是否平稳,也就是判断序列 ût是否含有单位根。通常用ADF检验来判断残差序列 ût是否是平稳的。

第5章⑶协整分析与误差修正模型_图文.

第5章⑶协整分析与误差修正模型_图文.

一、长期均衡关系与协整二、协整检验三、误差修正模型第三节协整与误差修正模型12一、长期均衡关系与协整0、问题的提出•经典回归模型(classical regression model)是建立在稳定数据变量基础上的,对于非稳定变量,不能使用经典回归模型,否则会出现虚假回归等诸多问题。

•由于许多经济变量是非稳定的,这就给经典的回归分析方法带来了很大限制。

•但是,如果变量之间有着长期的稳定关系,即它们之间是协整的(cointegration ,则是可以使用经典回归模型方法建立回归模型的。

•例如,中国居民人均消费水平与人均GDP变量的例子中:因果关系回归模型要比ARMA模型有更好的预测功能,其原因在于,从经济理论上说,人均GDP 决定着居民人均消费水平,而且它们之间有着长期的稳定关系,即它们之间是协整的(cointegration )。

31、长期均衡经济理论指出,某些经济变量间确实存在着长期均衡关系,这种均衡关系意味着经济系统不存在破坏均衡的内在机制,如果变量在某时期受到干扰后偏离其长期均衡点,则均衡机制将会在下一期进行调整以使其重新回到均衡状态。

假设X 与Y 间的长期“均衡关系”由式描述Y t =α0+α1X t +μt式中:μt是随机扰动项。

该均衡关系意味着:给定X 的一个值,Y 相应的均衡值也随之确定为α0+α1X 。

4在t-1期末,存在下述三种情形之一:(1)Y 等于它的均衡值:Y t-1= α0+α1X t ;(2)Y 小于它的均衡值:Y t-1< α0+α1X t ;(3)Y 大于它的均衡值:Y t-1>α0+α1X t ;在时期t ,假设X 有一个变化量ΔX t ,如果变量X 与Y 在时期t 与t-1末期仍满足它们间的长期均衡关系,则Y 的相应变化量由式给出:ΔY t =α1ΔX t +v t式中,v t =μt -μt-1。

5实际情况往往并非如此如果t-1期末,发生了上述第二种情况,即Y 的值小于其均衡值,则Y 的变化往往会比第一种情形下Y 的变化ΔY t 大一些;反之,如果Y 的值大于其均衡值,则Y 的变化往往会小于第一种情形下的ΔY t 。

时间序列的协整检验与误差修正模型

时间序列的协整检验与误差修正模型

时间序列的协整检验与误差修正模型时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。

协整检验是在时间序列数据中,判断变量之间是否存在长期平衡关系的一种方法。

误差修正模型是在协整关系已经验证的基础上,建立起变量之间的因果关系,对短期的偏离进行修正的模型。

协整检验的原理是基于单位根检验的思想,判断时间序列是否为平稳序列。

平稳序列是指序列的均值和方差不随时间发生变化。

如果两个变量都是非平稳序列,但它们的线性组合是平稳序列,那么可以认为这两个变量是协整的。

常用的协整检验方法有Engle-Granger方法和Johansen方法。

Engle-Granger方法是一种直观简单的协整检验方法。

它的步骤如下:首先,分别对两个变量进行单位根检验,确认它们是否为非平稳序列。

然后,对两个变量进行线性回归,得到残差序列。

接下来,对残差序列进行单位根检验,确认它是否为平稳序列。

最后,如果残差序列是平稳序列,则可以判断两个变量之间存在协整关系。

协整检验完成后,接下来可以建立误差修正模型。

误差修正模型是基于协整关系的基础上建立起来的,以短期的偏离修正为核心。

它的核心假设是,在长期平衡关系的约束下,两个变量之间的短期偏离可以通过一个修正项来消除。

误差修正模型的基本形式是多元线性回归模型,其中包含自变量、因变量以及一个误差修正项。

误差修正模型的估计和推断可以使用最小二乘法或最大似然法等统计方法进行。

通过对误差修正模型的估计和推断,可以对变量之间的因果关系进行分析。

同时,误差修正模型还可以用于预测和决策分析。

综上所述,时间序列的协整检验与误差修正模型是分析变量之间长期关系的重要工具。

协整检验可以判断变量是否具有长期平衡关系,而误差修正模型则可以分析变量之间的短期调整过程。

这些方法在经济学、金融学、管理学等领域都有广泛的应用。

时间序列的协整检验与误差修正模型是经济学中常用的方法,用于分析两个或多个变量之间的长期关系。

计量经济学8.3时间序列的协整和误差修正模型

计量经济学8.3时间序列的协整和误差修正模型
EG两步法
首先用OLS对变量进行回归,然后对回归残差进行单 位根检验。如果残差是平稳的,则变量之间存在协 整关系。
Johansen检验
这是一种基于VAR模型的协整检验方法,适用于多 变量系统。通过检验特征根和特征向量的性质来判 断协整关系的存在性和个数。
其他检验方法
如基于残差的DF、ADF检验、PP检验等,这些方法 在特定情况下可能具有更好的适用性。
按时间顺序排列的一组数据,反映现象随时间变化的情况。
时间序列特点
动态性、时序性、规律性、随机性。
平稳性与非平稳性
平稳性
时间序列的统计特性不随时间变化而 变化。
非平稳性
时间序列的统计特性随时间变化而变 化,包括趋势性变化、周期性变化和 随机性变化。
趋势性与周期性
趋势性
时间序列在长期内呈现出的持续上升或下降的变化趋势。
误差修正模型
详细阐述了误差修正模型的构建 方法、优缺点以及适用范围,包 括ECM、VECM等模型。
实证分析与应用
通过多个案例,深入探讨了协整 和误差修正模型在实证分析中的 应用,包括政策评估、金融市场 分析等。
前沿动态介绍
非线性协整理论
随着计量经济学的发展,非线性协整理论逐 渐受到关注,其能够更好地刻画经济变量之 间的长期均衡关系。
系,则建立误差修正模型,并引入误差修正项。 • 实证结果:通过估计ECM模型参数,发现经济增长与通货膨胀之间存在长期
均衡关系。在短期内,经济增长率的波动会受到通货膨胀率的影响,并通过误 差修正项进行调整。此外,还发现其他控制变量如货币政策、财政政策等对经 济增长和通货膨胀也有显著影响。
04
时间序列数据预处理技术
工具变量法(IV)
在存在内生性问题的情况下,使用工具 变量来估计模型参数。需要找到与误差 项无关但与解释变量相关的工具变量。

时间序列的协整和误差修正模型

时间序列的协整和误差修正模型

时间序列的协整和误差修正模型时间序列分析中,协整和误差修正模型是两个重要的概念。

协整是指两个或多个时间序列之间的长期关系,而误差修正模型是一种用来修正时间序列中的误差的模型。

协整是经济学家提出的一个概念,用来解决时间序列数据存在的非平稳性的问题。

在实际应用中,有很多时间序列数据是非平稳的,即其均值和方差不随时间变化而保持不变。

然而,这些非平稳的时间序列之间可能存在长期的关系,也就是说它们会随着时间变化而趋于稳定。

这种关系可以通过协整分析来检验和建模。

协整模型的一种常见形式是误差修正模型(Error Correction Model,ECM)。

误差修正模型是建立在协整模型的基础上的,它可以用来描述时间序列数据之间的长期关系,并且考虑了这些时间序列数据之间的短期变动。

在误差修正模型中,如果两个时间序列之间存在协整关系,那么它们之间的生成误差(随机扰动)会导致它们之间的偏离程度逐渐回归到长期均衡的水平。

因此,误差修正模型是通过引入误差修正项来解决协整关系中存在的短期波动的问题。

误差修正模型的基本思想是,当两个时间序列之间存在协整关系时,如果它们之间的误差超过一定的阈值,那么它们之间的误差就会被修正回长期均衡的水平。

这种修正过程可以通过引入一个误差修正项来实现,从而使得模型具备误差修正的能力。

总之,协整和误差修正模型是对时间序列数据进行建模和分析的重要工具。

协整可以用来检验和描述时间序列之间的长期关系,而误差修正模型则是在协整的基础上引入修正项,用来处理时间序列之间的短期波动。

这些方法在经济学和金融学等领域中具有广泛的应用价值。

协整和误差修正模型是时间序列分析中非常重要的概念。

协整是指两个或多个非平稳时间序列之间存在的长期关系,而误差修正模型则是通过引入误差修正项来描述时间序列的短期波动。

在实际应用中,许多经济和金融时间序列是非平稳的,即它们的均值和方差会随时间变化而发生变动。

这种非平稳性可能会导致误导性的统计结果,因为传统的统计方法要求时间序列数据是平稳的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5. 协整与模型中变量的选择
如果被解释变量y与解释变量x1、x2、…xk之间存在协整 关系,即存在长期均衡关系,则可建立协整模型。 建立协整模型在确定变量时应注意: 1. 若只有一个解释变量x,则y与x的单整阶数应该相等; 2. 若有多个解释变量,则y的单整阶数不能高于解释变 量中单整阶数的最高者; 3. 若存在单整阶数高于y阶数的解释变量x,则一定有 阶数相同的其他解释变量与x形成协整关系。
yt 0 1xt t
研究消费与支出的关系,如果两个序列不平稳,通过一阶 差分后均成为平稳序列,则模型研究的是收入增长与消费增长 之间的关系。
第一节 变量的协整关系与协整检验

能否对非平稳时间序列直接建立模型? 如何对非平稳时间序列直接建立模型,并防止出现虚 假回归现象? 20世纪80年代,恩格尔、格兰杰提出的协整理论较好 地解决了这个问题。
时间序列单整性的性质:

Yt是均值为0的0阶单整过程,则Yt

方差是有限的; Yt的新信息对Yt的影响是暂时的。 当k足够大时,自相关系数ρk是稳定递减的。
时间序列单整性的性质:

Yt是初始值为0的1阶单整过程,则Yt

T趋向无穷大时, Yt方差是无穷大的; Yt的新信息对Yt的影响是永久性的。 对任意的k,当t→∞时,理论上自相关系数 ρk→1。
yt 0 1 x1t 2 x2t t yt ~ I (1), x1t ~ I (2), x2t ~ I (2)
1 x1t 2 x2t ~ I (1)
三、协整检验 协整检验主要的两种方法 ——两步估计法(恩格尔、格兰杰(1987)提出 ): 适用于模型变量中只存在一个协整关系的情况。 ——乔纳森检验法(1995) 适用于模型变量中存在多个协整关系的情况。 我们主要介绍两步检验法。
yt 0 1 xt vt
短期波动模型
yt 0xt (2 1)( yt 1 0 1xt 1 ) t
短期波动由x的变化和上期均衡偏差决定。 将长期趋势模型和短期波动模型结合起来,可以更加 全面地描述y的变化。
二、误差修正模型的估计
Granger表示定理:如果非平稳变量之间存在协整关系, 则必然可以建立误差修正模型;如果用非平稳序列可以建 立误差修正模型,则变量之间一定存在协整关系。 建立误差修正模型的具体过程: 1. 检验y与解释变量之间是否存在协整关系;
第五章 协整与误差修正模型
本章主要教学内容:
第一节
第二节
变量的协整关系与协整检验
误差修正模型
第一节 变量的协整关系与协整检验 关注两个变量(时间序列)间的关系,若两个序列均为 平稳序列,则可采用格兰杰因果检验。 对非平稳序列不能采用格兰杰因果检验,通常的回归分析 方法可能产生虚假回归。 虚假回归:
4. 协整关系的例子 例1 持久收入理论 如果持久消费与持久收入成比例关系,暂时消费 是一个平稳过程,则持久收入与持久消费存在长期协整 关系。
C C p C T y p C T
例2 货币需求理论
Mt 0 1 yt 2 rt t Pt
如果实际货币需求、实际产出、利率都是一阶单整序 列,并且实际货币需求与实际产出、利率之间存在长期 均衡关系,则随机误差项就是一个平稳序列。
例5-2

建立英镑对美元汇率的误差修正模型。
例5-4

利用计量方法分析城镇居民的人均可支配收入 income与人均消费水平consume的关系。
作业

1-5
2. 协整与长期均衡的关系 当y与x存在协整关系时,协整回归模型的随机扰动项 为一个平稳序列,说明其他因素的冲击可能会使y偏离 均衡状态,但随着时间的推移,这种影响会逐渐消失, y又会回到长期均衡状态。
误差修正模型则说明,当y与x存在协整关系时,系统 的内在约束机制如何使y回到长期均衡状态的。 3. 经济变量的长期与短期变化模型 长期趋势模型
能否两个 模型中都 加入?
例5-1: 检验上证综合指数SH、深圳综合指数SZZ和深圳成分 指数的协整性。(1997.1.2~2006.9.29) 解: 1. 单整性检验 三个指数序列都是非平稳序列,但其一阶差分序列均 为平稳序列,因此三个指数均为一阶单整。 2. 协整性检验——两步法检验 ls sh c szz, 在输出的方程窗口点击:procs/make residual seriers, 打开残差序列窗口,进行单位根检验 结果显示三个指数之间均不存在协整关系。


一、时间序列的单整性

如果一个时间序列yt,去除确定性成分以后, 经过d阶差分后成为平稳序列,则称该时间 序列为d阶单整序列——yt~I(d)。
时间序列单整性的性质:
1. yt ~ I ( d ) a byt ~ I (d ) a, b 0
2. yt ~ I (d ), xt ~ I (c), d c ayt bxt ~ I (d ) 3. yt ~ I (d ), xt ~ I (d ) ayt bxt ~ I (d * ), d * d
yt 0 1 xt t
y与x相互独立(没有关系),但回归模型可以通过t检验与 F检验。 此Hale Waihona Puke ,随机误差项序列不是一个白噪声过程。
第一节 变量的协整关系与协整检验
很多经济或金融时间序列非平稳,可以通过若干次差分方 将其转化为平稳序列。 用转化后的变量建立模型,往往经济意义不明确、或者经 济意义改变。 例:
3. 协整关系的计量意义(统计意义)
若 xt,yt ~ I( 1 ), ut axt byt ~ I(0) 则 yt xt t
虽然xt、yt是非平稳序列,但它们的一个线性关系却是平 稳的,即它们之间存在长期稳定的关系,因此可以用回归分析 的方法建立模型。 这种模型称为协整回归模型。协整理论的提出,从根本上 解决了虚假回归的问题。

这个模型称为误差修正模型。
模型的含义 如果yt~I(1),xt~I(1),比较两边的单整的阶数可知, 只有当两个时间序列存在协整关系时,原模型才是有 意义的,不是虚假回归。 当yt与xt存在协整关系时,设协整回归方程为:
则误差修正方程
yt 0 1 xt vt
yt 0xt (2 1)( yt 1 0 1xt 1 ) t
二、时间序列的协整性
1. 协整性的定义
如果同阶单整的一组时间序列的一个线性组合为低 阶单整的序列,则称这组时间序列之间存在协整关系。
x1t , x2t ,, xkt ~ I (d ) a1 x1t a2 x2t ak xkt ~ I (d b), 0 b d x1t , x2t ,, xkt ~ CI (d , b)
EG两步法的具体检验步骤: xt , yt ~ I (1)
第一步: 利用最小二乘法估计模型,并建立相应的残差序列;
第二步: 对残差序列进行平稳性检验,可以使用的检验方程有:
et et 1 j et j j
et et 1 j et j j
例5-3

购买力平价告诉我们,两国的汇率水平等于两国物价 之比。例5-3分别给出1948年-2006年以2005年为基 期的英国物价指数pe、美国物价指数pu,和英镑兑美 元的汇率e(英镑/美元)。请你用恰当的方法检验美 英汇率的购买力平价是否成立。
第二节

误差修正模型
一、误差修正模型的构造与含义
协整向量: (ai)=(a1 a2 … ak )’ 协整系数: ai
思考

当变量个数大于等于3时,协整方程可能 能否有多个?当变量个数为2呢?
2 协整关系的经济含义




当很多变量都含有单位根时,除非有一种机制把 这些变量联系在一起,否则这些变量会不受约束 的各自漫游。 问题是存在这种机制吗?经济学理论经常表明变 量间存在某种长期均衡关系。 如果情况确实如此,那么各变量对这种长期均衡 关系的偏离不会持久。 因此,经济学理论所表明的长期均衡关系往往暗 示了一种把各变量联系在一起的内在机制。这种 机制就是变量间的协整关系。
考虑时间序列模型(自回归分布滞后模型)
yt 0 xt 1 xt 1 2 yt 1 t 两边减去yt 1后,可以变型为 yt 0 xt ( 0 1)xt 1 ( 2 1 )yt 1 t
0 1 0 xt ( 2 1 ) [ yt 1 xt 1 ] t ( 1 2)( 1 2) 0 xt (yt 1 0 1 xt 1) t
当 2 1 时误差修正过程是一个反向调整过程(负反馈机 制)。
误差修正过程的明确含义
1. 均衡的偏差调节机制(动态调节过程) 如果y与x存在协整关系,即存在长期的均衡关系。短 期可能偏离均衡状态,y的变化由两部分组成:x的变 化所形成、以及反向调节所造成,调节的力度与修正 系数和前期的偏离幅度有关。
et t et 1 j et j j
注意:
——在检验方程中增加差分的滞后项是为了消 除误差项的自相关性,滞后阶数一般由SIC或 AIC准则确定; ——在检验残差序列的平稳性时,可以在模型 中增加常数项或趋势项; ——检验统计量不再是DF或ADF分布,因此需 要使用麦金农临界值。(Eviews中给出了伴随 概率)
yt 0 xt t
2. 3.
如果存在协整关系,估计协整回归模型,计算残差序列; ˆx ˆ et yt 0 t 将 et 1 作为一个解释变量,估计误差修正模型
yt 0 xt et 1 vt
估计误差修正模型需注意的问题: 1. 第一步协整检验时,如果确定存在趋势项,可以在第二步 的协整回归模型中加入趋势项;
相关文档
最新文档