有限元法概述
有限元法概述
大型商用的FEM通用软件分类
目前已经出现了许多大型结构分析通用软件,最早的 是美国国家宇航局(NASA)在1956年委托美国计算科学 公司和贝尔航空系统公司开发的ANASTRAN有限元分析 系统,该系统发展到现在已有几十个版本。此外,比较知 名的有限元分析软件还有德国的ASKA,英国PAFEC,法 国AYATUS,美国ABAUS、ADNA、ANSYS、BERSAF E、BOSOR、COSMOS、ELAS、MARC、STARNYNE 等。下面仅介绍几种当前比较流行的有限元软件。 (1) ANSYS。 ANSYS是融结构、流体、电场、磁 场和声场分析于一体的大型通用有限元分析软件。其主要 特点是具有较好的前处理功能,如几何建模、网络划分、
电磁场分析、声场分析、压电分析以及多物理场的耦分 析,可以模拟多物理介质的相互作用,具有灵敏度分析 及优化分析能力;后处理的计算结果有多种显示和表达 能力。ANSYS软件系统主要包括ANSYS/Mutiphysics 多物理场仿真分析工具、LS-DYNA显示瞬态动力分析 工具、Design Space设计前期CAD集成工具、Design Xploere多目标快速优化工具和FE-SAFE结构疲劳耐久 性分析等。ANSYS已在工业界得到较广泛的认可和应 用。
现代设计理论及方法
有限元分析法
(Finite Element Analysis , FEA)
概述
1、有限元法简介
有限元法是求解数理方程的一种数值计算方法,是将 弹性理论、计算数学和计算机软件有机结合在一起的一种 数值分析技术,是解决工程实际问题的一种有力的数值计 算工具。 目前,有限单元法在许多科学技术领域和实际工程问 题中得到了广泛的与应用,如,机械制造、材料加工、航 空航天、土木建筑、电子电气、国防军工、石油化工、船 舶、铁路、汽车和能源等,并受到了普遍的重视。 现有的商业化软件已经成功应用于固体力学、流体力 学、热传导、电磁学、声学和生物学等领域,能够求解由 杆、梁、板、壳和块体等单元构成的弹性、弹塑性或塑性 问题,求解各类场分布问题,求解水流管道、电路、润滑、 噪声以及固体、流体、温度间的相互作用等问题。
有限元法的原理_求解域_概述及解释说明
有限元法的原理求解域概述及解释说明1. 引言1.1 概述有限元法是一种数值分析方法,用于求解物理问题的数学模型。
它在工程领域得到了广泛的应用,能够对复杂的结构和系统进行精确的建模和计算。
有限元法通过将连续域划分为许多小的离散单元,在每个单元上使用适当的近似函数来表示待求解的变量,然后利用这些离散单元之间相互连接关系建立代数方程组,并通过求解该方程组得到所需结果。
1.2 文章结构本文将围绕有限元法展开讨论,并按照以下结构组织内容:引言包含概述、文章结构和目的;有限元法的原理部分将涵盖离散化方法、强弱形式及变分问题以及单元划分和网格生成;求解域部分将介绍求解域的定义与划分、边界条件设定和处理以及网格节点和单元的挑选策略;概述及解释说明部分将探讨有限元法在工程领域中的应用、与其他数值方法之间的对比与优势以及未来发展趋势和挑战;最后,本文将总结主要观点,并展望有限元法在应用领域的发展前景。
1.3 目的本文旨在对有限元法进行全面而清晰的介绍和解释,包括其基本原理、求解域的定义与处理方法以及在工程领域中的应用。
通过深入理解有限元法的原理和应用,读者可以更好地了解该方法的优劣势,并掌握将其应用于实际问题求解的能力。
此外,本文还将通过探讨有限元法未来的发展趋势和挑战,为研究者提供对该方法进行进一步改进和扩展的思路。
2. 有限元法的原理2.1 离散化方法有限元法是一种使用离散化方法来对偏微分方程进行求解的数值方法。
它将求解域划分为许多小单元,每个小单元称为有限元。
在这些有限元内,我们假设待求解的场量是线性或非线性的,并通过适当选择合适的函数空间来进行近似。
2.2 强弱形式及变分问题在有限元法中,我们将偏微分方程转化为一个弱形式或者说变分问题。
这是通过将原始方程乘以一个测试函数并进行积分得到的。
这样可以减小方程中高阶导数项对近似解产生的影响,并提供了更好的数学性质以进行计算。
2.3 单元划分和网格生成为了进行离散化,求解域需要被划分成一系列小单元。
第1章 有限元法概述
第一章有限元法概述第一节有限元法的发展及基本思想随着现代工业、生产技术的发展,不断要求设计高质量、高水平的大型、复杂和精密的机械及工程结构。
为此目的,人们必须预先通过有效的计算手段,确切地预测即将诞生的机械和工程结构,在未来工作时所发生的应力、应变和位移。
但是传统的一些方法往往难以完成对工程实际问题的有效分析。
弹性力学的经典理论,由于求解偏微分方程边值问题的困难,只能解决结构形状和承受载荷较简单的问题,对于几何形状复杂、不规则边界、有裂缝或厚度突变,以及几何非线性、材料非线性等问题往往遇到很多麻烦,试图按经典的弹性力学方法获得解析解是十分困难的,甚至是不可能的。
因此,需要寻求一种简单而又精确的数值分析方法。
有限元法正是适应这种要求而产生和发展起来的一种十分有效的数值计算方法。
这个方法起源于20世纪50年代中期航空工程中飞机结构的矩阵分析。
1960年美国的克劳夫(C l o u g h)采用此方法进行飞机结构分析时,首次将这种方法起名为“有限单元法”(finite element method),简称“有限元法”。
有限单元法的基本思想,是在力学模型上将一个原来连续的物体离散成为有限个具有一定大小的单元,这些单元仅在有限个节点上相连接,并在节点上引进等效力以代替实际作用于单元上的外力。
对于每个单元,根据分块近似的思想,选择一种简单的函数来表示单元内位移的分布规律,并按弹性理论中的能量原理(或用变分原理)建立单元节点力和节点位移之间的关系。
最后,把所有单元的这种关系式集合起来,就得到一组以节点位移为未知量的代数方程组,解这些方程组就可以求出物体上有限个离散节点上的位移。
图1.1是用有限元法对直齿圆柱齿轮的轮齿进行的变形和应力分析,其中图1.1(a)为有限元模型,图1.1(b)是最大切应力等应力线图。
在图1.1(a)中采用8节点四边形等参数单元把轮齿划分成网格,这些网格称为单元;网格间互相连接的点称为节点;网格与网格的交界线称为边界。
汽车有限元法概述
汽车有限元法概述有限元法(Finite Element Method,FEM)是一种工程数值分析方法,广泛应用于汽车工程领域,用于模拟和预测汽车结构在受力下的行为和性能。
本文将对汽车有限元法进行概述。
有限元法的基本原理是将连续结构离散化为有限个子结构,每个子结构称为有限元。
每个有限元内的应力和变形可以用简单的方程表示。
通过求解这些方程,可以推导出整个结构的应力和变形情况。
汽车有限元法主要有以下几个步骤:1.建模:将汽车的零部件、结构和系统进行建模,将其分割成有限元。
这个过程需要根据实际情况选择适当的网格划分和元素类型。
常见的元素包括线元素、面元素和体元素。
建模的准确性和合理性对于后续的分析和计算结果具有重要影响。
2.边界条件:确定模型的边界条件,包括支撑条件和外部加载条件。
支撑条件包括固定支撑和弹性支撑。
外部加载条件包括重力、加速度、风压等。
准确描述和设置边界条件是模拟计算的关键步骤。
3.材料特性:为每种材料分配相应的材料特性参数。
常见的材料特性包括弹性模量、泊松比、材料密度等。
这些参数将决定材料在受力下的行为和响应。
4.模拟计算:利用有限元软件对建模后的汽车结构进行计算和模拟。
通过求解每个有限元的位移和应变,再结合材料特性进行力学分析,得到汽车结构在受力下的应力和变形情况。
5.结果评估:根据计算得到的应力和变形结果,对汽车结构的强度、刚度、耐久性等性能进行评估和分析。
如果发现问题或不合理现象,可以进行模型修正和参数优化,以提高结构的性能。
在汽车工程领域,有限元法主要应用于以下几个方面:1.结构强度分析:通过有限元法,可以对汽车结构的强度进行评估和分析。
例如,分析车身在碰撞时的变形情况,以及主要部件在受力下的应力情况。
2.动态响应分析:有限元法可以模拟汽车在动力加载下的振动和动态响应情况。
例如,模拟车辆在行驶过程中的悬挂系统振动,以及发动机振动对车身的影响。
3.疲劳寿命评估:通过有限元法,可以分析汽车结构在复杂工况下的疲劳寿命。
数值分析在有限元法中的应用
数值分析在有限元法中的应用数值分析在有限元法中的应用数值分析是一种利用数值方法解决数学问题的学科,它的应用广泛涵盖了许多领域。
在工程学领域中,有限元法是一种常用的数值分析方法,用于解决结构力学问题。
本文将探讨数值分析在有限元法中的应用,并介绍其在工程领域中的重要性。
一、有限元法概述有限元法是一种通过将复杂的问题分解为有限数量的简化元素来近似求解的数值方法。
它将一个复杂的结构划分为有限个小的子区域,称为有限元。
通过求解每个有限元的方程,并将它们组合起来,可以得到整个结构的近似解。
有限元法主要包括两个关键步骤:离散化和解算。
离散化是将结构分割为有限元,并建立每个有限元的数学模型。
通常,有限元是由简单形状的单元组成,如线段、三角形或四边形。
每个有限元都有一组控制节点,位于其边界上。
通过在节点上建立适当的形函数,可以对有限元内的解进行近似。
解算是通过构建全局刚度矩阵和载荷矢量,并求解线性方程组来计算结构的响应。
全局刚度矩阵可以通过将每个有限元的局部刚度矩阵组装起来得到。
载荷矢量是根据结构的边界条件和施加的外部载荷计算得到的。
最终,通过解线性方程组可以得到结构的位移、应力等重要结果。
二、数值分析在离散化中的应用数值分析在离散化过程中起着重要的作用。
它通过适当选择有限元类型和节点布局来获得更好的近似结果。
一般来说,有限元类型的选择取决于结构的几何形状和物理性质。
例如,三角形元素适用于解决较为复杂的问题,如非线性力学问题。
而矩形元素则适用于解决较简单的问题,如弹性力学问题。
另外,数值分析还可以用来优化节点布局。
节点的位置对于有限元模型的精确度和稳定性起着决定性的作用。
通过使用数值分析技术,可以确定合适的节点位置,使得解的近似值更接近于精确解。
三、数值分析在解算中的应用数值分析在解算过程中也扮演着重要的角色。
它可以通过选择合适的解算方法和求解器来提高计算效率和精度。
常用的解算方法包括直接法和迭代法。
直接法是指通过求解线性方程组的精确解来获得结构的响应。
有限元法概述
(2)MSC/NASTRAN。 MSC/NASTRAN是在原NAST RAN基础上进行大量改进后的系统软件,主要包括MS C.Patran并行框架式有限元前后处理及分析系统、 MS C.GS-Mesher快速有限元网格、 MSC.MARC非线性有 限元软件等。其中MSC.MARC具有较强的结构分析能
.
5.在产品制造或工程施工前预先发现潜在的问题; 6. 模拟各种试验方案,减少试验时间和经费; 7. 进行机械事故分析,查找事故原因。
轴承强度分析
.
汽车碰撞实验
.
刹车制动时地盘的应力分析
.
钢板精轧机热轧制分析
.
三维椭圆封头开孔补强
.
水轮机叶轮的受力分析模拟
.
人体股骨端受力分析
.
半导体芯片温度场的数值仿真
知量时称为混合法。 位移法易于实现计算自动化,所以,在有限单元法
中位移法应用范围最广。
.
2、有限元法的发展
有限单元法基本思想的提出,可以追溯到Courantl在1 943年的工作,他第一次尝试应用定义在三角形区域上的 分片连续函数和最小位能原理相结合,来求解St·Venant 扭转问题。相继一些应用数学家、物理学家和工程师由于 各种原因都涉足过有限单元的概念。
.
4、有限元的特点
(1) 概念清楚,容易理解。可以在不同的专业背景和水平 上建立起对该方法的理解。从使用的观点来讲,每个人的 理论基础不同,理解的深度也可以不同,既可以通过直观的 物理意义来学习,也可以从严格的力学概念和数学概念推 导。
有限元结构静力学分析
04
有限元结构静力学的应用实例
工程实例一:桥梁结构的静力分析
总结词
桥梁结构的静力分析是有限元结构静力学分析的重要应用之一,通过分析可以获取桥梁在不同载荷条件下的变 形和应力分布,为桥梁设计提供依据。
详细描述
桥梁结构的静力分析通常需要考虑重力、车辆载荷、风载荷等作用,利用有限元方法可以将桥梁离散化为有限 个单元,并通过对单元进行刚度分析和受力分析,得到桥梁的位移和应力分布。根据分析结果,可以优化桥梁 设计,提高其承载能力和安全性。
建立有限元模型
选择合适的单元类型
建立节点坐标系
根据结构的形状和受力特性选择合适的单元 类型,如三角形、四面体、梁、壳等。
确定每个节点的三维坐标,为单元划分和节 点连接提供基础。
划分单元网格
定义材料属性
根据节点坐标系将结构划分为相应的单元网 格。
为每个单元赋予相应的材料属性,如弹性模 量、泊松比、密度等。
有限元分析中的参数不确定 性以及误差控制是一个重要 问题,需要发展更有效的误 差控制和不确定性量化方法 ,以保证分析结果的可靠性 和精度。
06
参考文献
参考文献
01
02
03
《有限元法基本原理与 数值方法(第二版)》 ,陆明万、罗学富 著, 清华大学出版社,1997
年。
《有限元法教程(第二 版)》,王勖成 著,清 华大学出版社,2004年
有限元结构静力学分析与人工智 能、机器学习等技术的结合,使 得分析过程更加智能化,能够自 动优化模型、选择合适的参数, 提高分析效率。
有限元结构静力学分析与材料科 学、流体动力学、热力学等领域 的交叉融合,使得分析结果更加 全面和准确,为工程设计和优化 提供更好的支持。
有限元法的概述
有限元法的概述有限元方法(Finite Element Method)是力学,数学物理学,计算方法,计算机技术等多种学科综合发展和结合的产物。
在人类研究自然界的三大科学研究方法(理论分析,科学试验,科学计算)中,对于大多数新型领域,由于科学理论和科学实践的局限性,科学计算成为一种最重要的研究手段。
在大多数工程研究领域,有限元方法是进行科学计算的重要方法之一;利用有限元方法几乎可以对任意复杂的工程结构进行分析,获取结构的各种机械性能信息,对工程结构进行评判,对工程事故进行分析。
有限元法在设计过程中有极为关键的作用。
人们对各种力学问题进行分析求解,其方法归结起来可以分为解析法(Analytical Method)和数值法(Numeric Method).如果给定一个问题,通过一定的推导可以用具体的表达式来获得问题的解答,这样的求解方法就称为解析法。
但是由于实际结构物的复杂性,除了少数极其简单的问题外,绝大多数科学研究和工程计算问题用解析法求解式极其困难的。
因此,数值法求解便成为了一种不可替代的广泛应用的方法,并取得了不断的发展,如有限元法,有限差分法,边界元方法等都是属于数值求解方法。
其中有限元法式 20 世纪中期伴随着计算机技术的发展而迅速发展起来的一种数值分析方法,它的数学逻辑严谨,物理概念清晰,应用非常广泛,能活灵活现处理和求解各种复杂的问题。
有限元方法采用矩阵式来表达基本公式,便于计算机编程,这些优点赋予了它强大的生命力。
有限元方法的实质是将复杂的连续体划分成为有限多个简单的单元体,化无限自由度问题为优先自由度问题,将连续场函数的(偏)微分方程的求解问题转化为有限个参数的代数方程组的求解问题。
用有限元方法分析工程结构的问题时,将一个理想体离散化后,如何保证其数值的收敛性和稳定性是有限元理论讨论的主要内容之一,而数值解的收敛性与单元的划分及单元形状有关。
在求解过程中,通常以位移为基本变量,使用虚位移原理或最小是能原理来求解。
有限元方法编程
有限元方法编程摘要:1.有限元方法概述2.有限元方法编程的基本步骤3.有限元方法编程的实例4.有限元方法编程的注意事项5.结论正文:1.有限元方法概述有限元方法是一种数值分析方法,主要用于求解偏微分方程问题。
它通过将连续的求解区域离散化为有限个小的子区域(有限元),并将这些子区域的边界上的函数值用有限个节点上的函数值来表示,从而将偏微分方程转化为求解有限元系统的线性或非线性代数方程组。
这种方法可以大大简化问题的求解过程,提高计算效率,并可以方便地用于计算机编程。
2.有限元方法编程的基本步骤有限元方法编程的基本步骤如下:(1)建立有限元模型:根据问题的实际需求,选择合适的有限元类型(如四面体、六面体等),并根据几何形状将求解区域划分为有限个小的子区域。
(2)编写有限元方程:根据有限元模型,编写有限元方程,将偏微分方程转化为求解有限元系统的线性或非线性代数方程组。
(3)选择合适的数值方法:根据问题的特点,选择合适的数值方法(如有限差分法、有限体积法等)对有限元方程进行求解。
(4)编写求解程序:根据所选数值方法,编写求解程序,实现有限元方程的求解。
(5)结果分析与后处理:对求解结果进行分析,并进行必要的后处理(如绘制等值线图、计算梯度等)。
3.有限元方法编程的实例以求解一个简单的二维热传导问题为例,我们可以按照以下步骤进行有限元方法编程:(1)建立有限元模型:将求解区域划分为多个矩形单元,并在每个单元的边界上设置节点。
(2)编写有限元方程:根据热传导方程,编写有限元方程。
(3)选择合适的数值方法:选择有限差分法对有限元方程进行求解。
(4)编写求解程序:根据有限差分法,编写求解程序,实现有限元方程的求解。
(5)结果分析与后处理:对求解结果进行分析,并绘制温度分布的等值线图。
4.有限元方法编程的注意事项在进行有限元方法编程时,应注意以下几点:(1)选择合适的有限元类型和网格划分:合适的有限元类型和网格划分可以降低求解的复杂度,提高计算效率。
《有限元法及其应用》课件
某型战斗机的机翼设计过程中,通过有限元分析,优化了机翼的结构和材料分布,提高了机翼的抗弯和 抗扭能力,同时减小了机翼的气动阻力,为飞机的高性能提供了保障。
汽车碰撞模拟
01
总结词
利用有限元法模拟汽车碰撞过程,评估汽车的安全性能和 改进设计方案。
02 03
详细描述
汽车碰撞是交通事故中最为严重的一种情况,有限元法能 够模拟汽车碰撞过程,对汽车的结构、材料和吸能设计等 进行评估,为汽车的安全性能提供科学依据。同时,通过 模拟不同碰撞条件下的结果,可以为汽车设计提供改进方 案。
通过离散化的方法,将连续的偏微分 方程转化为离散的代数方程组。
刚度矩阵与载荷向量
刚度矩阵
描述了每个单元的刚度关系,反 映了单元之间的相互作用。
载荷向量
描述了作用在每个节点上的外力 。
位移求解与应力分析
位移求解
通过求解离散化的代数方程组,得到每个节点的位移。
应力分析
根据位移求解的结果,通过计算得到每个单元的应力应变状态。
有限元法的应用领域
结构分析
有限元法在结构分析中应用最为广泛,可 以用于分析各种结构的应力、应变、位移
等。
电磁场分析
有限元法可以用于分析电磁场中的电场强 度、磁场强度、电流密度等,如电磁兼容
性分析、天线设计等。
流体动力学
有限元法可以用于模拟流体在各种复杂环 境下的流动行为,如航空航天、船舶、汽 车等领域的流体动力学问题。
应用领域
广泛应用于科学研究和工 程领域,如化学、生物医 学、电磁学等。
FE-SAFE
概述
FE-SAFE是一款用于结构疲劳分析的有限元软件 ,基于有限元方法进行疲劳寿命预测。
特点
工程电磁场数值分析(有限元法)
04
有限元法在工程电磁场中的应用
静电场问题
总结词
有限元法在静电场问题中应用广泛,能够准确模拟和预测静电场 的分布和特性。
详细描述
静电场问题是指电荷在静止状态下产生的电场,有限元法通过将 连续的静电场离散化为有限个单元,对每个单元进行数学建模和 求解,能够得到精确的解。这种方法在电力设备设计、电磁兼容 性分析等领域具有重要应用。
单元分析
对每个单元进行数学建模,包 括建立单元的平衡方程、边界 条件和连接条件等。
整体分析
将所有单元的平衡方程和连接 条件组合起来,形成整体的代 数方程组。
求解代数方程组
通过求解代数方程组得到离散 点的场量值。
有限元法的优势和局限性
02
01
03
优势 可以处理复杂的几何形状和边界条件。 可以处理非线性问题和时变问题。
传统解析方法难以解决复杂电磁场问题,需要采用数值分析方法 进行求解。
有限元法的概述
有限元法是一种基于离散化的数值分 析方法,它将连续的求解域离散为有 限个小的单元,通过求解这些单元的 近似解来逼近原问题的解。
有限元法具有适应性强、精度高、计 算量小等优点,广泛应用于工程电磁 场问题的数值分析。
02
静磁场问题
总结词
有限元法在静磁场问题中同样适用,能够有效地解决磁场分布、磁力线走向等问题。
详细描述
静磁场问题是指恒定磁场,不随时间变化的磁场问题。有限元法通过将磁场离散化为有限个磁偶极子,对每个磁 偶极子进行数学建模和求解,能够得到静磁场的分布和特性。这种方法在电机设计、磁力泵设计等领域具有重要 应用。
有限元法的基本步骤
01
有限元方法编程
有限元方法编程【原创版3篇】篇1 目录1.有限元方法概述2.有限元方法的编程步骤3.有限元方法的应用实例4.有限元方法的优缺点篇1正文一、有限元方法概述有限元方法是一种数值分析方法,它通过将待求解的连续体划分为有限个小的、简单的子区域(即有限元),从而将连续体问题转化为有限元上的离散问题。
这种方法可以大大简化问题的求解过程,并可以在计算机上进行高效的数值计算。
有限元方法被广泛应用于固体力学、流体力学、热传导、电磁场等领域。
二、有限元方法的编程步骤1.几何建模:首先需要对问题进行几何建模,即将问题的实际物理区域抽象为计算机可以处理的几何形状。
2.网格划分:将几何模型划分为有限个小的、简单的子区域,即有限元。
这一步需要考虑网格的密度和网格的类型,以保证求解的精度和效率。
3.选择合适的有限元公式:根据问题的性质和求解的目标,选择合适的有限元公式来描述问题的物理过程。
4.编写或选用求解器:根据所选公式,编写或选用相应的求解器,进行数值计算。
5.后处理:对计算结果进行处理,包括结果的可视化和结果的解析等。
三、有限元方法的应用实例有限元方法被广泛应用于各种工程问题中,例如飞机翼的强度分析、汽车底盘的振动分析、建筑物的抗震分析等。
四、有限元方法的优缺点优点:1.可以大大简化问题的求解过程,提高求解效率。
2.可以在计算机上进行高效的数值计算,便于进行结果的可视化和解析。
3.可以适用于各种复杂的几何形状和物理过程。
缺点:1.需要进行几何建模和网格划分,这需要耗费一定的时间和精力。
2.网格的选取对求解结果的精度和效率有重要影响,需要进行适当的选择。
篇2 目录1.有限元方法概述2.有限元方法编程的基本步骤3.有限元方法编程的实际应用4.有限元方法编程的挑战与未来发展篇2正文一、有限元方法概述有限元方法是一种数值分析方法,广泛应用于固体力学、流体力学、热传导等领域。
它的基本思想是将待求解的连续体划分为有限个小的、简单的子区域,即单元,然后用有限个简单的基本函数来近似描述每个单元的物理特性。
第五章偏微分方程的有限元法
有限元空间与基函数
针对椭圆型方程的特点,构造适当的有限元空间及 基函数,使得近似解能够较好地逼近真实解。
刚度矩阵与载荷向量
利用有限元基函数对椭圆型方程进行离散化 ,得到以刚度矩阵和载荷向量为未知量的线 性方程组。
抛物型偏微分方程的有限元法
时间离散与空间离散
抛物型偏微分方程涉及时间变量,需要采用合适的时间离散方案, 并结合空间有限元离散进行求解。
刚度矩阵反映了单元内部节点间的相 互作用力,需要根据形函数和单元刚 度矩阵进行组装得到整体刚度矩阵。
载荷向量组装
载荷向量反映了作用在节点上的外力 ,需要根据形函数和节点载荷进行组 装得到整体载荷向量。
边界条件处理与方程求解
边界条件处理
对于给定的边界条件,需要在整体刚度矩阵 和载荷向量中进行相应的处理,以保证求解 的正确性。常见的边界条件有Dirichlet边界 条件和Neumann边界条件。
分片插值
在每个单元内,选择基函数,用 单元基函数的线形组合来逼近单 元中的真解。
求解线性方程组
将问题的控制方程转化为等效的 线性方程组进行求解,得到每个 节点的待求量。
有限元法的发展历程
起源
有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其 方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。
素。
有限元法的实现过
04
程
网格划分与单元构造
网格划分
将求解区域划分为有限个互不重叠的子 区域,即单元。常见的网格划分方法有 结构化网格和非结构化网格。
VS
单元构造
对于每个单元,需要确定其形状、大小、 节点数及节点坐标等信息。常见的单元类 型有三角形、四边形、四面体等。
《有限元基本原理》课件
有限元法的历史与发展
01
有限元法的思想起源于20世纪40年代,但直到1960年 才由美国科学家克拉夫(Clough)正式提出“有限元 法”这一术语。
02
随着计算机技术的发展,有限元法得到了广泛应用和推 广,成为工程领域中解决复杂问题的有力工具。
03
近年来,随着计算能力的提升和算法优化,有限元法的 应用范围不断扩大,涉及的领域也更加广泛。
有限元法的基本思想
01
将连续体离散化为有限个单元,每个单元具 有简单的几何形状和物理属性。
03
02
通过在节点处设置位移约束,将各个单元相 互连接,形成一个整体模型。
通过在各个单元上设置方程,建立整个离散 化模型的平衡方程组。
高阶有限元方法
与其他方法的结合
研究高阶有限元方法,以提高计算的精度 和稳定性。
研究有限元方法与其他数值方法的结合, 如有限差分法、有限体积法等,以拓展其 应用范围。
谢谢聆听
04 有限元法的应用实例
静力分析实例
总结词
静力分析是有限元法最常用的领域之一,主要用于分析结构在恒定载荷下的响应。
详细描述
静力分析用于评估结构在恒定载荷下的应力、应变和位移。例如,桥梁、高层建筑和飞机机身等结构 的稳定性分析。通过有限元法,可以模拟复杂结构的整体行为,并预测其在各种载荷条件下的性能。
动力分析实例
总结词
动力分析涉及结构在动态载荷下的响应 ,如地震、风载和冲击载荷等。
VS
详细描述
动力分析用于评估结构在动态载荷作用下 的振动、冲击和响应。例如,地震工程中 建筑物和桥梁的抗震性能分析。通过有限 元法,可以模拟结构的动态行为,预测其 在地震或其他动态载荷下的破坏模式和倒 塌过程。
有限元法_精品文档
12
一、有限元法的基本概念
1.什么是有限元法
我们实际要处理的对象都是连续体,在传统设 计思维和方法中,是通过一些理想化的假定后,建 立一组偏微分方程及其相应的边界条件,从而求出 在连续体上任一点上未知量的值。
25
4)具有灵活性和适用性,适应性强(它可以把形状 不同、性质不同的单元组集起来求解,故特别适 用于求解由不同构件组合的结构,应用范围极为 广泛。它不仅能成功地处理如应力分析中的非均 匀材料、各向异性材料、非线性应力应变以及复 杂的边界条件等问题,且随着其理论基础和方法 的逐步完善,还能成功地用来求解如热传导、流 体力学及电磁场领域的许多问题)
21
对于一个具体的工程结构,单元的划分越小, 求解的结果就越精确,同时,其计算工作量也就越 大。
梯子的有限元模型不到100个方程; 在ANSYS分析中,一个小的有限元模型可能有几 千个未知量,涉及到的单元刚度系数几百万个。 单元划分的精细程度,取决于工程实际对计算 结果精确性的要求。
22
4)有限元分析 有限元分析就是利用数学近似的方法对真实
5)在具体推导运算过程中,广泛采用了矩阵方法。
26
2.有限元法的作用 1)减少模型试验的数量(计算机模拟允许对大量
的假设情况进行快速而有效的试验); 2)模拟不适合在原型上试验的设计(例如:器官
移植、人造膝盖); 3)节省费用,降低设计与制造、开发的成本; 4)节省时间,缩短产品开发时间和周期; 5)创造出高可靠性、高品质的产品。
因为点是无限多的,存在无限自由度的问题, 很难直接求解这种偏微分方程用来解决实际工程问 题,因此需要采用近似方法来处理。
(计算物理学)第10章有限元方法
使用数值方法求解线性方程组,得到每个节点的物 理量值。
03
求解线性方程组是有限元方法的核心步骤,其结果 的精度和稳定性对整个计算过程至关重要。
04
有限元方法的实现与应用
有限元分析软件介绍
COMSOL Multiphysics
COMSOL是一款强大的有限元分析软件, 支持多物理场模拟,包括电磁场、流体动力 学、化学反应等。
求解方程
通过有限元方法求解微分方程, 得到每个有限元的位移、应力 等结果。
建立模型
根据实际问题建立数学模型, 包括几何形状、材料属性、边 界条件等。
施加载荷和约束
根据实际情况,对有限元施加 适当的载荷和约束条件。
结果后处理
对求解结果进行后处理,包括 绘制云图、生成动画等。
有限元方法的应用领域
01
02
案例二:机械零件的应力分析
总结词
机械零件的应力分布和最大承受载荷是设计 时必须考虑的重要因素,有限元方法能够精 确模拟零件在不同工况下的应力状态。
详细描述
利用有限元方法,可以建立机械零件的模型 并模拟其在工作过程中所承受的应力分布。 这种方法能够预测零件在不同工况下的最大 承受载荷,为设计优化提供依据,提高零件
03
结构分析
用于分析结构的应力、应 变、位移等,广泛应用于 航空航天、汽车、土木工 程等领域。
流体动力学
用于分析流体动力学问题, 如流体流动、传热等,广 泛应用于能源、环境等领 域。
ቤተ መጻሕፍቲ ባይዱ
电磁场分析
用于分析电磁场问题,如 电磁波传播、电磁感应等, 广泛应用于通信、雷达、 电子设备等领域。
05
有限元方法的优缺点与改进 方向
03
有限元法及其应用_概述及解释说明
有限元法及其应用概述及解释说明1. 引言1.1 概述有限元法是一种数值计算方法,广泛应用于工程领域中各种结构、流体和热传导问题的分析与求解。
该方法将实际问题转化为数学模型,并通过离散化方法将复杂的连续域分割成许多简单的子域,然后建立局部方程并组合求解得出整个系统的行为。
1.2 文章结构本文主要分为五个部分来阐述有限元法及其应用。
首先是引言部分,在这部分中我们对有限元法进行综述和概括性介绍。
接下来是有限元法基础,包括定义与原理、离散化方法以及数学模型和方程组等内容。
第三部分是有限元法的应用领域,具体涵盖了结构力学分析、流体力学模拟以及热传导分析等方面。
紧接着是有限元法的优势与局限性的讨论,其中包含了优势点和局限性两个方面。
最后在结论与展望部分对目前取得的成果进行总结,并展望未来该领域发展的方向。
1.3 目的本文旨在全面介绍有限元法及其应用,使读者对该方法有一个全面的了解。
通过分析有限元法的原理和数学基础,以及讨论其在结构力学、流体力学和热传导等不同领域中的应用,读者可以更好地理解该方法在实际工程问题中的作用和意义。
同时,通过对有限元法的优势和局限性进行深入讨论,读者也可以对该方法的适用范围和限制条件有一个清晰的认识。
最后,在总结现有成果并展望未来发展方向的部分,本文希望促进该领域进一步的研究和应用,并为相关领域从业人员提供参考与借鉴。
2. 有限元法基础:2.1 定义与原理:有限元法(Finite Element Method,简称FEM)是一种工程数值分析方法,通过将复杂的连续体问题转化为离散的有限元模型,并通过求解一系列代数方程组来获得数值近似解。
它基于强大的计算能力和离散化技术,广泛应用于各个领域的工程问题求解。
有限元法原理包括两个基本步骤:离散化和解。
在离散化过程中,需要将复杂的连续体划分为多个单元,每个单元具有简单的几何形状(如线段、三角形或四边形)。
这些单元可以通过节点进行连接,并构成整个结构或区域。
电磁计算的有限元方法及其数值求解
电磁计算的有限元方法及其数值求解电磁计算作为重要的科学技术方法之一,其精度和效率对于科技领域的发展具有至关重要的作用。
而有限元方法作为一种重要的数值计算方法,在电磁计算中应用广泛。
本文将介绍有限元方法在电磁计算中的应用和数值求解。
一、有限元方法的概述有限元方法是一种求解偏微分方程数值解的常用方法。
其核心思想是将一个复杂的区域分割成若干个小区域,通过对小区域内的物理变量进行逼近,最终得到整体的物理变量分布。
在电磁计算中,有限元方法是一种经典的数值计算方法,具有良好的适用性和精度。
有限元方法的求解过程分为建立数学模型、离散化、求解和后处理四个主要步骤。
其中建立数学模型是有限元方法的关键,正确的数学模型可以保证计算结果的精度。
二、电磁计算中有限元方法的应用在电磁计算中,有限元方法常用于求解电学、磁学和电磁学问题。
例如电感、电容、电阻等电学问题,磁感线分布、磁通量等磁学问题,以及电磁场分布、电磁波传播等电磁学问题。
对于电学问题,有限元方法常用于求解电场的分布和电容、电感等参数的计算。
例如,铁芯电感器等电学元件可以通过有限元方法求解电感值,从而进行电磁场分析和设计。
对于磁学问题,有限元方法常用于求解磁场分布和电感、磁通量等参数的计算。
例如,变压器、电机等磁学元件可以通过有限元方法求解磁感线分布和磁通量,从而进行磁场分析和设计。
对于电磁学问题,有限元方法常用于求解电磁场分布和电磁波传播等问题。
例如,天线、波导等电磁学元件可以通过有限元方法求解电磁场分布和传播特性,从而进行电磁波分析和设计。
三、电磁计算中有限元方法的数值求解有限元方法的数值求解过程包括矩阵的组装和求解两个主要步骤。
在电磁计算中,有限元方法的数值求解主要涉及到矩阵的组装。
矩阵的组装是指将离散化得到的局部矩阵组合成全局矩阵,并考虑边界条件和耦合矩阵的影响。
在组装全局矩阵的过程中,通常采用稀疏矩阵的存储方式,以节省存储空间和提高计算效率。
在全局矩阵组装完成后,可以采用直接法或迭代法对矩阵进行求解。
有限单元法知识点总结
有限单元法知识点总结1. 有限元法概述有限单元法(Finite Element Method ,简称FEM)是一种数值分析方法,适用于求解工程结构、热传导、流体力学等领域中的强耦合、非线性、三维等问题,是一种求解偏微分方程的数值方法。
有限元法将连续的物理问题抽象为由有限数量的简单几何单元(例如三角形、四边形、四面体、六面体等)组成的离散模型,通过对单元进行适当的数学处理,得到整体问题的近似解。
有限元法广泛应用于工程、材料、地球科学等领域。
2. 有限元法基本原理有限元法的基本原理包括离散化、加权残差法和形函数法。
离散化是将连续问题离散化为由有限数量的简单单元组成的问题,建立有限元模型。
加权残差法是选取适当的残差形式,并通过对残差进行加权平均,得到弱形式。
形函数法是利用一组适当的形函数来表示单元内部的位移场,通过形函数的线性组合来逼近整体位移场。
3. 有限元法的步骤有限元法的求解步骤包括建立有限元模型、建立刚度矩阵和载荷向量、施加边界条件、求解代数方程组和后处理结果。
建立有限元模型是将连续问题离散化为由简单单元组成的问题,并确定单元的连接关系。
建立刚度矩阵和载荷向量是通过单元的应变能量和内力作用,得到整体刚度矩阵和载荷向量。
施加边界条件是通过给定位移或力的边界条件,限制未知自由度的取值范围。
求解代数方程组是将有限元模型的刚度方程和载荷方程组成一个大型代数方程组,通过数值方法求解。
后处理结果是对数值结果进行处理和分析,得到工程应用的有用信息。
4. 有限元法的元素类型有限元法的元素类型包括结构单元、板壳单元、梁单元、壳单元、体单元等。
结构单元包括一维梁单元、二维三角形、四边形单元、三维四面体、六面体单元。
板壳单元包括各种压力单元、弹性单元、混合单元等。
梁单元包括梁单元、横梁单元、大变形梁单元等。
壳单元包括薄壳单元、厚壳单元、折叠单元等。
体单元包括六面体单元、锥体单元、八面体单元等。
5. 有限元法的数学基础有限元法的数学基础包括变分法、能量方法、有限元插值等。
有限元法在机械设计中的应用
有限元法在机械设计中的应用1. 引言1.1 有限元法概述有限元法是一种数值模拟方法,被广泛应用于工程领域中各种复杂问题的分析和求解。
其基本思想是利用数学分析的方法将连续的物理问题离散化,将问题转化为有限个简单的子问题,通过计算机对这些子问题进行求解,最终得到整体问题的解。
有限元法通过求解大量的线性或非线性代数方程组来模拟实际工程中的各种物理现象,如结构强度、热传导、流体力学等。
有限元法的应用范围非常广泛,涵盖了各种工程领域,如航空航天、汽车、船舶、建筑等。
在机械设计中,有限元法可以帮助工程师分析和优化产品的结构,预测产品在不同工况下的性能,减少实验测试的成本和时间,提高产品的设计效率和质量。
有限元法不仅可以帮助工程师了解产品的内部应力分布和变形情况,还可以帮助优化产品的结构设计,提高产品的可靠性和安全性。
有限元法在机械设计中的应用具有非常重要的意义,可以有效地帮助工程师解决复杂的工程问题,提高产品的设计水平和竞争力。
掌握和应用有限元法成为现代机械设计工程师的基本技能之一。
1.2 机械设计中的应用意义1. 提高设计效率:有限元法可以在数字化模型上进行快速、准确的分析,能够更好地理解和评估结构的工作性能,帮助设计人员快速找到问题,提高设计效率。
2. 降低设计成本:通过有限元法进行仿真分析,可以及早发现设计缺陷和问题,避免在实际制造过程中出现不必要的成本支出,从而降低设计成本。
3. 提高产品质量:有限元法可以帮助设计人员优化结构设计,提高产品的稳定性和可靠性,避免产品在使用中出现故障,提高产品质量。
4. 支持创新设计:有限元法能够帮助设计人员进行复杂结构的分析和优化,促进产品创新设计,推动技术的进步和发展。
有限元法在机械设计中的应用意义是不可替代的。
它不仅可以帮助设计人员更好地理解和评估结构性能,提高设计效率和质量,还能够支持创新设计,推动行业技术的发展和进步。
掌握有限元法在机械设计中的应用是设计人员必备的技能之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
他们的研究工作打开了利用计算机求解复杂平面弹性 问题的新局面。 问题的新局面。1960年Clough进一步处理了平面弹性问 年 进一步处理了平面弹性问 并第一次提出了"有限单元法 的名称, 有限单元法"的名称 题,并第一次提出了 有限单元法 的名称,使人们开始认 识了有限单元法. 识了有限单元法
3、有限元法在机械工程领域的应用 、
电磁场分析、声场分析、 电磁场分析、声场分析、压电分析以及多物理场的耦分 可以模拟多物理介质的相互作用, 析,可以模拟多物理介质的相互作用,具有灵敏度分析 及优化分析能力; 及优化分析能力;后处理的计算结果有多种显示和表达 能力。 软件系统主要包括ANSYS/Mutiphysics 能力。ANSYS软件系统主要包括 软件系统主要包括 多物理场仿真分析工具、 多物理场仿真分析工具、LS-DYNA显示瞬态动力分析 显示瞬态动力分析 工具、 设计前期CAD集成工具、Design 集成工具、 工具、Design Space设计前期 设计前期 集成工具 Xploere多目标快速优化工具和 多目标快速优化工具和FE-SAFE结构疲劳耐久 多目标快速优化工具和 结构疲劳耐久 性分析等。ANSYS已在工业界得到较广泛的认可和应 性分析等。ANSYS已在工业界得到较广泛的认可和应 用。 是在原NAST (2)MSC/NASTRAN。 MSC/NASTRAN是在原 ) 。 是在原 RAN基础上进行大量改进后的系统软件,主要包括 基础上进行大量改进后的系统软件, 基础上进行大量改进后的系统软件 主要包括MS C.Patran并行框架式有限元前后处理及分析系统、 MS 并行框架式有限元前后处理及分析系统、 并行框架式有限元前后处理及分析系统 C.GS-Mesher快速有限元网格、 MSC.MARC非线性有 快速有限元网格、 快速有限元网格 非线性有 限元软件等。其中MSC.MARC具有较强的结构分析能 限元软件等。其中 具有较强的结构分析能
分析单元的力学性质
根据 单元的材料性质、形状、尺寸、节点数目、位置及其 单元的材料性质、形状、尺寸、节点数目、 含义等,找出单元节点力和节点位移的关系式, 含义等,找出单元节点力和节点位移的关系式,这是单元 分析中的关键一步。 分析中的关键一步。此时需要应用弹性力学中的几何方程 和物理方程来建立力和位移的方程式, 和物理方程来建立力和位移的方程式,从而导出单元刚 度 矩阵,这是有限元法的基本步骤之一。 矩阵,这是有限元法的基本步骤之一。
5、计算机实现及大型有限元软件简 介
在大力推广CAD技术的今天,从自行车到航天飞机, 在大力推广CAD技术的今天,从自行车到航天飞机, 技术的今天 所有的设计制造都离不开有限元分析计算, 所有的设计制造都离不开有限元分析计算,FEA在工程设 在工程设 计和分析中将得到越来越广泛的重视。 计和分析中将得到越来越广泛的重视。 国际上早20世纪在 年代末、 年代初就投入大量的 世纪在50年代末 国际上早 世纪在 年代末、60年代初就投入大量的 人力和物力开发具有强大功能的有限元分析程序。 人力和物力开发具有强大功能的有限元分析程序。其中最 为著名的是由美国国家宇航局( 为著名的是由美国国家宇航局(NASA)在1965年委托美 ) 年委托美 国计算科学公司和贝尔航空系统公司开发的NASTRAN有 国计算科学公司和贝尔航空系统公司开发的 有 限元分析系统。该系统发展至今已有几十个版本, 限元分析系统。该系统发展至今已有几十个版本,是目前 世界上规模最大、功能最强的有限元分析系统。 世界上规模最大、功能最强的有限元分析系统。
2、有限元法的发展
有限单元法基本思想的提出,可以追溯到 有限单元法基本思想的提出,可以追溯到Courantl在1 在 943年的工作,他第一次尝试应用定义在三角形区域上的 年的工作, 年的工作 分片连续函数和最小位能原理相结合,来求解St·Venant 分片连续函数和最小位能原理相结合,来求解 扭转问题。相继一些应用数学家、 扭转问题。相继一些应用数学家、物理学家和工程师由于 各种原因都涉足过有限单元的概念。 各种原因都涉足过有限单元的概念。 但真正的应用实际问题是到1960年以后,随着电子 年以后, 但真正的应用实际问题是到 年以后 数值计算机的广泛应用和发展,有限单元法的发展速度才 数值计算机的广泛应用和发展, 显著加快。现代有限元法第一个成功的尝试, 显著加快。现代有限元法第一个成功的尝试,是将刚架位 移法推广应用于弹性力学平面问题,这是Turner,Cloug 移法推广应用于弹性力学平面问题,这是 , h等人在分析飞机结构时于 等人在分析飞机结构时于1956年得到的成果。他们第一 年得到的成果。 等人在分析飞机结构时于 年得到的成果 次给出了用三角形单元求得平面应力问题的正确解答。 次给出了用三角形单元求得平面应力问题的正确解答。
汽车碰撞实验
刹车制动时地盘的应力分析
钢板精轧机热轧制分析
三维椭圆封头开孔补强
水轮机叶轮的受力分析模拟
人体股骨端受力分析
半导体芯片温度场的数值仿真
4、有限元的特点
(1) 概念清楚 容易理解。可以在不同的专业背景和水 概念清楚,容易理解 容易理解。 平上建立起对该方法的理解。从使用的观点来讲,每个人 平上建立起对该方法的理解。从使用的观点来讲 每个人 的理论基础不同,理解的深度也可以不同 理解的深度也可以不同,既可以通过直观 的理论基础不同 理解的深度也可以不同 既可以通过直观 的物理意义来学习,也可以从严格的力学概念和数学概念 的物理意义来学习 也可以从严格的力学概念和数学概念 推导。 推导。 (2) 适应性强 应用范围广泛。有限元法可以用来求解 适应性强,应用范围广泛 应用范围广泛。 工程中许多复杂的问题,特别是采用其他数值计算方法 特别是采用其他数值计算方法(如 工程中许多复杂的问题 特别是采用其他数值计算方法 如 有限差分法)求解困难的问题 如复杂结构形状问题,复杂 求解困难的问题。 有限差分法 求解困难的问题。如复杂结构形状问题 复杂 边界条件问题,非均质 非线性材料问题,动力学问题等 非均质、 动力学问题等。 边界条件问题 非均质、非线性材料问题 动力学问题等。 目前,有限元法在理论上和应用上还在不断发展 有限元法在理论上和应用上还在不断发展,今后将更 目前 有限元法在理论上和应用上还在不断发展 今后将更 加完善,其使用范围将更加广泛 其使用范围将更加广泛。 加完善 其使用范围将更加广泛。
大型商用的FEM 大型商用的FEM通用软件分类 FEM通用软件分类
目前已经出现了许多大型结构分析通用软件, 目前已经出现了许多大型结构分析通用软件,最早的 是美国国家宇航局( 是美国国家宇航局(NASA)在1956年委托美国计算科学 ) 年委托美国计算科学 公司和贝尔航空系统公司开发的ANASTRAN有限元分析 公司和贝尔航空系统公司开发的 有限元分析 系统,该系统发展到现在已有几十个版本。此外, 系统,该系统发展到现在已有几十个版本。此外,比较知 名的有限元分析软件还有德国的ASKA,英国 英国PAFEC,法 名的有限元分析软件还有德国的 英国 , 国AYATUS,美国 ,美国ABAUS、ADNA、ANSYS、BERSAF 、 、 、 E、BOSOR、COSMOS、ELAS、MARC、STARNYNE 、 、 、 、 、 下面仅介绍几种当前比较流行的有限元软件。 等。下面仅介绍几种当前比较流行的有限元软件。 是融结构、 (1) ANSYS。 ANSYS是融结构、流体、电场、磁 ) 。 是融结构 流体、电场、 场和声场分析于一体的大型通用有限元分析软件。 场和声场分析于一体的大型通用有限元分析软件。其主要 特点是具有较好的前处理功能,如几何建模、网络划分、 特点是具有较好的前处理功能,如几何建模、网络划分、
5.在产品制造或工程施工前预先发现潜在的问题; 在产品制造或工程施工前预先发现潜在的问题; 在产品制造或工程施工前预先发现潜在的问题 6. 模拟各种试验方案,减少试验时间和经费; 模拟各种试验方案,减少试验时间和经费; 7. 进行机械事故分析,查找事故原因。 进行机械事故分析,查找事故原因。
轴承强度分析
有限元分析法的应用使设计水平发生了质的飞跃, 有限元分析法的应用使设计水平发生了质的飞跃,在 机械工程领域主要表现在以下几个方面: 机械工程领域主要表现在以下几个方面: 1. 增加设计功能,减少设计成本; 增加设计功能,减少设计成本; 2.缩短设计和分析的循环周期; 缩短设计和分析的循环周期; 缩短设计和分析的循环周期 3. 增加产品和工程的可靠性; 增加产品和工程的可靠性; 4. 采用优化设计,降低材料的消耗或成本; 采用优化设计,降低材料的消耗或成本;
现代设计理论及方法
有限元分析法
(Finite Element Analysis , FEA)
概述
1、有限元法简介
有限元法是求解数理方程的一种数值计算方法, 有限元法是求解数理方程的一种数值计算方法,是将 弹性理论、计算数学和计算机软件有机结合在一起的一种 弹性理论、 数值分析技术, 数值分析技术,是解决工程实际问题的一种有力的数值计 算工具。 算工具。 目前, 目前,有限单元法在许多科学技术领域和实际工程问 题中得到了广泛的与应用, 机械制造、材料加工、 题中得到了广泛的与应用,如,机械制造、材料加工、航 空航天、土木建筑、电子电气、国防军工、石油化工、船 空航天、土木建筑、电子电气、国防军工、石油化工、 铁路、汽车和能源等,并受到了普遍的重视。 舶、铁路、汽车和能源等,并受到了普遍的重视。 现有的商业化软件已经成功应用于固体力学、 现有的商业化软件已经成功应用于固体力学、流体力 热传导、电磁学、声学和生物学等领域, 学、热传导、电磁学、声学和生物学等领域,能够求解由 壳和块体等单元构成的弹性、 杆、梁、板、壳和块体等单元构成的弹性、弹塑性或塑性 问题,求解各类场分布问题,求解水流管道、电路、润滑、 问题,求解各类场分布问题,求解水流管道、电路、润滑、 噪声以及固体、流体、温度间的相互作用等问题。 噪声以及固体、流体、温度: 知量称为位移法; 位移法:选择节点位移作为基本未 知量称为位移法; 力 法:选择节点力作为基本未 知量时称为力法; 知量时称为力法;