圆柱与圆锥的关系!
圆柱与圆锥 比例
圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体。
如左下图所示:即AG矩形的一条边为轴,旋转360°所得的几何体就是圆柱。
其中AG叫做圆柱的轴,AG的长度叫做圆柱的高,所有平行于AG的线段叫做圆柱的母线,DA和D'G旋转形成的两个圆叫做圆柱的底面,DD'旋转形成的曲面叫做圆柱的侧面。
7.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
设一个圆柱底面半径为r,高为h,则体积V:V=πr2h;如S为底面积,高为h,体积为V:V=Sh8.圆柱的侧面积:圆柱的侧面积=底面的周长*高,S侧=Ch(注:c为πd)圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)。
特征:圆柱的底面都是圆,并且大小一样。
9.圆锥解析几何定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥。
如又上图。
10.圆锥立体几何定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。
该直角边叫圆锥的轴。
11.圆锥的体积:一个圆锥所占空间的大小,叫做这个圆锥的体积。
一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。
根据圆柱体积公式V=Sh(V=rrπh),得出圆锥体积公式:V=1/3ShS是圆锥的底面积,h是圆锥的高,r是圆锥的底面半径12.圆锥体展开图的绘制:圆锥体展开图由一个扇形(圆锥的侧面)和一个圆(圆锥的底面)组成。
(如右图)在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)13.圆锥的表面积:一个圆锥表面的面积叫做这个圆锥的表面积。
圆锥的表面积由侧面积和底面积两部分组成。
S=πR2(n/360)+πr2或(1/2)αR2+πr2(此n为角度制,α为弧度制,α=π(n/180)14.圆柱与圆锥的关系:与圆柱等底等高的圆锥体积是圆柱体积的三分之一。
体积和高相等的圆锥与圆柱(等低等高)之间,圆锥的底面积是圆柱的三倍。
最完整、最全的圆柱与圆锥题型、考点归纳
圆柱圆锥常考题型归纳一、圆柱1. 圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。
圆柱也可以由长方形卷曲而得到。
(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
)2.圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的。
3.圆柱的切割:a.横切:切面是圆,表面积增加2倍底面积,即22S R π=增。
b.竖切(过直径):切面是长方形(如果h=2R ,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S 增=4Rh4. 圆柱的侧面展开图:a. 沿着高展开,展开图形是长方形,如果2h R π=,展开图形为正方形。
b. 不沿着高展开,展开图形是平行四边形或不规则图形。
c.无论如何展开都得不到梯形5、圆柱的相关计算公式:a .底面积:2=S R π底b .底面周长:2C d r ππ==c .侧面积:2S Rh π=侧d .表面积 :S=2S 底+S 侧 =222R Rh ππ+e .体积 : 2V R h π=考试常见题型:a. 已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长b. 已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积c. 已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积d. 已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积,e. 已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。
二、圆锥1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。
圆锥也可以由扇形卷曲而得到。
2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的切割:a.横切:切面是圆b.竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,表面积增加两个等腰三角形的面积,即S 增=2Rh4、圆锥的相关计算公式a. 底面积:2=S Rπ底b. 底面周长:2C d r ππ==c. 体积: 2/3V R h π=考试常见题型:a. 已知圆锥的底面积和高,求体积,底面周长b. 已知圆锥的底面周长和高,求圆锥的体积,底面积c. 已知圆锥的底面周长和体积,求圆锥的高,底面积以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算。
圆锥的体积典型例题及答案
圆锥的体积答案典题探究例1.圆锥的体积是它等底等高圆柱体积的,所以圆柱的体积比它等底等高的圆锥体积大.×.(判断对错)考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:因为一个圆柱的体积是与它等底等高的圆锥体积的3倍,所以圆柱体积比与它等底等高的圆锥体积大2倍.解答:解:因为一个圆柱的体积是与它等底等高的圆锥体积的3倍,所以圆柱体积比与它等底等高的圆锥体积大:(3﹣1)÷2=2倍.故答案为:×.点评:此题是考查圆柱、圆锥的关系,要注意圆柱和圆锥在等底等高的条件下体积有3倍或的关系.例2.如果圆柱体积是圆锥体积的3倍,那么它们一定等底等高.√.(判断对错)考点:圆锥的体积.专题:立体图形的认识与计算.分析:因为等底等高的圆柱体的体积是圆锥体体积的3倍,所以如果圆柱体积是圆锥体积的3倍,那么它们一定等底等高.据此解答即可.解答:解:因为等底等高的圆柱体的体积是圆锥体体积的3倍,所以如果圆柱体积是圆锥体积的3倍,那么它们一定等底等高.说法正确.故答案为:√.点评:本题要结合圆柱的体积和圆锥的体积计算公式进行判断.例3.一个圆锥体的底面半径是3分米,高是6分米,它的体积是56.52立方分米.考点:圆锥的体积.专题:立体图形的认识与计算.分析:圆锥的体积公式:V=sh=πr2h,已知底面半径是3分米,高是6分米.据此解答.解答:解:×3.14×32×6=×3.14×9×6=56.52(立方分米)答:它的体积是56.52立方分米.故答案为:56.52.点评:本题主要考查了学生对圆锥体积公式的掌握.例4.一个圆锥和一个圆柱等底等高,它们的体积相差20立方厘米,那么圆柱的体积是30立方厘米.考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:等底等高的圆柱的体积是圆锥体积的3倍,因此它们的体积差除以2就是圆锥的体积,用圆锥的体积乘3就是圆柱的体积.解答:解:20÷2=10(立方厘米);10×3=30(立方厘米).答:圆柱的体积是30立方厘米.故答案为:30立方厘米.点评:本题考查的目的是使学生理解掌握:等底等高的圆柱与圆锥之间的体积关系,即等底等高的圆柱是圆锥体积的3倍.据出关系可以解决有关的实际问题.例5.一个圆柱形橡皮泥,底面积是12平方厘米,高是5厘米.如果把它捏成同样高的圆锥,这个圆锥的底面积是多少?考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:压轴题;立体图形的认识与计算.分析:根据题意可知,圆柱形橡皮泥捏成圆锥形后,体积不变,根据v=sh,所以先求出橡皮泥的体积,然后根据“s=v×3÷h”求出圆锥的高.解答:解:橡皮泥的体积:12×5=60(cm3),圆锥的高:60×3÷5=36(cm2);答:圆锥的底面积是36厘米2.点评:此题主要考查圆柱的体积公式及有关圆锥体积公式的应用.例6.把三角形ABC沿着边AB或BC分别旋转一周,得到两个圆锥(如图1、图2),(单位:厘米)谁的体积大?大多少立方厘米?考点:圆锥的体积.专题:压轴题.分析:由图1可知,圆锥的底面半径是3厘米,高是6厘米,由图2可知,圆锥的底面半径是6厘米,高是3厘米,利用公式解答即可.解答:解:(1)3.14×32×6÷3=3.14×9×6÷3=56.52(立方厘米);(2)3.14×62×3÷3=3.14×36×3÷3=113.04(立方厘米);113.04﹣56.52=56.52(立方厘米);答:图2的体积大,大56.52立方厘米.点评:此题主要考查圆锥体积的计算,可以直接利用公式解答.演练方阵A档(巩固专练)一.选择题(共15小题)1.(•长寿区)一个圆柱体和一个圆锥体的底面积相等,圆锥的高是圆柱高的3倍.则圆锥的体积()圆柱的体积.A.小于B.等于C.大于D.无选项考点:圆锥的体积;圆柱的侧面积、表面积和体积.分析:根据题干,设圆柱和圆锥的底面积相等是S,设圆柱的高是h,则圆锥的高是3h,由此利用圆柱和圆锥的体积公式求出它们的体积即可解答.解答:解:设圆柱和圆锥的底面积相等是S,设圆柱的高是h,则圆锥的高是3h,圆柱的体积是:Sh,圆锥的体积是:S×3h=Sh,所以圆柱的体积与圆锥的体积相等.故选:B.点评:此题考查了圆柱与圆锥的体积公式的灵活应用.2.(•北京模拟)如果一个圆锥体的底面半径扩大2倍,高缩小为原来的一半,它的体积是原来体积的()A.2倍B.一半C.不变考点:圆锥的体积.分析:根据圆锥的体积公式,v=sh÷3,圆锥体的底面半径扩大2倍,它的底面积就扩大4倍,因为圆的半径扩大2倍圆的面积就扩大4倍,高缩小为原来的一半,由此得解.解答:解:圆锥体的底面半径扩大2倍,它的底面积就扩大4倍,又知高缩小为原来的一半,由此得此它的体积就扩大2倍.故选A.点评:此题的解答主要根据因数与积的变化规律来解答,3.(•福田区模拟)一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱的3倍,圆锥的体积是12立方分米,圆柱的体积是()立方分米.A.12B.36C.4考点:圆锥的体积;圆柱的侧面积、表面积和体积.分析:一个圆柱和一个圆锥的底面直径相等,则它们的底面积就相等,根据圆柱和圆锥的体积公式即可解答.解答:解:一个圆柱和一个圆锥的底面直径相等,则它们的底面积就相等,圆柱的体积=底面积×高,圆锥的体积=×底面积×高,圆锥的高是圆柱的3倍,所以圆柱和圆锥的体积相等,也是12立方分米.故选:A.点评:此题考查了圆柱与圆锥的体积公式的灵活应用.4.(•临川区模拟)用一个高是30厘米的圆锥体容器装满水,倒入和它等底等高的圆柱体容器中,水的高度是()厘米.A.10B.90C.20考点:圆锥的体积;圆柱的侧面积、表面积和体积;立体图形的容积.分析:由于水的体积没变,倒入和它等底等高的圆柱体容器中,水在圆柱体的容器的高是圆锥高的,由此解答即可.解答:解:30×=10(厘米);答:水的高是10厘米;故选:A.点评:此题考查的目的是,理解和掌握等底等高圆柱和圆锥,圆锥的体积是圆柱体积的.5.(•广州模拟)大小两个圆柱的高相等,大圆柱的半径是小圆柱半径的2倍,大小两个圆柱的体积比是()A.1:2B.1:4C.4:1D.2:1考点:圆锥的体积;比的意义;圆柱的侧面积、表面积和体积.分析:根据圆柱体的体积公式,v=sh,再利用因数与积的变化规律即可解答.解答:解:两个圆柱的高相等,大圆柱的半径是小圆柱半径的2倍,因为圆的半径扩大2倍圆的面积就扩大4倍,由此得出大圆柱的体积是小圆柱的4倍,即大小两个圆柱的体积比是:4:1.故选:C.点评:此题主要考查圆柱和圆锥的体积计算,及圆的半径扩大2倍圆的面积就扩大4倍.6.(•保靖县)右图中圆锥体积是圆柱体积的,那么圆锥的高是()cm.A.2B.6C.18考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据题干可得:圆柱与圆锥的底面积相等,圆锥体积是圆柱体积的;因为等底等高的圆锥的体积是圆柱的体积的,由此可得这个圆柱与圆锥的高相等.解答:解:根据题干分析可得:圆柱与圆锥的底面积相等,圆锥体积是圆柱体积的;因为等底等高的圆锥的体积是圆柱的体积的,由此可得这个圆柱与圆锥的高相等,也是6厘米.故选:B.点评:此题考查了等底等高的圆柱与圆锥的体积倍数关系的灵活应用.7.(•和平区)一个圆柱和一个圆锥,底面积和高分别相等.若圆柱的体积是2.4立方米.则圆锥的体积是()立方米.A.0.8B.3.6C.4.8D.7.2考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据题意,根据圆锥的体积等于与它等底等高的圆柱体积的,已知圆柱的体积是2.4立方米,据此解答.解答:解:2.4×=0.8(立方米),答:圆锥的体积是0.8立方米.故选:A.点评:此题主要根据等底等高的圆锥的体积是圆柱体积的,再根据一个数乘分数的意义,用乘法解答.8.(•北京)把一个圆柱削成一个和它等底等高的圆锥,削去部分的体积是圆柱体积的()A.3倍B.2倍C.考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:因为圆柱的体积等于和它等底等高的圆锥体积的3倍,所以削去部分的体积是圆锥体积的2倍,是圆柱的体积的(1﹣);据此解答即可.解答:解:由分析可知:把一个圆柱形的木块削成一个和它等底等高的圆锥,削去部分体积是这个圆柱体积的:1﹣=.答:削去部分的体积是圆柱体积的.故选:C.点评:此题利用“圆柱的体积等于和它等底等高的圆锥体积的3倍”这一知识点来解答.9.(•铁山港区模拟)如果圆锥体的底面半径扩大2倍,高不变,那么这个圆锥体的体积扩大()倍.A.2B.4C.8考点:圆锥的体积;积的变化规律.专题:立体图形的认识与计算.分析:根据圆锥的底面积和体积公式和积的变化规律即可判断.解答:解:(1)圆锥的底面积=πr2,底面半径扩大2倍,根据积的变化规律可得:圆锥的底面积就扩大2×2=4倍,(2)圆锥的体积=×底面积×高,高一定时,根据积的变化规律可得:底面积扩大4倍,圆锥的体积就扩大4倍,故选:B.点评:此题考查了积的变化规律在圆锥的体积公式中的灵活应用.10.(•宝安区)一个圆柱和一个圆锥的体积和底面积分别相等,圆柱的高与圆锥的高的比是()A.1:1B.1:2C.1:3D.3:1考点:圆锥的体积;比的意义;圆柱的侧面积、表面积和体积.专题:比和比例;立体图形的认识与计算.分析:根据圆柱的体积公式V=sh,圆锥的体积公式V=sh,当圆柱和圆锥的体积、底面积分别相等时,圆柱的高是圆锥的高的,由此求出圆柱的高,进而做出选择.解答:解:因为,圆柱的体积公式V=sh,圆锥的体积公式V=sh,所以,当圆柱和圆锥的体积、底面积分别相等时,圆柱的高是圆锥的高的,故选:C.点评:此题主要考查了利用圆柱与圆锥的体积公式,推导出在体积、底面积分别相等时,圆柱的高与圆锥的高的关系.11.(•广汉市模拟)一个长方体和一个圆锥体的底面积和高分别相等,长方体体积是圆锥体积的()A.3倍B.2倍C.D.无法确定考点:圆锥的体积;圆柱的侧面积、表面积和体积.分析:长方体的体积=底面积×高;圆锥的体积=×底面积×高,由此公式即可得出长方体体积与圆锥的体积的倍数关系.解答:解:长方体的体积=底面积×高;圆锥的体积=×底面积×高,若它们的底面积和高分别相等,则:长方体的体积是圆锥的体积的3倍,故选:A.点评:此题考查了长方体和圆锥的体积公式的灵活应用,得出结论:等底等高的长方体体积是圆锥的体积的3倍.12.(•天河区)一个圆柱和一个圆锥等底等高,圆柱的体积是240立方厘米,圆锥的体积是()立方厘米.A.640B.800C.720D.80考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:由圆锥体积公式的推导可知,当一个圆柱和一个圆锥等底等高时,则圆锥的体积应是圆柱体积的;也就是说,把圆柱的体积看作单位“1”,是3份,圆锥的体积是1份,已知圆柱体积是240立方厘米,用240除以3即得圆锥的体积.解答:解:一个圆柱和一个圆锥等底等高,那么圆锥体积是圆柱体积的;圆锥的体积:240÷3=80(立方厘米);答:圆锥的体积是80立方厘米.故选:D.点评:此题是考查圆柱、圆锥的关系,要明确等底等高的圆柱和圆锥体积有3倍或的关系.13.(•东兰县模拟)把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将()A.扩大3倍B.缩小3倍C.扩大6倍D.缩小6倍考点:圆锥的体积;圆柱的侧面积、表面积和体积.分析:根据题意知道,在捏橡皮泥的过程中,它的总体积不变,再根据等底等高的圆锥形和圆柱形的关系,即可得到答案.解答:解:根据等底等高的圆锥形的体积是圆柱形体积的,又因为,在捏橡皮泥的过程中,它的总体积不变,所以,把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将扩大3倍;故选:A.点评:解答此题的关键是,根据题意,结合等底等高的圆锥形的体积是圆柱形体积的,即可得到答案.14.(•宿城区模拟)一个圆柱与一个圆锥体体积相等,底面积也相等.已知圆柱的高是9厘米,则圆锥的高是()厘米.A.3B.9C.27D.54考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据圆柱的体积公式V=sh及圆锥的体积公式V=sh,知道当圆柱和圆锥的底面积和体积相等时,圆柱的高与圆锥的高的比是1:3,再根据圆柱的高为9厘米,由此即可求出圆锥的高.解答:解:因为,圆柱的体积公式是:V=sh,则h=圆锥的体积公式是:V=sh,则h=圆柱和圆锥的底面积和体积相等时圆柱的高与圆锥的高的比是:=:1:3圆锥的高为:9×3=27(厘米)答:圆锥的高为27厘米.故选:C.点评:解答此题的关键是,根据圆柱和圆锥的体积公式,得出圆柱和圆锥的高的关系.15.(•广州)底面积相等的圆柱和圆锥,它们的体积比是2:1,圆锥的高是9厘米,圆柱的高是()厘米.A.3B.6C.9考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:平面图形的认识与计算.分析:由圆柱和圆锥的体积公式可得:圆柱的高:圆锥的高=2:3,由此即可解决.解答:解:由底面积相等的圆柱和圆锥的体积比是2:1可得:圆柱的高:圆锥的高=2:3,设圆柱的高为x厘米,根据题意可得:x:9=2:33x=2×93x=18x=6;答:圆柱的高是6厘米.故选:B.点评:此题是考查圆柱与圆锥体积公式的综合应用,利用公式的各种变换即可解决问题.二.填空题(共13小题)16.一个圆锥的高一定,它的底面半径和体积不成比例.考点:圆锥的体积;辨识成正比例的量与成反比例的量.分析:因为圆的半径和圆的面积不成比例,所以圆锥的底面半径和体积也不成比例.解答:解:根据公式:v=sh,因为圆的半径和圆的面积不成比例,所以圆锥的底面半径和体积也不成比例.故答案为:不成.点评:解答此题关键是判断圆的半径和面积不成比例.17.(•上高县模拟)圆锥的底面半径扩大3倍,高缩小3倍后,圆锥的体积不变.×.(判断对错)考点:圆锥的体积;积的变化规律.专题:立体图形的认识与计算.分析:圆锥的体积=πr2h,设原来圆锥的半径为2,高为3,则变化后的圆锥的半径为6,高为1,由此利用公式分别计算出它们的体积即可解答.解答:解:设原来圆锥的半径为2,高为3,则变化后的圆锥的半径为6,高为1,原来圆锥的体积是:×22×3=()×4=4π变化后的圆锥的体积是:π×62×1×1=12π4π:12π=即变化后圆锥的体积是原来体积的,所以本题错误.故答案为:×.点评:此题考查了圆锥的体积公式的灵活应用.18.(•蓝田县模拟)一个圆柱体和一个圆锥体的底面积和体积分别相等,已知圆柱体的高4厘米,那么圆锥体的高是12厘米.考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据圆柱的体积公式V=sh及圆锥的体积公式V=sh,知道当圆柱和圆锥的底面积和体积相等时,圆柱的高与圆锥的高的比是1:3,再根据圆柱的高为4厘米,由此即可求出圆锥的高.解答:解:因为,圆柱的体积公式是:V=sh圆锥的体积公式是:V=sh圆柱和圆锥的底面积和体积相等时圆柱的高与圆锥的高的比是1:3圆锥的高为:4×3=12(厘米)答:圆锥的高为12厘米.故答案为:12.点评:解答此题的关键是,根据圆柱和圆锥的体积公式,得出圆柱和圆锥的高的关系.19.(•肃州区模拟)一个圆锥与一个长方体的底面积相等,高也相等,则长方体体积是圆锥体体积的3倍.√.(判断对错)考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:长方体的体积=底面积×高;圆锥的体积=×底面积×高,由此公式即可得出长方体体积与圆锥的体积的倍数关系.解答:解:长方体的体积=底面积×高;圆锥的体积=×底面积×高,若它们的底面积和高分别相等,则:长方体的体积是圆锥的体积的3倍.故答案为:√.点评:此题考查了长方体和圆锥的体积公式的灵活应用,得出结论:等底等高的长方体体积是圆锥的体积的3倍.20.圆柱体的体积是3立方米,与它等底等高的圆锥体体积是9立方米.×(判断对错)考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:平面图形的认识与计算.分析:等底等高的圆锥的体积是圆柱体积的,把圆柱的体积看作单位“1”,根据一个数乘分数的意义,用乘法求出圆锥的体积,然后与9立方米进行比较即可.据此判断.解答:解:3×=1(立方米),答:与它等底等高的圆锥体体积是1立方米.故答案为:×.点评:此题主要考查等底等高的圆锥与圆柱体积直接关系的灵活运用.21.如图,把直角三角形以直角边为轴快速旋转一周,得到的立体图形的体积最大是50.24立方厘米.(π取3.14)考点:圆锥的体积;作旋转一定角度后的图形.专题:立体图形的认识与计算.分析:根据圆锥的定义,把一个直角三角形以直角边为轴快速旋转一周,得到的立体图形是圆锥体,要使得到的圆锥的体积最大,也就是以3厘米的直角边为轴旋转,即得到的圆锥的底面半径是4厘米,高是3厘米,根据圆锥的体积公式:v=sh,把数据代入公式解答即可.解答:解: 3.14×42×3,= 3.14×16×3,=50.24(立方厘米);答:得到的立体图形的体积最大是50.24立方厘米.故答案为:50.24.点评:此题考查的目的是理解圆锥的定义,掌握圆锥体积的计算方法.22.一个圆锥体,高扩大2倍,底面半径缩小2倍,体积大小不变.×.考点:圆锥的体积.专题:立体图形的认识与计算.分析:设原圆锥的底面半径为2r,高为h,则变化后的圆锥的底面半径为r,高为2h,由此根据圆锥的体积公式分别求出变化前后的圆锥的体积,即可解答.解答:解:设原圆锥的底面半径为2r,高为h,则变化后的圆锥的底面半径为r,高为2h,则:原来圆锥的体积是:×π×(2r)2×h=πr2h;变化后的圆锥的体积是:×π×r2×2h=πr2h;所以变化前后的体积之比是:πr2h:πr2h=2:1;答:一个圆锥体,高扩大2倍,底面半径缩小2倍,则体积会缩小2倍.故答案为:×.点评:此题主要考查了圆锥的体积公式的计算应用,分别求出这个圆锥变化前后的体积即可解答.23.把一个圆柱体剥成一个最大的圆锥,剥去部分的体积是圆锥体积的2倍.√(判断对错)考点:圆锥的体积.专题:立体图形的认识与计算.分析:根据把“一个圆柱体剥成一个最大的圆锥”,实际是把一个圆柱体切削成一个和它等底等高的圆锥;根据等底等高的圆锥体是圆柱体的,得出剥去部分的体积是圆柱的,即剥去部分是圆锥体积的2倍.解答:解:由分析可知:把一个圆柱体剥成一个最大的圆锥,剥去部分的体积是圆锥体积的2倍;故答案为:√.点评:解答此题的关键是,知道如何把一个圆柱体剥成一个最大的圆锥,得出剥成的圆锥与圆柱的关系,进而得出剥去部分的体积与圆柱的关系.24.高1米,底面周长是18.84米的圆锥形沙堆的体积是9.42立方米.考点:圆锥的体积.专题:立体图形的认识与计算.分析:沙堆的形状是圆锥形的,由底面周长是18.84米先求得底面半径,再利用圆锥的体积计算公式V=πr2h求得体积,问题得解.解答:解:×3.14×(18.84÷3.14÷2)2×1=×3.14×32×1=3.14×3=9.42(立方米);答:这个圆锥形沙堆的体积是9.42立方米.故答案为:9.42.点评:此题主要考查圆锥的体积计算公式V=πr2h,运用公式计算时不要漏乘.25.(•北京)圆锥的体积等于与它等底等高的圆柱的体积的三分之一.考点:圆锥的体积.专题:立体图形的认识与计算.分析:圆锥的体积等于等底等高的圆柱体积的,据此解答即可.解答:解:圆锥的体积等于与它等底等高的圆柱的体积的三分之一.故答案为:等底等高.点评:此题考查的目的是使学生牢固掌握圆柱和圆锥的体积之间的关系.26.(•紫金县)把圆柱体削成一个最大的圆锥体,圆锥体体积是削去部分的.正确.(判断对错)考点:圆锥的体积.分析:根据等底等的圆柱体与圆锥的体积关系,圆锥的体积是圆柱体体积的,由此得出答案.解答:解:把圆柱体的体积看作“1”,与它等底等高的圆锥的体积是圆柱体的,削求部分是圆柱体的.1﹣=;÷=×=;答:圆锥体体积是削去部分的.故答案为:正确.点评:此题考查的你的在于理解和掌握圆柱体与圆锥体积之间的关系,及圆锥的体积计算.27.(•福田区模拟)圆锥的底面半径是6厘米,高是20厘米,它的体积是0.0007536立方米.考点:圆锥的体积.分析:圆锥的体积=πr2h,由此代入数据即可计算出这个圆锥的体积.解答:解:×3.14×62×20,=×3.14×36×20,=753.6(立方厘米),=0.0007536(立方米),答:它的体积是0.0007536立方米.故答案为:0.0007536.点评:此题考查了圆锥的体积公式的计算应用,要求学生熟记公式即可解答.28.(•贵州模拟)如图,旋转一周所得图形的体积是37.68立方厘米.考点:圆锥的体积.专题:立体图形的认识与计算.分析:旋转一周所得图形是一个圆锥,该圆锥的底面半径是3厘米,高是4厘米,进而根据“圆锥的体积=πr2h”进行解答即可.解答:解:×3.14×32×4=9.42×4=37.68(立方厘米);答:体积是37.68立方厘米;故答案为:37.68.点评:解答此题应根据圆锥的特征和圆锥的体积计算方法V=πr2h进行解答.B档(提升精练)一.选择题(共15小题)1.(•安徽模拟)圆柱和圆锥的底面积、体积分别相等,圆锥的高是圆柱的高的()A.B.C.2倍D.3倍考点:圆锥的体积;圆柱的侧面积、表面积和体积.专题:立体图形的认识与计算.分析:根据圆柱的体积公式,V=sh=πr2h,与圆锥的体积公式,V=sh=πr2h,知道在底面积和体积分别相等时,圆柱的高是圆锥的高的,即圆锥的高是圆柱高的3倍,据此解答即可得到答案.解答:解:因为,圆柱的体积是:V=πr2h1,圆锥的体积是:V=πr2h2,πr2h1=πr2h2,所以,h1=h2,即h2=3h1.故答案为:D.点评:此题主要是利用圆柱与圆锥的体积公式,推导出在底面积和体积分别相等时,圆柱的高与圆锥的高的关系.2.(•广州模拟)把底面积是18平方厘米,高是2厘米的圆柱形零件削成最大的圆锥,削成的圆锥体积是()立方厘米.A.12B.18C.24D.36考点:圆锥的体积.分析:根据题意,削成的最大圆锥的底面积是18平方厘米,高是2厘米,可直接利用圆锥的体积公式计算即可得到答案.解答:解:×18×2,=6×2,=12(立方厘米);答:削成最大的圆锥体积是12立方厘米.故选:A.点评:此题主要考查的是圆锥的体积公式:V=sh.3.(•高碑店市)圆锥体的底面积和高都扩大到原来的2倍,则体积扩大到原来的()倍.A..2B.、4C.、8考点:圆锥的体积.专题:立体图形的认识与计算.分析:根据圆锥的体积公式=底面积×高×,根据积的变化规律可知,圆锥体的底面积和高都扩大到原来的2倍,那么体积就会扩大到原来的(2×2)倍,列式解答即可得到答案.解答:解:2×2=4,答:圆锥体的底面积和高都扩大到原来的2倍,则体积扩大到原来的4倍.故选:B.点评:此题主要考查的是圆锥体的体积公式和积的变化规律的应用.4.(•福田区模拟)一个圆锥体的底面半径扩大3倍,高缩小3倍,则体积()A.扩大3倍B.扩大6倍C.缩小3倍D.不变考点:圆锥的体积.分析:设原圆锥的底面半径为r,高为3h,则变化后的圆锥的底面半径为3r,高为h,由此根据圆锥的体积公式分别求出变化前后的圆锥的体积,即可解答.解答:解:设原圆锥的底面半径为r,高为3h,则变化后的圆锥的底面半径为3r,高为h,则:原来圆锥的体积是:×π×r2×3h=πr2h;变化后的圆锥的体积是:×π×(3r)2×h=3πr2h;。
小学六年级下册数学试题-圆柱圆锥知识点复习 习题巩固 冀教版 (无答案)
4、圆柱与圆锥展开图:米、1厘米的长方体,求剩下部分的表面积?例4:有一张长方形铁皮,如图剪下阴影部分制成圆柱体,求这个圆柱体的表面积?例5:如图,在棱长为5厘米的正方体中间挖了一个半径为2厘米的圆柱,求物体的表面积。
都是1米,求这个物体的表面积。
涂成红色的小正方体各有多少块?防锈漆,那么一共要涂多少平方厘米?如果帽顶的半径、高与帽沿的宽都是a厘米,那么哪种颜色的布用得多?的表面积与体积。
容器还能装多少升水?块的高。
课堂练习1、一个盛水的圆柱形水桶,内底面周长为28.26分米,当一个长方形的物体投入水中时,水面上升1分米,量得这个长方体的长为3.14分米,宽为1分米,它的高是多少分米?2、在长为15厘米,宽为12厘米的长方体水箱中,有10厘米深的水,现沉入一个高为10厘米的圆锥形铁块(全部浸入水中),水面上升了2厘米,求圆锥的底面积?3、甲,乙两个圆柱体容器,底面积比为4:3,甲容器水深7厘米,乙容器水深3厘米,再往两容器中各注入同样多的水,直到水深相等,这时水深多少厘米?4、一个胶水瓶,它的瓶身呈圆柱形(不包括瓶颈),容积是32.4立方厘米,当瓶子正放时,瓶内胶水深为8厘米,瓶子倒放时,空余部分为2厘米,则瓶内所装水的体积是多少?5、有A.B两个圆柱形容器,最初在容器A里装有2升水,容器B是空的。
现在往两个容器中以每分钟0.4升的流量注入水,4分钟后,两个容器的水面高度相等。
设B的底面半径为5厘米,那么A的底面直径是多少厘米?6、将棱长为5的大正方体切割成125个棱长为1的小正方体,这些小正方体的表面积总和是原大正方体表面积的多少倍?课后作业1、一个长10厘米,宽8厘米,高6厘米的长方体先削成一个最大的圆柱,再削成一个最大的圆锥,每次要削去百分之几的体积?(想一想,怎样削最大?怎样算最方便?)2、一个长方体的长为12厘米,高为8厘米,前后两个面、上面和侧面各一个面的面积之和是392平方厘米,求另外两个面积是多少平方厘米?这个长方体的体积是多少立方厘米?3、一个圆锥形沙堆,底面直径20米,高6米,用这堆沙在10米宽的公路上堆10厘米厚的路面,能铺多少米长?4、一个圆柱体的底面周长是62.8 厘米,高是30 厘米,把它加工成一个最大的长方体,削去部分的体积是多少立方厘米?5、一个圆柱体和一个圆锥体体积的比是2:1,底面积的比是1:2,如果圆柱的高是6厘米,那么圆锥的高是多少厘米?。
圆锥的认识及体积的计算
圆柱体积=底面积
高
圆柱体积=底面积
高
圆柱体积=底面积
高
圆柱体积=底面积
高
ቤተ መጻሕፍቲ ባይዱ
圆锥体积=
圆柱体积=底面积
高
圆锥体积=
圆柱体积=底面积
高
圆锥体积=
圆柱体积=底面积
圆锥体积=
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积
高
圆锥体积=
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积 圆锥体积=
你对圆锥有什么认识?
每天进步一点点!
圆锥的认识及体积的计算
一、复习
1.圆柱的底面积是3.14平方厘米,高是 10厘米,体积=? 2.圆柱的底面半径是1厘米,高是10厘米, 体积=? 3.圆柱的底面直径是2厘米,高是10厘米, 体积=?
二、新课
二、新课
↓
这样的图形 叫做圆锥。
三、新课
自学:(书38页“认一认”) 1.圆锥各部分的名称。 2.完成课堂检测第12页1、2、4。 互学: 思考:圆锥和圆柱有什么相似的特点。
高
圆柱体积=底面积 圆锥体积=
高
圆柱体积=底面积
高
圆锥体积=
圆柱体积=底面积
圆锥体积=
高
圆柱体积=底面积
高
圆锥体积=底面积
高
圆柱体积=底面积
高
圆锥体积=底面积
高
1 3
圆柱体积=底面积
圆锥体积=底面积
高
高
1 3
(圆柱和圆锥等底等高)
通过以上的观察,请同学们回答以下问题:
1、你有什么收获? 2、要求圆锥的体积我们必须知道什么 条件?
圆柱的知识整理
圆柱的知识整理LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】三圆柱和圆锥一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的。
圆柱也可以由长方形卷曲而得到。
(两种方式:1.以长方形的长为底面周长,宽为高;2.以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
)2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr2?②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr2?底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr2+2πrh体积:V柱=πr2h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积烟囱通风管的表面积=侧面积只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池侧面积+两个底面积:油桶、米桶、罐桶类二、圆锥1、圆柱的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的圆锥也可以由扇形卷曲而得到2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高3、圆锥的特征:(1)底面的特征:圆锥的底面一个圆。
圆柱体与圆锥体
圆柱体与圆锥体圆柱体和圆锥体是几何学中常见的三维几何体。
它们具有一些相似的特征,但也有一些显著的区别。
本文将介绍圆柱体和圆锥体的定义、性质以及它们在现实生活中的应用。
一、圆柱体圆柱体是由两个平行的圆底面和连接它们的侧面组成的三维几何体。
它的形态特征包括以下几个要素:1. 圆柱体的底面直径(d):底面上两点处的距离。
2. 圆柱体的高(h):两个底面之间的距离。
3. 圆柱体的侧面积(S):底面周长与高的乘积。
4. 圆柱体的表面积(A):底面面积与侧面积的和。
5. 圆柱体的体积(V):底面面积与高的乘积。
圆柱体有许多实际应用,例如:1. 管道和筒体:很多管道和容器都采用圆柱体的形状,例如水管、油罐等。
2. 圆桶和罐子:许多物品的包装容器都是圆柱体的形状,如饮料罐、垃圾桶等。
3. 圆柱体的转动:圆柱体的特性使得它在摩擦力小、转动稳定等方面具有优势,因此在机械和工程上的运动过程中应用广泛。
二、圆锥体圆锥体是由一个圆锥面和一个圆底面组成的三维几何体。
其主要特征如下:1. 圆锥体的底面半径(r):圆底面的半径。
2. 圆锥体的高(h):锥尖到底面的距离。
3. 圆锥体的母线(l):连接锥尖与底面圆心的直线距离。
4. 圆锥体的侧面积(S):底面圆周长与母线的乘积。
5. 圆锥体的表面积(A):底面面积与侧面积的和。
6. 圆锥体的体积(V):底面面积与高的乘积的三分之一。
圆锥体也有许多实际应用,例如:1. 圆锥体的锥形状使它在流体力学、流体静力学和流体动力学等领域中应用广泛。
例如,喷水器的喷头和消防水枪的喷嘴大多采用圆锥形状。
2. 圆锥体的空间利用率高,因此在建筑设计中经常采用圆锥体的形状,如太阳能光热利用的半球面镜等。
3. 圆锥体也常用于雕塑和艺术设计中,因为它具有优美的外形和良好的比例。
总结:圆柱体和圆锥体是常见的三维几何体,它们在形态特征、性质和应用方面存在一些差异。
圆柱体具有底面直径、高、侧面积、表面积和体积等要素,应用领域包括管道、容器等。
六年级下册数学试题-小升初满分题库:第二十五讲圆柱和圆锥(无答案PDF)全国通用
杯,且乙杯中的水未外溢。问:这时乙杯中的水位上升了多少厘米?
解析: 解答本题时,要注意到铁块在两个杯中排开的水的体积相同,结合圆柱的体积公式
V Sh即可求。
解 :两个圆柱直径的比是 1: 2 ,所以底面面积的比是 1: 4 。铁块在两个杯中排开的水的体
积相同,所以乙杯中水升高的高度应当是甲杯中下降的高度的 答:这时乙杯中的水位上升了 0.5 厘米。
我试试:
1、 一个圆柱形水桶,底面积是 314平方厘米,高是 25厘米,它的容积是多少立方厘米?
2、挖一个圆柱形蓄水池,从里面量,底面周长是 25.12 米,深是 2.4 米,池内水面距底面 0.8 米。蓄水池内现有水多少立方米?
- 131 -
关爱成长每一天
3、皮球掉进一个盛有水的圆柱形水桶中,皮球的直径为 15厘米,水桶底面直径为 60厘米,
O 底面
底面
侧面 高 O 底面
底面周长
高
底面
S侧
2.圆锥
Ch
S表 S侧 2S底
高h Or
底面
侧面 底面
圆锥的体积计算公式: V 1 Sh 。 3
3.圆柱与圆锥的关系:
(1)一个圆柱的体积是和它等底等高的圆锥体积的
3 倍。
(2)当一个圆柱与一个圆锥的体积和底面积都相等时,圆锥的高是圆柱高的
(3)当一个圆柱与一个圆锥的体积和高都相等时,圆锥的底面积是圆柱底面积的
表面积:314 2 1884 251(2 cm2) 答:至少需要纸板的面积为 2512cm2
我试试:
1、一根圆柱形排水管,底面半径是 3厘米,高是 1米,求这根圆柱形排水管的表面积是多少
平方厘米?
- 130 -
第十讲 圆柱和圆锥
圆柱体和圆锥体的不同点和相同点
圆柱体和圆锥体的不同点和相同点
圆柱体和圆锥体是几何体中常见的形状,它们都有一些相似之处,同时也存在一些显著的不同点。
让我们来探讨一下它们的相同
点和不同点。
相同点:
1. 都是由圆形的底面和侧面构成的。
圆柱体的底面和侧面都是
圆形,而圆锥体的底面是圆形,侧面是由一条直线和底面上的点连
接而成的锥形。
2. 都具有体积和表面积。
它们的体积都可以通过相似的公式计算,即V = 底面积× 高,而表面积也可以通过类似的公式计算,
包括底面积和侧面积。
不同点:
1. 形状不同。
圆柱体是由两个平行的圆形底面和连接两个底面
的侧面构成的,而圆锥体则是由一个圆形底面和侧面构成的锥形体。
2. 体积和表面积的计算公式不同。
由于形状的差异,圆柱体和圆锥体的体积和表面积计算公式也不同,圆柱体的体积为V =
πr²h,表面积为S = 2πr² + 2πrh,而圆锥体的体积为V = (1/3)πr²h,表面积为S = πr² + πrl。
3. 应用场景不同。
由于形状的特性,圆柱体和圆锥体在实际生活中的应用也不同。
圆柱体常常用于容器、管道等的设计,而圆锥体则常见于锥形容器、锥形灯罩等的设计中。
综上所述,圆柱体和圆锥体在形状、体积和表面积的计算公式以及应用场景上存在着一些明显的不同点,但它们都具有圆形底面和侧面构成的共同特点。
这些几何体的特性不仅在数学中有着重要的意义,也在工程设计和日常生活中有着广泛的应用。
【精品原创】人教版六年级下册数学期末复习专题讲义(知识点归纳 典例讲解 同步测试)-3.圆柱和圆锥
人教版六年级下册数学期末复习专题讲义-3.圆柱和圆锥【知识点归纳】一、圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。
圆柱也可以由长方形卷曲而得到。
两种方式:(1)以长方形的长为底面周长,宽为高;(2)以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的3、圆柱的特征:(1)底面的特征:圆柱的底面是完全相等的两个圆。
(2)侧面的特征:圆柱的侧面是一个曲面。
(3)高的特征:圆柱有无数条高4、圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr²②竖切(过直径):切面是长方形(如果2r,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh5、圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形6、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=2πr 侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh 体积:V柱=πr²h考试常见题型:①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积4、圆柱与圆锥等底等高 ,体积相差32 四、温馨提示: (1)已知圆锥的底面半径和高,可以直接利用公式:πr 2h ÷3来求圆锥的体积;(2)已知圆锥的底面直径和高,可以直接利用公式:π(d ÷2)2h ÷3求圆锥的V;(3)已知圆锥的底面周长和高,可以直接利用公式:π(C ÷2÷π)2h ÷3求出圆锥的体积。
圆柱和圆锥的知识点总结
圆柱和圆锥的知识点总结圆柱:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体就是圆柱。
名词:圆柱的轴,圆柱的高,圆柱的母线,圆柱的底面,圆柱的侧面。
圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
圆柱体积=底面积×高V柱=Sh=πr2·h圆柱的高=体积÷底面积h=V柱÷S=V柱÷(πr2)圆柱的底面积=体积÷高S=V柱÷h圆柱的侧面积:圆柱的侧面积=底面的周长×高,S侧=Ch(注:c为πd)圆柱的两个圆面叫做底面(又分上底和下底);圆柱有一个曲面,叫做侧面;两个底面之间的距离叫做高(高有无数条)。
特征:圆柱的底面都是圆,并且大小一样。
圆柱的切割:a.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2b.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh注:圆柱高增加减少,圆柱表面积增加减少的只是侧面积。
考试常见题型:a.已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长;b.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积;c.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积;d.已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积;e.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积。
以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。
常见的圆柱解决问题:①压路机压过路面面积、烟囱、教学楼里的支撑柱、通风管、出水管(求侧面积);②压路机压过路面长度(求底面周长);③水桶铁皮(求侧面积和一个底面积);④鱼缸、厨师帽(求侧面积和一个底面积);⑤V钢管=(πR2﹣πr2)×h圆锥:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。
解析初二数学教材中的圆锥与圆柱
解析初二数学教材中的圆锥与圆柱圆锥与圆柱是初二数学教材中的重要内容,对于学生来说可能会有一些困惑。
本文将从几何形体的定义、性质、计算公式等方面对圆锥与圆柱进行解析,帮助学生更好地理解和掌握这两个几何形体的知识。
一、圆锥的定义和性质1.1 圆锥的定义圆锥是由一个平面和一个顶点在平面之外的线段所围成的几何形体。
平面称为底面,顶点称为顶点,线段称为母线。
1.2 圆锥的性质(1)顶点到底面的距离称为高,用h表示;(2)底面的形状可以是任意的,比如圆形、正方形等;(3)若底面为圆形,则圆锥称为圆锥体;(4)底面的半径称为底面半径;(5)若底面为正多边形,则圆锥也相应地称为正多边锥。
1.3 圆锥体和斜面锥圆锥体指的是底面为圆形的圆锥。
而斜面锥是指顶点不在底面正上方的圆锥。
二、圆柱的定义和性质2.1 圆柱的定义圆柱是由一个平面和一个平行于它的平面内的闭合曲线绕平面移动而生成的几何形体。
2.2 圆柱的性质(1)若底面为圆形,则圆柱称为圆柱体;(2)圆柱有两个相等的平面底面;(3)与底面平行的面称为轴面;(4)轴面的距离称为高,用h表示;(5)底面半径称为底面半径。
三、圆锥与圆柱的计算公式3.1 圆锥的体积公式圆锥的体积公式为:V = 1/3 * π * r² * h,其中V表示圆锥的体积,π取近似值3.14,r表示底面半径,h表示高。
3.2 圆柱的体积公式圆柱的体积公式为:V = π * r² * h,其中V表示圆柱的体积,π取近似值3.14,r表示底面半径,h表示高。
3.3 圆锥的表面积公式圆锥的表面积公式为:S = π * r * (r + l),其中S表示圆锥的表面积,r表示底面半径,l表示斜高。
3.4 圆柱的表面积公式圆柱的表面积公式为:S = 2π * r * (r + h),其中S表示圆柱的表面积,r表示底面半径,h表示高。
四、例题解析以下是一道关于圆锥的例题解析:例题:一个圆锥的底面半径为4 cm,母线长为6 cm,求圆锥的体积和表面积。
圆柱和圆锥(全部整合)
D
5
B4 C
13.把一个棱长是2分米的正方体削
成一个最大的圆柱体,它的侧面积 是( B )平方分米。 A.6.28 B.12.56 C.18.84 D. 25.12
2
2
2
2×3.14×2
14.把一个棱长是10厘米的正方体削
成一个最大的圆柱体,它的体积是 ( C )立方厘米。 A.3140 B.392.5 C.785 D. 314
10 8
2号题
计算图形的表面积(单位:厘米 )
6
上面圆柱的侧面积
5 下面圆柱的表面积
5 10
3号题
如图,想想办法,你能否求 它的体积?( 单位:厘米)
4
2
6
[3.14×1×1×(6+4)] ÷2=15.7( 立方厘米)
4号题 用塑料绳捆扎一个圆柱形的蛋糕
盒(如下图),打结处正好是底面圆心, 打结去20厘米绳长。
18.84
A
4
B
2
12.56
C
20
D
6
3.下雨时,给打谷场上的
圆锥形谷堆盖上塑料防 雨布,所需防雨布的最小 面积是指圆锥的( C ). A. 表面积 B.体积 C. 侧面积
4.一根圆柱形木材长2米,把截成4 个相等的圆柱体. 表面积增加了 18平方分米.截后每段圆柱体积 是( 660ddmm33 ).
P
B
A
P
Q
Q
P
C
(1)以长方形的一边 为轴旋转一周,扫过的 空间是什么形状?你可 以求出它的体积吗?
(2)以三角形的一条 直角边为轴旋转一周, 扫过的空间是什么形 状?你可以求出它的 B 体积吗?
5 4
圆柱和圆锥数学规律
第二单元:圆柱与圆锥1.圆柱是由两个底面和一个侧面三部分组成的。
2.(1)圆柱的两个圆面叫做底面。
(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。
(3)底面的特征:圆柱底面是完全相同的两个圆。
3.(1)圆柱周围的面叫做侧面。
(2)特征:圆柱的侧面是曲面。
4.(1)圆柱两个底面之间的距离叫做圆柱的高。
(2)一个圆柱有无数条高。
5.把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。
6.圆柱的侧面展开图是一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
7.在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个平行四边形。
8.圆柱的底面是圆形,不是椭圆。
9.沿高剪开时,圆柱的侧面展开图是一个长方形。
10.从圆柱的上下两个底面观察会得到圆;从圆柱的正面或侧面观察会得到长方形(或正方形)。
11.如果圆柱的侧面展开图是个正方形,那么该圆柱的高就等于它的底面周长,大约是其底面直径长度的3倍。
12.圆柱的侧面积=底面周长×高。
如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch13.(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。
(2)已知圆柱的底面半径和高,可以根据公式:S=2πrh直接求出圆柱的侧面积。
14.圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。
15.圆柱的表面积=圆柱的侧面积+底面积×2,用字母表示为S表=S侧+2S底。
16.(1)已知圆柱的底面半径和高,可以根据公式:S表=2πrh+2πr2直接求出圆柱的表面积。
(2)已知圆柱的底面直径和高,求圆柱的表面积时,可以根据公式:S表=πdh+πd2÷2直接求出圆柱的表面积。
圆柱和圆锥的所有公式
圆柱和圆锥的所有公式圆柱和圆锥是几何中常见的形状,它们有着各自独特的特点和公式。
本文将介绍圆柱和圆锥的定义、性质以及相关的公式。
一、圆柱圆柱是指底面为圆形,侧面由平行于底面的直线和连接底面上的点所构成的几何体。
圆柱有以下几个重要的性质:1. 圆柱的底面积为底面圆的面积,记为S底=πr²,其中r为底面圆的半径。
2. 圆柱的侧面积为侧面展开后的矩形的面积,记为S侧=2πrh,其中r为底面圆的半径,h为圆柱的高度。
3. 圆柱的全面积为底面积和侧面积之和,记为S全=S底+S侧=2πr(r+h)。
4. 圆柱的体积为底面积乘以高度,记为V=S底h=πr²h。
二、圆锥圆锥是指底面为圆形,侧面由顶点和连接顶点与底面上的点所构成的几何体。
圆锥有以下几个重要的性质:1. 圆锥的底面积为底面圆的面积,记为S底=πr²,其中r为底面圆的半径。
2. 圆锥的侧面积为侧面展开后的扇形的面积,记为S侧=πrl,其中r 为底面圆的半径,l为斜高(即侧面的母线)的长度。
3. 圆锥的全面积为底面积和侧面积之和,记为S全=S底+S侧=πr(r+l)。
4. 圆锥的体积为底面积乘以高度再除以3,记为V=(S底h)/3=(πr²h)/3。
总结:圆柱和圆锥是常见的几何形状,它们的公式可以帮助我们计算它们的面积和体积。
圆柱的公式包括底面积、侧面积、全面积和体积,而圆锥的公式也包括底面积、侧面积、全面积和体积。
这些公式在实际生活中有着广泛的应用,例如在建筑设计、工程计算和物体测量等方面都会用到。
在应用这些公式时,我们需要知道底面圆的半径和圆柱或圆锥的高度。
通过合理的计算,我们可以准确地求得圆柱或圆锥的面积和体积,从而帮助我们解决实际问题。
圆柱和圆锥是几何中常见的形状,它们有着各自独特的性质和公式。
通过熟练掌握这些公式,我们可以更好地理解和应用圆柱和圆锥在实际生活中的应用。
希望本文对读者有所帮助,有助于加深对圆柱和圆锥的理解。
圆柱和圆锥公式汇总
圆柱和圆锥公式汇总圆柱和圆锥是几何学中常见的几何体,它们具有很多重要的性质和公式。
下面将对圆柱和圆锥的几何性质和常用公式进行详细的介绍。
1.圆柱的性质和公式圆柱是一个由一个圆沿其直径旋转一周所形成的立体。
下面是关于圆柱的性质和公式:(1)面积公式:-底面积公式:圆柱的底面积可以用圆的面积公式计算,即A=πr^2,其中r是底圆的半径。
- 侧面积公式:圆柱的侧面积可以通过展开圆柱的侧面得到,即 A = 2πrh,其中 r 是底圆的半径,h 是圆柱的高度。
-总面积公式:圆柱的总面积等于底面积加上侧面积,即A=2πr(r+h)。
(2)体积公式:圆柱的体积可以用底面积乘以高度得到,即V=πr^2h,其中r是底圆的半径,h是圆柱的高度。
2.圆锥的性质和公式圆锥是一个由一个圆沿其直径旋转一周并连接到一个定点所形成的立体。
下面是关于圆锥的性质和公式:(1)面积公式:-底面积公式:圆锥的底面积可以用圆的面积公式计算,即A=πr^2,其中r是底圆的半径。
- 侧面积公式:圆锥的侧面积可以通过展开圆锥的侧面得到,可以得到一个扇形,由于圆锥的侧面是斜面,需要额外计算弧长。
假设侧面的斜边是 l,圆锥的斜高是 s,底圆的半径是 r,则侧面积可以计算为 A =πrl。
-总面积公式:圆锥的总面积等于底面积加上侧面积,即A=πr(r+l),其中l是斜边长度。
(2)体积公式:圆锥的体积可以用底面积乘以高度再除以3得到,即V=(1/3)πr^2h,其中r是底圆的半径,h是圆锥的高度。
3.圆柱和圆锥的相似性质圆柱和圆锥有一些相似性质,其中最重要的是相似三角形的性质:(1)相似三角形的性质:如果两个三角形的对应角度相等,则它们是相似的。
在圆柱和圆锥中,如果两个相似的三角形分别属于两个具有相同形状和大小的底面,那么它们的顶角也是相等的。
(2)应用:利用相似三角形的性质,可以推导出圆柱和圆锥的一些重要关系。
例如,如果圆柱和圆锥具有相同的高度,但半径不同,那么它们的体积之比等于半径之比的立方。
圆柱圆锥正反比例的相关知识要记牢
圆柱、圆锥的相关知识(要记熟哦)圆柱的侧面积=底面周长×高 用字母表示:S 侧=C h (直接计算); S 侧=2πr h (已知半径); S 侧=πd h (已知直径)。
圆柱的表面积=侧面积+两个底面积 (特殊情况:如果是水管、通风管、烟囱等,没有两个底面,只有侧面;鱼缸、水池等通常算一个底面和一个侧面。
做题时要根据具体要求而定) 用字母表示:S 表=2πr h + πr 2 ×2(已知半径);S 表=πd h + π(d ÷2)2 ×2(已知直径); S 表=C h + π(C ÷π÷2)2 ×2(已知周长) 圆柱的体积=底面积×高 用字母表示:V 柱=S h (已知底面积); V 柱=πr 2 h (已知半径);V 柱=π(d ÷2)2h (已知直径); V 柱=π(C ÷π÷2)2 h (已知周长) h 柱=V 柱÷S S 柱=V 柱÷h圆锥的体积=31×底面积×高亲,圆锥的体积有个哦!用字母表示:V 锥=31S h (已知底面积); V 锥=31πr 2 h (已知半径);V 锥=31π(d ÷2)2 h (已知直径); V 锥=31π(C ÷π÷2)2 h (已知周长) h 锥=V ÷31÷S S 锥=V ÷31÷h或者 h 锥 =3V ÷S S 锥=3V ÷h1、圆柱的上、下两个面叫做圆柱的底面,他们是大小相同的两个圆。
圆柱有一个曲面,叫做圆柱的侧面。
圆柱两个底面之间的距离叫做圆柱的高。
圆柱有无数条高,并且高的长度都相等。
圆柱的高垂直于底面上任意一条直径。
2、圆锥的底面是个圆,侧面是一个曲面。
从圆锥的顶点到底面圆心之间的距离叫做圆锥的高,圆锥只有一条高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、把一个9立方分米的圆柱体削成一个最大的圆锥体, 圆锥的体积是是多少?
2、把一个圆柱体削成一个最大的圆锥体,削去部分体 积是18立方分米,圆锥的体积各是多少?
3、一个圆柱体和一个圆锥体等底等高时,它们的体积 之和是40立方分米,圆柱、圆锥的体积各是多少?
返回
有一根底面直径是4分米,长是9分米的圆柱 形木料,要把它削成与它等底等高的圆锥形木 料。要削去木料多少立方分米?
返回
一:小结:当圆柱与圆锥等底等高时:
1 圆锥的体积是圆柱体积的 3 体积的3倍。
;圆柱体积是圆锥
返回
(二):
1、一个圆柱和一个圆锥等底等积时,如果圆柱的 高是9分米,圆锥的高是( 27 )分米。 2、一个圆锥体和一个圆柱体,底面积相等,它们的 体积也相等,圆锥的高是18厘米,圆柱的高是 ( 6 )厘米。 3、一个圆柱与一个圆锥的体积相等,底面积也相等, 如果圆锥的高是2.7分米,那么圆柱的高是( ) 分米。 0.9
4分米
9分米
=
返回
五、形态变化: 在一个底面积是31.4平方厘米的装有一些水 的圆柱形玻璃杯中,放着一个底面半径为3厘米, 高20厘米的圆锥形的铅锤,当取出铅锤后,杯 中的水会下降几厘米?
想:
=
=
下降水圆柱体的体积 = 圆锥形铅锤的体积
返回
二:小结:当圆柱与圆锥等底等积时:
1 圆锥的高是圆柱高的3倍;圆柱的高是圆锥高的 3 Nhomakorabea。
(三):
1、一个圆柱和一个圆锥体积相等,高也相等, 如果圆锥的底面积是15平方厘米,圆柱的底面积 是( 5 )。
2、一个圆锥体和一个圆柱体,体积相等,高也 相等,如果圆柱的底面积是 6平方分米,圆锥的 底面积是( 18 )。
切削问题
圆柱
单位1
圆锥
1 3
削去部分
2 3
3份
1份
2份
返回
切削问题
四、小结。
1、等底等高的圆柱体积比圆锥大( 2 )倍。
2 2、等底等高的圆锥体积比圆柱体少( )。 3
从圆柱里削一个最大的圆锥:
1 4、圆锥体的体积是削去部分的( 2 )。
3、削去部分的是圆锥体的体积的( 2 )倍。
返回
(四):切削问题练习
圆柱的特征:
1。有两个底面:
面积相等
2。一个侧面:
高 底面周长
圆锥的特征:
h
侧面展开
扇形
圆形
底面
从圆锥的顶点到底面圆心的 距离叫做圆锥的高。
圆柱侧面积= 底面周长×高
基 本 公 式
圆柱表面积= 侧面积+底面积× 2 圆柱体积= 底面积×高
V=sh
1 圆锥体积= 底面积×高× 3
V=
1 3
sh
底面积
返回
三:小结:当圆柱与圆锥等高等积时:
1 圆锥的底面积是圆柱的3倍,圆柱的底面积是圆锥的 3 。
课堂小测: (一)练一练(口答): (1)一个圆柱和一个圆锥底面积相等,高也相等,圆柱的体积是2立方厘 米,圆锥的体积是( 2 )立方厘米。 3 1 (2)在等底等体积的情况下,圆锥的高是1分米,圆柱的高是( )分米; 3 如果圆柱的高是1分米,圆锥的高是( 3 )分米。 (二)对号入座: 1、一个圆柱和一个圆锥等底等体积,圆柱的高是3分米,圆锥的 高是( ③ )分米。 ①3 ②1 ③9 2、一个圆柱和一个圆锥等高等体积,圆锥的底面积是3平方分 米,圆柱的底面积是( ① )平方分米。 ①1 ②9 ③6 3、一个圆柱和一个圆锥等高等积,圆锥的底面半径是3分米, 圆柱的底面积是( ③ )平方分米。 ① 28.26 ② 3.14 ③ 9.42
圆柱的表面积
圆锥的 认识
圆锥体积 的计算
圆柱的侧面积
圆 柱
圆 锥
圆柱各部 分的名称
圆 柱 和 圆 锥
(一):
1、一个圆柱和一个圆锥等底等高时,如果圆柱 的体积是15立方厘米,圆锥的体积是( 5 ) 立方厘米。
2、一个圆锥体与一个圆柱体等底等高时,已知 圆锥的体积是4立方分米,圆柱的体积是 ( 12 )立方分米。