2020-2021八年级物理下册 第八章 运动和力学案(无答案)

2020-2021八年级物理下册 第八章 运动和力学案(无答案)
2020-2021八年级物理下册 第八章 运动和力学案(无答案)

运动和力

温故知新

1、牛顿第一定律的内容:一切物体在的作用时,。又叫

2、牛顿第一定律是通过实验事实和科学推理得出的,但它不能用来直接验证。

3、惯性⑴定义:物体保持的特性叫惯性。

⑵性质:惯性是物体一种属性。一切物体在

⑶惯性不是力,不能说惯性力的作用,惯性的大小只与物体的有关,

与物体的形状、速度、物体是否受力等因素无关。

⑷防止惯性的现象:,。

⑸利用惯性的现象:,

⑹解释现象:

例:汽车突然刹车时,乘客为何向汽车行驶的方向倾倒?

答:汽车刹车前,乘客与汽车一起处于运动状态,当刹车时,乘客的脚由于受作用,随汽车突然停止,而乘客的上身由于惯性要保持的运动状态,继续向汽车行驶的方向运动,所以…….

4、阻力对物体运动的影响:让同一小车从同一斜面的同一高度自由滑下(控制变量法),是为了使小车滑到斜面底端时有相同的速度;阻力的大小用小车在木板上滑动的距离的长短来体现(转化法)。

8.2二力平衡

1、平衡状态:,称为平衡状态。

2、平衡力:物体处于平衡状态时,受到的力叫平衡力。

3、二力平衡条件:作用在上的两个力,如果、、

上,这两个力就彼此平衡。(同物、等大、反向、同线)

4、二力平衡条件的应用:

⑴根据受力情况判断物体的运动状态:

①当物体不受任何力作用时,物体总保或状态(平衡状态)。

②当物体作用时,物体总保持静止状态或匀速直线运动状态(平衡状态)。

③当物体受作用时,物体的运动状态一定。

⑵根据物体的运动状态判断物体的受力情况。

当物体处于平衡状态(静止状态或匀速直线运动状态)时,物体不受力或受到平衡力。

注意:在判断物体受平衡力时,要注意先判断物体在什么方向(水平方向还是竖直方向)处于平衡状态,然后才能判断物体在什么方向受到平衡力。

②当物体处于非平衡状态(加速或减速运动、方向改变)时,物体受到非

平衡力的作用。

5、物体保持平衡状态的条件:

6、力是改变物体运动状态的原因,而不是的原因。

8.3摩擦力

1定义:两个的物体,当它们发生时,就产生一种

运动的力,这种力叫摩擦力。

2产生条件:A、物体;B、。3种类:A、 B 、C

4影响滑动摩擦力的大小的大小的因素:

和。

5方向:与物体的方向相反。(摩擦力不一定是阻力)

6测量摩擦力方法:

用弹簧测力计拉物体做匀速直线运动,摩擦力的大小与弹簧测力计的读数相等。原理:

摩擦方法

增大摩擦

减小摩擦

1.如图甲所示,重量为4N的正方体铁块,被水平吸引力吸附在足够大的竖直磁性平板上处于静止状态,这时铁块受到的摩擦力大小为________N;若对铁块施加一个竖直向上的拉力F=9N的作用,铁块将沿着该平板匀速向上运动,如图乙所示,此时铁块受到的摩擦力大小为________N.

2.如上图右所示,小明用50N的水平力把重15N的木块压在竖直的墙面上,使木块静止不动,此时木块受到的摩擦力大小是________N;若减小水平压力,木块仍然静止,则木块受到的摩擦力将________,若木块原来处于下滑过程中,减小压力,木块受到的摩擦力将________(后两空选填“变大”“变小”或“不变”).3.起重机吊起10000N的货物静止不动时,钢丝对货物的拉力为________N,以1m/s的速度匀速上升时,钢丝对货物的拉力为________N,若以2m/s的速度匀速下降,钢丝对货物的拉力________(选填“大于”“小于”或“等于”)10000N.

4.如图所示,物体A重30N,用大小等于50N的力F1垂直压在墙上静止不动,则物体所受的摩擦力是______N;物体B重30N,受到大小等于20N的水平推

力F2的作用下静止不动,则物体B所受的摩擦力是_________N。

巩固提升

1.牛顿第一定律告诉我们:一切物体在的情况下,总保

持状态或静止状态。

2 一个木箱放在水平面上静止时,木箱受到的支持力与力是一对平衡力;当木箱受到了10N水平推力时,箱子未推动,这时箱子受到的摩擦力10N (选填“大于”、“小于”、“等于”);当水平推力增大到15N时,箱子恰好匀速运动;当水平推力增大到20N时,木箱受到的摩擦力为N.

3质量为50kg的箱子放在水平地面上,地面对箱子的支持力大小为N.小宇用40N的力水平推这个箱子,刚好能使其匀速运动,则改用60N的力水平推这个箱子时,地面对箱子的摩擦力大小为N.(g=10N/kg)

4.在研究“影响滑动摩擦力大小的因素”时(如图所示),应使木块在弹簧测力计的拉力作用下做_______________运动,此时拉力与摩擦力是_______________力。比较___________图和___________图中的弹簧测力计示数可知,接触面粗糙程度相同时,压力越大,摩擦力越大。

检测反馈

1.如下左图所示,用尺子猛力将下面的棋子击出时,上面的棋子不会飞出而是落到正下方,是由于它们具有;如右图所示,如果用尺子缓慢击打下面的棋子,紧挨被击打棋子上面的棋子会前移,是因为它受到的作用。

2.如上右所示,用水平力推静止在水平地面上的大木箱,没有推动.这时,木箱受到的

A.推力小于摩擦力B.推力和摩擦力大小一定相等

C.推力一定小于重力D.推力和摩擦力方向相同

3.如图所示,下列说法正确的是()

A.小鸟受到的重力与小鸟对树枝的压力是一对平衡力

B.小鸟对树枝的压力与树枝对小鸟的支持力是一对平衡力

C.小鸟受到的重力与树枝对小鸟的支持力是一对平衡力

D.小鸟受到的重力与树枝受到的重力是一对平衡力

4.下列情景中利用惯性的是()

A.驾驶员要系好安全带B.禁止汽车超载行驶

C.公交车启动时,提醒乘客抓好扶手

D.将锤子的木柄在硬地上撞击几下,就能套紧锤头

5.氢气球用绳子系着一个重物,共以10m/s的速度匀速竖起上升,当到达某一个高度时,绳子突然断开,这个重物将()

A.继续上升一段,然后下落

B.立即下落

C.以原来的速度一直上升

D.以上说法都不对

6.小明用水平方向的力推静止在水平地面上的桌子,但没有推动。关于小明对桌子的推力与桌子受到的摩擦力的大小关系,下列说法正确的是()

A.推力小于摩擦力

B.推力等于摩擦力

C.推力大于摩擦力

D.不能确定两者的大小关系

7.如图所示,甲、乙两物体在A、B两水平桌面上做匀速直线运动,可以确定

A.甲的速度一定小于乙的速度

B.F甲所做的功一定小于F乙所做的功

C.甲、乙的运动状态发生改变

D.甲受到的摩擦力一定小于乙受到的摩擦力

8.在北川抗震救灾时,用飞机空投物品,当飞机在匀速飞行过程中,物品下落过程中,若它所受的力全部消失,那么它将做()

A.匀速运动B.减速运动C.加速运动D.曲线运动

9.弹簧的重力不计,弹簧的上端固定在天花板上,下端悬挂一个小球,小球处于静止状态,下列几组力中属于平衡力的是()

A.天花板对弹簧的拉力和弹簧对天花板的拉力

B.弹簧对球的拉力和球受到的重力

C.球对弹簧的拉力和弹簧对球的拉力D.球对弹簧的拉力和球受到的重力11.图是运动员顶足球时的情景,以下说法正确的是【】

A.球被顶出,说明力可以改变物体的运动状态

B.顶出去的球在上升时,受到平衡力的作用

C.球在上升过程中,动能和重力势能均减小

D.顶出去的球最终落地,是由于球具有惯性

14.天花板上悬挂的电灯如图所示,电灯静止时受到的一对平衡力是( )

A.天花板对电线的拉力和电线对电灯的拉力

B.电灯对电线的拉力和电灯受到的重力

C.电线对电灯的拉力和电灯受到的重力

D.电灯对电线的拉力和的天花板对电线的拉力

大学物理 马文蔚 第五版 下册 第九章到第十一章课后答案汇总

第九章振动 9-1一个质点作简谐运动, 振幅为A,在起始时刻质点的位移为 2 A -,且向x轴正方向运动,代表此简谐运动的旋转矢量为() 题9-1图 分析与解(b)图中旋转矢量的矢端在x轴上投影点的位移为-A/2,且投影点的运动方向指向O x轴正向,即其速度的x分量大于零,故满足题意.因而正确答案为(b).9-2已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为()()()()() ()()()() cm π 3 2 π 3 4 cos 2 D cm π 3 2 π 3 4 cos 2 B cm π 3 2 π 3 2 cos 2 C cm π 3 2 π 3 2 cos 2 A ?? ? ?? ? + = ?? ? ?? ? - = ?? ? ?? ? + = ?? ? ?? ? - = t x t x t x t x 题9-2图 分析与解由振动曲线可知,初始时刻质点的位移为–A/2,且向x轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为3/π 2.振动曲线上给出质点从–A/2 处运动到+A处所需时间为 1 s,由对应旋转矢量图可知相应的相位差3/π 4 Δ=,则角频率()1s3/π4 Δ / Δ- = =t ω,故选(D).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案.

9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( ) (A ) 落后2π (B )超前2 π (C )落后π (D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ). 题9-3 图 9-4 当质点以频率ν 作简谐运动时,它的动能的变化频率为( ) (A ) 2 v (B )v (C )v 2 (D )v 4 分析与解 质点作简谐运动的动能表式为()?ωω+=t A m E k 222sin 2 1,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C ). 9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( ) (A ) π2 3 (B )π21 (C )π (D )0 分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差 是π(即反相位).运动方程分别为t A x ωcos 1=和()πcos 2 2+= t ωA x .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为t A x ωcos 21=.因而正确答案为(D ).

物理学教程(第二版)-马文蔚下册公式原理整理(1)

物理期末知识点整理 1、 计算题知识点 1) 电荷在电场中运动,电场力做功与外力做功的总的显影使得带电粒子动能增加。 2) 球面电荷均匀分布,在球内各点激发的电势,特别是在球心激发的电势(根据高斯定理,球面内的电场强度为零,球内的电势与球面的电势相等 04q R επε= ,电势满足叠加原理) 3) 两个导体球相连接电势相等。 4) 载流直导线在距离r 处的磁感应强度02I B r μπ= ,导线在磁场中运动产生的感应电动势。(电场强度02E r λπε= )t φ ξ=- 5) 载流直导线附近的线框运动产生的电动势。 6) 已知磁场变化,求感应电动势的大小和方向。 7) 双缝干涉,求两侧明纹间距,用玻璃片覆盖其中的一缝,零级明纹的移 动情况。(两明纹间距为' d d d λ?= ,要求两侧明纹的间距,就是要看他们之间有多少个d ?,在一缝加玻璃片,使得一端的光程增加,要使得两侧光程相等,光应该向加玻璃片的一方移动) 8) 牛顿环暗环公式,理解第几暗环的半径与k 的关系。(r =k=0、1、2…..)) 9) 光栅方程,光栅常数,第几级主极大与相应的衍射角,相应的波长,每厘米刻线条数,第一级谱线的衍射角(光栅明纹方程(')sin b b k θλ+=±(k=0、1、2….)暗纹方程(')sin (21)/2b b k θλ+=±+(k=0、1、2….)光栅常数为'b b +) 10) 布鲁斯特定律,入射角与折射角的关系2 1 tan b n n θ= 2、 电场强度的矢量合成 3、 电荷正负与电场线方向的关系(电场线从正电荷发出,终止于负电荷) 4、 安培环路定理0Bdl I μ=?。 5、 导线在磁场中运动(产生感应电动势),电流在磁场中运动受到安培力的作用。 6、 干涉条件(频率相同,相位相等或相位差恒定,振动方向相同) b θ

最新第五版大学物理答案(马文蔚)

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ r ,即|v |≠v .

但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确 分析与解 t r d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;t d d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ?? ? ??+??? ??=t y t x v 求解.故选(D). 1 -3 质点作曲线运动,r 表示位置矢量, v 表示速度,a 表示加速度,s 表示路程, a t表示切向加速度.对下列表达式,即 (1)d v /d t =a ;(2)d r /d t =v ;(3)d s /d t =v ;(4)d v /d t |=a t. 下述判断正确的是( ) (A) 只有(1)、(4)是对的 (B) 只有(2)、(4)是对的 (C) 只有(2)是对的 (D) 只有(3)是对的 分析与解 t d d v 表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);t s d d 在自然坐标系中表示质点的速率v ;而t d d v 表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D). 1 -4 一个质点在做圆周运动时,则有( )

物理学答案《第五版》_上册马文蔚

1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确 分析与解 t r d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速

内蒙古科技大学马文蔚大学物理(下册)第六版答案解析

第九章振动 习题:P37~39 1,2,3,4,5,6,7,8,16.

9-4 一质点做简谐运动,周期为T,当它由平衡位置向X 轴正方向运动时,从1/2 最大位移处到最大位移处这段路程所需的时间( ) A、T/12 B、T/8 C、T/6 D、T/4 分析(C),通过相位差和时间差的关系计算。可设位移函数 y=A*sin(ωt),其中ω=2π/T; 当y=A/2, ω t1= π /6 ;当y=A, ω t2= π /2 ;△ t=t2-t1=[ π /(2 ω )]-[ π /(6 ω )]= π/(3ω)=T/6

9-回图(a)中所阿的是两个简谐运动的曲线,若这两个简谐j?动可叠加* 则合成的余弦振动的初相位为() 3 1 (A)-7W (B)—IT(C)F (D)O 分析与解由振动曲线可以知道,这是两个同振动方向、同频率简谐运动, 它们的相位差是TT(即反相位)?运动方程分别为X I= Acos ωt利%2= -^-CoS(((;? + 瓷)?它们的振幅不同.对于这样两个简谐运动M用旋转欠量送,如图(b)很方便 A 求得合运动方程为x=ycos ωt.因而正确答案为(D). 9-目有一个弹簧振子,振幅4 =2-0 X 10-2 m,周期T = 1.0 s,初相<p = 3ιτ∕4.试写出它的运动方程,并作出X - 1图I e - i图和a - t图. 解因3=X∕T,则运动方程 / 2πf ≡?cos(ωt + φ) =ACUS

根据题中给出的数据得 X = 2. 0 Xio '2cos( 2irf + O- 75τr) ( m ) 振子的速度和加速度分别为 t) = dx∕(It = -4π × 10^2Rin(2ττt + 0. 75ττ) (m * s^,) (Z = ?2χ∕df2 = - 8TT2X 10 ^2cos( 2τrt + 0. 75τT) ( m ? s ^2) X-I^V-C及Oft图如图所示.

大学物理_马文蔚__第五版_下册_第九章到第十一章课后答案

第九章 振动 9-1 一个质点作简谐运动,振幅为A ,起始时刻质点的位移为2 A - ,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( ) 题9-1 图 分析与解(b )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向O x 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b ). 9-2 已知某简谐运动的振动曲线如图(a )所示,则此简谐运动的运动方程为( ) ()()()()()()()()cm π32π34cos 2D cm π32π34cos 2B cm π32π32cos 2C cm π32π32cos 2A ?? ????+=??????-=??????+=??????-=t x t x t x t x 题9-2 图 分析与解 由振动曲线可知,初始时刻质点的位移为 –A /2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为3/π2.振动曲线上给出质点从–A /2 处运动到+A 处所需时间为 1 s ,由对应旋转矢量图可知相应的相位差3/π4Δ =,则角频率()1s 3/π4Δ/Δ-==t ω,故选(D ).本题也可根据振动曲线所给信息,逐一代入方程来找 出正确答案.

9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( ) (A ) 落后2π (B )超前2 π (C )落后π (D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ). 题9-3 图 9-4 当质点以频率ν 作简谐运动时,它的动能的变化频率为( ) (A ) 2 v (B )v (C )v 2 (D )v 4 分析与解 质点作简谐运动的动能表式为()?ωω+=t A m E k 222sin 2 1,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C ). 9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( ) (A ) π2 3 (B )π21 (C )π (D )0 分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差 是π(即反相位).运动方程分别为t A x ωcos 1=和()πcos 2 2+= t ωA x .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为t A x ωcos 21=.因而正确答案为(D ).

物理学上册马文蔚答案

物理学上册马文蔚答案 【篇一:物理学答案(第五版,上册)马文蔚】 (1) 根据上述情况,则必有( ) (2) 根据上述情况,则必有( ) (a) |v|= v,||=(b) |v|≠v,||≠ (c) |v|= v,||≠(d) |v|≠v,||= 但由于|dr|=ds,故drds?,即||=.由此可见,应选(c). dtdt 1 -2 一运动质点在某瞬时位于位矢r(x,y)的端点处,对其速度的大小有四种意见,即 drdrds?dx??dy?(1); (2); (3);(4)?????. dtdtdtdt???dt? 下述判断正确的是( ) (a) 只有(1)(2)正确 (b) 只有(2)正确 (c) 只有(2)(3)正确 (d) 只有(3)(4)正确 分析与解 22dr表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速dt 率.通常用符号vr表示,这是速度矢量在位矢方向上的一个分量;dr 表示速度矢量;在自然dt 22ds?dx??dy?坐标系中速度大小可用公式v?计算,在直角坐标系中则可由公式v??????dtdtdt???? 求解.故选(d). 1 -3 质点作曲线运动,r 表示位置矢量, v表示速度,a表示加速度,s 表示路程, at表示切向加速度.对下列表达式,即 (1)d v /dt =a;(2)dr/dt =v;(3)ds/dt =v;(4)d v /dt|=at.下述判断正确的是( ) (a) 只有(1)、(4)是对的 (b) 只有(2)、(4)是对的 (c) 只有(2)是对的(d) 只有(3)是对的 dv表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速dt dr度方向的一个分量,起改变速度大小的作用;在极坐标系中表示径向速率vr(如题1 -2 所dt分析与解 述);dsdv在自然坐标系中表示质点的速率v;而表示加速度的大小而不是切向加速度adtdt t.因此只有(3) 式表达是正确的.故选(d). 1 -4 一个质点在做圆周运动时,则有( )

大学 物理学 第五版 马文蔚 答案上下册第十二章

第十二章气体动理论 12-1 温度为0℃和100℃时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1eV,气体的温度需多高? 解:= 1ε2 31 kT =5.65×21 10 -J , =2ε2 32kT =7.72×2110-J 由于1eV=1.6×19 10 -J , 所以理想气体对应的温度为:T=2ε/3k =7.73×310 K 12-2一容器中储有氧气,其压强为0.1个标准大气压,温度为27℃,求:(1)氧气分子的数密度n ;(2)氧气密度 ρ;(3)氧气分子的平均平动动能k ε? (1)由气体状态方程 nkT p =得,24 23 51045.2300 1038.110013.11.0?=????==-kT p n 3m - (2)由气体状态方程 RT M M pV mol = (M , mol M 分别为氧气质量和摩尔质量) 得氧气密度: 13.0300 31.810013.11.0032.05mol =????===RT p M V M ρ 3m kg -? (3) 氧气分子的平均平动动能21231021.63001038.12 3 23--?=???== kT k ε 12-3 在容积为2.0×33 m 10 -的容器中,有内能为6.75×210J 的刚性双原子理想气体分子,求(1)气 体的压强;(2)设分子总数5.4×22 10个,求气体温度;(3)气体分子的平均平动动能? 解:(1)由2 iRT M m = ε 以及RT M m pV = , 可得气体压强p =iV ε2=1.35×5 10 Pa (2)分子数密度V N n = , 得该气体的温度62.3=== Nk pV nk p T ×210K (3)气体分子的平均平动动能为 = ε2 3kT =7.49×2110-J 12-4 2 10 0.2-?kg 氢气装在3 10 0.4-?m 3 的容器内,当容器内的压强为5 1090.3?Pa 时,氢气分子 的平均平动动能为多大? 解:由 RT M m pV = 得 mR MpV T = 所以221089.32323-?=?== mR MpV k kT εJ 12-5 1mol 刚性双原子气体分子氢气,其温度为27℃,求其对应的平动动能、转动动能和内能各是多少?

大学 物理学 版 马文蔚 答案上下册三章

第三章 动量守恒定律和能量守恒定律 3-1质量为m 的物体,由水平面上点O 以初速为0v 抛出,0v 与水平面成仰角α。若不计空气阻力,求:(1)物体从发射点O 到最高点的过程中,重力的冲量;(2)物体从发射点到落回至同一水平面的过程中,重力的冲量。 分析:重力是恒力,因此,求其在一段时间内的冲量时,只需求出时间间隔即可。由抛体运动规律可知,物体到达最高点的时间 g v t αsin 01=?,物体从出发到落回至同一水平 面所需的时间是到达最 高点时间的两倍。这样, 按冲量的定义即可求出 结果。另一种解的方法是根据过程的始、末动量,由动量定理求出。 解1:物体从出发到达最高点所需的时间为 g v t αsin 01=?

则物体落回地面的时间为 g v t t αsin 22012=?=? 于是,在相应的过程中重力的冲量分别为 j j F I αsin d 0111 mv t mg t t -=?-==??,j j F I αsin 2d 0222 mv t mg t t -=?-==?? 3-2如图所示,在水平地面上,有一横截面2 m 20.0=S 的直角弯管,管中有流速为1s m 0.3-?=v 的水通过, 求弯管所受力的大小和方向。 解:在t ?时间内,从管一端流入 (或流出)水的质量为 t vS m ?=?ρ,弯曲部分AB 的水 的动量的增量则为 ()()A B A B v v t vS v v m p -?=-?=?ρ 依据动量定理p I ?=,得到管壁对这部分水的平均冲力()A B v v I F -=?=Sv t ρ 从而可得水流对管壁作用

力的大小为:N 105.2232?-=-=-='Sv F F ρ 作用力的方向则沿直角平分线指向弯管外侧。 3-3 A 、B 两船在平静的湖面上平行逆向航行,当两船擦肩相遇时,两船各自向对方平稳地传递kg 50的重物,结果是A 船停了下来,而B 船以 1s m 4.3-?的速度继续向前驶去。A 、B 两船原有 质量分别为kg 105.03?和kg 100.13 ?,求在传递重物前两船的速度。(忽略水对船的阻力) 题3.3分析:由于两船横向传递的速度可略去不计,则对搬出重物后的船A 与从船B 搬入的重物所组成的系统I 来讲,在水平方向上无外力作用,因此,它们相互作用的过程中应满足动量守恒;同样,对搬出重物后的船B 与从船A 搬入的重物所组成的系统II 亦是这样。由此,分别列出系统I 、II 的动量守恒方程即可解出结果。 解:设A 、B 两船原有的速度分别以v A 、v B 表示,传递重物后船的速度分别以v A 、v B 表示,被搬运重物的质量以m 表示。分别对上述系统I 、II 应用动量守

大学物理(第二版)下册答案-马文蔚剖析

物理学教程(二)下册 答案9—13 马文蔚 第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图 (B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说法正确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电

场强度都不可能为零,因而正确答案为(B ). 9-3 下列说法正确的是( ) (A ) 电场强度为零的点,电势也一定为零 (B ) 电场强度不为零的点,电势也一定不为零 (C ) 电势为零的点,电场强度也一定为零 (D ) 电势在某一区域内为常量,则电场强度在该区域内必定为零 分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D ). *9-4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A ) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止 (B ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C ) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D ) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 题 9-4 图 分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B ). 9-5 精密实验表明,电子与质子电量差值的最大范围不会超过±10 -21 e ,而中子电量与零差值的最大范围也不会超过±10 -21e ,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10 -21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较. 解 一个氧原子所带的最大可能净电荷为 ()e q 21max 10821-??+= 二个氧原子间的库仑力与万有引力之比为 1108.2π46202max <

大学_物理学_第五版_马文蔚_答案上下册第七章

第七章 稳恒磁场 一、毕奥—萨伐尔定律 1、如图所示,几种载流导线在平面内分布,电流均为 I ,它们在O 点的磁感应强度各为多少? 7-1 图 解 (a ) R I B 800μ= 方向垂直纸面向外 (b ) R I R I B πμμ22000- = 方向垂直纸面向里 (c ) R I R I B 42000μπμ+= 方向垂直纸面向外 7-2 如图7-2,一根无限长直导线,通有电流I ,中部一段弯成圆弧形。求图中P 点磁感应强度的大小。 7-2图 解 如图,直线AB 中电流在P 点产生的磁感应强度 ()0112cos cos 4πI B d m q q = - 式中12,0,302 a d q q = ==

)2 3 1(2)30cos 0(cos 200001-= -=πμπ μa I a I B 方向垂直纸面向内。 同理,直线DE 中电流在P 点产生的磁感应强度 )2 3 1(202-= πμa I B 方向与1B 方向相同。 圆弧BCD 中电流在P 点产生的磁感应强度 a I a I B 63601202003μμ=? = 方向与1B 方向相同。 P 点总的磁感应强度 123B B B B =++ = a I a I a I a I 00 0021 .06)23 1(2)231(2μμπμπμ=+-+- 方向垂直纸面向内。 7-3、如右图所示,两根导线沿半径方向引到铁环上的A 、B 两点。并在很远处与电源相连。求环中心的磁感应强度。 解:环中心O 位于直线电流的延长线上,电流的直线部分在该点不产生磁场。 设铁环的优弧长l 1,其中电流强度I 1,劣弧长l 2,电流 7-3图 强度为I 2.因为优弧与劣弧连端的电压相等,可得I 1R 1 = I 2R 2 铁环的截面积和电阻率是一定的,因此电阻与长度成正比, 于是有 I 1l 1 = I 2l 2 (1) 优弧上任一电流元在O 点产生磁感应强度 01 12 d d 4I B l R μπ= 方向垂直纸面向外。优弧在O 点产生的磁感应强度 1 0011 1122 B d 44l I I l B d l R R μμππ===?? 方向垂直于纸面向内。 O 点总的磁感应强度

物理学教程(二)下册马文蔚_答案(第二版)9—13

第十一章 恒定磁场 11-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( ) (A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4= 分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比 2 1==R r n n r R 因而正确答案为(C ). 11-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( ) (A )B r 2π2 (B ) B r 2 π (C )αB r cos π22 (D ) αB r cos π2 题 11-2 图 分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定

理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ?=m Φ.因而正确答案为(D ). 11-3 下列说法正确的是( ) (A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B ). 11-4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( ) (A ) ? ??=?21L L d d l B l B ,21P P B B = (B ) ? ??≠?21L L d d l B l B ,21P P B B = (C ) ? ??=?21L L d d l B l B ,21P P B B ≠ (D ) ? ??≠?21L L d d l B l B ,21P P B B ≠

大学 物理学 第五版 马文蔚 答案上下册第五章

第五章静电场 1、两个点电荷所带电荷之和为Q ,问他们各带电量为多少时,相互间的作用力最大? 解:2 )(41r q q Q F ?-? = πε 极限条件0 =dq dF 得:2Q q = 且0 21 2 022<-=r dq F d πε,故各带2Q 时,相互作用最大 2、一半径为R 的半圆细环上均匀地分布电荷Q ,求环心处的电场强度。 解:取dl 电荷元,其所带电量为: θπ θππd Q Rd R Q dl R Q dq =?== θπεπεd R Q R dq dE 2020 0441=? = x 轴上x E 的对称为零, ∴??-==α θsin dE E E y 2 020 20224sin R Q d R Q επθεπθθπ - =?-= ? 3、一均匀带电线段,带电线密度为λ,长度为L ,求其延长线上与端点相距d 处的场强和电势。 解:)1 1(4)(400 2 0L d d x d L dx E L +-= -+=? πελπελ d d L L d d x d L dx V L +=+-= -+=? ln 4)1ln 1(ln 4) (4000 0πελπελπελ 4、设均匀电场的电场强度E 与半径R 的半球面对称轴平行,试计算通过此半球面的电场强度通量。 解:2R E dS E S π?=?=Φ ? 5、一个内外半径分别1R 为2R 和的均匀带电球壳,总电荷为1Q ,球壳外同心罩一个半径为3R 的均匀带电球面,球面带电荷为2Q ,求各区电场分布。

解:利用高斯定理 ?∑=?0 εq d S E ,有∑=?02 4πq r E 1R r <,∑=0q ,01=E (1分) 21R r R <<,2313 2031312)(4) (r R R R r Q E --=πε 32R r R <<,2 0134r Q E πε= ,3R r >,2 02 144r Q Q E πε+= 电场强度的方向均沿径矢方向 6、设在半径为R 的球体内,其电荷为对称分布,电荷体密度为 0==ρρkr R r R r >≤≤0 k 为一常量。试用高斯定理求电场强度E 与r 的函数关系。(你能用电场强度叠加原理求解这个问题吗?) 解:如图所示 作半径为r 的同心球形高斯面,据高斯定理有: εq d = ??s E R r ≤时,40 2244kr dr r kr dr r q r r o πππρ=?=?=?? ∴402 4kr r E εππ= ?,∴2 4r k E ε= 方向沿球半径方向 R r ≥时,4 2 4kR dr r q R o ππρ? =?=,∴4 02 4kR r E εππ=?,2 044r kR E ε= 附:用场叠加原理来求解。将球体分割成球壳,每个球壳相当于一个带电球面,当R r ≤时,场强由r 半 径内的各个球壳产生(因为球壳在其内部产生的场强为零,故大于半径r 的球壳不在r 处产生场强),每个 球壳在r 处产生的场强为:(球壳半径为r ')

物理学教程(马文蔚、周雨青)上册课后答案 三

第三章动量守恒定律和能量守恒定律 3 -1对质点组有以下几种说法: (1) 质点组总动量的改变与内力无关; (2) 质点组总动能的改变与内力无关; (3) 质点组机械能的改变与保守内力无关. 下列对上述说法判断正确的是() (A) 只有(1)是正确的(B) (1)、(2)是正确的 (C) (1)、(3)是正确的(D) (2)、(3)是正确的 分析与解在质点组中内力总是成对出现的,它们是作用力与反作用力.由于一对内力的冲量恒为零,故内力不会改变质点组的总动量.但由于相互有作用力的两个质点的位移大小以及位移与力的夹角一般不同,故一对内力所作功之和不一定为零,应作具体分析,如一对弹性内力的功的代数和一般为零,一对摩擦内力的功代数和一般不为零,对于保守内力来说,所作功能使质点组动能与势能相互转换,因此保守内力即使有可能改变质点组的动能,但也不可能改变质点组的机械能.综上所述(1)(3)说法是正确的.故选(C). 3 -2有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则() (A) 物块到达斜面底端时的动量相等 (B) 物块到达斜面底端时动能相等 (C) 物块和斜面(以及地球)组成的系统,机械能不守恒 (D) 物块和斜面组成的系统水平方向上动量守恒 分析与解对题述系统来说,由题意知并无外力和非保守内力作功,故系统机械能守恒.物体在下滑过程中,一方面通过重力作功将势能转化为动能,另一方面通过物体与斜面之间的弹性内力作功将一部分能量转化为斜面的动能,其大小取决其中一个内力所作功.由于斜面倾角不同,故物体沿不同倾角斜面滑至底端时动能大小不等.动量自然也就不等(动量方向也不同).故(A)(B)(C)三种说法均不正确.至于说法(D)正确,是因为该系统动量虽不守恒(下滑前系统动量为零,下滑后物体与斜面动量的矢量和不可能为零.由此可知,此时向上的地面支持力并不等于物体与斜面向下的重力),但在水平方向上并无外力,故系统在水平方向上分动量守恒. 3 -3对功的概念有以下几种说法: (1) 保守力作正功时,系统内相应的势能增加; (2) 质点运动经一闭合路径,保守力对质点作的功为零; (3) 作用力和反作用力大小相等、方向相反,所以两者所作功的代数和必为零. 下列上述说法中判断正确的是() (A) (1)、(2)是正确的(B) (2)、(3)是正确的 (C) 只有(2)是正确的(D) 只有(3)是正确的 分析与解保守力作正功时,系统内相应势能应该减少.由于保守力作功与路径无关,而只与始末位置有关,如质点环绕一周过程中,保守力在一段过程中作正功,在另一段过程中必然作负功,两者之和必为零.至于一对作用力与反作用力分别作用于两个质点所作功之和未必为

大学物理马文蔚版,下册复习题,有答案,有详解

一、简答题 1. 怎样判定一个振动是否做简谐振动?写出简谐振动的运动学方程。 2. 从动力学的角度说明什么是简谐振动,并写出其动力学方程。 3.简谐运动的三要素是什么?各由什么因素决定。 二、选择题 1.一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2 A ,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )。 2. 如图已知两振动曲线x 1 、x 2 ,他们的初相位之差12??-为( ) (A ) 32π (B )3 2π - (C )π (D )π- 3.质点在X 轴上作简谐振动,振幅为A ,0=t 时质点在 A 2 2 处,向平衡位置

运动,则质点振动的初相位为( ) (A)2π; (B)4π ; (C)4π- ; (D)2 π-。 三、填空题 1. 振幅为A 的简谐振动在 位置动能最大,在 位置势能最大, ___________________位置势能与动能相等。 2. 两个同方向同频率的简谐振动,其振动表达式分别为: )21 5c o s (41π+ =t x (SI) ,)215cos(22π+=t x (SI) )2 15cos(63π-=t x (SI) 则x 1,x 2的合振动的振辐为 ,初相为 。则x 1,x 3的合振动的振辐为 ,初相为 。 3.两质点1、2同在X 轴上作简谐振动振幅A 相周期均为T = 12s ;0=t 时刻,质点1在 A 2 2 处,并向平衡位置运动,质点2在A -处,也向平衡位置运动。则两质点振动的相位差为 ;两质点第一次通过平衡位置的时间分别为 和 。 四、计算题 1.如图9-1,质量为1m 的物体与劲度系数为k 的轻质弹簧相连,置于光滑平面上静止,现有质量为2m 的小球以水平速度v 和1m 发生完全非弹性碰撞,试分析碰撞后系统的运动规律,并写出相应的运动方程。 2.某质点作简谐振动,振动曲线如图所示,已知质点在s 1t =时位于a 点, A 2 2x =。(1)在图中标出质点在a 、b 、c 、d 处的振动方向;(2)求该质点的 振动方程。 图9-1

大学-物理学-第五版-马文蔚-标准答案上下册第七章

大学-物理学-第五版-马文蔚-答案上下册第七章

————————————————————————————————作者:————————————————————————————————日期:

第七章 稳恒磁场 一、毕奥—萨伐尔定律 1、如图所示,几种载流导线在平面内分布,电流均为 I ,它们在O 点的磁感应强度各为多少? 7-1 图 解 (a ) R I B 800μ= 方向垂直纸面向外 (b ) R I R I B πμμ22000- = 方向垂直纸面向里 (c ) R I R I B 42000μπμ+= 方向垂直纸面向外 7-2 如图7-2,一根无限长直导线,通有电流I ,中部一段弯成圆弧形。求图中P 点磁感应强度的大小。 7-2图 解 如图,直线AB 中电流在P 点产生的磁感应强度 ()0112cos cos 4πI B d m q q = - 式中12,0,302 a d o o q q = ==

)2 3 1(2)30cos 0(cos 200001-= -=πμπ μa I a I B 方向垂直纸面向内。 同理,直线DE 中电流在P 点产生的磁感应强度 )2 3 1(202-= πμa I B 方向与1B 方向相同。 圆弧BCD 中电流在P 点产生的磁感应强度 a I a I B 6360361202003μμ=? = 方向与1B 方向相同。 P 点总的磁感应强度 123B B B B =++ = a I a I a I a I 00 0021 .06)231(2)231(2μμπμπμ=+-+- 方向垂直纸面向内。 7-3、如右图所示,两根导线沿半径方向引到铁环上的A 、B 两点。并在很远处与电源相连。秋环中心的磁感应强度。 解:环中心O 位于直线电流的延长线上,电流的直线部分在该点不产生磁场。 设铁环的优弧长l 1,其中电流强度I 1,劣弧长l 2,电流 7-3图 强度为I 2.因为优弧与劣弧连端的电压相等,可得I 1R 1 = I 2R 2 铁环的截面积和电阻率是一定的,因此电阻与长度成正比, 于是有 I 1l 1 = I 2l 2 (1) 优弧上任一电流元在O 点产生磁感应强度 01 12 d d 4I B l R μπ= 方向垂直纸面向外。优弧在O 点产生的磁感应强度 1 0011 1122 B d 44l I I l B d l R R μμππ===?? 方向垂直于纸面向内。 O 点总的磁感应强度

物理学教程第二版马文蔚下册课后答案完整版 .

第九章 静 电 场 9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A )放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B )中的( ) 题 9-1 图 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B ). 9-2 下列说法正确的是( ) (A )闭合曲面上各点电场强度都为零时,曲面内一定没有电荷 (B )闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C )闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D )闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B ). 9-3 下列说法正确的是( ) (A ) 电场强度为零的点,电势也一定为零 (B ) 电场强度不为零的点,电势也一定不为零

(C) 电势为零的点,电场强度也一定为零 (D) 电势在某一区域内为常量,则电场强度在该区域内必定为零 分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D). *9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止 (B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 题9-4 图 分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B). 9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.

相关文档
最新文档