机械设计轴的设计.

合集下载

机械设计-轴

机械设计-轴

第十三章 轴 轴设计的基本要求: 1、轴与轴上零件要有准确的相对位置,轴向、 周向定位可靠;
17
2、轴的加工、装配有良好的工艺性; 3、受力合理,轴结构有利于提高轴的强度和刚 度、减少应力集中;
第十三章 轴
18
一、轴上零件的轴向定位和固定
零件轴向定位的方式常取决于轴向力的大小
h h h
1.轴肩和轴环 要求: r<C<h r<R<h h=(0.07~0.1)d b=1.4h
第十三章 轴
34
四、阶梯轴的结构设计实例分析
F
等强度 1、拟定轴上零件装配方案 轴颈:装轴承处
阶梯轴
尺寸= 轴承内径; 直径与轮毂内径相当;
组成 轴头:装轮毂处
轴身:联接轴颈和轴头部分。
第十三章 轴
35
第十三章 轴
36
装配方案的比较:
第十三章 轴
37
例题:指出图中轴结构设计中的不合理之处,并绘 出改进后的结构图。 1.轴两端均未倒角;
3
Fa Ft tg 1960 tg12o 417N
d 118 3 4 / 130 36.78mm
考虑到联轴器的影响以及联轴器孔径系 列标准,取d=38mm
第十三章 轴 3. 齿轮上作用力的计算
50
T 9.55 106 4 / 130 294 103 Nmm
Ft 2T / d 2 29410 / 300 1960N
2.齿轮右侧未作轴向固定; 3.齿轮处键槽太短; 5.左轴承无法拆卸; 6.齿轮与右轴承装卸不便; 7.轴端挡圈未直接压在轴 端轮毂上。
4.键槽应开在同一条直线上;
第十三章 轴 轴系结构改错
38
四处错误

机械设计课程设计轴的设计过程

机械设计课程设计轴的设计过程

七 轴的设计计算(一)高速轴的设计计算 1.确定轴的最小直径先按教材式(15-2)初步估算轴的最小直径。

选轴的材料为40Cr 调质处理。

根据教材表15-3,取1060=A ,于是得mm n P A d 74.1496058.210633110min =⨯==,由于开了一个键槽,所以mm d 77.15)07.01(74.14min =+⨯轴的最小直径显然是安装联轴器处轴的直径。

为了使轴的直径和联轴器的孔径相适应,故需同时选联轴器的型号。

联轴器的计算转矩1T K T A ca =,查教材表14-1取3.1=A K ,又N T 4110567.2⨯=代入数据得mm N T ca .1034.34⨯=查《机械设计课程设计》表9-21(GB/T4323-1984),选用TL4型弹性柱销联轴器。

联轴器的孔径d=22mm,所以mm d 22min = 2.轴的机构设计(1)根据轴向定位的要求确定轴上各段直径和长度1)为了满足联轴器的轴向定位要求,在12段的右边加了一个轴套,所以mm d d 22min 12==2)初步选取轴承,因同时受到径向力和轴向力,故选用圆锥滚子轴承,根据轴的结构和最小轴的直径大小 查《机械设计课程设计》表9-16(GB/T297-1994)选用30205型轴承mm mm mm T D d 25.165225⨯⨯=⨯⨯所以,mm d 2523=,根据轴承的右端采用轴肩定位,从表中可知mm d 3034=,45断的直径为齿轮的齿顶圆直径,所以mm d 66.4145=,mm d d mm d d 25,3023673456====。

半联轴器与轴配合的毂孔长度mm L 381=,为了保证轴端挡圈只压在半联轴器上而不压在轴的端面上,所以长度应取短些,先取mm L 361=。

轴承的端盖的总宽为25mm,取端盖的外端面与半联轴器的距离为25mm ,所以12段上的轴套长mm L 5025252=+=,所以mm L 882365012=++=在确定轴承的位置时应距离箱体内壁S=8mm ,取齿轮距离箱体内壁a=12mm 。

机械工程中的轴的设计与优化

机械工程中的轴的设计与优化

机械工程中的轴的设计与优化在机械工程中,轴是一种常见且重要的零件,它承载着传动力和扭矩,将动力从一个地方传递到另一个地方。

轴的设计与优化对于机械系统的性能和可靠性至关重要。

本文将探讨轴的设计原则、材料选择以及优化方法。

一、轴的设计原则在设计轴时,有几个原则需要遵循。

首先是强度原则,轴必须足够强以承受所施加的载荷。

这可以通过计算所需的最大弯曲应力和剪切应力来确定轴的尺寸和形状。

其次是刚度原则,轴必须具有足够的刚度以保持传动系统的准确性和稳定性。

刚度可以通过增加轴的直径或改变轴的截面形状来提高。

最后是轻量化原则,轴应该尽可能轻量化,以减少系统的惯性负载和能耗。

二、轴的材料选择轴的材料选择是轴设计的重要一环。

常见的轴材料包括钢、铝合金和钛合金。

钢是最常用的轴材料,因为它具有良好的强度、刚度和耐磨性。

铝合金轴适用于重量要求较低的应用,它具有较低的密度和良好的耐腐蚀性。

钛合金轴则具有极高的强度和轻量化特性,但成本较高。

在选择轴材料时,需要考虑载荷、工作环境和成本等因素。

三、轴的优化方法轴的优化方法可以分为几个方面。

首先是几何形状的优化,通过改变轴的截面形状和尺寸,可以提高轴的强度和刚度。

例如,采用变径轴设计可以在轴的不同部位提供不同的强度和刚度。

其次是材料的优化,通过选择合适的材料和热处理工艺,可以提高轴的强度和耐磨性。

例如,采用表面渗碳处理可以增加轴的硬度和耐磨性。

最后是结构的优化,通过改变轴的结构形式,如中空轴、薄壁轴等,可以实现轻量化和刚度的平衡。

除了上述的设计原则和优化方法,还有一些其他的注意事项需要考虑。

例如,轴的表面质量和光洁度对于传动系统的性能和寿命有重要影响。

因此,在加工和装配过程中,需要注意轴的表面处理和润滑。

此外,轴的安装和对中也是轴设计中的重要环节,合理的轴承选择和安装方法可以减少轴和轴承的磨损和故障。

综上所述,轴的设计与优化在机械工程中具有重要意义。

合理的轴设计可以提高机械系统的性能和可靠性,同时满足轻量化和刚度的要求。

机械设计基础课程优质教案讲义轴的设计优质教案

机械设计基础课程优质教案讲义轴的设计优质教案

机械设计基础课程优质教案讲义轴的设计优质教案一、教学内容本讲义基于《机械设计基础》教材第五章“轴的设计”。

详细内容涵盖轴的力学分析、轴的材料选择、轴的结构设计、轴的强度计算及轴的稳定性分析。

二、教学目标1. 理解轴的基本概念,掌握轴的设计方法。

2. 学会进行轴的强度计算,确保设计的轴能满足实际工作需求。

3. 掌握轴的稳定性分析,提高轴的使用寿命。

三、教学难点与重点重点:轴的材料选择、结构设计、强度计算。

难点:轴的稳定性分析,轴的强度计算公式推导。

四、教具与学具准备1. 教具:PPT课件、黑板、粉笔。

2. 学具:计算器、笔、纸。

五、教学过程1. 导入:通过展示实际工程中轴的应用案例,引导学生了解轴的重要性。

2. 理论讲解:a. 介绍轴的基本概念、分类及用途。

b. 讲解轴的材料选择原则,引导学生正确选择轴的材料。

c. 分析轴的结构设计方法,提高学生轴的设计能力。

3. 例题讲解:a. 以实际轴的设计为例,演示轴的强度计算过程。

b. 解释轴的稳定性分析,展示稳定性计算方法。

4. 随堂练习:a. 让学生根据所学知识,自主完成轴的强度计算。

b. 引导学生进行轴的稳定性分析。

六、板书设计1. 轴的基本概念、分类及用途。

2. 轴的材料选择原则。

3. 轴的结构设计方法。

4. 轴的强度计算公式。

5. 轴的稳定性分析。

七、作业设计1. 作业题目:a. 计算给定参数的轴的强度。

b. 分析给定轴的稳定性。

2. 答案:a. 强度计算结果。

b. 稳定性分析结果。

八、课后反思及拓展延伸1. 反思:本节课的教学效果,学生对轴设计知识的掌握程度。

2. 拓展延伸:a. 研究轴的疲劳寿命分析。

b. 探讨轴的优化设计方法。

c. 了解轴在工程领域的最新应用动态。

通过本讲义的学习,学生能系统地掌握轴的设计方法,为后续课程的学习和实际工程应用打下坚实基础。

重点和难点解析1. 轴的材料选择原则。

2. 轴的结构设计方法。

3. 轴的强度计算过程。

4. 轴的稳定性分析。

轴设计的主要内容和轴的设计步骤

轴设计的主要内容和轴的设计步骤

轴设计的主要内容和轴的设计步骤轴设计是机械设计中十分重要的一部分,它直接关系到机械系统的性能和寿命。

轴的设计需要考虑多方面因素,包括载荷、转速、材料强度和刚度等。

在进行轴设计时,一般可以遵循以下步骤:步骤一:确定轴的基本参数在开始设计之前,需要明确轴的功能和使用要求,并确定关键参数,包括轴的类型、长度、直径等。

此外,还要考虑系统的使用条件,如载荷、转速、工作环境等。

步骤二:选择材料材料的选择是轴设计非常重要的一部分。

要选择合适的材料,需要考虑载荷、转速、工作温度等因素。

通常,常用的轴材料有碳钢、合金钢、不锈钢和铝合金等。

步骤三:计算载荷根据轴所承受的载荷,可以进行静力学和强度学的计算。

静力学计算主要包括转矩、弯矩和扭矩等,而强度学计算则包括轴的强度和刚度等。

步骤四:计算尺寸在计算尺寸时,需要根据载荷和材料的强度来确定轴的直径。

直径的选择要满足强度和刚度要求,并考虑到材料的废料和经济性。

步骤五:计算转速转速是轴设计中的重要参数之一。

要保证系统的正常运行,需要根据转速和轴材料的强度来选择合适的直径和材料。

步骤六:进行验算设计完成后,还需进行验算,包括强度验算、刚度验算等。

强度验算主要是对轴的强度进行验证,以确保它能够承受所需的载荷。

而刚度验算主要是对轴的刚度进行验证,以满足系统运动的要求。

步骤七:进行优化根据验算结果,进行必要的优化。

可以通过增加轴的直径、改变材料或者增加支撑点等来改善轴的性能。

步骤八:绘制图纸设计完成后,需要绘制详细的轴图纸。

图纸上应包含轴的主要尺寸、材料、工艺要求等。

步骤九:选择工艺在轴设计完成后,还需要选择合适的工艺进行制造。

常用的轴制造工艺包括铸造、锻造、机械加工等。

轴设计的主要内容包括确定轴的基本参数、选择合适的材料、计算载荷、计算尺寸、计算转速、进行验算、进行优化、绘制图纸以及选择合适的制造工艺。

通过这些步骤,可以设计出满足系统要求的轴,确保机械系统的正常运行。

机械设计基础轴的设计

机械设计基础轴的设计
转动心轴
传动轴
转轴
章头
直轴 (光轴,阶梯轴,空心轴) 3.按轴线的形状分类 曲轴
挠性轴
章头
§14-2 轴的材料
轴的常用材料及性能见表14-1
章头
§14-3轴的结构设计
一. 轴结构设计的内容
1.轴的结构组成
┌合理外型
2.轴结构设计的内容 └各段直径和长度
二. 轴结构设计的要求
1.轴与轴上零件要有准确的工作位置
②由内向外确 定各段长度

宽度定
宽度定
标准
Ø60 Ø68 Ø70 Ø72 Ø70
Ø80
Ø82
章头
§14-4 轴的强度计算
一、按扭转强度计算
T
T WT
T 0.2d 3
T
(14-1)
d 3
T
0.2


3
9.55106 P
0.2 n
C3
P n
(14-2)
说明:①轴上有单键,直径增大4 % ;有双键,直径增大7 % ②P-传递的功率(kw) ; n-轴的转速(r/min) ; d-轴的直径(mm) ; C-系数→表(14-2) [τ] -材料的许用扭剪应力 (Mpa)
错误
正确
章头
r轴<C孔
错误 c)要求轴肩高度<滚动轴承内圈高度




正确
章头
2)套筒 3)轴用圆螺母
章头
4)轴端挡圈
5)弹性挡圈
注意; 当用套筒、圆螺母、轴端挡圈进行零件的轴向定位 时,为保证轴向定位可靠,要求L轴<L毂(2-3)mm
6)紧定螺钉或销
章头
2、零件的周向定位 1)键

机械设计第15章轴

机械设计第15章轴

轴的尺寸和公差对于安装和使用的准确性 至关重要。
轴与轴套之间的配合对于减小磨损和提高 工作效率非常重要。
轴的强度计算
1
受弯强度
根据轴的几何形状和材料弯曲的强度
扭转强度
2
工程计算。
根据扭矩和轴直径计算轴的扭转强度。
3
受压强度
计算轴在受到压缩力时的强度。
轴的选材原则
1 强度
根据所需强度和负荷条件选择材料。
机械设计第15章轴
轴是机械设计中重要的组件之一,它承受着传递功率和运动的重要任务。本 章将介绍轴的定义、作用以及相关的设计要素和计算方法。
轴的定义和作用Leabharlann 1 定义2 作用轴是一种旋转零件,通常为圆柱形,在机 械中用于传递力和运动。
轴将两个或多个旋转零件连接在一起,传 递动力和承载负载。
轴的分类
按用途分类
3 耐蚀性
在有腐蚀性环境中选择耐蚀性材料。
2 硬度
根据工作环境选择合适的材料硬度以提高 耐磨性。
4 成本
综合考虑材料成本及可用性选择合适的材 料。
轴的制造工艺
1 车削
2 热处理
利用车床和刀具将轴的外形和尺寸加工至 工程要求。
通过热处理工艺改变材料的组织和性能。
3 表面处理
4 装配和检验
对轴进行镀铬、镀锌等表面处理以提高其 耐腐蚀性和装饰性。
传动轴、支撑轴、定位轴等。
按制造材料分类
钢制轴、铜制轴、铝制轴、复合材料轴等。
按工作环境分类
常温轴、高温轴、低温轴、湿环境轴等。
按形状分类
圆轴、方轴、花键轴等。
轴的设计要素
1 刚度
2 强度
轴的刚度对于传递正常工作负荷至关重要。

机械设计基础-12.2轴的结构设计

机械设计基础-12.2轴的结构设计

第二节轴的结构设计轴的结构设计包括定出轴的合理外形和全部结构尺寸。

轴的结构主要取决于以下因素:1、轴在机器中的安装位置及形式;2、轴上安装零件的类型、尺寸、数量以及和轴联接的方法;3、载荷的性质、大小、方向及分布情况;4、轴的加工工艺等。

由于影响轴的结构的因素较多,且其结构形式又要随着具体情况的不同而异,所以轴没有标准的结构形式。

设计时,必须针对不同情况进行具体的分析。

轴的结构应满足:1、轴和装在轴上的零件要有准确的工作位置;2、轴上的零件应便于装拆和调整;3、轴应具有良好的制造工艺性等。

一、拟定轴上零件的装配方案所谓装配方案,就是预定出轴上主要零件的装配方向、顺序和相互关系。

轴上零件的装配方案不同,则轴的结构形状也不相同。

设计时可拟定几种装配方案,进行分析与选择。

轴主要由轴颈、轴头和轴身三部分组成,轴上被支承的部分叫轴颈,安装轮毂部分叫轴头,连接轴颈和轴头的部分叫轴身。

二、轴上零件的定位轴向固定为了防止轴上零件受力时发生沿轴向或周向的相对运动,轴上零件除了有游动或空转的要求者外,都必须进行必要的轴向和周向定位,以保证其正确的工作位置。

1、轴上零件的轴向固定零件安装在轴上,要有准确的定位。

各轴段长度的确定,应尽可能使结构紧凑。

对于不允许轴向滑动的零件,零件受力后不要改变其准确的位置,即定位要准确,固定要可靠。

与轮毂相配装的轴段长度, 一般应略小于轮毂宽2~3mm。

对轴向滑动的零件, 轴上应留出相应的滑移距离。

轴上零件的轴向定位是以轴肩、套筒、圆螺母、轴端挡圈和轴承端盖等来保证的。

(1)轴肩与轴环轴肩分为定位轴肩和非定位轴肩两类,利用轴肩定位是最方便可靠的方法,但采用轴肩就必然会使轴的直径加大,而且轴肩处将因截面突变而引起应力集中。

另外,轴肩过多时也不利于加工。

因此,轴肩定位多用于轴向力较大的场合。

定位轴肩的高度h一般取为h=(0.07~0.1)d,d为与零件相配处的轴径尺寸。

为了使零件能靠紧轴肩而得到准确可靠的定位,轴肩处的过渡圆角半径r必须小于与之相配的零件毂孔端部的圆角半径R或倒角尺寸C。

轴的结构设计

轴的结构设计

轴的结构设计
轴的结构设计是指在机械设备中使用的轴的形状、尺寸、材料、加工工艺等方面的设计。

轴是一种常见的机械零件,用于传递旋转运动和承受力矩。

在轴的结构设计中,需要考虑以下几个方面:
1. 轴的形状和尺寸:根据传递的力矩和转速要求,确定轴的直径、长度、几何形状等。

轴的形状可以是圆柱形、圆锥形、轮廓复杂的曲线形等。

2. 轴的材料:选择合适的材料,以满足轴的强度、刚度和耐磨性等要求。

常用的轴材料有结构钢、合金钢、不锈钢等。

3. 轴的加工工艺:确定轴的加工工艺,包括车削、磨削、冷挤压等。

根据轴的尺寸和形状,选择合适的加工方法,以保证轴的精度和表面质量。

4. 轴的键槽和轴承座设计:考虑轴与其他部件的连接方式和承载情况,设计合适的键槽形状和尺寸,以及轴承座的布局和结构。

5. 轴的表面处理:根据使用环境和要求,对轴进行表面处理,如镀铬、钝化、渗碳等,以提高轴的耐磨性和防腐蚀性。

总之,轴的结构设计需要兼顾轴的强度、刚度、耐磨性、轴与
其他部件的连接方式等方面的要求,以保证轴在工作过程中的可靠性和寿命。

机械设计轴的设计.

机械设计轴的设计.

潘存云教授研制
潘存云教授研制
潘存云教授研制
键槽应设计成 同一加工直线
三、各轴段直径和长度的确定 轴段直径大小取决于作用在轴上的载荷大小; 确定轴段直径大小的基本原则: 1. 按轴所受的扭矩估算轴径,作为轴的最小轴径dmin。 2. 有配合要求的轴段,应尽量采用标准直径。 3. 安装标准件的轴径,应满足装配尺寸要求。 4. 有配合要求的零件要便于装拆。
孔径d 30 32 35 38 40 42 45 48 50 55 65 82 60 112 84 60 63 65… 142 107
长度 长系列 L 短系列
便于零件的装配,减少配合表面的擦伤的措施: 1) 在配合段轴段前应采用较小的直径; 2) 配合段前端制成锥度; 3) 配合段前后采用不同的尺寸公差。 为了便于轴上零件的拆卸,轴肩 高度不能过大。
发动机
传动轴
后桥
潘存云教授研制
11.1


一、轴的用途及分类 功用:用来支撑旋转的机械零件,如齿轮、带轮、 链轮、凸轮等。 分类: 转轴---传递扭矩又承受弯矩 按承受载荷分有: 传动轴---只传递扭矩 类 心轴---只承受弯矩 型 按轴的形状分有:
车厢重力
潘存云教授研制
自行车 前轮轴
前叉
潘存云教授研制
200 250
……





用于不重要或 载荷不大的轴 有较好的塑性 和适当的强度, 可用于一般曲 轴、转轴。

轴的常用材料及其主要力学性能
材料牌号 热处理 毛坯直径 mm 硬度 HBS 屈服强 弯曲疲 度极限 劳极限 σ-1 σs MPa 400~420 225 170 375~390 215 590 295 255 570 285 245 640 355 275 735 540 355 685 490 335 900 735 430 785 570 370 735 590 365 685 540 345 930 785 440 835 685 410 785 590 375 抗拉强 度极限 σb 640 835 530 490 600 800 390 635 195 305 395 190 180 215 290 剪切疲 许用弯 劳极限 曲应力 [σ-1] σ-1 105 140 135 155 200 185 260 210 210 195 280 270 220 160 230 115 110 185 250 40 55 60

机械设计-轴的结构设计

机械设计-轴的结构设计
b
D h
d D
h C d
r为过渡圆角 R为圆角
C 零件倒角
应使: r < R < h 或 r <C < h
要求轴肩零件的定位与固定
1、轴向定位和固定
2)套筒
(简单可靠、常用于近距离,且承受轴向力大) 多用于转速不高的场合。
轴的结构设计
3 轴上零件的定位与固定
轴的结构设计
1 基本要求 2 轴的结构和轴上零部件 3 轴上零件的定位与固定 4 轴的直径和长度确定 5 轴的结构工艺性 6 提高轴强度的措施
CONTENTS
目 录
轴的结构设计
1 基本要求 ①轴和轴上零件要有准确、牢固的工作位置; ②轴上零件装拆、调整方便; ③轴应具有良好的制造工艺性等; ④尽量避免应力集中。
1、各轴段直径确定 1) 按应力估算轴段直径d min 。 2) 按轴上零件安装、定位要求确定各段轴径,经验值 3~5 1~2
d1 d2 d3 d4 d5 d6 d
7
轴的结构设计
4 轴的直径和长度的确定
2、各轴段长度
①各轴段与其上相配合零件宽度相对应; ②转动零件与静止零件之间必须有一定的间隙。
轴的结构设计
轴的结构应便于加工、装配、拆卸、测量和维修等。 5)同一轴上键槽位于圆柱同一母线上,尺寸尽量相同。
轴的结构设计
6 提高轴强度的措施
1、合理布置轴上零件以减少轴的载荷
MB
MC
MA
MD
MB
MC
B
C
A
T
700N.mm
D
B
C
T
B
C
A
Dx B
C
MD
MA

机械设计轴的设计计算

机械设计轴的设计计算

机械设计轴的设计计算
机械设计轴的设计计算主要包括以下几个方面:
1. 轴的尺寸计算:根据所需的扭矩及转速计算轴的直径及轴长,选择合适的轴材料及表面加工方式。

2. 轴的强度计算:根据轴材料的抗拉强度、抗压强度、弹性模量等参数,计算轴的最大等效应力及安全系数。

3. 轴的转动稳定性计算:根据轴的几何形状、转动速度、转动方向等参数,计算轴的临界转速及转动稳定性。

4. 轴的支撑方式计算:根据轴的重量及受力情况,计算轴的支撑方式以及所需的轴承类型、尺寸及数量。

5. 轴的动态平衡设计:根据轴的转动速度、质量分布情况等参数,计算轴的动态不平衡力,并设计相应的平衡装置。

6. 轴的表面处理设计:根据轴的使用环境及要求,选择适当的表面处理方式,如镀铬、喷涂、硬化等,以提高轴的耐磨性及抗腐蚀性。

以上是机械设计轴的设计计算的主要内容,要根据具体情况进行细致的计算与设
计。

机械设计手册软件关于轴的设计

机械设计手册软件关于轴的设计

机械设计手册软件关于轴的设计1. 背景介绍机械设计是一门综合性的工程学科,其重要性不言而喻。

在机械设计中,轴是一种常见的零件,用于传递动力和承受载荷。

轴的设计对于机械设备的性能和可靠性至关重要。

2. 轴的基本原理轴是一种用于支撑旋转部件和传递动力的机械零件。

轴的设计需要考虑到其受力情况、材料选择、尺寸确定等方面。

3. 机械设计手册软件机械设计手册软件是一种专业的工程设计软件,提供了丰富的设计功能和计算工具,可以大大简化工程师的设计工作。

4. 轴的设计在机械设计手册软件中的功能在机械设计手册软件中,通常包含了轴的设计功能模块,该模块可以帮助工程师进行轴的尺寸计算、受力分析、材料选择等工作。

5. 轴的尺寸计算机械设计手册软件可以根据输入的载荷、转速、材料强度等参数,自动计算出轴的最优尺寸,包括直径、长度等。

6. 轴的受力分析除了尺寸计算,机械设计手册软件还可以进行轴的受力分析,包括弯曲应力、剪切应力等的计算,从而确保轴在工作时不会发生断裂或变形。

7. 轴的材料选择机械设计手册软件还提供了丰富的材料数据库,工程师可以根据不同的工作环境和要求,选择适合的材料进行轴的设计。

8. 轴的设计实例通过机械设计手册软件,工程师可以快速、准确地完成轴的设计工作。

软件提供了丰富的设计实例和案例,可以帮助工程师学习和应用轴的设计理论。

9. 结语机械设计手册软件为工程师提供了强大的设计工具和资源,轴的设计模块能够帮助工程师高效地完成轴的设计工作,提高设计效率和设计质量。

随着科技的不断发展,机械设计手册软件将会在机械设计领域发挥日益重要的作用。

由于轴在机械设备中的重要性,其设计必须倚赖于先进的工程知识和技术。

在过去,工程师们需要依靠繁琐的手算和复杂的数学公式来完成轴的设计工作,然而,随着机械设计手册软件的出现,这一情况发生了巨大的改变。

机械设计手册软件具有强大的计算能力和丰富的材料数据库,使得工程师可以准确快速地完成轴的设计要考虑到多个因素,包括受力情况、耐磨性、材料强度、载荷类型等。

【课程思政课件】《机械设计与创新》轴的设计

【课程思政课件】《机械设计与创新》轴的设计
第十一章 轴的设计
§11-1 概述 §11-2 轴径的初步估算 §11-3 轴的结构设计 §11-4 轴的强度和刚度计算
§11-1 概述
一、轴的主要功用 1、支承轴上回转零件(如齿轮) 2、传递运动和动力
3、受弯矩,抵抗变形,保证轴上零件正常工作。
二、轴的分类
1、按承载情况分 转轴:既传递转矩(T)、又承受弯矩(M)
2、合金钢:40Cr、40MnB、20CrMnTi等,强度高、寿命 长,对应力集中敏感,价格较贵。用于重载、 小尺寸的轴。
§17-3 轴的结构设计
设计任务:使轴的各部分具有合理的形状和尺寸。 设计要求: 1.轴和轴上零件应有确定的位置和可靠固定;
2.轴上零件应便于安装、拆卸和调整; 3.轴应具有良好的加工工艺性; 4.应有利于提高轴的强度和刚度。
直轴 阶梯轴
又可分为实心、空心(加工困难)
曲轴:发动机专用零件
钢丝软轴:轴线可任意弯曲,传动灵活。
动力源 接头
接头 驱动装置
钢丝软轴(外层为护套)
钢丝软轴的绕制
三、轴的材料
对轴材料要求:轴的强度和刚度足够;材料的热处理性能和加 工工艺性好;材料来源广,价格适中。
1、碳素钢:30、35、45、50(正火或调质),45应用最广。 价廉,对应力集中不敏感,良好的加工性。
如:减速器中的轴。
传动轴:只受转矩,不受弯矩M=0,T≠0 如:汽车中联接变速箱与后桥之间的轴。
心轴:只承受弯矩(M),不传递转矩(T=0) 转动心轴:轴转动 固定心轴:轴固定 问:火车轮轴属于什么类型?
转动心轴
问:自行车的前轮轴属于什么类型?
Hale Waihona Puke 滑轮轴转动心轴自行车的中轴是转轴

机械设计-轴设计

机械设计-轴设计

e b2 4 2
M W
2 4 T 2W
2
M2 T2 W
对于直径为 d 的实心轴:
b
M W
M
d 3 / 32
M 0.1d 3
T WT
d
T 3/
16
T 0.2d 3
T 2W
由于b 与 的循环特征可能不同,需引进校正系数α将 折
合成对称循环变应力。
e
M 2 (T )2
W
Me 0.1d 3
轴肩或轴环 定位轴肩:h=(0.07~0.1)d > R 或 C 非定位轴肩:h=1~2 mm,作用是 便于轴上零件的装拆 为保证定位准确,R 或 C > r 轴环宽度一般取:b =1.4 h
套筒
对轴上零件起固定作用。 常用于近距离的两个零件间的固定。
注意:
为保证固定可靠, 应使:与轮毂相配 的轴段长度比轮毂 宽度短2~3 mm,
一般的轴
扭转强度
扭剪应力:
T
T
WT
9.55 106 P / n
d 3 /16
9.55 106 P 0.2d 3n
T
轴的抗扭
剖面系数
扭转强度设计式:
d 3
9.55106 3 0.2T
P n
C3
P n
mm
令其为系数 C
系数 C 与轴的材料和承载情况有关
轴的材料 Q235A,20
35
[τT] /MPa 12~20
2、根据初算轴径,进行轴的结构设计。 N
3、按弯扭合成强度校核轴的危险截面。
弯扭合成强度校核
● 画出空间受力图,求出支反力;
● 分别作出水平面受力图和垂直面受力图;
● 分别作出水平面弯矩图MH和垂直面弯矩图MV ;

机械设计轴的设计案例

机械设计轴的设计案例

例 图示为用于带式输送机的单级斜齿圆柱齿轮减速器。

减速器由电动机驱动。

已知输出轴传递功率P=11kW ,转速n=210r/min ,作用在齿轮上的圆周力Ft=2618N ,径向力Fr=982N ,轴向力Fa=653N ,大齿轮分度圆直径d 2=382mm ,轮毂宽度B=80mm 。

试设计减速器的输出轴。

解:1.选择轴的材料并确定许用应力选用45钢正火处理,由表10-1查得强度极限MPa B 600=σ,由表10-4查得其许用弯曲应力[]MPa W 551=-σ。

2.确定轴输出端直径按扭转强度估算轴输出端直径由表10-3取C=110,则mm mm n P C d 2.412101111033=== 考虑有两个键槽,将直径增大7%,则mm mm d 084.44%)71(2.41=+⨯=此段轴的直径和长度应和联轴器相符,根据机械设计手册选取TL7型弹性套柱销联轴器,其轴孔直径为45mm ,和轴配合部分长度为84mm ,故轴输出端直径d=45mm 。

3.轴的结构设计(1)轴上零件的定位、固定和装配单级减速器中,可将齿轮安排在箱体中央,相对两轴承对称布置(图),齿轮左面由轴肩定位,右面用套筒轴向定位,周向固定靠平键和过渡配合。

两轴承分别以轴肩和套筒定位,周向则采用过渡配合或过盈配合固定。

联轴器以轴肩轴向固定,右面用轴端挡圈轴向固定,平键联接作周向固定。

轴做成阶梯轴,左轴承从左面装入,齿轮、套筒、右轴承和联轴器依次从右面装到轴上。

(2)确定轴各段直径和长度I 段即外伸端直径d 1=45mm ,其长度应比联轴器轴孔的长度稍短一些,取L 1=80mm 。

II 段直径d 2=55mm ,(由机械设计手册查得轮毂孔倒角C 1=2.5mm ,取轴肩高度h=2C 1=2×2.5mm=5mm ,故d 2=d 1+2h=45mm+2×5mm=55mm ),亦符合毡圈密封标准轴径。

初选6311型深沟球轴承,其内径为55mm ,宽度为29mm 。

机械设计课程设计 轴的设计

机械设计课程设计 轴的设计

第四章轴的设计机器上所安装的旋转零件,例如带轮、齿轮、联轴器和离合器等都必须用轴来支承,才能正常工作,因此轴是机械中不可缺少的重要零件。

本章将讨论轴的类型、轴的材料和轮毂联接,重点是轴的设计问题,其包括轴的结构设计和强度计算。

结构设计是合理确定轴的形状和尺寸,它除应考虑轴的强度和刚度外,还要考虑使用、加工和装配等方面的许多因素。

4.1 轴的分类按轴受的载荷和功用可分为:1.心轴:只承受弯矩不承受扭矩的轴,主要用于支承回转零件。

如.车辆轴和滑轮轴。

2.传动轴:只承受扭矩不承受弯矩或承受很小的弯矩的轴,主要用于传递转矩。

如汽车的传动轴。

3.转轴:同时承受弯矩和扭矩的轴,既支承零件又传递转矩。

如减速器轴。

4.2轴的材料主要承受弯矩和扭矩。

轴的失效形式是疲劳断裂,应具有足够的强度、韧性和耐磨性。

轴的材料从以下中选取:1. 碳素钢优质碳素钢具有较好的机械性能,对应力集中敏感性较低,价格便宜,应用广泛。

例如:35、45、50等优质碳素钢。

一般轴采用45钢,经过调质或正火处理;有耐磨性要求的轴段,应进行表面淬火及低温回火处理。

轻载或不重要的轴,使用普通碳素钢Q235、Q275等。

2. 合金钢合金钢具有较高的机械性能,对应力集中比较敏感,淬火性较好,热处理变形小,价格较贵。

多使用于要求重量轻和轴颈耐磨性的轴。

例如:汽轮发电机轴要求,在高速、高温重载下工作,采用27Cr2Mo1V、38CrMoAlA等。

滑动轴承的高速轴,采用20Cr、20CrMnTi 等。

3. 球墨铸铁球墨铸铁吸振性和耐磨性好,对应力集中敏感低,价格低廉,使用铸造制成外形复杂的轴。

例如:内燃机中的曲轴。

4.3 轴的结构设计如图所示为一齿轮减速器中的的高速轴。

轴上与轴承配合的部份称为轴颈,与传动零件配合的部份称为轴头,连接轴颈与轴头的非配合部份称为轴身,起定位作用的阶梯轴上截面变化的部分称为轴肩。

轴结构设计的基本要求有:(1)、便于轴上零件的装配轴的结构外形主要取决于轴在箱体上的安装位置及形式,轴上零件的布置和固定方式,受力情况和加工工艺等。

轴的设计 毕业论文

轴的设计 毕业论文

轴的设计毕业论文轴的设计毕业论文引言:在机械设计中,轴是一种常见的零件,用于传递动力和承载负荷。

轴的设计对于机械系统的性能和可靠性至关重要。

本文将探讨轴的设计原理和方法,以及一些常见的轴设计问题和解决方案。

一、轴的基本原理轴是连接两个旋转部件的零件,其主要功能是传递转矩和承载负荷。

轴的设计需要考虑到以下几个方面:1. 轴的材料选择:轴的材料应具有足够的强度和刚度,以承受工作条件下的负荷和应力。

常见的轴材料包括碳钢、合金钢和不锈钢等。

2. 轴的几何形状:轴的几何形状应根据具体的工作条件和要求进行选择。

常见的轴形状有圆柱形、圆锥形和棒状等。

3. 轴的支撑方式:轴的支撑方式对于轴的稳定性和刚度有重要影响。

常见的轴支撑方式包括轴承支撑、滑动支撑和固定支撑等。

二、轴的设计方法轴的设计通常遵循以下步骤:1. 确定工作条件:首先需要明确轴所处的工作条件,包括转速、负荷和工作环境等。

这些条件将决定轴的材料和尺寸。

2. 计算轴的强度和刚度:根据工作条件和轴的几何形状,可以进行强度和刚度的计算。

这些计算可以通过应力分析和有限元分析等方法进行。

3. 选择轴的材料和尺寸:根据强度和刚度的计算结果,选择合适的轴材料和尺寸。

这需要考虑到材料的可获得性、成本和加工性能等因素。

4. 设计轴的支撑方式:根据轴的工作条件和要求,选择合适的轴支撑方式。

这需要考虑到支撑方式的可靠性、刚度和摩擦损失等因素。

5. 进行轴的结构设计:根据以上步骤的结果,进行轴的结构设计。

这包括轴的几何形状、加工工艺和表面处理等。

三、常见的轴设计问题和解决方案在轴的设计过程中,常会遇到一些问题,如轴的振动、疲劳和磨损等。

以下是一些常见的问题和相应的解决方案:1. 轴的振动问题:轴的振动会导致噪音和能量损失。

解决轴的振动问题可以采用减振措施,如增加轴的刚度、改变支撑方式和使用减振装置等。

2. 轴的疲劳问题:轴的疲劳会导致轴的断裂和失效。

解决轴的疲劳问题可以采用增加轴的强度、改变材料和设计合适的过载保护装置等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发动机
传动轴
后桥
潘存云教授研制
11.1


一、轴的用途及分类 功用:用来支撑旋转的机械零件,如齿轮、带轮、 链轮、凸轮等。 分类: 转轴---传递扭矩又承受弯矩 按承受载荷分有: 传动轴---只传递扭矩 类 心轴---只承受弯矩 型 按轴的形状分有:
车厢重力
潘存云教授研制
自行车 前轮轴
前叉
潘存云教授研制
用于重要轴,性能 近于40CrNi
70
75 70 75
用于要求高耐磨性, 高强度且热处理变 形很小的轴
用于要求强度及韧 性均较高的轴 用于腐蚀条件下的轴 用于高、低温及腐 蚀条件下的轴
60 75 45
190~270 245~335
370 480
用于制造复杂外形 的轴
设计任务:使轴的各部分具有合理的形状和尺寸。 设计要求: 1.轴应便于制造,轴上零件要易于装拆;(制造安装) 2.轴和轴上零件要有准确的工作位置;(定位) 3.各零件要牢固而可靠地相对固定;(固定) 4.改善应力状况,减小应力集中。
轴的设计过程:
轴的承载能力验算 验算合格? Y 结束 N
三、 轴的材料 种 类 碳素钢:35、45、50、Q235
为了改善力学性能正火Fra bibliotek调质处理。合金钢: 20Cr、20CrMnTi、40CrNi、38CrMoAlA等
用途:碳素结构钢因具有较好的综合力学性能,应用较 多,尤其是45钢应用最广。合金钢具有较高的力学性能, 但价格较贵,多用于有特殊要求的轴。 轴的毛坯:一般用圆钢或锻件,有时也用铸钢或球墨铸铁。


一、轴的用途及分类 功用:用来支撑旋转的机械零件,如齿轮、带轮、 链轮、凸轮等。 分类: 转轴---传递扭矩又承受弯矩 按承受载荷分有: 传动轴---只传递扭矩 类 心轴---只承受弯矩 本章只研究直轴 型 直轴 光轴 阶梯轴 按轴的形状分有: 曲轴
挠性钢丝轴
潘存云教授研制
二、轴设计的主要内容 设计任务:选材、结构设计、工作能力计算。 轴的结构设计: 根据轴上零件的安装、定位以及轴的制造工艺等 方面的要求,合理地确定轴的结构形式和尺寸。 工作能力计算: 选择材料 轴的承载能力验算指的 是轴的强度、刚度和振动稳 结构设计 定性等方面的验算。

1、概 述 2、轴的结构设计 3、 轴的计算 4、轴的设计实例
一、轴的用途及分类 功用:用来支撑旋转的机械零件,如齿轮、带轮、 链轮、凸轮等。
1


分类: 转轴---传递扭矩又承受弯矩。 按承受载荷分有: 类 型 按轴的形状分有:
带式运 输机
潘存云教授研制
电动机
减速器
转轴
11.1


一、轴的用途及分类 功用:用来支撑旋转的机械零件,如齿轮、带轮、 链轮、凸轮等。 分类: 转轴---传递扭矩又承受弯矩。 按承受载荷分有: 传动轴---只传递扭矩 类 型 按轴的形状分有:
潘存云教授研制
11.1


一、轴的用途及分类 功用:用来支撑旋转的机械零件,如齿轮、带轮、 链轮、凸轮等。 分类: 转轴---传递扭矩又承受弯矩 按承受载荷分有: 传动轴---只传递扭矩 类 心轴---只承受弯矩 型 直轴 光轴 阶梯轴 按轴的形状分有: 曲轴
潘存云教授研制 潘存云教授研制
11.1
转动心轴
前轮轮毂 固定心轴
支撑反力
火车轮轴
11.1


一、轴的用途及分类 功用:用来支撑旋转的机械零件,如齿轮、带轮、 链轮、凸轮等。 分类: 转轴---传递扭矩又承受弯矩 按承受载荷分有: 传动轴---只传递扭矩 类 心轴---只承受弯矩 型 光轴 一般情况下,直轴做成实心 直轴 轴,需要减重时做成空心轴 阶梯轴 按轴的形状分有:
轴端挡圈 带轮 轴承盖 套筒 齿轮 滚动轴承


≤ 100 热轧或锻 后空冷 > 100~250 ≤ 100 正火 > 100~300 45 ≤ 200 调质 ≤ 100 40Cr 调质 > 100~300 ≤ 100 40CrNi 调质 > 100~300 ≤ 100 38SiMnMo 调质 > 100~300 ≤ 60 38CrMoAlA 调质 > 60~100 > 100~160 渗碳 淬火 ≤ 60 20Cr 回火 调质 ≤ 100 3Cr13 ≤ 100 1Cr18NiTi 淬火 > 100~200 QT600-3 QT800-2
200 250
……





用于不重要或 载荷不大的轴 有较好的塑性 和适当的强度, 可用于一般曲 轴、转轴。

轴的常用材料及其主要力学性能
材料牌号 热处理 毛坯直径 mm 硬度 HBS 屈服强 弯曲疲 度极限 劳极限 σ-1 σs MPa 400~420 225 170 375~390 215 590 295 255 570 285 245 640 355 275 735 540 355 685 490 335 900 735 430 785 570 370 735 590 365 685 540 345 930 785 440 835 685 410 785 590 375 抗拉强 度极限 σb 640 835 530 490 600 800 390 635 195 305 395 190 180 215 290 剪切疲 许用弯 劳极限 曲应力 [σ-1] σ-1 105 140 135 155 200 185 260 210 210 195 280 270 220 160 230 115 110 185 250 40 55 60
如用球墨铸铁制造曲轴和凸轮轴,具有成本低廉、吸振性较好、对应力集中的敏感较低、强度较好等优点。
轴的常用材料及其主要力学性能
材料及热处理
毛坯直径 硬度 强度极限σb 屈服极限σs 弯曲疲劳极限σ-1 mm HBS MPa 应用说明
Q235 35 正火 ≤100 ~187
149
440 520
240 270
Q235A
用于不太重要及受 载荷不大的轴
170~217 162~217 217~255 241~286 270~300 240~270 229~286 217~269 293~321 277~302 241~277 渗碳 56~62 HRC ≥ 241 ≤ 192
应用最为广泛 用于载荷较大,而无 大的冲击的重要轴 用于很重要的轴
相关文档
最新文档