第13讲 最小方差调节器和自校正调节器课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二讲 最小方差调节器和STR(2/3)
STR是以RLS参数估计方法在线估计最优预报模型,并在此基 础上以输出方差最小为调节指标的一种可以适应参数未知或 慢时变的自适应控制系统. 当被估计参数收敛时,则根据估计参数而推得的输出方差 最小调节律将收敛于被控系统参数已知时的输出方差最 小调节律.
最小方差调节律、
最小方差调节闭环系统的稳定性问题, STR,以及
最小方差调节与自校正调节的计算机仿真.
1 最小方差调节器(1/6)
1 最小方差调节器
在最小方差调节器的研究中,所讨论的被控系统的模型为 A(z-1)y(k)=B(z-1)u(k-d)+C(z-1)w(k)
对该系统,有如下关于其最小方差调节律的定理. 定理1 对被控系统 A(z-1)y(k)=B(z-1)u(k-d)+C(z-1)w(k), 假设
y(k+d/k)统计无关且期望值为零
1 最小方差调节器(4/6)
当P=1,j=d时,由第十三讲中的定理1可知,输出y(k)的d步最 优预报和最优预报误差分别为 y(k+d/k)=[Gy(k)+BFu(k)]/C (5) y~(k+d/k)=Fw(k+d) 故,系统的最小方差调节律为 u(k)=-[G/(BF)]y(k) 此时,最小方差调节误差为 y(k)=y~(k/k-d)=Fw(k)=w(k)+f1w(k-1)+...+fd-1w(k-d+1) (6)
1.44 y (k ) u (k ) 0.5 0.8z 1 或在线递推计算型控制器 u(k)=-2.88y(k)-1.6u(k-1)
自适应控制篇目录(1/2)
自适应控制篇
第10讲 自适应控制概述 第11讲 最优预报和自适应预报 第12讲 最小方差调节器和自校正调节器 第13讲 最小方差控制器与自校正控制器 第14讲 极点配置调节器与极点配置自校正调节器 第15讲 自校正PID调节器 第16讲 多变量自适应控制 第17讲 自适应信号处理与滤波 第18讲 模型参考自适应控制概述
0
n u (k n )]
1 最小方差调节器(6/6)
例1 求解被控系统 (1-0.9z-1)y(k)=0.5u(k-2)+(1+0.7z-1)w(k) 的最小方差调节律. 解 该算例与第十二讲中的算例为同一被控系统. 因此 , 由定理 1 和第十一讲中求出的输出 y(k) 的 2 步最优预 报式,可得如下最小方差调节律 传递函数型控制器
自适应控制篇目录(2/2)
自适应控制篇(续)
第19讲 模型参考自适应系统的数学模型表示 第20讲 基于李氏稳定性理论的状态空间模型参考自适应控制 第21讲 基于李氏稳定性理论的输入输出方程模型参考自适应 控制 第22讲 基于Popov稳定性理论的状态空间模型参考自适应控 制 第23讲 神经网络自适应控制
1 最小方差调节器(3/6)
证明 设y(k+d/k)和y~(k+d/k)分别为y(k+d)在k时刻的d步最优预 报和最优预报误差. 因此,被控系统输出量的方差为 J=E{[y(k+d)]2}=E{[y(k+d/k)+y~(k+d/k)]2} =E{[y(k+d/k)]2}+E{[y~(k+d/k)]2}+2E{y(k+d/k)y~(k+d/k)} =E{[y(k+d/k)]2}+E{[y~(k+d/k)]2} E{[y~(k+d/k)]2} (4) 要使(4)式所示的输出量的方差为最小,即把上式的不等式 取等式即可.因此,令 y(k+d/k)=0 可求得最优调节律. 最优预报误差y~(k+d/k)与最优预报
第十二讲 最小方差调节器和STR(1/3)
第十二讲 最小方差调节器和自校正调节器
自校正调节器(Self-tuning Regulator, STR)最早是由Astrom和Wittenmark 于 1973 年首先提出来的 , 其结构如 图1所示.
u(k) y(k)
被控系统 控制器
控制器参数计算 (自适应机构) 参数估计器 图 1 自校正控制方法原理
那么,在最优指标函数
J=E{[y(k+d)]2} 下,其最小方差调节律和最小方差调节误差分别为 (1)
u(k)=-[G/(BF)]y(k)
y(k)=Fw(k)=w(k)+f1w(k-1)+...+fd-1w(k-d+1) 其中F和G满足当P(z-1)=1时的丢番图方程,即
(2)
(3)
C=AF+z-dG
1. 被控系统时滞时间d以及时滞算子z-1的多项式A、B和C的 阶次的上界以及系数都已知;
2. 被控系统为逆稳定系统,即多项式B(z-1)的所有零点都在单 位圆外;
1 最小方差调节器(2/6)
3. C(z-1)为稳定多项式,即它的所有零点都在单位圆外; 4. {w(k)}为白色噪声序列,且E{w2(k)}=2.
(7)
(证毕).
1 最小方差调节器(5/6)
对于Astrom的最小方差调节器,有两种实现方法: 一为用数字器件实现的传递函数型控制器,如
G( z 1 ) u (k ) y (k ) 1 1 B( z ) F ( z )
另一为可用数字计算机实现的在线递推计算型控制器,如
G ( z 1 ) u (k ) y (k ) 1 (z ) 1 [ g 0 y (k ) ... g ng y (k ng ) 1u (k 1) ...
这时,这种调节律就是渐近最优的了.
欲讨论ቤተ መጻሕፍቲ ባይዱ数未知时能调节系统输出方差至最小的STR,需先引 入参数已知时调节系统输出方差最小的最小方差调节器.
第十二讲 最小方差调节器和STR(3/3)
最小方差调节的基本思想是: 由于系统称中信道存在着d步时滞,这就使得当前的控制作 用u(k)要到d个采样周期后才能对输出产生影响. 因此,要获得输出方差最小,就必须对输出量提前d步进行 预报,然后根据预报值来计算适当的调节作用u(k). 这样,通过不断的预报和调节,就能始终保持输出量的稳态 方差为最小. 下面,我们将顺序讨论: