(完整word版)基本积分表

合集下载

常用积分表

常用积分表

常 用 积 分 公 式(一)含有的积分() ax b +0a ≠1.d x ax b +∫=1ln ax b C a ++2.=()ax b x μ+∫d 11()(1)ax b C a μμ++++(1μ≠−)3.d x x ax b +∫=21(ln )ax b b ax b C a +−++4.2d x x ax b +∫=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+−++++⎢⎥⎣⎦5.d ()x x ax b +∫=1ln ax bC b x +−+6.2d ()x x ax b +∫=21ln a ax bC bx b x+−++ 7.2d ()x x ax b +∫=21(ln )bax b C a ax ++++b8.22d ()x x ax b +∫=231(2ln b ax b b ax b C a ax b +−+−++9.2d ()x x ax b +∫=211ln ()ax b C b ax b b x+−++的积分10.x ∫C +11.x ∫=22(3215ax b C a −+12.x x ∫=22232(15128105a x abx b C a−++13.x∫=22(23ax b C a −+14.2x ∫=22232(34815a x abx b C a −++15.∫=(0)(0)C b C b ⎧+>+<16.∫2a bx b −−∫17.d x x ∫=b + 18.2d xx ∫=2a x −+ (三)含有22x a ±的积分 19.22d x x a +∫=1arctan xC aa +20.22d ()n x x a +∫=2221222123d 2(1)()2(1)()n n x n n a x a n a x a −−x−+−+−+∫21.22d x x a −∫=1ln 2x a C a x a−++(四)含有的积分2(0ax b a +>)22.2d x ax b +∫=(0)(0)x C b Cb ⎧+>⎪⎪⎨+<23.2d x x ax b +∫=21ln 2ax b C a ++24.22d x x ax b +∫=2d x b xa a axb −+∫25.2d ()x x ax b +∫=221ln 2x C b ax b++26.22d ()x x ax b +∫=21d a xbx b ax b −−+∫ 27.32d ()x x ax b +∫=22221ln 22ax b a C b x bx+−+ 28.22d ()x ax b +∫=221d 2()2x xb ax b b ax b +++∫(五)含有的积分2ax bx c ++(0a >)29.2d x ax bx c ++∫=22(4)(4)C b C b ac +<+>ac 30.2d x x ax bx c ++∫=221d ln 22b x ax bx c a a ax bx c++−++∫(0a >)的积分31.∫=1arshxC a +=ln(x C ++ 32.∫C +33.x ∫C34.x ∫=C +35.2x ∫2ln(2a x −++C36.2x ∫=ln(x C +++37.∫1ln aC a x −+38.∫2C a x −+40.x ∫=2243(25ln(88x x a a x C ++++43.d x x ∫ln a a C x −++44.2d x x∫=ln(x C x −+++(0a >)的积分45.=1arch x xC x a+=C + 46.∫C +47.x ∫C +48.x ∫=C +49.2x ∫22a ++C50.2x ∫=ln C ++51.∫1arccos aC a x+52.∫2C a x +53.x ∫2ln 2a −+C54.x ∫=2243(25ln 88x x a a C −++55.x ∫C +56.xx ∫=422(288x a x a C −−+57.d x x∫arccos aa C x −+58.2d x x ∫=ln C x −++(0a >)的积分 59.∫=arcsinxC a + 60.∫C +61.x ∫=C +62.x ∫C +63.2x ∫=2arcsin 2a x C a ++64.2x ∫C +65.∫1ln a C a x −+66.∫2C a x −+67.∫x 2arcsin 2a C a++x68.∫x =2243(52arcsin 88x x a x a a C −++69.∫x =C +70.x∫x =422(2arcsin 88x a x x a C a−++71.d x x ∫ln a a C x −++72.2d x x∫=arcsin xC x a −−+(0a >)的积分73.∫C +74.x ∫2C ++75.x ∫C −+76.∫=C +77.x ∫2C ++78.x ∫=C ++79.x ∫=((x b b a C −−++80.x ∫=((x b b a C −−+81.∫C+()a b <82.x ∫C ++()a b <(十一)含有三角函数的积分 83.sin d x x ∫=cos x C −+84.cos d x x ∫=sin x C + 85.tan d x x ∫=ln cos x C −+ 86.cot d x x ∫=ln sin x C + 87.sec d x x ∫=ln tan()42xC π++=ln sec tan x x C ++ 88.csc d x x ∫=ln tan2xC +=ln csc cot x x C −+ 89.2sec d x x ∫=tan x C + 90.2csc d x x ∫=cot x C −+ 91.sec tan d x x x ∫=sec x C + 92.csc cot d x x x ∫=csc x C −+93.2sin d x x ∫=1sin 224x x C −+ 94.2cos d x x ∫=1sin 224x x C ++95.sin d n x x ∫=1211sin cos sin d n n n x x x n n−−−−+∫x 96.cos d n x x ∫=1211cos sin cos d n n n x x x n n−−−+∫x 97.d sin n x x ∫=121cos 2d 1sin 1sin n n x n xn x n −−−−⋅+−−∫x 98.d cos n x x ∫=121sin 2d 1cos 1cos n n x n xn x n −−−⋅+−−∫x99.cos sin d m n x x x ∫=11211cos sin cos sin d m n m nm x x x m n m n−+−x x −+++∫ =11211cos sin cos sin d m n m n n x x x m n m n +−−x x −−+++∫100.=sin cos d ax bx x ∫11cos()cos()2()2()a b x a b x C a b a b −+−−++−101.=sin sin d ax bx x ∫11sin()sin()2()2()a b x a b x C a b a b −++−++−102.=cos cos d ax bx x ∫11sin()sin()2()2()a b x a b x C a b a b ++−++−103.d sin xa b x +∫tanxa b C ++22()a b >104.d sin x a b x +∫C+22()a b <105.d cos xa b x +∫)2x C +22()a b >106.d cos x a b x +∫C +22()a b <107.2222d cos sin x a x b x +∫=1arctan(tan )bx C ab a + 108.2222d cos sin x a x b x 1tan ln 2tan b x a C ab b x a +−∫=+−109.sin d x ax x ∫=211sin cos ax x ax C a a −+ 110.2sin d x ax x ∫=223122cos sin cos x ax x ax ax C a a a −+++111.cos d x ax x ∫=211cos sin ax x ax C a a ++112.2cos d x ax x ∫=223122sin cos sin x ax x ax ax C a a a+−+(十二)含有反三角函数的积分(其中)0a >113.arcsin d x x a ∫=arcsin xx C a+114.arcsin d xx x a ∫=C +115.2arcsin d xx x a∫=3221arcsin (239x x x a C a ++116.arccos d xx a ∫=arccosxx C a−+117.arccos d xx x a ∫=C +118.2arccos d xx x a∫=3221arccos (239x x x a C a −++ 119.arctand x x a ∫=22arctan ln()2x a x a x C a −++ 120.arctan d x x x a∫=221()arctan 22x aa x x C a +−+121.2arctan d xx x a∫=33222arctan ln()366x x a a x a x C a −+++ (十三)含有指数函数的积分122.=d xa x ∫1ln xa C a + 123.e d axx ∫=1e ax C a +124.e d axx x ∫=21(1)e ax ax C a −+125.e d n axx x ∫=11e e n ax n ax n d x x x a a−−∫126.d xxa x ∫=21ln (ln )x xx a a a a C −+ 127.d nxx a x ∫=11d ln ln n x n xn x a x a a a −−∫x 128.=e sin d axbx x ∫221e (sin cos )ax a bx b bx C a b −++ 129.=e cos d ax bx x ∫221e (sin cos )axb bx a bx C a b+++130.=e sin d ax n bx x ∫12221e sin (sin cos )ax n bx a bx nb bx a b n−−+ 22222(1)e sin d ax n n n b bx x a b n−−++∫ 131.=e cos d ax n bx x ∫12221e cos (cos sin )ax n bx a bx nb bx a b n−++ 22222(1)e cos d ax n n n b bx x a b n−−++∫ (十四)含有对数函数的积分132.ln d x x ∫=ln x x x C −+ 133.d ln x x x ∫=ln ln x C +134.ln d n x x x ∫=111(ln )11n x x C n n +−+++ 135.(ln )d n x x ∫=1(ln )(ln )d n n x x n x −−∫x 136.(ln )d m n x x x ∫=111(ln )(ln )d 11m n m n n x x x x m m +−−++∫x (十五)含有双曲函数的积分137.sh d x x ∫=ch x C +138.ch d x x ∫=sh x C +139.th d x x ∫=ln ch x C + 140.2sh d x x ∫=1sh224x x C −++ 141.2ch d x x ∫=1sh224x x C ++ (十六)定积分142.==0 cos d nx x π−π∫sin d nx x π−π∫143.=0 cos sin d mx nx x π−π∫144.= cos cos d mx nx x π−π∫0,,m n m n ≠⎧⎨π=⎩145.= sin sin d mx nx x π−π∫0,,m n m n ≠⎧⎨π=⎩146.==0sin sin d mx nx x π∫0cos cos d mx nx x π∫0,,2m n m n ≠⎧⎪⎨π=⎪⎩ 147. n I =20sin d n x x π∫=20cos d n x x π∫ n I =21n n I n−− 134225n n n I n n −−=⋅⋅⋅⋅−"3(为大于1的正奇数),n 1I =1 13312422n n n I n n −−π=⋅⋅⋅⋅⋅"n (为正偶数),0I =2π −。

147个积分表

147个积分表

58.
(八)含有 a 2 − x 2 (a > 0) 的积分 59.


dx a2 − x2
dx
= arcsin
x +C a
x +C
60.
(a − x )
2
2 3

a
2
a2 − x2
61.


x a −x
2 2
dx = − a 2 − x 2 + C 1 a2 − x2
62.
x (a 2 − x 2 )3
+C
49.


x2 x2 − a2
x2
dx =
x 2 a2 x − a 2 + ln x + x 2 − a 2 + C 2 2
x x −a
2 2
50.
(x − a )
2
2 3
dx = −
+ ln x + x 2 − a 2 + C
51.
∫x ∫x
2
dx x2 − a2 dx

1 a arccos + C a x x2 − a2 +C a2 x
3
32.

dx (x + a )
2 2 3

x a
2
x2 + a2
+C
33.


x x +a
2 2
dx = x 2 + a 2 + C 1 x2 + a2
34.
x ( x 2 + a 2 )3
dx = −
+C

(完整word版)积分公式

(完整word版)积分公式

(完整word版)积分公式2.基本积分公式表(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=-cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=-cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C注.(1)不是在m=-1的特例.(2)=ln|x|+C,ln后⾯真数x要加绝对值,原因是(ln|x|)' =1/x.事实上,对x>0,(ln|x|)' =1/x;若x<0,则(ln|x|)' =(ln(-x))' =.(3)要特别注意与的区别:前者是幂函数的积分,后者是指数函数的积分.下⾯我们要学习不定积分的计算⽅法,⾸先是四则运算.3.不定积分的四则运算根据微分运算公式d(f(x)±g(x))=d f(x)±d g(x)d(kf(x))=k d f(x)我们得不定积分的线性运算公式(1)∫[f(x)±g(x)]d x=∫f(x)d x±∫g(x)d x(2)∫kf(x)d x=k∫f(x)d x,k是⾮零常数.现在可利⽤这两个公式与基本积分公式来计算简单不定积分.例2.5.4求∫(x3+3x++5sin x-4cos x)d x解.原式=∫x3d x+∫3x d x+7∫d x+5∫sin x d x-4∫cos x d x=+7ln|x|-5cos x-4sin x+C .注.此例中化为五个积分,应出现五个任意常数,它们的任意性使其可合并成⼀个任意常数C,因此在最后写出C即可.例2.5.5求∫(1+)3d x解.原式=∫(1+3+3x+)d x=∫d x+3∫d x+3∫x d x+∫d x=x+3+C=x+2x++C .注.∫d x与∫1d x是相同的,其中1可省略.例2.5.6求解.原式===-x+arctan x+C .注.被积函数是分⼦次数不低于分母次数的分式,称为有理假分式.先将其分出⼀个整式x2-1,余下的分式为有理真分式,其分⼦次数低于分母的次数.例2.5.7求.解.原式==∫csc2x d x-∫sec2x d x=-cot x-tan x+C .注.利⽤三⾓函数公式将被积函数化简成简单函数以便使⽤基本积分公式.例2.5.8求.解.原式==+C .为了得到进⼀步的不定积分计算⽅法,我们先⽤微分的链锁法则导出不定积分的重要计算⽅法??换元法.思考题.被积函数是有理假分式时,积分之前应先分出⼀个整式,再加上⼀个有理真分式,⼀般情形怎样实施这⼀步骤?4.第⼀换元法(凑微分法)我们先看⼀个例⼦:例2.5.9求.解.因(1+x2)' =2x,与被积函数的分⼦只差常数倍数2,如果将分⼦补成2x,即可将原式变形:原式=(令u=1+x2)=(代回u=1+x2).注.此例解法的关键是凑了微分d(1+x2).⼀般地在F'(u)=f(u),u=?(x)可导,且?' (x)连续的条件下,我们有第⼀换元公式(凑微分):u=? (x) 积分代回u=? (x)∫f[?(x)]?' (x)d x=∫f[?(x)]d?(x)=∫f(u)d u=F(u)+C=F[?(x)]+C其中函数?(x)是可导的,且F(u)是f(u)的⼀个原函数.从上述公式可看出凑微分法的步骤:凑微分————→换元————→积分————→再换元' (x)d x=d(x) u=(x) 得F(u)+C得F[?(x)]+C注.凑微分法的过程实质上是复合函数求导的链锁法则的逆过程.事实上,在F'(u)=f(u)的前提下,上述公式右端经求导即得:[F[?(x)]+C]' =F '[?(x)]?' (x)=f[?(x)]?' (x)这就验证了公式的正确性.例2.5.10求∫(ax+b)m d x.(m≠-1,a≠0)解.原式=(凑微分d(ax+b))=(换元u=ax+b)=(积分)=. (代回u=ax+b)例2.5.11求.解.原式=(凑微分d(-x3)=-3x2d x)===(换元u=-x3).注.你熟练掌握凑微分法之后,中间换元u=?(x)可省略不写,显得计算过程更简练,但要做到⼼中有数.例2.5.12求∫tan x d x.解.原式==-ln|cos x|+C .同理可得∫cot x d x=ln|sin x|+C .例2.5.13求(a>0).解.原式==.例2.5.14求(a>0).解.原式==.例2.5.15求.解.原式====.例2.5.16∫sec x d x.解.原式=(换元u=sin x)===(代回u=sin x)===ln|sec x+tan x|+C .公式:∫sec x d x=ln|sec x+tan x|+C .例.2.5.17求∫csc x d x .解.原式===ln|csc x-cot x|+C .公式:∫csc x d x=ln|csc x-cot x|+C .凑微分法是不定积分换元法的第⼀种形式,其另⼀种形式是下⾯的第⼆换元法.5.第⼆换元法不定积分第⼀换元法的公式中核⼼部分是∫f[?(x)]?'(x)d x=∫f(u)d u我们从公式的左边演算到右边,即换元:u=?(x).与此相反,如果我们从公式的右边演算到左边,那么就是换元的另⼀种形式,称为第⼆换元法.即若f(u),u=?(x),?'(x)均连续,u=?(x)的反函数x=?-1(u)存在且可导,F(x)是f[?(x)]?'(x)的⼀个原函数,则有∫f(u)d u=∫f[?(x)]?'(x)d x=F(x)+C=F[?-1(u)]+C .第⼆换元法常⽤于被积函数含有根式的情况.例2.5.18求解.令(此处?(t)=t2).于是原式===(代回t= -1(x)=) 注.你能看到,换元=t的⽬的在于将被积函数中的⽆理式转换成有理式,然后积分.第⼆换元法除处理形似上例这种根式以外,还常处理含有根式,,(a>0)的被积函数的积分.例2.5.19求. (a>0)解.令x=a sec t,则d x=a sec t tan t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .到此需将t代回原积分变量x,⽤到反函数t=arcsec,但这种做法较繁.下⾯介绍⼀种直观的便于实施的图解法:作直⾓三⾓形,其⼀锐⾓为t及三边a,x,满⾜:sec t=由此,原式=ln|sec t+tan t|+C1==.注.C1是任意常数,-ln a是常数,由此C=C1-ln a仍是任意常数.(a>0)例2.5.20求.解.令x=a tan t,则d x=a sec2t d t,于是原式==∫sec t d t=ln|sec t+tan t|+C1 .图解换元得原式=ln|sec t+tan t|+C1=.公式:.例2.5.21求(a>0).解.令x=a sin t,则d x=a cos t d t,于是原式===+C.图解换元得:原式=+C=+C .除了换元法积分外,还有⼀个重要的积分公式,即分部积分公式.思考题.在第⼆换元法公式中,请你注意加了⼀个条件“u=?(x)的反函数x=?1-(u)存在且可导”,你能否作出解释,为什么要加此条件?6.分部积分公式我们从微分公式d(uv)=v d u+u d v两边积分,即∫d(uv)=∫v d u+∫u d v由此导出不定积分的分部积分公式∫u d v=uv -∫v d u下⾯通过例⼦说明公式的⽤法.例2.5.22求∫x2ln x d x解.∫x2ln x d x=(将微分dln x算出)==.例2.5.23求∫x2sin x d x.解.原式=∫x2d(-cos x) (凑微分)=-x2cos x-∫(-cos x)d(x2) (⽤分部积分公式)=-x2cos x+∫2x cos x d x=-x2cos x+2∫x dsin x(第⼆次凑微分)=-x2cos x+2[x sin x-∫sin x d x] (第⼆次⽤分部积分公式)=-x2cos x+2x sin x+2cos x+C .例2.5.24求∫e x sin x d x.解.∫e x sin x d x=∫sin x d e x (凑微分)=e x sin x-∫e x dsin x(⽤分部积分公式)=e x sin x-∫e x cos x d x(算出微分)=e x sin x-∫cos x d e x(第⼆次凑微分)=e x sin x-[e x cos x-∫e x dcos x] (第⼆次⽤分部积分公式)=e x(sin x-cos x)-∫e x sin x d x(第⼆次算出微分)由此得:2∫e x sin x d x=e x(sin x-cos x)+2C因此∫e x sin x d x=(sin x-cos x)+C .注.(1)此例中在第⼆次凑微分时,必须与第⼀次凑的微分形式相同.否则若将∫e x cos x d x凑成∫e x dsin x,那将产⽣恶性循环,你可试试.(2)积分常数C可写在积分号∫⼀旦消失之后.例2.5.25求∫arctan x d x解.此题被积函数可看作x0arctan x,x0d x=d x,即适合分部积分公式中u=arctan x,v=x.故原式=x arctan x - ∫x d(arctan x) (⽤分部积分公式)=x arctan x - d x(算出微分)=x arctan x - (凑微分)=x arctan x - ln(1+x2)+C .⼩结.(1)分部积分公式常⽤于被积函数是两种不同类型初等函数之积的情形,例如x3arctan x,x3ln x 幂函数与反正切或对数函数x2sin x,x2cos x幂函数与正弦,余弦x2e x幂函数与指数函数e x sin x,e x cos x 指数函数与正弦,余弦等等.(2)在⽤分部积分公式计算不定积分时,将哪类函数凑成微分d v,⼀般应选择容易凑的那个.例如arctan x d,ln x d我们已学习了不定积分的⼏种常⽤⽅法,除了熟练运⽤这些⽅法外,在许多数学⼿册中往往列举了⼏百个不定积分公式,它们不是基本的,不需要熟记,但可以作为备查之⽤,称为积分表.思考题.你仔细观察分部积分公式,掌握其中使⽤的规律,特别是第⼀步凑微分时如何选择微分.7.积分表的使⽤除了基本积分公式之外,在许多数学⼿册中往往列举了⼏百个补充的积分公式,构成了积分表.下⾯列出本节已得到的基本积分公式.(1)∫0d x=C(2)=ln|x|+C(3)(m≠-1,x>0)(4)(a>0,a≠1)(5)(6)∫cos x d x=sin x+C(7)∫sin x d x=- cos x+C(8)∫sec2x d x=tan x+C(9)∫csc2x d x=- cot x+C(10)∫sec x tan x d x=sec x+C(11)∫csc x cot x d x=-csc x+C(12)=arcsin x+C(13)=arctan x+C(14)∫tan x d x=-ln|cos x|+C(15)∫cot x d x=ln|sin x|+C(16)=(a>0)(17)=(a>0)(18)(a>0)(19)=(a>0)(20)∫sec x d x=ln|sec x+tan x|+C(21)∫csc x d x=ln|csc x-cot x|+C利⽤积分表中的公式,可使积分计算⼤⼤简化.积分表的使⽤⽅法⽐较简单,现举⼀例说明之.例2.5.26求解.从积分表中查得公式则将a=3,b=-1,c=4代⼊上式并添上积分常数C即得解答:=.。

积分公式表

积分公式表

基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x =++⎰(5)arcsin x C =+⎰(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x=-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰(15)chxdx shx C =+⎰(16)2211tan xdx arc C a x a a =++⎰(17)2211ln ||2x adx C x a a x a-=+-+⎰ (18)sinxarc C a=+(19)ln(x C =++(20)ln ||x C =++(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。

2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。

3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2xx +=,21cos 2sin 2xx -=。

注:由[()]'()[()]()f x x dx f x d x ϕϕϕϕ=⎰⎰,此步为凑微分过程,所以第一类换元法也叫凑微分法。

(完整word版)基本积分表

(完整word版)基本积分表

基本积分表1、⎰+=c kx kdx 2、⎰++=+c a x dx x a a 11 3、⎰+=c x dx xln 1 4、⎰+=+c x dx xarctan 112 5、⎰+=-c x dx xarcsin 112 6、⎰+=c x xdx sin cos 7、⎰+-=c x xdx cos sin8、⎰⎰+==c x xdx dx xtan sec cos 122 9、⎰⎰+-==c x xdx dx xcot csc sin 122 10、⎰+=c x xdx x sec tan sec11、⎰+-=c x xdx x csc cot csc 12、⎰+=c e dx e x x13、⎰+=c aa dx a x x ln 14、⎰+=c chx shxdx 其中2xx e e shx --=为双曲正弦函数 15、⎰+=c shx chxdx 其中2xx e e chx -+=为双曲余弦函数 基本积分表的扩充16、⎰+-=c x xdx cos ln tan 17、⎰+=c x xdx sin ln cot18、⎰++=c x x xdx tan sec ln sec19、c x c x x xdx +=+-=⎰2tan ln cot csc ln csc 20、⎰+=+c a x a dx xa arctan 1122 21、⎰++-=-c a x a x a dx ax ln 21122 22、⎰+-+=-c xa x a a dx x a ln 21122 23、⎰+=-c a x dx x a arcsin 122 24、⎰+++=+c a x x dx a x 2222ln 1 25、⎰+-+=-c a x x dx a x 2222ln 1sinαsinβ=-[cos (α+β)—cos(α—β)]/2【注意右式前的负号】cosαcosβ=[cos (α+β)+cos(α—β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin (α+β)-sin (α—β)]/2sin α+sin β=2sin [(α+β)/2]·cos[(α-β)/2]sin α—sin β=2cos [(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α—β)/2]cos α—cos β=-2sin[(α+β)/2]·si n[(α—β)/2] 【注意右式前的负号】三角函数公式大全同角三角函数的基本关系倒数关系:tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α)1+cot^2(α)=csc^2(α)平常针对不同条件的常用的两个公式sin² α+cos² α=1 tan α *cot α=1一个特殊公式(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2]cos[(a—θ)/2] *2 cos[(θ+a)/2] sin[(a—θ)/2]=sin(a+θ)*sin(a—θ)锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA 余弦1。

积分表

积分表

基本不定积分表序言:微积分创立之初,牛顿与莱布尼茨分享荣誉。

虽其间发生很多在优先权上的争论,但最终依然走向了发展之正轨。

在微积分公式体系上,莱布尼茨对之要求甚严,并总结其基本微分表和基本积分表。

如今随微积分之发展,公式表逐渐全面,分类亦几乎覆盖各种不定积分。

积分表的编订对于积分运算可以说是必要,亦是数学发展之必要结果。

本表给出常用不定积分的计算公式和运算方法,以及每个积分的简要推演方法,其中引入了除一般之换元法,凑微分法,分部积分法之外,亦引入虚数单位,并使用虚数单位推演某些复杂的不定积分运算。

而对于简单的不定积分运算和基本的微分公式之反用,或均不在此给出推演方法,或仅以推演步骤简要之说明。

本表收录公式16组,151式。

公式一 基本初等函数的不定积分18式:幂函数11,1;(1).1ln ||, 1.x C x dx x C ααααα+⎧+≠-⎪=+⎨⎪+=-⎩⎰指数函数1(2).ln (3).x xx x a dx a Cae dx e C=+=+⎰⎰ 对数函数(4).log log log (5).ln ln a a a xdx x x x e C xdx x x x C=-+=-+⎰⎰三角函数(6).sin cos (7).cos sin (8).tan ln |cos |(9).cot ln |sin |11sin (10).sec ln |sec tan |ln 21sin (11).csc ln |csc cot |ln |tan |2xdx x C xdx x C xdx x C xdx x Cxxdx x x C Cxxxdx x x C C=-+=+=-+=++=++=+-=-+=+⎰⎰⎰⎰⎰⎰反三角函数22(12).arcsin arcsin 1(13).arccos arccos 1xdx x x x C dx x x x C=+-+=--+⎰⎰221(14).arctan arctan ln(1)21(15).arccot arccot ln(1)2xdx x x x Cxdx x x x C=-++=+++⎰⎰ 22(16).arcsec arcsec ln(1)(17).arccsc arccsc ln(1)xdx x x x x C xdx x x x x C=-+-+=++-+⎰⎰常数函数(18).Rdx Rx C =+⎰上述公式均为基本初等函数之不定积分,其中部分公式均可以由分部积分公式给出,特别的,对于正切函数,余切函数,正割函数与余割函数的不定积分,使用了诸多三角变换完成。

基本积分公式表

基本积分公式表

作业: P207 2(2)-(34)(双)
The end of Part 1
1 cos2 x dx 2
(1 2
cos2x ) 2
dx
1
dx
2
cos2 2
x
dx
x 2
1 2
co s2 x
dx
x 2
1 4
cos 2xd (2x)
x sin2x C 24
例14 cos 4 xdx
(1 cos2x )2 dx
2
( 1 cos2x cos2 2x ) dx
12
C.
12
12
例24

1
1 cos
x
dx.

1
1 cos
x
dx
1
1 cos x
cos x1 cos
x
dx
1 cos 1 cos2
x x
dx
1 cos x
sin2 x
dx
(
si
1 n2
x
cos x sin2 x
)dx
1 sin2
x
dx
1 sin2
x
d (sin
x)
cot x 1 C. sin x
基本积分公式表
(1) kdx kx C (k是常数)
(2) xdx x1 C, ( 1) 1
(3)
dx x
ln| x | C
(4)
1
1 x
2
dx
arctan x C
(5)
1 dx arcsin x C 1 x2
(6) cos xdx sin x C
(7) sin xdx cos x C

完整word版,高等数学常用积分公式查询表

完整word版,高等数学常用积分公式查询表

导数公式:基本积分表:三角函数的有理式积分:ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , (一)含有ax b +的积分(0a ≠)1.d x ax b +⎰=1ln ax b C a ++2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a +-++4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()xx ax b +⎰=1ln ax b C b x+-+ 6.2d ()xx ax b +⎰=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +⎰=21(ln )b ax b C a ax b++++ 8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b+-+-++ 9.2d ()xx ax b +⎰=211ln ()ax b C b ax b b x +-++的积分10.x C11.x ⎰=22(3215ax b C a -12.x x ⎰=22232(15128105a x abx b C a-+13.x=22(23ax b C a -14.2x=22232(34815a x abx b C a -+ 15.=(0)(0)C b C b ⎧+><16.=2a bx b --⎰17.d x x ⎰=b 18.2d x x ⎰=2a +(三)含有22x a ±的积分19.22d x x a +⎰=1arctan xC a a+ 20.22d ()n x x a +⎰=2221222123d 2(1)()2(1)()n n x n xn a x a n a x a ---+-+-+⎰21.22d xx a -⎰=1ln 2x a C a x a -++(四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)C b C b ⎧+>+<23.2d x x ax b +⎰=21ln 2ax b C a++24.22d x x ax b +⎰=2d x b xa a ax b-+⎰ 25.2d ()x x ax b +⎰=221ln 2x C b ax b++ 26.22d ()x x ax b +⎰=21d a xbx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx +-+28.22d ()x ax b +⎰=221d 2()2x xb ax b b ax b+++⎰ (五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac Cb ac +<+>30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分31.=1arshxC a +=ln(x C ++ 32.=C +33.x=C34.x=C +35.2x =2ln(2a x C ++36.2x =ln(x C +++37.=1ln aC a x +38.C +39.x 2ln(2a x C ++40.x =2243(25ln(88x x a a x C +++41.x ⎰C +42.x x ⎰=422(2ln(88x a x a x C+++43.d x x ⎰a C +44.x =ln(x C +++(0)a >的积分45.=1arch x xC x a+=ln x C ++ 46.C +47.x =C48.x =C +49.2x 2ln 2a x C ++50.2x =ln x C +++51.=1arccos aC a x +52.2C a x+53.x 2ln 2a x C -++54.x =2243(25ln 88x x a a x C -+++55.x ⎰C +56.x x ⎰=422(2ln 88x a x a x C -++57.x =arccos aa C x -+58.x =ln x C ++(0)a >的积分59.=arcsinxC a + 60.C +61.x =C +62.x =C +63.2x =2arcsin 2a x C a ++ 64.2x arcsinxC a-+65.=1C a +66.2C a x -+67.x 2arcsin 2a x C a++68.x =2243(52arcsin 88x x a x a C a-+69.x ⎰=C70.x x ⎰=422(2arcsin 88x a x x a C a-+71.x ln a a C x +72.x =arcsin xC a-+(0)a >的积分73.2ax b C +++74.x22ax b C +++75.x2ax b C +++76.=C +77.x 2C +78.x =C ++79.x =((x b b a C -+-+80.x =((x b b a C -+-+81.2arcsinC +()a b <82.x 2()4b a C - ()a b <(十一)含有三角函数的积分 83.sin d x x ⎰=cos x C -+84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C +87.sec d x x ⎰=ln tan()42x C π++=ln sec tan x x C ++ 88.csc d x x ⎰=ln tan 2xC +=ln csc cot x x C -+ 89.2secd x x ⎰=tan x C +90.2csc d x x ⎰=cot x C -+91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n----+⎰ 96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n x n x n x----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m nx x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n-+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tanx a b C ++22()a b >104.d sin xa b x +⎰C+22()a b <105.d cos xa b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a + 108.2222d cos sin xa xb x -⎰=1tan ln 2tan b x a C ab b x a ++-109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin x x C a+114.arcsin d x x x a⎰=22()arcsin 24x a x C a -+115.2arcsin d x x x a ⎰=3221arcsin (239x x x a C a +++116.arccos d x x a ⎰=arccos x x C a117.arccos d x x x a⎰=22()arccos 24x a x C a --+118.2arccos d x x x a ⎰=3221arccos (239x x x a C a -++ 119.arctan d x x a ⎰=22arctan ln()2x a x a x C a -++ 120.arctan d x x x a ⎰=221()arctan 22x a a x x C a +-+ 121.2arctan d x x x a ⎰=33222arctan ln()366x x a a x a x C a -+++ (十三)含有指数函数的积分122.d x a x ⎰=1ln x a C a+ 123.e d ax x ⎰=1e ax C a+ 124.e d ax x x ⎰=21(1)e ax ax C a-+ 125.e d n ax x x ⎰=11e e d n ax n ax n x x x a a --⎰ 126.d x xa x ⎰=21ln (ln )x x x a a C a a -+ 127.d n x x a x ⎰=11d ln ln n x n x n x a x a x a a--⎰ 128.e sin d ax bx x ⎰=221e (sin cos )ax a bx b bx C a b-++ 129.e cos d ax bx x ⎰=221e (sin cos )ax b bx a bx C a b +++130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d ax n n n b bx x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln x x x ⎰=ln ln x C +134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++ 135.(ln )d n x x ⎰=1(ln )(ln )d n n x x n x x --⎰ 136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有双曲函数的积分137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=lnch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m n m n ≠⎧⎨π=⎩ 146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩ 147.n I =20sin d n x x π⎰=20cos d n x x π⎰n I =21n n I n -- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-(n 为正偶数),0I =2π。

积分公式表精编版

积分公式表精编版

基本积分表(1)kdx kx C =+⎰ (k 是常数)(2)1,1x x dx C μμμ+=++⎰ (1)u ≠- (3)1ln ||dx x C x =+⎰(4)2tan 1dxarl x C x=++⎰ (5)arcsin x C =+⎰(6)cos sin xdx x C =+⎰ (7)sin cos xdx x C =-+⎰(8)21tan cos dx x C x =+⎰(9)21cot sin dx x C x=-+⎰(10)sec tan sec x xdx x C =+⎰ (11)csc cot csc x xdx x C =-+⎰ (12)x x e dx e C =+⎰(13)ln xxa a dx C a=+⎰,(0,1)a a >≠且 (14)shxdx chx C =+⎰ (15)chxdx shx C =+⎰ (16)2211tan xdx arc C a x a a=++⎰(17)2211ln ||2x adx C x a a x a -=+-+⎰ (18)sinxarc C a=+⎰(19)ln(x C =+(20)ln |x C =+⎰(21)tan ln |cos |xdx x C =-+⎰ (22)cot ln |sin |xdx x C =+⎰ (23)sec ln |sec tan |xdx x x C =++⎰ (24)csc ln |csc cot |xdx x x C =-+⎰注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。

2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。

3、复习三角函数公式:2222sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==21cos 2cos 2xx +=, 21cos 2sin 2xx -=。

注:由[()]'()[()]()f x x dx f x d x ϕϕϕϕ=⎰⎰,此步为凑微分过程,所以第一类换元法也叫凑微分法。

积分公式表,常用积分公式表

积分公式表,常用积分公式表

积分公式表1、基本积分公式: (1)(2)(3)(4)(5)(6)(7) (8)(8) (10) (11)2、积分定理:(1)()()x f dt t f x a ='⎥⎦⎤⎢⎣⎡⎰ (2)()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰ (3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰3、积分方法()()b ax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin =()22a x x f -=;设:t a x sec =()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv附:理解与记忆对这些公式应正确熟记.可根据它们的特点分类来记.公式(1)为常量函数0的积分,等于积分常数.公式(2)、(3)为幂函数 的积分,应分为与 . 当 时, ,积分后的函数仍是幂函数,而且幂次升高一次.特别当 时,有 .当 时,公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为,故( , )式右边的 是在分母,不在分子,应记清. 当 时,有 .是一个较特殊的函数,其导数与积分均不变.应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同.公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式.公式(10)是一个关于无理函数的积分公式(11)是一个关于有理函数的积分下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分.例1 求不定积分.分析:该不定积分应利用幂函数的积分公式.解:(为任意常数)例2 求不定积分.分析:先利用恒等变换“加一减一”,将被积函数化为可利用基本积分公式求积分的形式.解:由于,所以(为任意常数)例3 求不定积分.分析:将按三次方公式展开,再利用幂函数求积公式.解:(为任意常数 )例4 求不定积分.分析:用三角函数半角公式将二次三角函数降为一次.解:(为任意常数)例5 求不定积分.分析:基本积分公式表中只有但我们知道有三角恒等式:解:(为任意常数)同理我们有:(为任意常数)例6(为任意常数)。

《微积分》52 基本积分表

《微积分》52 基本积分表

中t是首次爆发后的天数, 如果第一天有50个病人, 试问在
第10天有多少个人被感染?
解 设在第t天有Q(t)个人被感染, 则
Q(t) (240t 3t2)dt 240 tdt 3 t2dt 120t2 t3 C.
由题意知当 t = 1时, Q(t) = 50. 代入上式可解出 C = –69 , 则 Q(t) 120t2 t3 69
(8) x2 1 dx
解 x4 2x2 dx x4 2x2 11dx (x2 1)2 1dx
x2 1
x2 1
x2 1
(9)
cos2
xdx 2
(x2
1)dx
1 x2
dx 1
1 x3 x arctan x C 3

cos2
xdx 2
1
cos 2
x
dx
1 2
(x
sin
x)
C
(10)
cos 2x sin x cos
x
dx.

cos 2x sin x cos
x
dx.
cos2 sin
x sin2 x x cos x
dx
2020年6月25日星期四
(cos x sin x)dx sin x cos x C.
例7 一种流感病毒每天以 (240t 3t2)人 / 秒 的速率增加, 其
csc x cot xdx csc x C
dx
arcsin x C 1 x2
dx
1 x2
arctan x C
以上基本积分公式是求不定积分的基础, 必须记牢!
例6 求下列不定积分
2020年6月25日星期四
dx
(1) x3

基本积分表

基本积分表

22kdx = kx + ca + 1 x a dx = x + c a + 11dx = ln x + cx 1 dx = arctan x + c1+x 2 1-1x 2 dx =arcsin x +ccos xdx = sin x + csin xdx = -cos x +c 1 dx = sec 2xdx =tan x +c cos 2 x 1 dx = csc 2 xdx = -cot x +c sin 2 x sec x tan xdx =sec x +c csc x cot xdx = -csc x +c xx e x dx = e x + cx a x dx = a + c ln a基本积分表1、 2、 3、 4、 5、 6、 7、 8、9、 10、 11、12、 13、 14、 15、shxdx = chx + c 其中 shxx - x e x - e -x chxdx = shx + c其中chx x - x e x + e -x 为双曲正弦函数 为双曲余弦函数基本积分表的扩充16、 tan xdx = -ln cos x +c17、 cot xdx = ln sin x +c18、 sec xdx = ln sec x + tan x +c19、 csc xdx = ln csc x - cot x + c = ln tan x + c2-x 24、 1 dx = ln x + x 2 + a 2 + c x2 + a 2 25、 1 dx = ln x + x 2 -a 2 + c x 2 - a 2sinαsinβ=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[( α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注 意右式 前的负号】20、1 dx = a2 + x 2 1x arctan + c aa22、 23、 22 a 2 - x 2dx = dx 1 ln 2a 1 ln 2a x -a x +a a +x a -x +c +c dx = arcsin + c 21、三角函数公式大全同角三角函数的基本关系倒数关系: tanα ·cotα =1 sinα ·cscα =1 cosα ·secα =1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 平常针对不同条件的常用的两个公式sin² α+cos² α=1 tan α *cot α=1 一个特殊公式(sina+sinθ )*(sina+sinθ )=sin(a+θ )*sin(a-θ) 证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ) 锐角三角函数公式正弦:sin α= ∠ α的对边/ ∠ α的斜边余弦:cos α= ∠ α的邻边/∠ α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切tan2A=(2tanA)/(1-tan^2(A)) 三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+ cosαsinβsin(α-β)=sinαcosβ -cosαsinβ积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2 双曲函数sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一:设α 为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosα tan(2kπ+α)= tanαcot (2kπ+α)= cotα 公式二:设α 为任意角,π+α 的三角函数值与α 的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三:任意角α 与-α 的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α 与α 的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosα tan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α 与α 的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α) = -tanαcot(2π-α)= -cotα 公式六:π/2±α 及3π/2±α 与α 的三角函数值之间的关系:sin(π/2+α)= cosα cos(π/2+α)= -sinαtan(π/2+α)= -cotα co(t π/2+α )= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan (π/2-α)= cotαcot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z)A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt +arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……} 中的内容诱导公式sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))²] cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]tanα=2tan(α/2)/[1-(tan(α/2))²] 其它公式(1) (sinα)²+(cosα)²=1 (2)1+(tanα)²=(secα)² (3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-Ctan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得tanA+tanB+tanC=tanAtanBtanC 得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC 可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC (8)(sinA)²+ (sinB)²+ (sinC)²=2+2cosAcosBcosC 其他非重点三角函数csc(a) = 1/sin(a) sec(a) =1/cos(a)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

(完整版)高等数学积分表大全

(完整版)高等数学积分表大全

常 用 积 分 公 式(一)含有ax b +的积分(0a ≠)1.d xax b +⎰=1ln ax b C a++ 2.()d ax b x μ+⎰=11()(1)ax b C a μμ++++(1μ≠-)3.d x x ax b +⎰=21(ln )ax b b ax b C a+-++ 4.2d x x ax b +⎰=22311()2()ln 2ax b b ax b b ax b C a ⎡⎤+-++++⎢⎥⎣⎦5.d ()xx ax b +⎰=1lnax b C b x +-+ 6.2d ()xx ax b +⎰=21ln a ax b C bx b x +-++ 7.2d ()x x ax b +⎰=21(ln )b ax b C a ax b++++8.22d ()x x ax b +⎰=231(2ln )b ax b b ax b C a ax b+-+-++ 9.2d ()xx ax b +⎰=211ln ()ax b C b ax b b x +-++的积分10.x C11.x ⎰=22(3215ax b C a -+12.x x ⎰=22232(15128105a x abx b C a-+13.x=22(23ax b C a -+14.2x=22232(34815a x abx b C a -++ 15.=(0)(0)C b Cb +><⎧⎪⎪⎩16.=2a bx b -- 17.x=b + 18.2d x x ⎰=2a + (三)含有22x a ±的积分19.22d x x a +⎰=1arctan x C a a + 20.22d xx a -⎰=1ln 2x a C a x a-++ 21.22d ()n x x a +⎰=2221222123d 2(1)()2(1)()n n x n xn a x a n a x a ---+-+-+⎰ (四)含有2(0)ax b a +>的积分22.2d x ax b +⎰=(0)(0)x C b C b ⎧+>⎪⎪⎨+<23.2d x x ax b +⎰=21ln 2ax b C a ++ 24.22d x x ax b +⎰=2d x b x a a ax b -+⎰ 25.2d ()x x ax b +⎰=221ln 2x C b ax b++ 26.22d ()x x ax b +⎰=21d a x bx b ax b --+⎰27.32d ()x x ax b +⎰=22221ln 22ax b a C b x bx +-+28.22d ()x ax b +⎰=221d 2()2x xb ax b b ax b+++⎰ (五)含有2ax bx c ++(0)a >的积分29.2d x ax bx c ++⎰=22(4)(4)C b ac Cb ac +<+>30.2d x x ax bx c ++⎰=221d ln 22b x ax bx c a a ax bx c++-++⎰(0)a >的积分31.=1arshxC a +=ln(x C ++ 32.C + 33.xC34.x=C +35.2x2ln(2a x C ++ 36.2x=ln(x C +++37.=1C a + 38.2C a x -+ 39.x2ln(2a x C ++ 40.x=2243(25ln(88x x a a x C ++++41.x ⎰C42.x x ⎰=422(2ln(88x a x a x C +++43.x a C ++44.x =ln(x C +++(0)a >的积分45.=1arch x xC x a +=ln x C +46.C + 47.x C +48.x =C +49.2x 2ln 2a x C ++50.2x =ln x C +++51.=1arccos a C a x + 52.C +53.x 2ln 2a x C +54.x =2243(25ln 88x x a a x C -+++55.x ⎰C56.xx ⎰=422(2ln 88x a x a x C -++57.x arccos aa C x+58.x =ln x C +++(0)a >的积分59.=arcsinx C a + 60.C +61.x =C 62.x C +63.2x =2arcsin 2a x C a + 64.2x arcsinxC a-+65.=1C a + 66.C +67.x 2arcsin 2a x C a+68.x =2243(52arcsin 88x xa x a C a -+69.x ⎰=C +70.x x ⎰=422(2arcsin 88x a x x a C a-++71.x ln a a C x-+72.x =arcsin xC a-+(0)a >的积分73.2ax b C +++74.x22ax b C +++75.x2ax b C -+++76.=C +77.x 2C78.x =C +或79.x =((x b b a C --+80.x =((x b b a C --81.C ()a b <82.x 2()4b a C -()a b < (十一)含有三角函数的积分83.sin d x x ⎰=cos x C -+ 84.cos d x x ⎰=sin x C + 85.tan d x x ⎰=ln cos x C -+ 86.cot d x x ⎰=ln sin x C +87.sec d x x ⎰=ln tan()42xC π++=ln sec tan x x C ++88.csc d x x ⎰=ln tan2xC +=ln csc cot x x C -+ 89.2sec d x x ⎰=tan x C + 90.2csc d x x ⎰=cot x C -+ 91.sec tan d x x x ⎰=sec x C + 92.csc cot d x x x ⎰=csc x C -+93.2sin d x x ⎰=1sin 224x x C -+ 94.2cos d x x ⎰=1sin 224x x C ++ 95.sin d n x x ⎰=1211sin cos sin d n n n x x x x n n ----+⎰96.cos d n x x ⎰=1211cos sin cos d n n n x x x x n n---+⎰ 97.d sin n x x ⎰=121cos 2d 1sin 1sin n n x n xn x n x----⋅+--⎰ 98.d cos n x x ⎰=121sin 2d 1cos 1cos n n x n xn x n x---⋅+--⎰ 99.cos sin d m n x x x ⎰=11211cos sin cos sin d m n m n m x x x x x m n m n-+--+++⎰ =11211cos sin cos sin d m n m n n x x x x x m n m n+----+++⎰ 100.sin cos d ax bx x ⎰=11cos()cos()2()2()a b x a b x C a b a b -+--++-101.sin sin d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b -++-++-102.cos cos d ax bx x ⎰=11sin()sin()2()2()a b x a b x C a b a b ++-++-103.d sin xa b x +⎰tanxa b C ++22()a b >104.d sin x a b x +⎰C+22()a b <105.d cos xa b x +⎰)2x C +22()a b >106.d cos x a b x +⎰C +22()a b <107.2222d cos sin x a x b x +⎰=1arctan(tan )bx C ab a +108.2222d cos sin xa xb x-⎰=1tan ln 2tan b x a C ab b x a ++- 109.sin d x ax x ⎰=211sin cos ax x ax C a a -+ 110.2sin d x ax x ⎰=223122cos sin cos x ax x ax ax C a a a -+++111.cos d x ax x ⎰=211cos sin ax x ax C a a ++112.2cos d x ax x ⎰=223122sin cos sin x ax x ax ax C a a a+-+(十二)含有反三角函数的积分(其中0a >)113.arcsin d x x a ⎰=arcsin xx C a++114.arcsin d xx x a ⎰=22()arcsin 24x a x C a -++ 115.2arcsin d xx x a⎰=3221arcsin (239x x x a C a ++116.arccos d x x a ⎰=arccos xx C a-+117.arccos d xx x a⎰=22()arccos 24x a x C a --118.2arccos d xx x a⎰=3221arccos (239x x x a C a -+119.arctan d x x a ⎰=22arctan ln()2x ax a x C a -++120.arctan d x x x a ⎰=221()arctan 22x aa x x C a +-+121.2arctan d xx x a⎰=33222arctan ln()366x x a a x a x C a -+++(十三)含有指数函数的积分122.d x a x ⎰=1ln x a C a + 123.e d ax x ⎰=1e ax C a + 124.e d ax x x ⎰=21(1)e ax ax C a -+ 125.e d n ax x x ⎰=11e e d n ax n ax nx x x a a--⎰126.d x xa x ⎰=21ln (ln )x x x a a C a a -+ 127.d n x x a x ⎰=11d ln ln n x n x nx a x a x a a --⎰ 128.e sin d ax bx x ⎰=221e (sin cos )axa bxb bx C a b -++ 129.e cos d ax bx x ⎰=221e (sin cos )ax b bx a bx C a b+++ 130.e sin d ax n bx x ⎰=12221e sin (sin cos )ax n bx a bx nb bx a b n--+ 22222(1)e sin d ax n n n b bx x a b n --++⎰131.e cos d ax n bx x ⎰=12221e cos (cos sin )ax n bx a bx nb bx a b n-++ 22222(1)e cos d axn n n b bx x a b n--++⎰ (十四)含有对数函数的积分132.ln d x x ⎰=ln x x x C -+ 133.d ln xx x⎰=ln ln x C + 134.ln d n x x x ⎰=111(ln )11n x x C n n +-+++135.(ln )d n x x ⎰=1(ln )(ln )d n nx x n x x --⎰ 136.(ln )d m n x x x ⎰=111(ln )(ln )d 11m n m n n x x x x x m m +--++⎰ (十五)含有双曲函数的积分137.sh d x x ⎰=ch x C + 138.ch d x x ⎰=sh x C + 139.th d x x ⎰=lnch x C + 140.2sh d x x ⎰=1sh224x x C -++ 141.2ch d x x ⎰=1sh224x x C ++ (十六)定积分142.cos d nx x π-π⎰=sin d nx x π-π⎰=0 143.cos sin d mx nx x π-π⎰=0144.cos cos d mx nx x π-π⎰=0,,m nm n ≠⎧⎨π=⎩145.sin sin d mx nx x π-π⎰=0,,m nm n≠⎧⎨π=⎩146.0sin sin d mx nx x π⎰=0cos cos d mx nx x π⎰=0,,2m n m n ≠⎧⎪⎨π=⎪⎩147. n I =20sin d nx x π⎰=20cos d n x x π⎰n I =21n n I n-- 1342253n n n I n n --=⋅⋅⋅⋅- (n 为大于1的正奇数),1I =1 13312422n n n I n n --π=⋅⋅⋅⋅⋅-(n 为正偶数),0I =2π。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本积分表1、⎰+=c kx kdx2、⎰++=+c a x dx x a a 113、⎰+=c x dx xln 1 4、⎰+=+c x dx xarctan 112 5、⎰+=-c x dx xarcsin 112 6、⎰+=c x xdx sin cos 7、⎰+-=c x xdx cos sin8、⎰⎰+==c x xdx dx x tan sec cos 1229、⎰⎰+-==c x xdx dx xcot csc sin 122 10、⎰+=c x xdx x sec tan sec11、⎰+-=c x xdx x csc cot csc 12、⎰+=c e dx e x x13、⎰+=c aa dx a x x ln 14、⎰+=c chx shxdx 其中2xx e e shx --=为双曲正弦函数 15、⎰+=c shx chxdx 其中2xx e e chx -+=为双曲余弦函数基本积分表的扩充16、⎰+-=c x xdx cos ln tan17、⎰+=c x xdx sin ln cot18、⎰++=c x x xdx tan sec ln sec 19、c x c x x xdx +=+-=⎰2tan ln cot csc ln csc 20、⎰+=+c a x a dx xa arctan 1122 21、⎰++-=-c a x a x a dx ax ln 21122 22、⎰+-+=-c xa x a a dx x a ln 21122 23、⎰+=-c a x dx x a arcsin 122 24、⎰+++=+c a x x dx a x 2222ln 1 25、⎰+-+=-c a x x dx a x 2222ln 1sinαsinβ=-[cos(α+β)-cos(α-β)]/2【注意右式前的负号】 cosαcosβ=[cos(α+β)+cos(α-β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α+β)-sin(α-β)]/2sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】三角函数公式大全同角三角函数的基本关系倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=c sc^2(α)平常针对不同条件的常用的两个公式sin² α+cos² α=1 tan α *cot α=1一个特殊公式(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ)证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin (a+θ)*sin(a-θ)锐角三角函数公式正弦:sin α=∠α的对边/∠α 的斜边余弦:cos α=∠α的邻边/∠α的斜边正切:tan α=∠α的对边/∠α的邻边余切:cot α=∠α的邻边/∠α的对边二倍角公式正弦sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切tan2A=(2tanA)/(1-tan^2(A))三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a) 半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2]cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)两角和公式cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+ cosαsinβsin(α-β)=sinαcosβ -cosαsinβ积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2双曲函数sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot (2kπ+α)= cotα 公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot (-α)= -cotα 公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan (π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A² +B² +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容诱导公式sin(-α) = -sinα cos(-α) = cosαtan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+(tan(α/2))²] cosα=[1-(tan(α/2))²]/[1+(tan(α/2))²]tanα=2tan(α/2)/[1-(tan(α/2))²]其它公式(1) (sinα)²+(cosα)²=1 (2)1+(tanα)²=(secα)² (3)1+(cotα)²=(cscα)² 证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-Ctan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC 得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC (8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC 其他非重点三角函数csc(a) = 1/sin(a) sec(a) =1/cos(a)编辑本段内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。

相关文档
最新文档