红外图像非均匀性校正及增强算法研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外图像非均匀性校正及增强算法研究
受限于制造工艺的约束,红外焦平面中各探测像元的光电响应率不一致,即存在非均匀性问题,导致图像中出现固定样式噪声,且具有缓慢的时间漂移性。

并且,红外探测器的光电响应动态范围较大,而单幅图像场景的温度范围通常在红外探测器总体动态范围中占比小,导致原始红外图像对比度低、物体边界模糊。

因此,非均匀性校正和图像增强是必不可少的红外图像预处理步骤。

本文将围绕基于场景的非均匀性校正和红外图像增强技术展开研究,论文的主要研究内容如下:1.凝视型红外探测器中,传统的基于神经网络的非均匀性校正方法通常假设固定样式噪声满足独立同分布,但在低成本非制冷探测器中,非均匀性的条纹噪声强,噪声分布特性不满足假设,导致现有方法难以兼顾边缘保护与条纹噪声抑制。

针对该问题,本文提出了基于自适应稀疏表示以及局部全局联合约束学习率的非均匀性校正方法,引入稀疏表示理论,利用干净的红外图像集训练出的过完备字典中的原子可稀疏地表示图像场景信息的特性,在自适应的误差容限内重建图像,从而保护图像边缘、将噪声成分当作冗余去除。

实验结果表明,在均方根误差指标上,本方法相比传统方法降低了1.1652至1.9107不等、降低了约17.92%至26.37%,能够在保护图像边缘的同时有效去除包括条纹噪声在内的固定样式噪声。

2.扫描型红外探测器中,若直接采用凝视型探测器的非均匀性校正方法,则仍需数百帧图像计算校正系数,算法收敛慢。

传统的扫描型探测器校正方法利用扫描成像的特性逐列(假设沿行扫描)更新校正系数,在单帧图像内完成校正。

然而,单帧图像内场景辐射多样性通常有限,导致传统方法易陷入局部最优
解。

对于可拍摄连续图像序列、不要求单帧完成校正的实时成像应用,本文提出了基于图像配准的扫描型红外探测器的非均匀性校正方法,利用帧间运动信息来提高校正精度,并结合扫描成像特性加快算法收敛。

实验结果表明,本方法仅需十几对配准图像对便能收敛,收敛速度快;在粗糙度指标上,本方法相比传统方法降低了0.0072至0.0306不等、降低了约8.15%至27.39%,减少了因单帧图像辐射多样性不足导致的校正误差,有效提高了校正精度。

3.在红外图像增中,基于概率直方图的方法应用广泛。

然而,在安全监控、军事侦查等领域中,目标距离远、在图像中所占像素数少,其灰度级的出现概率低,而背景灰度级出现概率高,导致易出现背景过增强、目标欠增强。

针对该问题,本文提出了基于显著度权重的全局映射红外图像增强方法,利用目标的显著度高、背景的显著度低的特性,计算出一种新的灰度级显著度权重。

在该显著度权重中,目标灰度级的权值大于背景灰度级的权值,从而能够重点增强目标与背景之间的对比度。

实验结果表明,在模糊线性指数上,本方法相比传统方法降低了0.0404至0.1740不等、降低了约15.33%至40.48%,当目标在图像中所占像素数少时能有效抑制背景过增强、目标欠增强问题。

相关文档
最新文档