天津大学工程数学基础新版习题答案

合集下载

《工程数学基础》试卷

《工程数学基础》试卷

天津大学工程硕士研究生《工程数学基础》试卷 (共8页)______学院 专业________班,姓名 学号一. 判断 (每小题1分,共10分)1.Hermite 矩阵n n C A ⨯∈是负定的充要条件为A 的各阶顺序主子式均小于零. ( )2.线性算子Y X T →:的零空间)(T N 是X 的线性子空间. ( ) 3.任意多个闭集的并仍然是闭集. ( )4.在Banach 空间中,Cauchy 序列与收敛序列是等价的. ( ) 5.正规矩阵的最小多项式无重零点. ( )6.设)()(x N x L n n 和分别是)(x f 在区间],[b a 上以b x x x a n ≤<<<≤ 10为节点的n 次Lagrange 插值多项式和Newton 插值多项式,则)()(x N x L n n =. ( )7.用Newton-Cotes 公式计算⎰ba dx x f )(的近似值时节点取得越多则精度越高.( )8.线性空间],[b a P n 是n 维的. ( ) 9.2)2,,(2=Ti i . ( )10.线性算子).,().,(:Y XY X T →是有界的充要条件为存在数0>M 使得对任意的X x ∈有M Tx Y ≤成立. ( )二. 填空 (每小题1分,共10分) 1.设(A = 则 inf A = .2. 已知4阶矩阵A 的特征多项式为22()(1)(4)f λλλ=+-, 则A 的初等因子组为 .3.设33⨯∈C A 的Jordan 标准形2122J ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则A 的有理标准形_______________C =.4. 设1i 0211i 01A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦则F A = . 5. ()[()]ij n n A t a t ⨯=可导,则d ()d T A t t= . 6. 已知2e ()1tt A t t ⎡⎤=⎢⎥⎣⎦则 1()d A t t ⎰= .7. 设M 求解线性方程组b Ax =的Jacobi 迭代矩阵,则Jacobi 迭代格式收敛的充要条件是()M ρ .8. 设{}nk k x l 0)(=是 ],[b a 上的以b x x x a n ≤<≤,,10 为节点的Lagrange 插值函数则∑==nk k x l 0)( .9. 设n 为奇数,则1+n 个求积节点的Newton-Cotes 求积公式的代数精度最低为 .10. 方阵A 可对角化的充要条件是: A 的最小多项式 .三.计算题 (每小题10分,共70分) 1. 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=163053064A ,(1)求E A λ-的初等因子组;(2) 求A 的Jordan 标准形J .2. 设126103114--⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦A , (1)求E A λ-的不变因子;(2)求A 的有理标准形C .3.设214030021A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, (1)求A 的最小多项式()ϕλ; (2)求e At . 4. 已知函数)(x f y =的数值如下:用3次插值多项式计算)1973(f 的近似值(计算过程及结果均保留至小数点后第2位)。

天津大学工程与科学计算课后习题

天津大学工程与科学计算课后习题

(3)设线性方程组为

2x1 2x1
+ 2x2 − 5x2
= =
1 3
则解此方程组的Jacobi格式的敛散性为( )。
2. 判断题:(请在你认为正确的叙述后面的括号内打”√”,否则打”×”) (1) 若A为严格行对角占优阵,则求解线性方程组Ax = b的Jacobi迭代格式收
敛。
(2) 若A ∈ Rn×n是正定矩阵,则求解线性方程组Ax = b的Jacobi迭代格式收敛。 (3) SOR 迭代格式收敛的充分必要条件是ω ∈ (0, 2)。 (4) M ∈ Mn×n(R)是求解线性方程组Ax = b的Jacobi 迭代矩阵,若A是严格对角 占优的,则||M||∞ < 1; (5) 设线性方程组为Ax = b,若A是正定矩阵,则SOR迭代格式收敛.
0.001x1 + 2.000x2 + 3.000x3 = 1.000 −1.000x1 + 3.712x2 + 4.623x3 = 2.000 −2.000x1 + 1.072x2 + 5.643x3 = 3.000
(计算过程及结果均保留至小数点后第3位)
38 第一章 代数方程组的解法
当condA
请在你认为正确的叙述后面的括号内打否则打cotes系数只与n有关与区间长度无关用newtoncotes公式计算xdx的近似值时节点取的越多则精度越高当n为偶数时newtoncotes公式的代数精度至少等于求积节点的个数确定下列求积公式中的参数使其代数精度不小于二次并求出所得求积公式的代数精度xdxa0110第三章数值积分xdxafx1中的待定参数第二节第十二讲复化求积公式与romberg算法119式3214两端同乘以i1qhi1qhp1i1均为与h无关的常数则有2h逼近i的误差降低为一般地选取q为满足的正数由此得到序列im1m1h逼近i的误差由下面的定理给出定理321的截断误差由式3214给出则由式3215表示的im1m1m2其中am1此定理可以对m采用数学归纳法证明此处从略1h逐步加速去逼近的方法称为richardson外推算法

工程数学基础2019级答案

工程数学基础2019级答案

2019–2020学年第二学期《工程数学基础》试卷标准答案及评分标准考试时间:2020-9-12一、判断题1.×2.×3.×4.5.×6.7.8.×9.×10. 11.×12. 13.×14. 15.×16. 17. 18.×19.×20.×二、填空题1.A c ∩B c 2.−3 3.Y 4.0 5.b−a 6.07.λ−18.09.110.2+√211.0cos x3−x2sin x3e x2x1e x2012.213.−2/5<α<014.16/4515.h2[f(a)+2∑n−1i=1f(x i)+f(b)]16.f(4)(ξ)4!x2(x−2)2,ξ∈(0,2)17.618.2126x+21319.15(b5−a5)20.(0,0.278]三、解:¯A=22−1141−10−14−2−1−8−→4−2−1−81−10−122−114(1分)−→4−2−1−80−1214103−1218−→4−2−1−803−12180−12141−→4−2−1−803−121800164(3分)回代解得x3=24,x2=10,x1=9,即x=(9,10,24)T.(4分)Jacobi迭代格式为x(k+1)1=14·(−2x(k)2−2x(k)3+1),x(k+1)2=12·(−x(k)1−x(k)3+3),x(k+1)3=12·(−x(k)1−x(k)2+7),k=0,1,···.(6分)Jacobi迭代矩阵为M=D−1(L+U)=141212·0−2−2−10−1−1−10=0−12−12−120−12−12−12,由|λE−M|=λ3−34+14=(λ+1)(λ−12)2=0解得M的特征值为λ1,2=12,λ3=−1,所以ρ(M)=1,从而Jocobi迭代发散.(8分)四、解:构造差商表如下(3分)表1:差商表x y 一阶差商二阶差商三阶差商012−3−23−4−1135234315三次Newton 插值多项式N 3(x )=1−2(x −0)+13(x −0)(x −2)+15(x −0)(x −2)(x −3)=15x 3−23x 2−2215x +1,(4分)Newton 插值公式的余项R 3(x )=f [0,2,3,5,x ]x (x −2)(x −3)(x −5).(6分)五、解:(1)λE −A =λ020λ−10−10λ−3−→ −10λ−30λ−10λ02 −→ −10λ−30λ−10002+(λ−3)·λ−→ 10λ−30λ−1000λ2−3λ+2,(4分)所以A 的最小多项式m (λ)=λ2−3λ+2=(λ−1)(λ−2),且J =200010001,C = 10000−2013.(7分)(2)由A 的最小多项式为φ(λ)=(λ−1)(λ−2),设e tA =a 0(t )+a 1(t )A =T (tA ),(2分)因为T (tA )与e tA 在σ(A )={1,2}上的值相同,故有a 0(t )+a 1(t )=e t ,a 0(t )+2a 1(t )=e 2t ,(4分)解得a 1(t )=e 2t −e t ,a 0(t )=2e t −e 2t ,所以e tA =(2e t −e 2t )E +(e 2t −e t )A=2e t −e 2t 02e t −2e 2t 0e t 0e 2t −e t2e 2t −e t(6分)所以初值问题的解e tA= 2e t −e 2t 02e t −2e 2t 0e t 0e 2t −e t 02e 2t −e t · 101= 4e t −3e 2t 03e 2t −2e t.(8分)六、解:做变换x =12(1+t ),t ∈[−1,1],故t =2x −1.代入得f (x )=14(1+t )2 φ(t ).(2分)对φ(t )在[−1,1]上用Legendre 多项式做最佳平方逼近,设其为¯S ∗1(t )=a 0P 0(t )+a 1P 1(t )则a 0=12∫1−114(t +1)2dt =13,a 1=32∫1−114(t +1)2·tdt =12,(4分)因此有¯S ∗1(t )=13+12t,S ∗1(x )=13+12(2x −1)=x −16.(6分)平方误差为δ2=12∥φ(t )−¯S ∗1(t )∥22=12∫11142(t +1)4dt −121∑k =022k +1a 2k =12(25−2·132−23·122)=1180≈5.56×10−3.(8分)七、解:S 22=4T 23−T 224−1,从而有1=T 23=(3S 22+T 22)/4≈0.401812.其它的有2=S 21=4T 22−T 214−1≈0.400432,3=C 21=42S 22−S 2142−1≈0.400053.八、解:令z =y ′,初值问题化为y ′=z,z ′=(1+x 2)y +1,(0<x ≤1),y (0)=1,z (0)=3.(2分)解此问题的标准Runge-Kutta 格式为y n +1=y n +h 6(k 1+2k 2+2k 3+k 4),z n +1=z n +h 6(l 1+2l 2+2l 3+l 4),k 1=z n ,l 1=(1+x 2n )y n +1,k 2=z n +h 2l 1,l 2=[1+(x n +h 2)2](y n +h2k 1)+1,k 3=z n +h 2l 2,l 2=[1+(x n +h 2)2](y n +h 2k 2)+1,k 4=z n +hl 3,l 4=[1+(x n +h )2](y n +hk 3)+1,y 0=1,z 0=3,(n =0,1,···,N −1)(6分)九、证明:(1)由于(x n )和(y n )都是X 中的Cauchy 序列,则对∀ε>0,∃N 1,N 2∈N ,使得当m,n >N 1时,∥x m −x n ∥<ε;当m,n >N 2时,∥y m −y n ∥<ε.令N =max {N 1,N 2},则当m,n >N 时,有|∥x m −y m ∥−∥x n −y n ∥|≤∥(x m −y m )−(x n −y n )∥≤∥x m −y m ∥+∥x n −y n ∥<ε2+ε2=ε这表明(∥x n −y n ∥)是R 中Cauchy 的序列,由R 的完备性知,数列(∥x n −y n ∥)收敛.(5分)(2)由A 为Hermite 正定矩阵知,存在n 阶酉矩阵U 使得U H AU =diag (λ1,···,λn ).由于A为正定矩阵,因此λi>0,i=1,···,n.令P1=U·diag(1/√λ1, (1)√λn),则P1非奇异,且P H1AP1=E.(3分)同时,显然P H1BP1是Hermite矩阵,因此存在n阶酉矩阵P2,使得P H 2(P H1BP1)P2=diag(µ1,µ2,···,µn),这里µ1,µ2,···,µn为Hermite矩阵P H1BP1的特征值,故为实数.(4分)令P=P1P2,则P非奇异,且P H AP=P H2(P H1AP1)P2=E,P H BP=P H2(P H1BP1)P2=diag(µ1,µ2,···,µn).(5分)。

天津大学工程数学基础新版习题答案

天津大学工程数学基础新版习题答案

3.满; 4. sup E
2 , inf E 3 ; 5. 0 ; 6.0; 7. n ; 8. Y .
B
1. 证
y f ( A B) , x A B 使 得 y f ( x) . 由 x A B , 得 x A , 且 x B 故 y f ( x) f ( A) 且 y f ( B) ,即 y f ( A) f ( B) ,因此 f ( A B) f ( A) f ( B) .
0 ,
T T
E22
c
d 0
b 0
d
b
0 E11 bE12 0 E21 dE22 ,即 E20 0 b 0 d ,
a 0 A c 0
0 b
a 0 0 d c
0 b . 0 0 d
当 f 是单射时,只需证明 f ( A) f ( B) f ( A B) 即可:
y f( A ) f( B ) R ( f 由 )f , 是单射知 1x X , 使得 y f( x ).
y f( 且 A ), y f( B ),
x A且x B,即x A B, 从而y f ( x) f ( A B), 故 f ( A) f ( B) f ( A B) .
( f g )(0) ( f g )(0) f (0) g (0) f (0) g (0) [ f (0) f (0)] [ g (0) g (0)] 0 0 0,即 f g W ;( f )(0) ( f )(0) f (0) f (0) [ f (0) f (0)] 0 0, 即 f W .

天津大学版工程力学习题答案_第六章

天津大学版工程力学习题答案_第六章

习 题6−1作图示杆件的轴力图。

解:在求AB 段内任一截面上的轴力时,在任一截面1−1处截断,取左段为脱离体(图c ),并设轴力F N1为拉力。

由平衡方程求出:kN 201N =F同理,可求得BC 段任一截面上的轴力(图d )为kN 204020N2-=-=F求CD 段内的轴力时,将杆截开后取右段为脱离体,并设轴力F N 3为拉力(图e )。

由kN002525,0N3N3==+--=∑F F Fx同理,可得DE 段内任一横截面上的轴力F N 4为(图f )kN 254N4==F F按轴力图作图规则,作出杆的轴力图(图g )。

6−2 作图示杆件的轴力图。

已知:F =3kN 。

解:取图示脱离体,并由对应的脱离体平衡求出轴力分别为:30040040kN20kN 25kN(a )N2 F (b )(c ) (d )(e )20F N 图(kN )(g )习题6−1图(f )作轴力图6−3 设在题6−1中杆件的横截面是10mm 20mm 的矩形,试求各杆件截面上的应力值。

解:由习题6-1解知杆件各段轴力,其对应的应力分别为:6−4 图示一圆周轴CD 与套管 AB 紧密配合。

现欲用力F 将轴自套管内拔出。

设轴与套管间的摩擦力q (按单位面积计)为常数。

已知q 、a 、b 及d ,试求:(1) 拔动轴CD 时所需的F值;(2) 分别作出轴CD 和套管 AB 在F 力作用下的轴力图。

解:(1)F 应等于轴与套管间的摩擦力,即 F=q πdb(2)轴CD 与套管的轴力图如图b 6−5在图示结构中,所有各杆都是钢制的,横截面面积均等于3×10-3mm2,力F =100kN 。

求各杆的应力。

解:求各杆的轴力,取B 节点为脱离体,由节点平衡FF轴力图q πdbq πdb图b取C 节点为脱离体,有求各杆应力6−6图示一三角架,由两杆AB 和BC 组成,该两杆材料相同,抗拉和抗压许用应力均为[σ],截面面积分别为A 1和A 2。

天津大学版工程力学习题答案 第十章

天津大学版工程力学习题答案 第十章

习题10−1一工字型钢梁,在跨中作用集中力F,已知l=6m,F=20kN,工字钢的型号为20amax查表知20a工字钢3cm237=zW则MPa6.126Pa106.126102371030663maxmax=⨯=⨯⨯==-zWMσ10−2一矩形截面简支梁,受均布荷载作用,梁的长度为l,截面高度为h,宽度为b,材料的弹性模量为E,试求梁下边缘的总伸长。

解:梁的弯矩方程为222qxqlxxM-=则曲率方程为()()⎪⎭⎫⎝⎛-==2212111qxqlxEIEIxMx zzρ梁下边缘的线应变()()⎪⎭⎫⎝⎛-==2212122qxqlxEIhxhxzρε下边缘伸长为()2320221212EbhqldxqxqlxEIhdxxllzl=⎪⎭⎫⎝⎛-==∆⎰⎰ε10−3已知梁在外力作用下发生平面弯曲,当截面为下列形状时,试分别画出正应力沿横截面高度的分布规律。

解:各种截面梁横截面上的正应力都是沿高度线性分布的。

中性轴侧产生拉应力,另一侧产生压应力。

10−4 一对称T形截面的外伸梁,梁上作用均布荷载,梁的尺寸如图所示,已知l=1.5m,q=8KN/m,求梁中横截面上的最大拉应力和最大压应力。

qbhC解:1、设截面的形心到下边缘距离为y 1 则有 cm 33.741084104104841=⨯+⨯⨯⨯+⨯⨯=y则形心到上边缘距离 cm 67.433.7122=-=y 于是截面对中性轴的惯性距为42323cm 0.86467.24101241033.3841284=⎪⎪⎭⎫ ⎝⎛⨯⨯+⨯+⎪⎪⎭⎫ ⎝⎛⨯⨯+⨯=z I2、作梁的弯矩图设最大正弯矩所在截面为D ,最大负弯矩所在截面为E ,则在D 截面MPa 08.15Pa 1008.15100.8641033.710778.168231max t,=⨯=⨯⨯⨯⨯==--y I M z D σ MPa 61.9Pa 1061.9100.8641067.410778.168232max c,=⨯=⨯⨯⨯⨯==--y I M z D σ 在E 截面上MPa 40.5Pa 1040.5100.8641067.4100.168232max t,=⨯=⨯⨯⨯⨯==--y I M z E σ MPa 48.8Pa 1048.8100.8641033.7100.168231max c,=⨯=⨯⨯⨯⨯==--y I M z E σ 所以梁内MPa 08.15max t,=σ,MPa 61.9max c,=σ10−5 一矩形截面简支梁,跨中作用集中力F ,已知l =4m ,b =120mm ,h =180mm ,弯曲时材料的许用应力[σ]=10Mpa ,求梁能承受的最大荷载F max 。

基础工程课后题答案

基础工程课后题答案

基础工程课后题答案基础工程课后题答案第一章线性代数1. 如何计算矩阵的秩?矩阵的秩指的是矩阵中线性无关的行或列的个数。

可以通过高斯消元法将矩阵化为行简化阶梯矩阵,然后数出非零行的个数。

2. 什么是特征向量和特征值?在矩阵运算中,存在这样一对向量和数,满足矩阵和向量相乘,得到的结果等于向量与数的乘积。

这里的向量称为特征向量,数称为特征值。

3. 如何求解线性方程组?可以使用高斯消元法或克拉默法则进行求解。

高斯消元法通过矩阵的初等行变换,将系数矩阵化为行最简形式,并求出未知数的解;克拉默法则利用行列式的概念,将系数矩阵和常数向量组成扩展矩阵,通过计算行列式求解未知数的值。

第二章微积分1. 什么是导数和微分?导数是函数在某一点处的变化率,是函数曲线在该点处的切线斜率。

微分是函数在某一点处与该点切线的斜率相等的线性函数,是对导数的一种基于微小量的近似表示。

2. 什么是函数的极值?函数在某一点处的导数为0,且在该点左右两侧导数符号相反,那么该点就是函数的极值点。

极大值和极小值分别对应函数取最大值和最小值的点。

3. 什么是定积分和不定积分?定积分是在给定区间上,对函数进行积分得到一个数值,表示函数在该区间上的面积。

不定积分是在给定函数的情况下,求出所有导数等于该函数的原函数,称为不定积分。

第三章工程力学1. 什么是平衡点?对于一个物体的受力状态,如果所受合外力的合力等于0,其所在的位置就是平衡点。

在平衡点上,物体不会发生运动或旋转。

2. 什么是受力分析?受力分析是通过对物体受到的各种作用力进行分析,了解物体受力情况的方法。

通常使用自由体图和受力图,分别表示受力物体和作用力的大小和方向,通过平衡方程式求解出物体的受力分布。

3. 什么是弹性形变和塑性形变?弹性形变是指物体受到小的外力作用后,恢复到初始形状的程度,称为弹性形变。

塑性形变是指物体受到大的外力作用后,无法完全恢复到初始形状,产生永久形变,称为塑性形变。

2022年基础工程课后题答案

2022年基础工程课后题答案
C A 每 天 多 生 产 10% 可 按 时 完 成 , 说 明 总 的 工 作 量 是 100×(1+10%)×12=1320(个)。前两天已经生产了 200 个,则剩余 1120 个。剩余的 1120 个零件要 10 天完成,则每天做 112 个,即 每天多生产(112-100)÷100=12%,才可以按时完成。选择 A。 A 设工作总量为 12,则甲的效率为 12÷4=3,乙的效率为
第5页 共6页
12÷6=2,甲、乙与渗水的总效率为 12÷3=4,即渗水的效率为﹣ 1,那么在渗水的状况下,乙单独工作须要 12÷(2-1)=12(小时), 选择 A。
D 设总工程总量为 96、90、80 的最小公倍数,即 1440。由此 可知甲、乙、丙的效率分别为 15、16、18。那么甲乙一天完成的 工 作 量 为 (15+16)×8=248 , 甲 丙 一 天 完 成 的 工 作 量 为 (15+18)×8=264,乙丙一天完成的工作量为(16+18)×8=272。每 三天为一个周期,一个周期的可以完成 248+264+272=784,则须 要一个周期还剩下 656 的工作量未完成,须要甲乙做一天(完成 248),甲丙做一天(完成 264),剩下的由乙丙做。在整个过程中, 甲做了 4 天,即 32 小时。选择 D。
第1页 共6页
要用 3 小时。小周和小张一起整理第一箱文件,小钱同时起先整 理其次箱文件。一段时间后,小周又转去和小钱一起整理其次箱 文件,最终两箱文件同时整理完毕。则小周和小张、小钱一起整 理文件的时间分别是()。
A. 1 小时,2 小时 B. 1.5 小时,1.5 小时 C. 2 小时,1 小时 D. 1.2 小时,1.8 小时 (浙江 2022A/B-56)夏天干旱,甲、乙两家请人来挖井,阴天 时,甲家挖井须要 8 天,乙家须要 10 天;晴天时,甲家工作效率 下降 40%,乙家工作效率下降 20%,两家同时开工并同时挖好井, 问甲家挖了几个晴天?() A. 2 天 B.8 天 C. 10 天 D. 12 天 (联考 2022 上-68)药厂运用电动研磨器将一批晒干的中药磨 成药粉。厂长确定从上午 10 点起先,增加若干台手工研磨器进行 协助作业。他估算假如增加 2 台,可在晚上 8 点完成,假如增加 8 台,可在下午 6 点完成。问假如希望在下午 3 点完成,须要增 加多少台手工研磨器?() A. 20 B. 24 C. 26 D.32

天津大学版工程力学习题集答案解析部分

天津大学版工程力学习题集答案解析部分

---------------------考试---------------------------学资学习网---------------------押题------------------------------ACMql=2m。

4kN/m,处的约束力。

已知=8kN·m,3-10求图示多跨梁支座=、qqMAC C B BFF BCl 2l2 2llla)((b)qMM AA CBFF CAl2 2ll(c)10 图习题3-??l?3?2l?qM?0,F?0CB BC(b))取梁所示。

列平衡方程为研究对象。

其受力如图(解:1l322?4?9ql9kN??18F?C44所示。

列平衡方程)取整体为研究对象。

其受力如图(c)(2?0l??Fq?3F?0,F?CyA kN?64?2ql3??18?3?F??F?CA?0?5l??3l3.?,?0MM?M?F4l?q CAA22m?32kN5?4?2?1045lF?MM??4?10.ql8??18??2?.CAF ACCDC,05=所示。

设(a)用铰链组合梁11-3及连接而成,受力情况如图kN Mq m。

求各支座的约束力。

=50kNkN/m=25,力偶矩·MFqACB11m2m22m(a)MF q q′F C D AC C B FFFF C2m 2m1m1m DA B 2m(b) (c)一一图-11 习题3CD为研究对象。

其受力如图(c)所示。

列平衡方程(1)取梁解:?M?0,F?4?q?2?1?M?0 DC2q?M2?25?50??25kNF?D44?M?0,?F?4?q?2?3?M?0CD6q?M6?25?50??F?25kN C44ACFF=25kN。

列平衡方程(b)所示,其中′(2)取梁=为研究对象。

其受力如图CC ???2?0?F?2?F?1?q?2M?0,?1?F CBA?F?2q?2F25???25250?2C??F??25kN(?)A22???4?0F?2?F?1?q?2?3?M0,?F CBA?F?6q?4F25?4?650??25C F???150kNB226?1作图示杆件的轴力图。

天津大学工程数学基础2017级试题

天津大学工程数学基础2017级试题

一.判断(10分)1.设是K上的线性空间,算子则是的子空间.()2.线性无关.()3.对L e g e n d r e 多项式,有.()4.,则可对角化.()5.设是H e r mi t e插值余项,则节点为的二重零点.()6.C o t e s 系数只与求积节点的个数有关而与被积函数和积分区间无关.()7.设是上的任意方阵范数,则.()8.,则.()9.若为G a u s s型求积公式,则.()10.若正规矩阵,其特征值均为实数,则为酉矩阵.()二、填空(10分)1.已知,则.2.,则.3.设是S e i d e l迭代矩阵,则的所有特征值中绝对值最小的为.4.若为插值型求积公式,,是n次L a g r a n g e插值基函数,令则.5.设酉矩阵,且则的不变因子.三.(8分)设,求的有理标准形.题号12345678910平时成绩成绩得分四.(8分)求解初值问题五.(8分)已知线性方程组为(1)写出S e i d e l迭代格式,(2)判断迭代格式收敛性.六.(8分)由下列插值条件1.631.731.952.282.5314.09416.84418.47520.96323.135用三次N e w t o n插值多项式计算的近似值(结果保留至小数点后第3位)七.(10分)用算法求积分的近似值,并将计算结果列于下表(计算结果保留至小数点后第5位)01234八.(10分)用L e g e n d r e 多项式求函数在上的三次最佳平方逼近,并求(结果保留到小数点后第5位,取)九.(8分)写出用标准R u n g e-K u t t a方法解下列初值问题的计算公式.十.(10分)证明1.内积空间中的任何正交系都是线性无关的.2.,则。

工程力学(天津大学)第15章答案..

工程力学(天津大学)第15章答案..

第 十五 章 压杆稳定思 考 题15−1 在§15−2 中对两端铰支细长压杆,按图a 所示的坐标系及挠曲线形状,推导出了欧拉公式22r c lEI πF试问如分别取图b ,c ,d 所示的坐标系及挠曲线形状时,挠曲线微分方程及所得到的F c r 公式与图a 情况下得到的结果是否相同? 15−2 欧拉公式在什么范围内适用?如果把中长杆误认为细长杆应用欧拉公式计算其临界力,会导至什么后果? 15−3 图示8种截面形态的细长压杆,如果各方向的支承条件相同,问压杆失稳时会在哪个方向弯曲?(a)(b)(c)(d)思考题 15−1图思考题15−3图15−4 两根压杆的材料、长度与杆端的支承条件均相同,横截面面积也相同,但其中一个为圆形截面,另一个为正方形截面,问哪一根杆能够承受的压力较大? 15−5 若两根压杆的材料相同且柔度相等,这两根压杆的临界应力是否一定相等,临界力是否一定相等?15−6 由两个型号相同的不等边角钢组成的中心受压杆件,有下面两种布置方案,在两端约束条件相同的情况下,哪种布置合理,为什么?17−7 与上题类似由两个型号相同的等边角钢组成的中心受压杆件,图中的两种布置方案,哪种布置合理,为什么?15−8 为什么在选择压杆的截面时,必须采用试算方法?习题15−1 图示各杆的材料和截面均相同,试问哪根杆能够承受的压力最大,哪根最小?解:对于材料和截面面积均相同的压杆,柔度λ越大,临界力F c r 越小,因而压杆越容易失稳,亦即能够承受的压力最小。

根据ilμλ=,由于各杆的截面均相同,因此只需比较各杆的计算长度l μ即可(a ) m l 551=⨯=μ (b ) m l 9.477.0=⨯=μ(a)(b)(c)(d)(e)(f)习题15−1图(a) (b)思考题 15−7 图(a) 思考题 15−6 图(b)(c ) m l 5.495.0=⨯=μ (d ) m l 422=⨯=μ (e ) m l 881=⨯=μ(f ) 上、下两段分别计算,临界力应取较小者,而计算长度l μ应取较大者上段 m l 5.255.0=⨯=μ 下段 m l 5.357.0=⨯=μ经比较可得,杆(f )能够承受的压力最大,杆(e )能够承受的压力最小。

工程数学基础(新版教材)习题解答

工程数学基础(新版教材)习题解答

, 即
E11
a
0c
0 T,
E12
a c
b 0 d 0
1 0
0 0
a
c
0E11
aE12
0E21
cE22
, 即
E12
0
a
0 c T,
E21
a c
b 0 d 1
0 0
b d
0
0
bE11
0E12
dE21
0E22
, 即
E21
b
0d
0 T,
3
E22
a c
b 0 d 0
0 1
d1() d2 () d3 () 1 , d 4 ( ) ( 1)4 .
00 1
2. 解 (1)∵ det A() ( 2)4 ,∴ D4 () ( 2)4 ,又∵ 0 1
1 2
2 1 0 , 0
∴ D3 () 1 ,从而 D1() D2 () 1 .于是不变因子为 d1() d 2 () d3 () 1 ,
3.满; 4. sup E 2 , inf E 3; 5. 0 ; 6.0; 7. n ; 8.Y .
B
1. 证 y f (A B) , x A B 使 得 y f (x) . 由 x A B , 得 x A , 且 x B 故 y f (x) f (A) 且 y f (B) ,即 y f (A) f (B) ,因此 f (A B) f (A) f (B) .
1
∴ A~ J i .
i
3 1 0 0 1 3 0 0
(3)∵ E A
4 7
1 0
0
1
1 2 1 1,2 1
4 7
0

天津大学工程数学基础新版习题答案.pdf

天津大学工程数学基础新版习题答案.pdf

4.

设 Y D
是线性空间
X的一族子空间ຫໍສະໝຸດ 要证DY也是X的线性子空间
.显然
D
Y
,z
只需证明
D
Y
对X的线性运算是封闭的.
事实上,x,
y
D
Y

, ,从而对每一个 D ,

x,
y
Y
,故
x
y
Y
,
x
Y
.于是,
x
y
D
Y
,
x
D
Y
.因此,
D
Y

X
的线性子空间.
5. 证 显然W包含零多项式,故非空;又f , g W,及 ,有
(2)y1, y2 Y及1, 2 , x1, x2 X ,s.t.y1 Tx1, y2 Tx2 ,即x1 T 1( y1), x2 T 1( y2 ).于是有
T 1(1 y1 +2 y2 ) T 1[1T (x1) 2T (x2 )] T 1[T (1x1 2 x2 )] 1x1 2 x2 1T 1( y1) 2T 1( y2 ),
故T 1 : Y X是线性的. 7. 解 首先验证: 22 22是线性的,然后求其在即B下的矩阵A.
X1, X2 22 ,k1, k2 ,由的定义,有
( B
1 0
0 0 1 0 0 0 , 0 0 , 1 0 , 0
(k1 X1 +k2 X2 ) A0 (k1 X1 +k2 X2 ) k1 A0 X1 +k2 A0 X2 k1 (X1)+k2 (X2 ),
故: 22 22是线性的.
)0 0
1
关键是求基元E1

天津大学版工程力学习题答案_第三章

天津大学版工程力学习题答案_第三章

习 题D o n e (略)3-1 如图(a )所示,已知F 1=150N ,F 2=200N ,F 3=300N ,N 200='=F F 。

求力系向O 点简化的结果,并求力系合力的大小及其与原点O 的距离d 。

解:(1)将力系向O 点简化N6.43752300101200211505210121321R-=---=---=∑='F F F F F x xN6.16151300103200211505110321321R-=+--=+--=∑='F F F F F y y()()N F F F y x 5.4666.1616.437222R 2R R=-+-='+'='设主矢与x 轴所夹锐角为θ,则有61206.4376.161arctanarctanRR '︒=--=''=x y F F θ因为0R <'x F ,0R <'y F ,所以主矢F 'R在第三象限。

mN 44.2108.02002.0513001.02115008.02.0511.021)(31⋅=⨯-⨯+⨯=⨯-⨯+⨯==∑F F F M M O O F(a)(b) (c)将力系向O 点简化的结果如图(b )。

(2)因为主矢和主矩都不为零,所以此力系可以简化为一个合力如图(c ),合力的大小mm 96.4504596.05.46644.21N 5.466RR R ====='=m F M d F F o3-2重力坝的横截面形状如图(a )所示。

为了计算的方便,取坝的长度(垂直于图面)l =1m 。

已知混凝土的密度为2.4×103 kg/m 3,水的密度为1×103 kg/m 3,试求坝体的重力W 1,W 2和水压力P 的合力F R ,并计算F R 的作用线与x 轴交点的坐标x 。

解:(1)求坝体的重力W 1,W 2和水压力P 的大小kNN dy y dy y q P mN y dyy dy y q 5.9922105.9922245108.9)45(108.9)()45(108.9)45(8.91011)(3234534533=⨯=⨯⨯=⋅-⨯=⋅=-⨯=-⨯⨯⨯⨯⨯=⎰⎰(2)将坝体的重力W 1,W 2和水压力P 向O 点简化,则kN 5.9922R==∑='P F F x xkN 3057621168940821R-=--=--=∑='W W F F y y()kN 7.32145305765.9922222R 2R R=-+='+'='y x F F FkN N W kN N W 2116810211688.9104.2136)545(2194081094088.9104.218)545(332331=⨯=⨯⨯⨯⨯⨯+==⨯=⨯⨯⨯⨯⨯+=(a) (b) (c)设主矢与x 轴所夹锐角为θ,则有︒=-=''= 02.725.992230576arctanarctanRR x y F F θ因为0R >'x F ,0R <'y F ,所以主矢F 'R在第四象限,如图(b )。

高等数学天大教材答案解析

高等数学天大教材答案解析

高等数学天大教材答案解析本文为《高等数学天大教材答案解析》。

一、导数在高等数学的学习中,导数是一个非常重要的概念。

导数可以描述函数在某一点的变化率,也可以用来求函数的最值、判断函数的单调性等。

导数的定义是:若函数f(x)在点x=x0处有定义,当自变量x绕x0做增量Δx时,相应的函数值增量Δy=f(x0+Δx)-f(x0),如果Δy/Δx当Δx趋于0时的极限存在,则称函数f(x)在点x=x0处可导。

这个极限称为函数f(x)在点x=x0处的导数,记作f'(x0)或dy/dx|x=x0。

二、积分积分是导数的逆运算。

它可以求函数的原函数,并且可以用来求解定积分,计算曲线下的面积等。

积分的定义是:函数f(x)的一个原函数是指它的导函数F(x)。

若F(x)是f(x)的一个原函数,则称函数F(x)在区间[a,b]上的定积分为函数f(x)在区间[a,b]上的积分,记作∫(a to b) f(x)dx=F(b)-F(a)。

三、微分方程微分方程是数学中研究变化率的方程。

它描述了函数的导数、函数本身以及自变量之间的关系。

常见的微分方程包括一阶线性微分方程、一阶非线性微分方程、二阶线性齐次微分方程等。

求解微分方程可以应用数学方法,如变量分离法、齐次方程法、常数变异法等。

四、多重积分多重积分是对多元函数在多维区域上的积分。

它可以用来计算多维空间中的体积、质量等物理量。

多重积分分为重积分和二重积分两种形式。

重积分包含三重积分、四重积分等。

求解多重积分可以通过转化为累次积分的形式,应用Fubini定理等方法来计算。

五、级数级数是由无穷多项求和而成的数列。

它在高等数学中有广泛的应用,如泰勒级数、傅里叶级数等。

级数的收敛性是判断级数和是否有限的重要性质,常用的判别方法有比较判别法、比值判别法、根值判别法等。

六、常微分方程常微分方程是描述未知函数的导数与函数本身的关系的方程。

常微分方程可以分为初值问题和边值问题两种形式。

求解常微分方程可以通过分离变量、齐次方程、常数变异法等方法来得到解析解,也可以应用数值方法进行数值求解。

高等数学基础教材课后答案

高等数学基础教材课后答案

高等数学基础教材课后答案1. 第一章:函数与极限1.1 函数的概念与性质1.2 极限的定义与性质1.3 常用极限和极限运算法则2. 第二章:导数与微分2.1 导数的定义与基本性质2.2 高阶导数与导数的计算2.3 微分的概念与运算3. 第三章:微分中值定理与导数应用3.1 罗尔定理与拉格朗日中值定理3.2 洛必达法则与泰勒公式3.3 极值与最值的判定3.4 应用题:切线与法线、曲率与弧长4. 第四章:不定积分与定积分4.1 不定积分的概念与性质4.2 基本积分表与积分方法4.4 牛顿-莱布尼茨公式与换元积分法5. 第五章:多元函数微分学5.1 多元函数的概念与性质5.2 偏导数与全微分5.3 隐函数与参数方程的求导5.4 高阶导数与泰勒展开5.5 一元函数与多元函数的导数比较6. 第六章:多元函数的极值与条件极值6.1 多元函数的极值判定与求解6.2 条件极值的求解6.3 隐函数的极值7. 第七章:重积分与曲线积分7.1 二重积分的概念与计算7.2 广义积分的概念与性质7.3 三重积分的概念与计算7.4 曲线积分的概念与计算8. 第八章:无界区域上的积分8.1 狄利克雷条件8.2 无界闭区域上的积分8.3 圆周率的计算9. 第九章:常微分方程9.1 一阶常微分方程的解法与应用9.2 高阶常微分方程的解法9.3 变量分离与恰当方程9.4 拉普拉斯变换与常系数线性微分方程10. 第十章:偏微分方程10.1 偏微分方程的基本概念10.2 分离变量方法与特征线法10.3 热传导方程与波动方程10.4 边界值问题与最值问题以上为《高等数学基础教材》课后习题答案的大致内容。

对于每个章节的习题,下面是一些示例题目及其解答作为参考:【第一章:函数与极限】习题1:已知函数f(x)=3x^2+2x-1,求f(-2)的值。

解答:将x=-2代入f(x),得到f(-2)=3*(-2)^2+2*(-2)-1=13。

习题2:证明函数f(x)=x^3+2x^2-3x+5是奇函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档