虚拟示波器的设计(特选参考)

合集下载

【完美升级版】基于LabVIEW的虚拟示波器的设计_毕业论文设计

【完美升级版】基于LabVIEW的虚拟示波器的设计_毕业论文设计

基于LabVIEW的虚拟示波器的设计毕业论文摘要虚拟仪器是现代测量技术和计算机技术相结合的产物,标志着自动测试与电子测试仪器领域技术发展的一个崭新方向.随着信息技术和计算机技术的高速发展,数字信号处理作为一门新兴的学科,其重要性日益在各个领域的应用中体现出来。

本文介绍了利用LabVIEW 图形编程语言进行虚拟仪器开发的方法,设计了一种基于PC机声卡的虚拟示波器,说明了虚拟仪器在现代测试领域中的重要地位以及其广阔的发展前景.从某种意义上说,“软件就是仪器”。

关键词LabVIEW,虚拟仪器,示波器The design of virtual wave displayer based onLabVIEWAbstractVirtual instrument is the produce that merges the computer technology and measurement technique.It stands for a brand new development directory in the field of auto-measurement and electronic measurement。

With the rapid development of information technology and the computer technology, the digital signal processing takes an emerging discipline, its importance displays day by day in each domain application. This article introduces how to develop virtual instruments using graph programming language-LabVIEW ,designs a virtual signal displayer based on PC and explains the important part and wide development prospects of virtual instrument in modern measurement technique field.In a sense, “The sof tware is an instrument”.Keywords LabVIEW, virtual instrument目录第1章绪论 (1)1.1 虚拟仪器的概述 (1)1.1.1 什么是虚拟仪器 (1)1.1.2 虚拟仪器的构成 (2)1.1.3 虚拟仪器的优点 (3)1.1.4 虚拟仪器的发展现状 (4)1.1.5 虚拟仪器的发展趋势 (4)1.2 图形化编程语言LabVIEW (4)1.2.1 什么是LabVIEW (5)1.2.2 LabVIEW的主要特点 (5)1.2.3 LabVIEW调试与运行 (6)第2章示波器的原理 (7)2.1 模拟示波器 (7)2.1.1 示波器的基本结构 (7)2.1.2 示波器的扫描原理 (8)2.2 数字示波器 (9)2.2.1 数字示波器的基本原理 (9)2.2.2 数字示波器的特点 (11)2.3 虚拟示波器 (12)第3章系统的硬件设计 (14)3.1 声卡 (14)3.1.1 声卡的工作原理 (14)3.1.2 声卡的基本结构 (14)3.2 硬件设置 (16)3.2.1 实验中声卡的参数设置 (16)3.2.2 虚拟示波器中声卡的连接方式 (16)3.3 前置运算电路 (17)第4章系统的软件设计 (18)4.1 虚拟示波器工作流程图 (18)4.2 数据采集模块 (18)4.3 频谱分析模块 (22)4.4 数据测量和显示模块 (23)第5章系统调试与程序显示 (25)5.1 虚拟示波器性能 (25)5.1.1 程序设计思路 (25)5.1.2 虚拟示波器操作界面 (25)5.1.3 虚拟示波器总程序框图 (26)5.2 虚拟示波器波形显示 (27)结论 (30)致谢 (31)参考文献 (32)附录 (34)第1章绪论1.1虚拟仪器的概述虚拟仪器是计算机技术和传统的仪器仪表技术相结合的产物,它是在以计算机为核心的硬件平台上,由用户设计和定义其功能,具有虚拟面板. 虚拟仪器技术具有高效、易用、开放、灵活、更新快、功能强大、性价比高、用户定义等诸多优点. 目前在我国应用的虚拟仪器开发平台主要有美国NI公司的LabVIEW及其相应组件和Agilent公司的HP - VEE ,其中NI的LabVIEW系列产品在我国使用比较广泛.LabVIEW是当前用于数据采集、信号处理和虚拟仪器开发的一个标准工具,而且是一个基于图形化编程语言的虚拟仪器软件开发工具,设计者可利用它方便快捷地建立自己的虚拟仪器程序而无需复杂的程序代码编写. 它适用于多种操作系统,用LabVIEW设计的虚拟仪器程序可以脱离LabVIEW开发环境,最终用户看见的是和实际的硬件仪器相似的操作面板1.1.1什么是虚拟仪器所谓虚拟仪器,就是在通用计算机为核心的硬件平台上,由用户设计定义、具有虚拟面板、测试功能由测试软件实现的一种计算机仪器系统。

「基于LABVIEW的虚拟示波器设计—虚拟示波器」

「基于LABVIEW的虚拟示波器设计—虚拟示波器」

「基于LABVIEW的虚拟示波器设计—虚拟示波器」虚拟示波器是一种通过计算机软件来模拟传统示波器的工作原理和功能的设备。

它可以用于信号的检测和分析,具有方便、灵活、实时性强等优点。

本文将介绍基于LABVIEW的虚拟示波器设计。

LABVIEW是由美国国家仪器公司(National Instruments)开发的一种基于图形化编程的开发环境。

它可以实现快速的数据采集和处理,适用于各种工程应用。

借助LABVIEW的强大功能,我们可以设计出一个功能完善的虚拟示波器。

首先,我们需要从外部设备中获取信号。

LABVIEW支持多种类型的数据采集设备,如数据采集卡、传感器等。

我们可以通过连接这些设备,将信号输入到LABVIEW中。

LABVIEW提供了丰富的数据采集和处理函数,能够方便地获取并处理输入信号。

接着,我们需要设计一个用户界面,用于显示信号和调节示波器的各个参数。

LABVIEW中提供了多种界面控件,如图表、调节器等。

我们可以根据需要,在用户界面中添加这些控件,并设置相应的属性。

通过LABVIEW的可视化编程方式,我们可以直观地完成用户界面的设计。

在信号显示方面,虚拟示波器需要能够实时地显示输入信号的波形。

LABVIEW提供了图表控件,可以用于显示波形图。

我们可以将获取到的信号数据传递给图表控件,然后设置相应的显示参数,如坐标轴范围、背景颜色等。

这样,用户就能够清晰地看到输入信号的变化。

除了实时显示信号波形外,虚拟示波器还应具备其他功能,如调节触发电平、选择触发方式等。

LABVIEW中提供了丰富的函数库,可以方便地实现这些功能。

我们可以通过在用户界面中添加调节器、开关等控件,并将其与相应的函数进行关联,从而实现示波器的各个参数的调节。

总之,基于LABVIEW的虚拟示波器设计具有很大的灵活性和可扩展性。

我们可以根据需求进行定制,实现更多功能,如频谱分析、数据存储等。

同时,LABVIEW提供了强大的数据处理和可视化功能,能够让我们更加方便地进行数据分析和结果展示。

《测控系统现代仪器设计》课程设计--虚拟示波器的设计

《测控系统现代仪器设计》课程设计--虚拟示波器的设计

本文介绍了一种虚拟示波器的设计过程。

首先介绍了数据采集的方法。

下位机采集的数据有温度和电压两种。

通过AD转换模块将模拟电压量转化为数字量实现电压采集,温度采集使用的是18B20温度传感器。

数据采集完成后根据上位机的需求,将相应的数据通过串口发送给上位机显示。

然后进行上位机界面设计。

上位机是用LabVIEW设计的,在接收到下位机传过来的数据后将其以波形的形式显示出来,从而实现了示波器的功能。

最后给出了本次设计的一个应用实例。

关键词:虚拟仪器;示波器;数据采集1 绪论 (1)2 单片机硬件电路及原理 (2)2.1 AT89C516RD+单片机 (2)2.2 模数转换 (4)2.3 18B20温度传感器 (5)3 单片机程序设计 (7)3.1 I2C总线介绍 (7)3.2 模数转换 (9)3.3 温度采集 (10)3.4 与电脑数据传输 (13)4 PC端软件设计 (15)4.1 软件界面设计 (15)4.2 主程序 (15)4.3 温度采集子程序 (17)4.4 电压采集子程序 (18)5 设计结果及应用 (20)5.1 结果展示 (20)5.2 应用实例 (21)6 总结体会 (23)参考文献 (24)附录重要程序清单 (25)1 绪论虚拟仪器是由电脑软件加外部硬件,实现传统仪器的功能的一种软硬件结合系统。

与传统仪器相比,虚拟仪器有很多优点,如极大的灵活性。

利用相同的外部硬件通过编写不同的软件就可实现不同的功能,并且不像传统仪器那样,一旦制造出来其功能就是固定的,虚拟仪器可根据用户不同的需求进行各种功能优化。

同时,虚拟仪器软件基于PC平台,可充分利用其强大的处理能力,出色的完成各种工作。

除此之外,虚拟仪器还能大幅降低资金投入、系统开发成本和系统维护成本,为企业带来更高的经济效益。

正因为虚拟仪器有着传统仪器无法比拟的优势,他拥有广阔的发展前景。

目前虚拟仪器主要用在数据采集与控制、数据处理与分析和数据显示等方面。

虚拟示波器的设计

虚拟示波器的设计

虚拟示波器的设计1实验目的(1)学习Waveform Graph的各种复杂功能的使用(2)了解示波器的相关原理及使用方法(3)掌握较复杂的虚拟仪器的设计思想和方法2 实验任务设计虚拟数字万用表基本要求:z设置运行及停止按钮:按运行时,示波器工作;按停止时,示波器停止工作。

z设置图形显示区:可显示两路图形,并可进行图形的上下平移和图形纵向的放大与缩小。

z设置示波器的显示模式:分为单通道模式(只显示一个通道的图形:1通道、2通道),多通道模式(可同时显示两个通道),运算模式(两通道相加、两通道相减等)。

z设置显示的信号类型:分别为交流、地、直流三种。

z设置信号产生模块:分别产生可变频率和幅值的正弦信号、方波信号、三角波信号等。

附加要求(选作):z设置测量功能:可自动测量信号的频率、周期、幅值、上升时间、占空比等参数。

z增加图形显示功能:图形的左右平移和图形横向的扩展与压缩。

3 实验原理虚拟示波器是用LabVIEW软件模拟完成真实示波器的部分功能,程序由虚拟信号源和测量波形显示组成。

程序整体是一个while循环,当电源打开时,示波器工作,当电源开关关闭或者停止按钮按下时,示波器停止工作。

下面是示波器显示功能调整的原理说明:z信号类型选择:是一个case结构,可以通过前面板将信号类型设置为交流、直流或者接地,其中当选择交流信号类型时,需要将输入信号中的直流分量减去。

z通道纵轴缩放:是一个case结构,其数据处理原理是根据缩放设定值对原始信号进行乘或者除运算。

z通道纵轴平移:是一个加法运算,其数据处理原理是根据平移设定值对原始信号进行加法运算,例如若要向上平移1V,则在原信号的基础上叠加1V,若要向下平移1V,则在原信号的基础上减小1V。

z通道模式选择:是一个case结构,根据通道模式的设定值将原始信号直接输出或者经过运算后输出。

4 实验步骤4.1前面板设计图1是前面板的总体视图,分为信号源和示波器显示设置两个功能区。

基于ARM的虚拟示波器的设计

基于ARM的虚拟示波器的设计

收稿日期:2009-04 作者简介:张玉华(1980—),女,讲师,研究方向为智能仪器与自动化装置。

基于AR M 的虚拟示波器的设计张玉华1,孙文海2(1.江西理工大学,江西赣州341000;2.江西省赣州市水利电力勘测设计研究院,江西赣州341000) 摘要:提出一种基于AR M 的虚拟示波器的设计。

文章分虚拟示波器的硬件设计和软件设计两大部分进行阐述,主要包括以AR M 为主的下位机信号采集部分、以PC 为主的上位机信号处理部分和AR M 与PC 机的通信部分。

在硬件设计上,采用AR M +FPG A 结构,使硬件系统更精简,体积更小;软件设计采用Lab V I E W ,大大简化了编程过程。

整个设计采用模块化思想,设计简便,并易于修改和调试。

关键词:虚拟示波器;AR M;FPG A;Lab V I E W;US B中图分类号:T M935.3 文献标识码:B 文章编号:1006-2394(2009)06-0019-03The D esi gn of V i rtua l O sc illoscope Ba sed on AR MZHANG Yu 2hua 1,S UN W en 2hai2(1.J iangxi University of Science and Technol ogy,Ganzhou 341000,China;2.J iangxi ganzhou Survey and Design I nstitute of W ater Conservancy and Hydr opower,Ganzhou 341000,China )Abstract:A design of AR M 2based virtual oscill oscope is intr oduced in this paper .The hard ware design of virtual oscill oscopes and its s oft w are design are mainly illustrated,including signal gathering fr om the ARM 2based MC,signal p r ocessing of PC and communicati on bet w een the AR M 2based MC and PC .I n the hardware circuit design,the combina 2ti on of AR M and FPG A makes the hard ware syste m si m p ler and s maller .The s oft w are is designed by using Lab V I E W ,which greatly si m p lifies the p r ogra mm ing p r ocess .The whole design is divided int o a number of s mall units,which makes the design easy t o modify and debug .Key words:virtual oscill oscope;AR M;FPG A;Lab V I E W ;US B1 系统构成及参数要求系统主要包括以AR M 为主的下位机信号采集部分、以PC 机为主的上位机信号分析处理及波形显示部分、AR M 与PC 机的通信部分三大方面。

实验室虚拟数字示波器设计(doc 35页)

实验室虚拟数字示波器设计(doc 35页)

实验室虚拟数字示波器设计(doc 35页)目录摘要 (I)Abstract............................................... I I 1绪论 (1)1.1课题研究背景及意义 (1)1.2虚拟仪器的概述 (2)1.3 虚拟示波器国内外研究现状 (3)1.4 课题的主要任务 (4)2 虚拟示波器的基本原理 (4)2.1 通用示波器 (5)2.2 数字示波器 (6)2.3 虚拟示波器 (7)3 LabVIEW编程环境介绍 (9)3.1 LabVIEW 简介 (9)3.2 LabVIEW 程序的基本组成 (9)3.3 LabVIEW模板 (10)3.4 子VI的创建和调用 (10)4 虚拟示波器的设计方案 (12)4.1 总体设计方案 (13)4.2 各模块具体设计步骤 (15)4.3 系统调试 (27)5 结论 (29)参考文献 (29)致谢 (30)实验室虚拟数字示波器的设计摘要虚拟仪器的设计观念不同于传统的仪器设计概念,原来要求由硬件来完成的功能,现都可以由软件仿真来实现。

本次设计的虚拟示波器全部由软件编程完成,其原理参考的是通用的双通道数字存储示波器,并在此基础上扩展了数据分析和处理功能。

设计过程采用模块化的设计思路,每个功能都有由一个子VI模块完成,主要包括信号发生、通道选择、滤波器滤波、频谱分析、时间调节、幅值调节、参数测量共七个模块。

整个设计过程中所用到的软件工具是美国 NI公司的LabVIEW2012。

关键词: 虚拟仪器;数字示波器;LabVIEWDesign of Virtual Digital Oscilloscope in LaboratoryAbstractThe new theory, method and fields of the test and the new structure of instrument drove test and control instrument—Virtual Instrument(Ⅵ) based on computer have got development. Virtual instrument have changed the notion of traditional instrument design, which makes the parts are realized by software which werecompleted by hardware, and has obvious technical advantages in intelligence, processing and maneuverability.This article mainly completes software component, the virtual oscilloscope is the principle of the oscilloscope refers the universal double channel digital storage oscilloscope, then expands the instrument analysis and processing function. The development tools of the whole development process are LabVIEW2012 of American NI company.Key Words:Virtual Instrument;Digital Oscilloscope;LabVIEW1绪论1.1课题研究背景及意义1.1.1课题研究背景由于科学技术的飞速发展,在越来越多的领域里都会用到电子测量技术。

基于LABVIEW的虚拟示波器的设计

基于LABVIEW的虚拟示波器的设计

基于LABVIEW的虚拟示波器的设计概述示波器是一种用于测量和监测电信号的设备,它可以以图形方式显示信号的波形,也可以提供一些基本的测量功能,如测量信号的幅值、频率和相位等。

虚拟示波器是一种基于软件的示波器,通过计算机和特定的软件来实现测量和显示信号波形的功能。

本文将介绍基于LABVIEW开发的虚拟示波器的设计方案。

设计要求1.实时显示信号波形:虚拟示波器需要能够实时获取信号并以图形方式显示信号的波形。

2.支持多通道测量:虚拟示波器需要支持多通道测量,使用户可以同时监测多个信号波形。

3.提供基本的测量功能:虚拟示波器需要提供一些基本的测量功能,如测量信号的幅值、频率和相位等。

4.具备信号触发功能:虚拟示波器需要具备信号触发功能,使用户可以通过设置触发条件来捕捉特定的信号波形。

设计方案1.界面设计:虚拟示波器的界面应具备直观性和易用性,用户能够方便地进行操作。

界面可以包括波形显示区域、通道选择区域、测量功能区域和触发设置区域等。

2.数据采集和处理:虚拟示波器需要通过数据采集卡或其他的信号输入设备来获取信号,并通过LABVIEW提供的数据处理功能进行处理和分析。

3.实时波形显示:获取到的信号数据可以通过LABVIEW的图形绘制功能进行实时显示。

可以使用波形图控件或曲线图控件来显示不同通道的信号波形,并使用不同的颜色进行区分。

4.多通道测量:用户可以通过界面上的通道选择区域选择要监测的通道数,虚拟示波器会自动获取相应的信号并进行测量和显示。

5.测量功能:通过使用LABVIEW提供的测量VI,可以实现对信号的幅值、频率和相位等进行测量。

这些测量结果可以显示在界面的测量功能区域,方便用户进行查看和比较。

6.信号触发:用户可以通过界面上的触发设置区域设置触发条件,如触发电平、触发边沿和触发延迟等。

当信号满足触发条件时,虚拟示波器会捕捉到相关的信号波形并进行显示。

7.数据保存和导出:虚拟示波器可以支持将获取到的信号数据保存到文件中,以便用户进行后续的分析和处理。

基于LABVIEW的虚拟示波器设计

基于LABVIEW的虚拟示波器设计

基于LABVIEW的虚拟示波器设计虚拟仪器是一种使用软件模拟实际仪器功能的工具。

在近年来,随着计算机技术的快速发展,虚拟仪器在各种测量和控制领域的应用越来越广泛。

针对示波器这一重要的测试仪器,本文将介绍如何使用LABVIEW软件设计一个基于LABVIEW的虚拟示波器。

LABVIEW是一款由National Instruments公司开发的图形化编程环境,用于进行数据采集、仪器控制和数据分析等工作。

通过使用LABVIEW,可以轻松地实现各种虚拟仪器的设计和开发。

虚拟示波器是一种具有示波器功能的软件程序,通过采集和显示信号波形,用于检测和分析电路中的信号。

在进行虚拟示波器设计时,需要考虑以下几个关键因素:1. 数据采集:虚拟示波器需要能够采集外部信号并进行处理。

可以使用LABVIEW提供的数据采集模块,例如DAQmx模块,来实现数据的采集和处理功能。

2. 数据显示:虚拟示波器需要能够将采集到的数据以波形的形式显示出来。

LABVIEW提供了丰富的图形化控件,可以轻松实现波形显示功能。

通过使用Waveform Chart或Graph控件,可以将采集到的数据实时显示。

3. 触发功能:示波器通常具有触发功能,用于稳定地观察特定事件。

在虚拟示波器设计中,可以利用LABVIEW提供的Trigger模块来实现触发功能。

通过设定触发条件,可以实现稳定的波形观察。

4.配置选项:虚拟示波器需要提供一些常用的配置选项,例如时间和电压的刻度设置,波形颜色和线型的选择等。

可以使用LABVIEW提供的控件,例如数字输入框和下拉菜单,来实现这些配置选项。

基于以上几个关键因素,下面我们将详细介绍基于LABVIEW的虚拟示波器设计的具体步骤:步骤1:设置数据采集通道。

通过使用DAQmx模块,选择需要采集的数据通道,例如模拟输入通道或数字输入通道。

步骤2:创建界面。

使用LABVIEW的图形化工具,创建一个用户界面,包括波形显示区、触发设置区和配置选项区。

基于DSP的虚拟示波器设计

基于DSP的虚拟示波器设计

基于DSP的虚拟示波器设计.docx本文档旨在介绍基于DSP的虚拟示波器设计的主要内容和目的。

简要介绍数字信号处理(DSP)技术的基本原理和应用。

数字信号处理(DSP)技术是一种处理离散(数字)信号的技术。

它基于数学算法和专用硬件(数字信号处理器)的结合,可以对信号进行采样、滤波、变换和重构等操作,以实现信号的处理、分析和合成。

DSP技术在各个领域有广泛的应用。

在通信领域,DSP被用于调制解调、信号编解码、误码纠正等。

在音频和视频处理领域,DSP技术可以实现音频/视频信号的压缩、解压、均衡和增强等功能。

此外,在雷达、生物医学信号处理、图像处理等领域,DSP也起到了重要作用。

通过使用数字信号处理技术,可以实现高精度、高速度、低成本和灵活性等优势。

在虚拟示波器的设计中,DSP技术可以用于信号的采集、滤波、显示和分析等功能。

通过数字化的方式,可以使示波器的功能更加强大,同时还可以实现数据的存储和后续处理。

综上所述,DSP技术作为数字信号处理的重要分支,在虚拟示波器设计中发挥着重要作用。

深入理解DSP技术的基本原理和应用,可以为设计出高效、可靠的虚拟示波器提供指导。

虚拟示波器是一种通过数字信号处理技术模拟传统示波器功能的设备。

它的工作原理主要涉及三个方面:采样、数字信号处理和波形显示。

采样虚拟示波器的第一步是对待测信号进行采样。

采样是指将连续信号转换为离散的数据点。

通过将信号在时间上进行离散化,可以使得信号能够在计算机中进行处理和存储。

虚拟示波器通常使用模数转换器(ADC)来进行采样。

ADC 将连续的模拟信号转换为离散的数字信号,其采样频率决定了示波器对信号的分辨能力。

数字信号处理采样后的信号被输入到数字信号处理器(DSP)中进行处理。

DSP是虚拟示波器的核心组件,它可以对信号进行滤波、增益、频谱分析等操作。

在数字信号处理过程中,虚拟示波器还可以对信号进行数学运算,例如加法、减法和乘法。

这些运算使得用户能够对信号进行更多的处理和分析。

基于LABVIEW的虚拟示波器设计

基于LABVIEW的虚拟示波器设计

基于LABVIEW的虚拟示波器设计引言:虚拟示波器是一种基于计算机软件来模拟实际示波器的一种设备。

它可以通过计算机屏幕上的波形显示来查看和分析电子电路中的信号。

虚拟示波器可以用于教学、研究和工程应用中。

本文将介绍基于LABVIEW的虚拟示波器的设计。

设计目标:本设计的目标是基于LABVIEW软件实现一个功能完善的虚拟示波器,具有以下主要功能和特点:1.实时显示输入信号的波形;2.具有信号的峰值、频率、相位等测量功能;3.具有波形触发功能,可以根据用户设定的触发条件对波形进行触发和捕获;4.支持多通道输入信号,可以同时显示多个通道的波形;5.具有数据保存和导出功能,可以保存波形数据并导出为文件;6.友好的用户界面,方便用户使用和操作。

设计过程:1.硬件连接:将输入信号通过适当的硬件接口连接到计算机,如USB或者GPIB接口。

2.创建虚拟示波器界面:使用LABVIEW软件创建一个用户界面,包括波形显示区域、测量区域、触发条件设置区域等。

用户界面应该简洁明了,易于操作。

3.添加波形显示:在用户界面的波形显示区域添加一个波形显示图表,用于实时显示输入信号的波形。

可以设置波形显示的参数,如横轴和纵轴的标尺范围、触发模式等。

4.添加测量功能:在用户界面的测量区域添加测量功能模块,可以实时测量输入信号的峰值、频率、相位等参数。

可以根据需要添加更多的测量功能。

5.添加触发功能:在用户界面的触发设置区域添加触发条件设置模块,可以设置触发条件,如触发电平、触发沿等。

当输入信号满足触发条件时,将触发波形的捕获和显示。

6.多通道支持:如果需要支持多个通道的输入信号,可以在用户界面中添加多个波形显示图表,每个图表对应一个通道的输入信号。

7.数据保存和导出:添加数据保存和导出功能,可以保存波形数据并导出为文件,以便后续分析和处理。

8.测试和调试:对设计的虚拟示波器进行测试和调试,确保各项功能正常工作。

结果展示:通过LABVIEW软件的虚拟示波器设计,可以实时显示输入信号的波形,并进行各种测量和触发操作。

虚拟示波器的设计报告

虚拟示波器的设计报告

基于LabVIEW 的虚拟示波器的设计The Design of Oscillograph1设计目的与内容1、掌握利用A/D转换和计算机资源实现示波器的设计方法。

2、设计虚拟示波器。

3、建立NI-DAQmx仿真设备,选择E系列中的NI PCI-6071E数据采集卡的仿真模块,通过DAQmx物理通道识别,产生模拟信号,然后基于LabVIEW开发平台设计实现虚拟示波器。

基本可以实现仪器的性能与可靠性,可以方便的对其编程, 实现对数据的采集、实时显示、数字滤波、截波显示、波形存储、波形回显、频谱分析等多种功能。

2虚拟示波器的软件设计虚拟仪器的软件设计由两部分组成:前面板和流程图。

在前面板,输入用输入控件(Control)来实现,程序运行的结果由输出控件(Indicator)来完成。

流程图是完成程序功能的图形化源代码,通过它对信号数据的输入和输出进行指定,完成对信号采集及分析处理功能的控制。

2.1虚拟示波器的原理及功能虚拟示波器是在传统示波器体系结构的基础上,借鉴其功能原理设计的。

基本原理为:硬件上利用采集卡采集信号,软件上利用NI提供的DAQmx READ采集信号,然后通过‘波形图’进行实时显示。

这就实现了一个最基本的示波器,信号显示后又利用‘写入测量文件’将波形保存为LVM文件。

这就实现了基本的“存储”功能,反之通过‘读取测量文件’可以将LVM读取显示,从而完成“回显”功能。

由于在硬件上是以PC机以及采集卡为基础的,所以本示波器在采样极限速率,带宽,分辨力等参数上受到限制。

而程序响应时间上则依赖于PC的配置以及程序的执行效率。

本次设计的虚拟示波器所包含的功能主要有以下几个方面。

实时显示:通过采集卡采集信号并能对输入信号实时显示在PC机终端上。

数字滤波:采用数字IIR滤波器对信号进行滤波处理并实时显示,同时可以任意设置滤波器的最佳逼近函数类型、滤波器类型、阶次、上下截止频率等参数。

截波显示:即可满足波形的瞬态显示,同时也可以将瞬态波形进行保存。

基于声卡的虚拟示波器设计

基于声卡的虚拟示波器设计

基于声卡的虚拟示波器设计简介虚拟示波器是一种利用计算机和声卡技术实现的数字示波器。

它能够通过声卡接口获取来自外部电路或信号源的电压信号,并将其以波形图的形式显示在计算机屏幕上。

基于声卡的虚拟示波器设计是利用计算机的声音输入功能,通过软件实现示波器的功能,相比于传统示波器,具有成本低、便携性高等优势。

本文将介绍基于声卡的虚拟示波器的设计原理和实现方法,包括硬件连接、软件设计和数据处理等方面的内容。

设计原理硬件连接基于声卡的虚拟示波器的硬件连接较为简单,只需要将待测电路的信号源连接到计算机的麦克风输入口即可。

可以使用插头与插孔连接,或者使用万用表等测试设备进行连接。

软件设计基于声卡的虚拟示波器的软件设计分为两个部分:数据采集和波形显示。

数据采集数据采集是基于声卡的虚拟示波器的核心功能。

首先,需要使用合适的编程语言或软件工具进行声卡的控制和数据采集。

具体的步骤如下:1.打开声卡设备接口,配置采样率和位深等参数。

2.开始采集数据,并将采集到的数据保存到缓冲区中。

3.对缓冲区中的数据进行处理,如滤波、放大等。

波形显示波形显示是基于声卡的虚拟示波器的另一个重要功能。

在数据采集结束后,可以对采集到的数据进行波形显示。

具体的步骤如下:1.对采集到的数据进行幅值归一化,将其转换为屏幕上的像素值。

2.绘制波形图,将归一化后的数据以波形的形式显示在屏幕上。

实现方法硬件准备基于声卡的虚拟示波器的硬件准备比较简单,只需要一台计算机和一根连接电路信号源和计算机麦克风输入口的线缆即可。

软件实现基于声卡的虚拟示波器的软件实现可以使用各种编程语言和软件工具。

下面以Python语言为例,介绍一种简单的实现方法。

import sounddevice as sdimport numpy as npimport matplotlib.pyplot as plt# 设置采样率和采样时间fs = 44100 # 采样率duration = 5 # 采样时间# 采集数据samples = sd.rec(int(fs * duration), samplerate=fs, channels=1)sd.wait() # 等待数据采集完成# 归一化并转换为整型数据samples = np.int32(samples * (2 ** 31 - 1))# 绘制波形图plt.plot(samples)plt.xlabel('Time')plt.ylabel('Amplitude')plt.show()以上代码使用了Python的sounddevice库进行声卡的数据采集,然后使用numpy库对采集到的数据进行归一化和转换,最后使用matplotlib库绘制波形图。

基于LABVIEW的虚拟示波器的设计

基于LABVIEW的虚拟示波器的设计

基于LABVIEW的虚拟示波器的设计虚拟示波器是一种基于计算机软件实现的示波器,可以通过图形界面显示电压随时间变化的波形。

基于LABVIEW的虚拟示波器,可以利用LABVIEW提供的丰富的图形化编程工具和硬件接口,实现更多功能和灵活性。

设计虚拟示波器的关键是收集、处理和显示波形数据。

基于LABVIEW的虚拟示波器可以通过各种数据采集设备(例如模拟输入IO卡或者USB采集设备)连接到电路中并接收电压信号。

这些设备通常提供了多个输入通道,可以同时采集多个信号。

LABVIEW的硬件接口模块可以帮助用户方便地与这些设备进行交互。

数据采集完成后,虚拟示波器需要将采集到的数据进行处理和显示。

在LABVIEW中,可以使用信号处理的工具包,对采集的数据进行滤波、傅里叶变换等处理,以便更好地展示电压信号的特征。

通过使用LABVIEW的图形显示工具,可以将处理后的数据以波形的形式进行直观的观察。

虚拟示波器不仅仅可以显示波形数据,还可以提供其他功能,例如自动测量、功率谱分析、频率响应等。

通过LabVIEW的功能模块,可以方便地实现这些功能。

例如,可以使用自动测量模块来自动计算波形的最大值、最小值、平均值等指标。

也可以使用频谱分析模块对波形进行频率分析,显示不同频率的成分。

除了显示波形数据和提供其他功能,虚拟示波器还可以提供一些调试和分析工具,以帮助用户更好地理解电路中的问题。

通过在LABVIEW界面中增加控件,用户可以实现诸如光标测量、自动触发等功能。

还可以通过在界面中增加控制按钮,实现波形的暂停、回放等功能,以便用户更好地分析和调试电路。

虚拟示波器的设计需要考虑用户的需求和易用性。

LABVIEW提供了丰富的图形化编程工具和灵活的界面设计功能,可以根据用户的需求进行定制。

同时,LABVIEW还支持导出数据到其他格式,如Excel或者MATLAB,方便用户进行深入的数据分析和处理。

在设计虚拟示波器时,还需考虑性能和稳定性问题。

虚拟示波器的设计

虚拟示波器的设计
六、结论和总结
本次设计是一个基于labview的虚拟示波器,其优点在于硬件设施简单,软件部分有成熟的labview子模块可以调用,这就给设计减少了很多的麻烦。通过查阅课本和资料,确定了一个示波器所需要的器件及软件功能。硬件部分的高速数据采集卡和小型变压器也均采用已经做好的器件直接使用,软件部分是依托labview的强大界面功能和模块设计,只需要输入一定的参数并将各个模块组合起来实现设计目的即可。
在这里使用的是东莞汉尔电子科技有限公司的10V220V400w小型电源变压器。
图二、10V220V400w小型电源变压器
电压测量采用静电电压表直接测量获得;
电流测量用在被测电路中直接串入电阻的方法获得。
取样电压采取变压器输出的电压提供,串入的电阻有以下要求:R的数值要选择合理,一般使电阻上的电压在40-100mv;选择热稳定性好的电阻;交流下采用无感电阻。
(2)频谱分析采用快速傅立叶FFT算法,完成频域信号分析,可以获得对应的频谱图。Labview提供了与信号分析有关的大量函数可以直接使用,在本文中采用FFT PowersPectrum作为主要数据处理子Vl进行功率谱分析。
按照傅里叶级数的定义,凡是满足狄利克雷条件的周期函数都能写成傅里叶级数的形式,函数的周期为T1,各次谐波成分的幅度值按以下各式计算:
硬件部分pc机市面上大部分电脑均可。数据采集卡考虑到数据传递的实时性以及数据接口的方便性,在查阅了大量资料后选择北京阿尔泰科技有限公司的USB2852数据采集卡。USB2852 卡是一种基于 USB 总线的数据采集卡,可直接和计算机的 USB 接口相连,使用便捷、性能稳定、
四、系统硬件设计
硬件包括pc机和数据采集硬件,pc机就不在此介绍,主要介绍数据采集硬件。数据采集硬件使用的是北京阿尔泰科技有限公司的USB2852数据采集卡,该数据采集卡除满足这是设计的要求外,还具有经济实惠,方便易用的特点。

VR虚拟现实-基于声卡的虚拟示波器设计 精品

VR虚拟现实-基于声卡的虚拟示波器设计 精品

基于声卡的虚拟示波器设计1.引言:随着计算机技术和虚拟仪器技术的发展,虚拟仪器逐渐成为现代仪器的发展方向,其中大部分虚拟仪器都是基于各种数据采集卡的,如NI公司的PCI-6221数据采集卡,研华公司PCL-1800型数据采集卡,ISA型数据采集卡AC1820。

在对采样频率要求不高的情况下,可以利用计算机的声卡进行数据的输入和输出。

声卡是一个非常优秀的音频信号采集系统,其数字信号处理包括模数变换器ADC(Analogue Digital Converter)和数模变换器DAC(Digital Analogue Converter),ADC用于采集音频信号,DAC则用于重现这些数字声音。

声卡已成为多媒体计算机的一个标准配置,因此基于声卡的虚拟仪器具有成本低,兼容性好,通用性和灵活性强的优点,可以不接受硬件限制,安装在多台计算机上。

本文利用LabVIEW8.2中的数字声音记录节点,编程实现了基于声卡的虚拟双踪数字存储示波器,采样速率为44.1KHz,线路输入端口最高电压限制为1V,对高于1V的信号采用比例运算放大电路衰减后输入,能适合很多场合的需要。

从数据采集的角度来看,声卡是一种音频范围内的数据采集卡,是计算机与外部的模拟量环境联系的重要途径。

2.认识声卡【1】声卡的作用声卡的主要功能包括录制与播放,编辑与合成处理MIDI接口3个部分【2】声卡的主要技术参数(1)彩样的位数采样位数可以理解为声卡处理声音的解析度。

这个数值越大,解析度就越高,录制和回放的声音就越真实。

声卡的位是指声卡在采集和播放声音文件时所使用的数字声音信号的二进制位数,它客观地反映了数字声音信号对输入声音信号的描述的准确程度。

(2)采样频率目前,声卡的最高采样率是44.1KHz,少数达48KHz。

对于民用声卡,一般将采样频率设为4档,分别是44.1KHz,22.05 KHz,11.025 KHz和8 KHz。

22.05 KHz只能达到FM广播的音乐品质;44.1 KHz是理论上的CD音质界限,48 KHz 则更好一些。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

虚拟示波器的设计
一、设计目的
设计示波器系统,该系统具有以下功能:
1.测量交流电压和电流的瞬时值、显示波形并实现动态刷新;
2测量交流电压和电流的频率和有效值;
3.对电压电流信号进行频谱分析。

二、总体思路
查阅了众多资料和结合书本知识后,了解到虚拟示波器是现代示波器发展的主流方向,考虑到现在软件的开放性和编程语言的丰富多样化,已经硬件设备的成本较高,硬件集成配置较麻烦,故采用了以虚拟示波器为主的示波器系统设计。

该虚拟示波器软件部分直接在pc机windows系统上运行,基于软件实现设计目的;而数据的采集则由硬件——高速数据采集卡完成,数据采集卡将采集到的信号传入pc机的虚拟示波器分析后直接在虚拟示波器的图形界面给出相应的参数和波形。

该系统主要部分为pc端软件分析模块,这个模块实现的功能为:数字滤波、频谱分析、参数计算、波形显示。

是整个系统的核心部分。

虚拟示波器主要有硬件和软件两部分构成。

硬件部分主要是普通PC机和数据采集卡,在这里选择的是北京阿尔泰科技有限公司的USB2852数据采集卡;软件部分则包括了前面板,采集卡驱动程序及相关的应用软件(主要有频谱分析,数字滤波,数据存储和读取,波形显示)
三、系统的软硬件选择
软件部分研究了可视化编程语言c/c++和图形化编程环境LabVIEW加文本变成环境LabWindows。

考虑到对软件编程了解较少,软件功能需要面向仪器,故选择了LabView。

LabVIEW的优势在于程序是框图的形式,用框图代替了传统的程序代码。

因而可在很短的时间内被掌握并应用,而且labview具有成熟的波形分析处理模块,可以直接使用。

硬件部分pc机市面上大部分电脑均可。

数据采集卡考虑到数据传递的实时性以及数据接口的方便性,在查阅了大量资料后选择北京阿尔泰科技有限公司的USB2852数据采集卡。

USB2852 卡是一种基于 USB 总线的数据采集卡,可直接和计算机的 USB 接口相连,使用便捷、性能稳定、
四、系统硬件设计
硬件包括pc机和数据采集硬件,pc机就不在此介绍,主要介绍数据采集硬件。

数据采集硬件使用的是北京阿尔泰科技有限公司的USB2852数据采集卡,该数据采集卡除满足这是设计的要求外,还具有经济实惠,方便易用的特点。

该数据采集卡可直接通过usb接口和电脑连接,无需额外的辅助接口,数据传输快。

通过usb连接电脑后,可自动装载驱动程序,方便我们配置数据采集卡。

,在驱动程序还需设置如下
◆采样速率(Frequency):31Hz~250KHz
◆物理通道数:32 通道(单端 SE),16 通道(双端 DI)
◆采样通道数:设置首末通道实现
◆模拟量输入方式:单端模拟输入
◆采集方式(ADMode):连续(异步)采集
◆触发模式(TriggerMode):软件触发(内触发)
◆模拟输入阻抗:10MΩ
图一、USB2852数据采集卡
由于USB2852的输入量程默认为±10v,而本示波器是用于市电测量,故需要将测量的信号降压处理。

这里的降压电路选择采用小型变压器降压。

小型变压器具有体积小,原副线圈不共地,降压比精确,设置方便等优势。

市电为220v,而输入量程为10v,故需要一个变比大于62的变压器。

在这里使用的是东莞汉尔电子科技有限公司的10V220V400w小型电源变压器。

图二、10V220V400w小型电源变压器
电压测量采用静电电压表直接测量获得;
电流测量用在被测电路中直接串入电阻的方法获得。

取样电压采取变压器输出的电压提供,串入的电阻有以下要求:R的数值要选择合理,一般使电阻上的电压在40-100mv;选择热稳定性好的电阻;交流下采用无感电阻。

选择100Ω和1Ω串联,可以在1Ω上得到小于100mv的电压,然后测量1Ω上的电压值,即可计算得到电流值。

五、系统的软件设计
该软件部分基于LabVIEW设计,需要实现的功能有:数字滤波、频谱分析、参数
计算、波形显示。

相关文档
最新文档