等比数列前n项和公式ppt
合集下载
等比数列的前n项和PPT课件
等比数列的前n项和ppt课件
xx年xx月xx日
contents
目录
• 引言 • 等比数列的前n项和公式推导 • 等比数列的前n项和的应用 • 特殊等比数列的前n项和 • 等比数列的前n项和求解方法 • 习题解答与练习
01
引言
课程背景
教学内容的重要性
等比数列是数学中的一个重要概念,其前n项和在数学、物理 、工程等领域有着广泛的应用。
特殊情况
当公比q不等于1时,等比数列的前n项和公式为 Sn=a1(1-q^n)/(1-q)。
05
等比数列的前n项和求解方法
利用公式求解等比数列的前n项和
公式法
利用等比数列的前n项和公式求解,当已知等比数列的首项a1和公比q时,可以直 接套用公式求出前n项和。
记忆口诀
为了方便记忆,可以总结一个简单的记忆口诀:“首项乘1减公比除以1减公比的 n次方”,这个口诀可以快速帮助我们记忆公式。
02
等比数列的前n项和公式推导
公比为r的等比数列求和公式推导
公式推导
$S_n = \frac{a_1}{1-r} * (1 - r^n)$
VS
推导步骤
将等比数列的每一项分别代入求和公式中 ,得到$S_n = a_1 + a_2 + \cdots + a_n$,再将$a_1 = ar, a_2 = ar^2, \cdots, a_n = ar^n$代入$S_n$中,经过 化简得到最终的求和公式。
04
特殊等比数列的前n项和
等差数列的前n项和公式
公式总结
等差数列的前n项和公式为Sn=n/2(a1+an),其中n为项数, a1为首项,an为末项。
公式证明
通过采用倒序相加法,将前n项和与后n项和相加,得到 2Sn=n(a1+an),从而得到前n项和公式。
xx年xx月xx日
contents
目录
• 引言 • 等比数列的前n项和公式推导 • 等比数列的前n项和的应用 • 特殊等比数列的前n项和 • 等比数列的前n项和求解方法 • 习题解答与练习
01
引言
课程背景
教学内容的重要性
等比数列是数学中的一个重要概念,其前n项和在数学、物理 、工程等领域有着广泛的应用。
特殊情况
当公比q不等于1时,等比数列的前n项和公式为 Sn=a1(1-q^n)/(1-q)。
05
等比数列的前n项和求解方法
利用公式求解等比数列的前n项和
公式法
利用等比数列的前n项和公式求解,当已知等比数列的首项a1和公比q时,可以直 接套用公式求出前n项和。
记忆口诀
为了方便记忆,可以总结一个简单的记忆口诀:“首项乘1减公比除以1减公比的 n次方”,这个口诀可以快速帮助我们记忆公式。
02
等比数列的前n项和公式推导
公比为r的等比数列求和公式推导
公式推导
$S_n = \frac{a_1}{1-r} * (1 - r^n)$
VS
推导步骤
将等比数列的每一项分别代入求和公式中 ,得到$S_n = a_1 + a_2 + \cdots + a_n$,再将$a_1 = ar, a_2 = ar^2, \cdots, a_n = ar^n$代入$S_n$中,经过 化简得到最终的求和公式。
04
特殊等比数列的前n项和
等差数列的前n项和公式
公式总结
等差数列的前n项和公式为Sn=n/2(a1+an),其中n为项数, a1为首项,an为末项。
公式证明
通过采用倒序相加法,将前n项和与后n项和相加,得到 2Sn=n(a1+an),从而得到前n项和公式。
等比数列的前n项和公式的性质及应用 课件
3.一个热气球在第一分钟上升了 25 m 的高度,在以后的每一分钟内, 它上升的高度都是它在前一分钟内上升高度的 80%.这个热气球上升 的高度能超过 125 m 吗?
解析:用 an 表示热气球在第 n 分钟内上升的高度, 由题意,得 an+1=54an, 因此,数列{an}是首项 a1=25,公比 q=45的等比数列. 热气球在前 n 分钟内上升的总高度 Sn=a1+a2+…+an=a111--qqn=2511--5445n =125×1-45n<125, 即这个热气球上升的高度不可能超过 125 m.
∴SS奇 偶= =- -8106,0. ∴公比 q=SS偶奇=--18600=2. 答案:2
探究三 数列求和的应用问题 [典例 3] 从社会效益和经济效益出发,某地投入资金进行生态环境 建设,并以此发展旅游产业,根据规划,本年度投入 800 万元,以后 每年投入将比上年减少15,本年度当地旅游业收入估计为 400 万元, 由于该项建设对旅游业的促进作用,预计今后旅游业收入每年会比上 年增加14.设 n 年内(本年度为第 1 年)总投入 Sn 万元,旅游业总收入为 Tn 万元,写出 Sn、Tn 的表达式.
对等比数列求和的项数用错致误 [典例] 在等比数列{an}中,公比 q=2,前 87 项和 S87=140,则 a3 +a6+a9+…+a87=________.
[ 解 析 ] 法 一 : a3 + a6 + a9 + … + a87 = a3(1+ q3 + q6 + … + q84) = a1q2·1-1-qq3329=1+qq2+q2·a111--qq87=47×140=80.
法三:运用性质1-Smqm=1-Snqn(q≠±1). 由已知条件 S10=10,S20=30,易得 q≠±1, ∴1-S1q0 10=1-S2q0 20,即1-10q10=1-30q20, ∴q10=2. 又1-S1q010=1-S3q030,解得 S30=70.
等比数列前n项和公式ppt
1 2n
)
n(n 1) 2
1 [1 (1)n ] 22
1 1
n2
2
n
1
1 2n
2
分组求和
采用变式教学设计题组,通过直接套用公式、变式运用公式、研究公式特点
这三个层次的问题解决,促进学生新的数学认知结构的形成.通过以上形式,
让全体学生都参与教学,以此培养学生的参与意识和竞争意识.
第10页/共15页
陛下,请您在这张棋盘的第一 个小格内,赏给我一粒麦子; 在第二个小格内给两粒,第三 格内给四粒,照这样下去,每 一小格都比前一小格加一倍。 陛下啊,把这样摆满棋盘上所 有64格的麦粒,都赏给您的仆 人罢!
第3页/共15页
鼓励学生合作讨论, 通过自己的努力解决问题, 激发进一步深入学习的兴趣和欲望。
Sk
a1 ak q 1 q
1 243 3 13
364
第9页/共15页
拓展训练 、深化认识
求数列1
1, 2
2
1, 4
3
1, 8
4
1 , 16
的前n项的和.
解:
Sn
11 2
21 4
31 8
4 1 16
(n
1 2n
)
反思
(1
1 2
)
(2
1 4
)
(3
1 8
)
(n
1 2n
)
(1
2
3
n)
(
1 2
1 4
1 8
第8页/共15页
变式强化: 深化对公式的理解与灵活运用,巩固强化。
课堂练习 1.求等比数列中,
(1)已知
a1
4
等比数列的前n项和PPT课件
讲授新课
1 2 22 23 24 263
这一格放 的麦粒可 以堆成一 座山!!!
263
湖南省长沙市一中卫星远程学校
讲授新课
分析: 由于每格的麦粒数都是前一格的2倍,
共有64格每格所放的麦粒数依次为:
湖南省长沙市一中卫星远程学校
讲授新课
分析: 由于每格的麦粒数都是前一格的2倍,
共有64格每格所放的麦粒数依次为:
1, 2, 22 , 23 , , 263.
湖南省长沙市一中卫星远程学校
讲授新课
分析: 由于每格的麦粒数都是前一格的2倍,
共有64格每格所放的麦粒数依次为:
1, 2, 22 , 23 , , 263.
它是以1为首项,公比是2的等比数列,
湖南省长沙市一中卫星远程学校
讲授新课
分析: 由于每格的麦粒数都是前一格的2倍,
湖南省长沙市一中卫星远程学校
等比数列的前n项和公式的推导1
一般地,设等比数列a1, 它的前n项和是
a2,
a3,
…,
an这…种求和
的方法,就
是错位相
减法!
湖南省长沙市一中卫星远程学校
等比数列的前n项和公式的推导1
一般地,设等比数列a1, a2, a3, …, an… 它的前n项和是
∴当q≠1时,
①
湖南省长沙市一中卫星远程学校
讲授新课
请同学们考虑如何求出这个和?
S64 1 2 22 23 263 ① 2S64 2(1 2 22 23 263 )
即 2S64 2 22 23 263 264 ②
由②-①可得:
2S64 S64 (2 22 23 263 264) (1 2 22 23 263 )
等比数列前n项和公式课件PPT
等比数列的特殊前n项和
对于等比数列,当公比q=1时,前n项和公式为Sn=na1;当q=-1时,Sn=a1a1*q^n/1+q。
等比数列前n项和公式的变种
倒序相加法
错位相减法
将等比数列的前n项和公式倒序相加, 可以得到新的求和公式。
通过错位相减法,可以求出等比数列 的通项公式。
分组求和法
将等比数列分组求和,可以简化计算 过程。
公式与其他数学知识的结合
总结词:综合运用
详细描述:等比数列前n项和公式可以与其他数学知识结合使用,以解决更复杂的数学问题。例如,可以与等差数列、函数、 极限等知识结合,用于解决一些综合性数学问题。
03
等比数列前n项和公式的扩展
特殊等比数列的前n项和
等差数列的前n项和
等差数列是一种特殊的等比数列,其前n项和公式为Sn=n/2 * (a1+an),其中 a1为首项,an为第n项。
等比数列前n项和公式的证明方法
数学归纳法
通过数学归纳法证明等比数列的前n 项和公式。
累乘法
通过累乘法证明等比数列的前n项和公 式。
04
等比数列前n项和公式的练习 与巩固
基础练习题
详细描述:通过简单的等比数列求和问题,让 学生熟悉并掌握等比数列前n项和的公式。
解题思路:利用等比数列前n项和公式,将数列中的 每一项表示为2的幂,然后求和。
05
等比数列前n项和公式的总结 与回顾
本节课的重点回顾
等比数列前n项和公 式的推导过程
等比数列前n项和公 式的适用范围和限制 条件
如何应用等比数列前 n项和公式解决实际 问题
本节课的难点解析
如何理解和掌握等比数列前n项和公 式的推导过程
对于等比数列,当公比q=1时,前n项和公式为Sn=na1;当q=-1时,Sn=a1a1*q^n/1+q。
等比数列前n项和公式的变种
倒序相加法
错位相减法
将等比数列的前n项和公式倒序相加, 可以得到新的求和公式。
通过错位相减法,可以求出等比数列 的通项公式。
分组求和法
将等比数列分组求和,可以简化计算 过程。
公式与其他数学知识的结合
总结词:综合运用
详细描述:等比数列前n项和公式可以与其他数学知识结合使用,以解决更复杂的数学问题。例如,可以与等差数列、函数、 极限等知识结合,用于解决一些综合性数学问题。
03
等比数列前n项和公式的扩展
特殊等比数列的前n项和
等差数列的前n项和
等差数列是一种特殊的等比数列,其前n项和公式为Sn=n/2 * (a1+an),其中 a1为首项,an为第n项。
等比数列前n项和公式的证明方法
数学归纳法
通过数学归纳法证明等比数列的前n 项和公式。
累乘法
通过累乘法证明等比数列的前n项和公 式。
04
等比数列前n项和公式的练习 与巩固
基础练习题
详细描述:通过简单的等比数列求和问题,让 学生熟悉并掌握等比数列前n项和的公式。
解题思路:利用等比数列前n项和公式,将数列中的 每一项表示为2的幂,然后求和。
05
等比数列前n项和公式的总结 与回顾
本节课的重点回顾
等比数列前n项和公 式的推导过程
等比数列前n项和公 式的适用范围和限制 条件
如何应用等比数列前 n项和公式解决实际 问题
本节课的难点解析
如何理解和掌握等比数列前n项和公 式的推导过程
高中数学等比数列的前n项和性质及应用课件
思路探究:(1 )由 S 2,S 4-S 2,S 6-S 4 成等比数列求解.
S偶
(2 )利用
S奇
=q ,及 S 2n=S
奇+S
偶求解.
合作探究
思
而
学
(1 )A (2)24 [(1)∵{a n}为等比数列, ∴S 2,S 4-S 2,S 6-S 4 也为等比数列, 即 7 ,S 4-7 ,9 1 -S 4 成等比数列, ∴(S 4-7 )2=7 (9 1 -S 4),解得 S 4=2 8 或 S 4=-2 1 . ∵S 4=a 1+a 2+a 3+a 4=a 1+a 2+a 1q 2+a 2q 2 =(a 1+a 2)(1 +q 2)=S 2(1 +q 2)> S 2,∴S 4=2 8 .
2
2
128
S偶
1
[解]
设等比数列为{a n },项数为
2n ,一个项数为
2n
的等比数列中, =q .则 S奇
q= , 2
3
3
又
an
和
a n +1
为中间两项,则
a
n
+a
n
+1
= 1
2
8
,即
a1q
n -1+a 1q
n= , 128
1
1
又
a
1
= 2
,q
= 2
,
1 ∴
2
·21
n
-1
1 +
2
·21
n
= 1
高中数学
数列
等比数列
等比数列的前n项 和性质及应用
学习目标
学
而
思
1.等比数列前 n 项和的变式
a 1 1 -q n
4.3.1等比数列的前n项和公式课件(人教版)
4.3.1等比数列的 前n项和公式
知识回顾
等差数列
定义
an1 an d
等比数列
an1 q an
公差/公比 公差可以是正数、 公比不可以是0. 负数和0.
知识回顾
等差(比) 中项
等差数列
2A=a b
递推公式 an1 an d
通项公式 an a1 (n 1)d
等比数列
G2 =ab
an1 q an an a1qn1
a1(1 qn ) 1-q
,
S2n
Sn
a1(1 q2n ) 1-q
a1(1 qn ) 1-q
a1qn (1 1-q
qn)
qnSn ,
S3n
S2n
a1(1 q3n ) 1-q
a1(1 q2n ) 1-q
a1q2n (1 1-q
qn)
qn
S2n
Sn
,
例题
例3.已知等比数列{an}的公比q -1,前n项和为Sn ,证明Sn,S2n -Sn,S3n -S2n 成等比数列, 求这个数列的公比q.
Sn
=
a1
(1 qn 1 q
)
(q
1)
需要a1和q
an a1qn1
Sn
=
a1 an 1 q
q
(q
1)
需要a1,an和q
探究
当q 1时,
a1 a2 an; Sn a1 a2 an ,
na1
新知讲解 首项为a1,公比为q的等比数列{an} 的前n 项和Sn 公式为:
Sn
=
na1,
若 S10 S5
31 32
,
求公比q.
解:①若q 1,则
S10 10a1 2 31 ,
知识回顾
等差数列
定义
an1 an d
等比数列
an1 q an
公差/公比 公差可以是正数、 公比不可以是0. 负数和0.
知识回顾
等差(比) 中项
等差数列
2A=a b
递推公式 an1 an d
通项公式 an a1 (n 1)d
等比数列
G2 =ab
an1 q an an a1qn1
a1(1 qn ) 1-q
,
S2n
Sn
a1(1 q2n ) 1-q
a1(1 qn ) 1-q
a1qn (1 1-q
qn)
qnSn ,
S3n
S2n
a1(1 q3n ) 1-q
a1(1 q2n ) 1-q
a1q2n (1 1-q
qn)
qn
S2n
Sn
,
例题
例3.已知等比数列{an}的公比q -1,前n项和为Sn ,证明Sn,S2n -Sn,S3n -S2n 成等比数列, 求这个数列的公比q.
Sn
=
a1
(1 qn 1 q
)
(q
1)
需要a1和q
an a1qn1
Sn
=
a1 an 1 q
q
(q
1)
需要a1,an和q
探究
当q 1时,
a1 a2 an; Sn a1 a2 an ,
na1
新知讲解 首项为a1,公比为q的等比数列{an} 的前n 项和Sn 公式为:
Sn
=
na1,
若 S10 S5
31 32
,
求公比q.
解:①若q 1,则
S10 10a1 2 31 ,
2.5等比数列前n项和公式的推导 PPT课件
• C.6
D.7
解析:an=a1·qn-1=96=3·qn-1,∴qn-1=32,Sn=
a1-anq 1-q
=31--9q6q=189,1-1-32qq=63.解得q=2.∴n=6.
答案:C
• 3.已知等比数列{an}中,an>0,n=1,2,3, …,a2=2,a4=8,则前5项和S5的值为 ________.
5, a1
1 2
.求an和s
n
(3)a1 1,an 512 ,sn 341 .求q和n
当q 1时,S 1 (1) 说明: 解 (3: ) (当将 代 12as因 解 )qq55入 a3为 2得 14aq11aa时a1: 2n1112n11q,即 1.n,21.并作 在 在4a1a,数an1a且 qn五 为 利2q311(列12q1要2个0n第 用n5为 n551根 变一 公 1q,,212常 25a1s据量 ,要 式14an所 1)1数12q具(a2素 , 111以 .列 ,解 体,q81来 q2一Saqn2,1题2)n得 考 定n15,1,52意a虑 要 , : 12n22q,1,q,。 注 [11qS3nn选((中 , 4意1得 311择12,))所 q1n代 2: 的 适(]只以 当 取 入 2知S)的值nn三S公, 1n可n式应 求a1。把二a1n1它,2aqnnq 可得
• 1.数列{2n-1}的前99项和为( )
• A.2100-1
B.1-2100
• C.299-1
D.1-299
解析:a1=1,q=2,∴S99=1×11--2299=299-1. 答案:C
• 2.在等比数列{an}中,已知a1=3,an=96 ,Sn=189,则n的值为( )
等比数列的前n项和公式(1) PPT教学课件(高二数学人教A版 选必修二)
高中数学
问题2 国际象棋起源于古印度.相传国王要奖赏国际象棋的
发明者,问他想要什么.发明者说:“请在棋盘的第1个格子 里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放 上4颗麦粒……依次类推,每个格子里放的麦粒数都是前一 个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的 麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同 意了.
高中数学
改进:为了看清式子的特点,我们不妨把各项都用首项和公 比来表示. Sn a1 a1q a1q2 a1qn3 a1qn2 a1qn1. ①
追问7:观察 ① 式,相邻两项有什么特征?怎样把某一项变 成它的后一项?
an q n≥2,q 0
an1
高中数学
改进:为了看清式子的特点,我们不妨把各项都用首项和公 比来表示.
高中数学
回顾:等差数列的前 n 项和公式的推导过程. 等差数列 a1, a2 , a3, an 的前 n 项和是 Sn a1 a2 a3 an2 an1 an. 根据等差数列的定义 an1 an d. Sn a1 a2 a3 an2 an1 an
高中数学
回顾:等差数列的前 n 项和公式的推导过程. 等差数列 a1, a2 , a3, an 的前 n 项和是 Sn a1 a2 a3 an2 an1 an. 根据等差数列的定义 an1 an d. Sn a1 a2 a3 an2 an1 an Sn an an1 an2 a3 a2 a1
高中数学
改进:为了看清式子的特点,我们不妨把各项都用首项和公 比来表示. Sn a1 a1q a1q2 a1qn3 a1qn2 a1qn1.
高中数学
改进:为了看清式子的特点,我们不妨把各项都用首项和公 比来表示. Sn a1 a1q a1q2 a1qn3 a1qn2 a1qn1. ① 追问7:观察 ① 式,相邻两项有什么特征?怎样把某一项变 成它的后一项?
问题2 国际象棋起源于古印度.相传国王要奖赏国际象棋的
发明者,问他想要什么.发明者说:“请在棋盘的第1个格子 里放上1颗麦粒,第2个格子里放上2颗麦粒,第3个格子里放 上4颗麦粒……依次类推,每个格子里放的麦粒数都是前一 个格子里放的麦粒数的2倍,直到第64个格子.请给我足够的 麦粒以实现上述要求.”国王觉得这个要求不高,就欣然同 意了.
高中数学
改进:为了看清式子的特点,我们不妨把各项都用首项和公 比来表示. Sn a1 a1q a1q2 a1qn3 a1qn2 a1qn1. ①
追问7:观察 ① 式,相邻两项有什么特征?怎样把某一项变 成它的后一项?
an q n≥2,q 0
an1
高中数学
改进:为了看清式子的特点,我们不妨把各项都用首项和公 比来表示.
高中数学
回顾:等差数列的前 n 项和公式的推导过程. 等差数列 a1, a2 , a3, an 的前 n 项和是 Sn a1 a2 a3 an2 an1 an. 根据等差数列的定义 an1 an d. Sn a1 a2 a3 an2 an1 an
高中数学
回顾:等差数列的前 n 项和公式的推导过程. 等差数列 a1, a2 , a3, an 的前 n 项和是 Sn a1 a2 a3 an2 an1 an. 根据等差数列的定义 an1 an d. Sn a1 a2 a3 an2 an1 an Sn an an1 an2 a3 a2 a1
高中数学
改进:为了看清式子的特点,我们不妨把各项都用首项和公 比来表示. Sn a1 a1q a1q2 a1qn3 a1qn2 a1qn1.
高中数学
改进:为了看清式子的特点,我们不妨把各项都用首项和公 比来表示. Sn a1 a1q a1q2 a1qn3 a1qn2 a1qn1. ① 追问7:观察 ① 式,相邻两项有什么特征?怎样把某一项变 成它的后一项?
高中数学《等比数列前n项和公式》课件
反思与感悟 解决此类问题的关键是建立等比数列模型及弄清数列 的项数,所谓复利计息,即把上期的本利和作为下一期本金,在计 算时每一期本金的数额是不同的,复利的计算公式为S=P(1+r)n, 其中P代表本金,n代表存期,r代表利率,S代表本利和.
跟踪训练3 一个热气球在第一分钟上升了25 m的高度,在以后的每一 分钟里,它上升的高度都是它在前一分钟里上升高度的80%,这个热 气球上升的高度能超过125 m吗?
跟踪训练2 在等比数列{an}中,S2=30,S3=155,求Sn.
方法二 若q=1,则S3∶S2=3∶2,
而事实上,S3∶S2=31∶6,故q≠1.
a111--qq2=30,
①
所以a111--qq3=155,
②
两式作比,得1+1+q+q q2=361,
解得aq1==55,
a1=180, 或q=-65,
达标检测
1.等比数列1,x,x2,x3,…的前n项和Sn等于
1-xn A. 1-x
1-xn-1 B. 1-x
1-xn
√
C.
1-x
,x≠1,
n,x=1
解析 当x=1时,Sn=n; 1-xn
当 x≠1 时,Sn= 1-x .
D.1-1-xnx-1,x≠1, n,x=1
1234
2.设等比数列{an}的公比 q=2,前 n 项和为 Sn,则Sa42等于
A.2 解析
B.4
√C.125
17 D. 2
方法一 由等比数列的定义,S4=a1+a2+a3+a4=aq2+a2+a2q+
a2q2,得Sa42=1q+1+q+q2=125. 方法二 ∵S4=a111--qq4,a2=a1q,∴Sa42=11--qq4q=125.
等比数列的前n项和-优秀PPT课件
1
Sn
a1 anq 1 q
,q
1
na1, q 1
na1, q 1
练习1.判断是非
( 2)n
①1 2 4 8 16 (2)n1 1 (1 2n) 1 (2)
n+1
② 1 2 22 23 2n 1 (1 2nn ) 12
③
c2
c4
c6
c2n
c2[1 (c2 )n ] 1 c2
, 14
,
1 8
,116
,
求前2n项中所有偶数项的和.
练习4
思考
资料表明,2000年我国工业废弃垃圾达 7.4×108t,每吨占地1m2,环保部门每回收或 处理1t废旧物资,相当于消灭4t工业废弃垃 圾.如果环保部门2002年共回收处理了100t 废旧物资,且以后每年的回收量递增20%. (1)2010年能回收多少吨废旧物资? (2)从2002年到2010年底,可节约土地多少m2?
小结:
乘公比 错位相减
等比数列的 前n项和公式
q≠1,q=1 分类讨论
数学
源于生活
Sn
a1
(1 q 1q
n
)
q1
na1
q 1
知三求二
a1 anq
Sn
1q
na1
数学 用于生活
q1
q1
分组求和
方
转
程
化
思
思
想
想
课后作业:
必做:P61 A组 1、4、6题 选做:
思考题(1): 求和 x + 2 x2 + 3 x3 + + nxn .
等比数列的前n项和
选自人教A版必修5第二章第五节
4.3.2等比数列的前n项和公式课件(人教版)
( 1) (1 q )
32
m
Sm 1 q
则
(
. q 1)
n
1
Sn 1 q
∴q .
不要忘记考
2
虑q=1与q≠1
两种情况.
跟踪训练
在等比数列{an}中,设前n项和为Sn,S3= ,S6= ,求公比q .
解 : (1)q 1时, S 6 6a1 , S3 3a1 , 则S 6 2S3 , 不符合题意.
3
课堂小结
获取知识的方法
知识内容
这节课
收获了什么
思想、素
养
课堂小结
,q 1
na1
n
S
a
1
q
a1 an q
➢ 数学知识:等比数列的前n项和公式 n 1
=
,
q 1
1
q
1
q
➢数学方法: 错位相减法
➢数学思想:
转化和化归
➢数学素养:
逻辑推理、数学抽象素养、数学运算、数学
学抽象素养。
2.通过等比数列的前n项和公式
的运用,培养数学运算素养。
3.借助等比数列的前n项和公式
解决简单的实际问题,培养数学
建模素养。
新课导入
数学小故事
相传,古印度的国王打算重赏国际象棋的发明者——宰相西
萨。问他想要什么。于是,这位宰相跪在国王面前说:
2
3
1 2 2 2 2
4
263
思考:
问题1:1,2,2 2 ,23 , ,263 构成什么数列?
1
32
m
Sm 1 q
则
(
. q 1)
n
1
Sn 1 q
∴q .
不要忘记考
2
虑q=1与q≠1
两种情况.
跟踪训练
在等比数列{an}中,设前n项和为Sn,S3= ,S6= ,求公比q .
解 : (1)q 1时, S 6 6a1 , S3 3a1 , 则S 6 2S3 , 不符合题意.
3
课堂小结
获取知识的方法
知识内容
这节课
收获了什么
思想、素
养
课堂小结
,q 1
na1
n
S
a
1
q
a1 an q
➢ 数学知识:等比数列的前n项和公式 n 1
=
,
q 1
1
q
1
q
➢数学方法: 错位相减法
➢数学思想:
转化和化归
➢数学素养:
逻辑推理、数学抽象素养、数学运算、数学
学抽象素养。
2.通过等比数列的前n项和公式
的运用,培养数学运算素养。
3.借助等比数列的前n项和公式
解决简单的实际问题,培养数学
建模素养。
新课导入
数学小故事
相传,古印度的国王打算重赏国际象棋的发明者——宰相西
萨。问他想要什么。于是,这位宰相跪在国王面前说:
2
3
1 2 2 2 2
4
263
思考:
问题1:1,2,2 2 ,23 , ,263 构成什么数列?
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式当q 1时,
Sn
a1 anq 1 q
当q 1时, Sn na1.
Sn
a1(1 qn ) 1 q
(1) a1, an , q, Sn 和各已知 a1, n, q, Sn
三个可求第四个。
(2)注意求和公式是qn,不要和通项公 式中的qn1混淆。 (3)注意q是否等于1,如果不确定,就要 分q 1和q 1两种情况讨论。
例题选讲:
针对知识点精选例题,初步掌握公式运用。
例1 .写出等比数列 1,-3,9,-27…的前n项和公式并求
出数列的前8项的和。
解:因为a1
1,q
3 1
3,所以等比数列的前
n项和公式为:
Sn
1[1 (3)n ] 1 (3)
1 (3)n 4
故
S8
1 ( 3)8 4
(1)-(2) Sn qSn a1 anq 整理 (1 q)S n a1 anq
a a q 当q
1时,Sn
a1 anq 1 q
n
n1 1
Sn
a1(1 qn ) 1 q
当q 1时,Sn na1.
错位相减法
深化学生对公式的认识和理解:
等比数列的前n项和公
1023 128
2(2)Ska1 ak q 1 q
1 243 3 13
364
拓展训练 、深化认识
求数列1
1 2
,
2
1, 4
3
1, 8
4
1 16
,
的前n项的和.
解:
Sn
11 2
21 4
31 8
4 1 16
(n
1 2n
)
反思
(1
1) 2
(2
1) 4
(3
中职数学基础模块下册
第六章 数列
6.3.3 等比数列的前n项和公式 教学法
6.3.3 等比数列的前n项和公式
教学重点、难点
❖ 教学重点:等比数列前n项和公式的推导与应用。
❖ 教学难点:公式的推导方法和公式的灵活运用。公式推导 所使用的“错位相减法”是高中数学数列求和
方 法中最常用的方法之一,它蕴含了重要的数学 思想,所以既是重点也是难点.
小结
当q 1时,
1、等比数列前n项和:
Sn
a1 anq 1 q
Sn
a1(1 qn ) 1 q
错
位 相 减
法
当q 1时,Sn na1.
2、注意选择适当的公式,必要是分情况讨论。
3、学会建立等比数列的数学模型,来解决实际问题。
归纳总结:鼓励学生自己总结,使自身的认知结构得以提高和发展。
作业布置、强化知识:
必做: 课本P17-18 练习6.3.3 1.2题
选做:
等比数列中,S3
7 2
,
S6
623,求an。
必做题,有助学生课后巩固提高, 选作题是注意分层教学和因材施教, 让学有余力的学生有思考的空间
类比联想、 推导公式 一般地,设有等比数列: a1, a2 , a3,, an ,,
它的前n项和是: Sn a1 a2 a3 an. (1)
(1)的两边乘以q qSn a1q a2q a3q an1q anq.
由定义 qSn a2 a3 a4 an anq. (2)
6.3.3 等比数列的前n项和公式
教学过程
❖ 创设情境、提出问题 ❖ 类比联想、推导公式 ❖ 例题选讲、变式强化 ❖ 拓展训练 、深化认识 ❖ 归纳总结、内化知识 ❖ 作业布置、强化知识
创设情境、提出问题
数学小故事
相传,古印度的舍罕王打算重赏国际 象棋的发明者——宰相西萨·班·达依尔。 于是,这位宰相跪在国王面前说:
1) 8
(n
1 2n
)
111
1
(1 2 3
n)
( 2
4
8
2n
)
n(n 1) 2
1 2
[1 (1)n 2
1 1
]
n2 2
n
1
1 2n
2
分组求和
采用变式教学设计题组,通过直接套用公式、变式运用公式、研究公式特点
这三个层次的问题解决,促进学生新的数学认知结构的形成.通过以上形式,
S64 264 1 =18,446,744,073,709,551,615
这位宰相所要求的,竟是全世界在两千年内所产 的小麦的总和!
让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为 “减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思 议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩 证思维能力的良好契机.
让全体学生都参与教学,以此培养学生的参与意识和竞争意识.
选用公式、变用公式、理解内化
变式练习:求和
(1
1) (2 x
1 x2 )
(n
1 xn
)(
n
N
x
0)
该题有助于培养学生对含有参数的问题 进行分类讨论的数学思想. 训练学生注意考察q是否为1的情况,突破易错点。
归纳总结、内化知识
陛下,请您在这张棋盘的第一 个小格内,赏给我一粒麦子; 在第二个小格内给两粒,第三 格内给四粒,照这样下去,每 一小格都比前一小格加一倍。 陛下啊,把这样摆满棋盘上所 有64格的麦粒,都赏给您的仆 人罢!
鼓励学生合作讨论, 通过自己的努力解决问题, 激发进一步深入学习的兴趣和欲望。
第1格: 1 第2格: 2
1640
变式强化: 深化对公式的理解与灵活运用,巩固强化。
课堂练习 1.求等比数列中,
(1)已知
a1
4
,q
1 2
,求S10。
(2)已知 a1 1 , ak 243 , q 3 ,求Sk。
解:(1)
S10
a1(1 q10 ) 1 q
4[1 (1)10 ] 2
1 1
第3格: 22
第4格: 23
……
第63格: 262
第64格: 263
这位聪明的宰相到底要求的是多少麦粒呢?
1 2 22 23 262 263 ?
这实际上是求首项为1,公比为2的等比数列的前64项的和。
S64 1 2 22 23 263 2S64 2 22 23 263 264