汽车驱动防滑系统
汽车驱动防滑转电子控制系统ASR
ABS执行器
制动执行器
TRC制动执行器主要由TRC隔离电磁阀及制动供能总成组成。 1、TRC隔离电磁阀主要由三个两位两通电磁阀组成,即制动总泵隔
离电磁阀、蓄能器隔离电磁阀和储液器隔离电磁阀。该装置通过管 路与制动总泵、制动压力调节器、TRC制动供能总成相连。 2、TRC制动供能总成主要由电动供液泵,蓄能器和压力开关组成。 电动供液泵为一电动机驱动的柱塞泵,它将制动液从总泵储液室 中泵入蓄能器,使蓄能器中压力升高并保持在一定范围内,以便为 驱动防滑制动介入提供可靠的制动能源。 压力开关安装在TRC电磁阀总成旁,它将信号送人ECU,用来控制 TRC电动供液泵是否运转。
ASR与ABS的联系与区别
(1)两者都是用来控制车轮相对于地面的滑动,以 使车轮与地面的附着力不下降,但ABS控制的是制动 时车轮的“滑拖”,而ASR控制的是驱动时车轮的 “滑转”。 (2)ASR只对驱动车轮实施制动控制。 (3)ABS是在汽车制动后车轮出现抱死时起作用, 当车速很低(低于8km/h)时不起作用;而ASR则是在 汽车行驶过程中车轮出现滑转时起作用,当车速很高 (高于80-120km/h)时一般不起作用。 (4)两者都需要轮速传感器。
二、工作过程
工作条件:
(1)TRC关断开关处于断开位置;
(2)主节气门位置传感器怠速触点应断开(驾驶员在踩加速踏板);
(3)制动开关处于断开位置; (4)发动机及变速器系统正常; (5)变速操纵杆不在“P”、“ N”位置。
系统自检
打开点火开关,TRC关断开关处于断开位置,TRC关断指示灯 熄灭,若系统正常则TRC警告灯亮3s左右应熄灭,若发现故障则 持续点亮警告灯,同时存贮故障码。 TRC未进入工作时,各电磁阀均不通电。制动总泵到各车轮制 动轮缸的油路处于连通状态;蓄能器中的制动液压力保持在一定 范围内;控制副节气门的步进电机不通电,副节气门保持在全开 位置,进气量由驾驶员通过主节气门控制。
2 驱动防滑转系统(ASR)
图2-4 ASR制动液压系统 1-ASR电磁阀总成 2-单向阀 3-压力传感器 4-蓄能器 5-制动供能总成 6-液压泵 7-电动机 8-储液器隔离电磁阀 9-单向阀 10-ABS制动压力调节器 11-右后驱动车轮 12-ABS右后轮电磁阀 13-蓄能器隔离电磁阀 14-回油泵 15-储液器 16-制动主缸隔 离电磁阀 17- ABS左后轮电磁阀 18-左后驱动车轮
• 4)ASR工作时具有不同的优先选择性,当车速较低时, 优先考虑提高牵引力,因此可以只对滑转一侧的车轮制动, 或者对滑转程度不同的两侧驱动轮施加不同的制动力矩。 但当车速较高时,优先考虑行驶稳定性,即使一侧车轮滑 转时,也同时对两侧驱动轮施加相等的制动力矩。 • 5)ASR具有自诊断功能,当自诊断系统诊断出系统有故 障时,ASR将自动退出工作,并点亮警告灯。 • 6)ASR和ABS都是通过控制作用于被控车轮上的力矩, 而将车轮的滑移率或滑转率控制在理想范围内,以提高附 着系数的利用率,从而缩短汽车制动距离或提高汽车的加 速性能,改善汽车的行驶方向稳定性和转向控制能力。
• ② 制动供能总成 • 制动供能总成主要由TRC液压泵、蓄能器和压力传感 器等组成。压力传感器安装在TRC隔离电磁阀总成的旁边, 为接触开关型,当蓄能器内的压力高于13.24MPa时,开 关断开;当压力低于9.32MPa时,开关接通。压力传感器 信号送入ABS/TRC ECU,ABS/TRC ECU根据开关信号 控制TRC液压泵工作或停止。制动供能总成如图2-8所示。
(4)TRC执行器 TRC执行器包括控制滑转车轮制动的TRC 制动压力调节器和控制副节气门开度的步进电动机。TRC 制动压力调节器由隔离电磁阀总成和制动供能总成组成。
① 隔离电磁阀总成
图2-7 TRC隔离电磁阀总成 1-储液器隔离电磁阀 2-蓄能器隔离电磁阀 3-制动主缸隔离电磁阀 4-压力传感器
简述驱动防滑系统的控制方法
简述驱动防滑系统的控制方法
驱动防滑系统(ASR)的控制方法主要包括以下几种:
1. 逻辑门限值控制:这种方法不需要建立具体的数学模型,简化了驱动防滑控制器的开发过程。
2. PID控制:这是一种常用的控制方法,通过比例、积分和微分三个环节来调整系统参数,以达到理想的控制效果。
3. 最优控制:这种方法通过优化系统参数,使系统性能达到最优。
4. 神经网络控制:利用神经网络的自学习能力,对系统进行控制。
5. 滑模控制:在系统状态发生变化时,滑模控制能够快速响应并稳定系统。
6. 模型跟踪控制:使控制系统按照预定的模型进行工作,以达到理想的控制效果。
这些控制方法都是为了实现驱动防滑系统的功能,即通过识别路面状态,针对不同路况采用不同的滑转率控制策略,通过限制驱动轮的驱动转矩使车辆能在不同路面上充分利用附着力,防止车辆在驱动力急剧变化中发生驱动轮相对地面产生过度的滑转,从而使车辆轮胎相对地面的附着力降低。
以上内容仅供参考,建议咨询汽车专业技术人员了解具体的控制方法。
汽车ASR系统
汽车驱动防滑系统(Acceleration Slip Regulation
或 Traction Control System),简称ASR或TCS
ABS是防止制动过程中的车轮抱死、保持方向稳定性和
操纵性并能缩短制动距离的装置。
而ASR的作用是防止汽车加速过程中的打滑,特别防止
汽车在非对称路面或在转弯时驱动轮的空转,保持方向 稳定性、操纵性,维持最大驱动力的装置。
不同点:
▪ (1)ABS系统是防止制动时车轮抱死滑移,
确保制动安全;ASR系统(TRC)则是防止 驱动车轮原地不动而不停的滑转,提高汽 车起步、加速及滑溜路面行驶时的牵引力, 确保行驶稳定性。
▪ (2)ABS系统对所有车轮起作用,控制其
滑移率;而ASR系统只对驱动车轮起制动 控制作用。
▪ (3)ABS是在制动时,车轮出现抱死情况
下起控制作用,在车速很低(小于8km/h) 时 不 起 作 用 ; 而 ASR 系 统 则 是 在 整 个 行 驶 过程中都工作,在车轮出现滑转时起作用, 当车速很高(80~120 km/h)时不起作用。
驱动车轮的滑转率:
Sd
vc vc
v
100%
Vc—— 驱 动 车 轮 圆 周速度
V—— 车 身 瞬 时 速 度
一个3/3电磁阀I
蓄压器
增压泵 压力控制开 关单向阀
◆需要保持驱动轮制动压力时,ASR控制器 使电磁阀Ⅰ半通电,阀至中位,隔断蓄压 器及制动总泵的通路,驱动轮制动分泵压 力保持不变。
◆需要减小驱动轮制动压力时,ASR控制器 使电磁阀Ⅱ和电磁阀Ⅲ通电,阀移至右位, 接通驱动车轮制动分泵与储液室的通道, 制动压力下降。
由于ASR是ABS系统功能的延伸和补充。因此ASR与
ASR驱动防滑系统
ASR是驱动防滑系统的简称,其作用是防止汽车起步、加速过程中驱动轮打滑,特别是防止汽车在非对称路面或转弯时驱动轮空转,并将滑移率控制在10%—20%范围内。
由于ASR多是通过调节驱动轮的驱动力实现控制的,因而又叫驱动力控制系统,简称TCS,在日本等地还称之为TRC或TRAC。
作用:
ASR的作用是当汽车加速时将滑动控制在一定的范围内,从而防止驱动轮快速滑动。
它的功能一是提高牵引力;二是保持汽车的行驶稳定性。
行驶在易滑的路面上,没有ASR的汽车加速时驱动轮容易打滑;如果是后驱动的车辆容易甩尾,如果是前驱动的车辆容易方向失控。
有ASR时,汽车在加速时就不会有或能够减轻这种现象。
在转弯时,如果发生驱动轮打滑会导致整个车辆向一侧偏移,当有ASR时就会使车辆沿着正确的路线转向。
在装有ASR的车上,从油门踏板到汽油机节气门(柴油机喷油泵操作杆)之间的机械连接被电控油门装置所代替。
当传感器将油门踏板的位置及轮速信号送到单元(CPU)时,控制单元就会产生控制电压信号,伺服电机依此信号重新调整节气门的位置(或者柴油机操纵杆的位置),然后将该位置信号反馈至控制单元,以便及时调整制动器。
简述驱动防滑系统的基本工作原理
简述驱动防滑系统的基本工作原理一、引言驱动防滑系统是现代汽车中的一个重要安全系统,它能够提高车辆在湿滑路面上的行驶稳定性和控制性,降低车辆失控的风险。
本文将从驱动防滑系统的基本工作原理、主要部件和应用场景三个方面进行详细介绍。
二、基本工作原理驱动防滑系统是由传感器、电控单元、液压控制单元和执行机构等组成的。
其基本工作原理如下:1. 传感器检测车轮速度驱动防滑系统中装有轮速传感器,用于检测车轮转速。
当某一车轮发生打滑时,其转速将会快于其他车轮,此时传感器会向电控单元发送信号。
2. 电控单元计算刹车力与牵引力之差接收到传感器发来的信号后,电控单元会根据算法计算出刹车力与牵引力之差。
当这个差值超过一定程度时,就说明某一车轮已经打滑了。
3. 液压控制单元调整刹车压力或牵引力为了避免车轮打滑,液压控制单元会对刹车压力或牵引力进行调整。
当某一车轮发生打滑时,液压控制单元会立即减小该车轮的牵引力或增加其刹车力,以使其恢复正常的行驶状态。
4. 执行机构实现调整液压控制单元通过执行机构来实现牵引力和刹车力的调整。
执行机构通常由电磁阀和液压缸组成,当电磁阀接收到信号后,它会控制液压缸的工作,从而改变刹车或牵引力的大小。
三、主要部件驱动防滑系统包含多个主要部件,下面将逐一进行介绍:1. 轮速传感器轮速传感器是驱动防滑系统中最关键的部件之一。
它能够检测每个车轮的转速,并将检测结果发送给电控单元。
目前市场上常见的轮速传感器有两种类型:磁性传感器和霍尔传感器。
2. 电控单元电控单元是驱动防滑系统中负责计算和处理信号的部件。
它可以根据传感器发来的信号,计算出刹车力和牵引力之间的差值,并向液压控制单元发送指令。
3. 液压控制单元液压控制单元是驱动防滑系统中负责调整刹车力和牵引力的部件。
它可以根据电控单元发来的指令,通过执行机构来实现对刹车或牵引力的调整。
4. 执行机构执行机构是驱动防滑系统中负责实现刹车或牵引力调整的部件。
通常由电磁阀和液压缸组成,当电磁阀接收到信号后,它会控制液压缸的工作,从而改变刹车或牵引力的大小。
驱动防滑控制系统(ASR)
1.1 驱动防滑控制系统概述 1.2 驱动防滑控制系统的工作原理 1.3 典型 典型ASR系统 系统
驱动防滑控制系统(ASR) 1.1 驱动防滑控制系统(ASR) 概述
一、概念:汽车驱动防滑系统(Acceleration Slip 概念:汽车驱动防滑系统(
System),简称ASR ),简称 Regulation 或 Traction Control System),简称ASR TCS(日本车型称它为TRC TRAC)是继ABS TRC或 ABS后采用的一 或TCS(日本车型称它为TRC或TRAC)是继ABS后采用的一 套防滑控制系统, ABS功能的进一步发展和重要补充 功能的进一步发展和重要补充。 套防滑控制系统,是ABS功能的进一步发展和重要补充。 ASR系统和ABS系统密切相关 通常配合使用,构成汽车 系统和ABS系统密切相关, ASR系统和ABS系统密切相关,通常配合使用,构成汽车 行驶的主动安全系统。 行驶的主动安全系统。
Sz=(Vq-V)/Vq×100%
Vq—驱动轮轮缘速度 — V—汽车车身速度 —
=0,纯滚动, 驱动车轮处于纯滚动状态; Sz=0,纯滚动, 驱动车轮处于纯滚动状态; =100%,纯滑转,车身不动而驱动车轮转动; Sz=100%,纯滑转,车身不动而驱动车轮转动; <100%, 0<Sz<100%,边滚动边滑转 与汽车在制动过程中的滑移率相同, 与汽车在制动过程中的滑移率相同,在汽车的驱动过 程中, 程中,车轮与路面间的附着系数的大小随着滑转率的 变化而变化。 变化而变化。
四、ASR系统控制类型: ASR系统控制类型: 系统控制类型 1、发动机输出功率控制:汽车起步、加速时若加 发动机输出功率控制:汽车起步、 速踏板踩得过猛, 速踏板踩得过猛,会因为驱动力过大而出现两侧的 驱动车轮都滑转的情况,这时ASR ASR控制发动机的功 驱动车轮都滑转的情况,这时ASR控制发动机的功 率输出。 率输出。 汽油机:减少喷油量、推迟点火时间、 汽油机:减少喷油量、推迟点火时间、节气门 位置调整及采用辅助空气装置; 位置调整及采用辅助空气装置; 柴油机: 柴油机:控制供油量和供油时刻 2、驱动轮差速制动控制 对发生空转的驱动轮直接施加制动, 对发生空转的驱动轮直接施加制动,而非滑动 车轮仍有正常的驱动力, 车轮仍有正常的驱动力,从而提高了汽车在滑 溜路面的起步和加速能力及行驶方向的稳定性。 溜路面的起步和加速能力及行驶方向的稳定性。 综合控制: 3、综合控制:根据发动机的状况和车轮滑转的实 际情况采取相应的控制措施。 际情况采取相应的控制措施。
驱动防滑转电子控制系统(ASR)
3 ASR与ABS的区别 (1)两者都是用来控制车轮相对于地面的滑动, 以使车轮与地面的附着力不下降,但ABS控制的是制动 时车轮的“滑拖",而ASR是控制的驱动时车轮的“滑转 "。 (2)ASR只对驱动车轮实施制动控制。 (3)ABS是在汽车制动后车轮出现抱死时起作用, 当车速很低时(一般低于8 km/h)不起作用;而ASR则 是在汽车行驶过程中车轮出现滑转时起作用,当车速很 高(一般高于80~1 20km/h)时一般不起作用。
驱动防滑转电子控制系统 (ASR)
制作:孙大力 2009.5
随着发动机通过传动系作用在驱动轮上转矩的不断 增大,汽车的驱动力也逐步增大,但我们知道当驱动力 超过地面附着力时,驱动轮就会打滑。我们有时会看到 汽车起步时,尽管驱动轮不停地转动,但汽车却原地不 动,这就是所谓的驱动轮滑转。
那么如何解决这个问题呢? 我们今天就讲解决的方法——驱动防滑转电子控制 系统(ASR)。
ASR
7
(3)对可变锁止差速器进
行控制:
电脑这根是据一轮种速电传子感控器制 可传变来锁的止轮差速速 信器 号, 、也车把速它信 称号作判限定滑车差轮速 是器 否处(LS于D滑)控转 制状。态如,图若所处示 于, 滑它 转主状要态由则 装向在电差磁速阀器发壳 出与 指半 令轴接齿通轮蓄 间能的器多与片离离合合 器器 的、 油改路变,离增 合加器油控压制使油离压 合的 器电 锁磁止阀,、电 提脑供可控以制根压据力 传的 感高 器压反蓄馈能信 器号、随感时知调控整制 对压 电力 磁的阀油的压控 传的等制持制感轮组指在方(器速成令目法4)、传。,标多对感感使值是发知 器 车 范 通动驱 及 轮 围 过机动 控 滑 内 控与轮制转。制驱轮电率变动速脑保速轮器之的间的的换转档矩特进性行、控改制变:传这动种比控来 实现的。以上4种控制方式中AS,R前两者组合使用的较普遍8 。
汽车驱动防滑(ASR)系统
课题15.6 驱动防滑(ASR)系统有经验的驾驶员都有这样的体会,当驾驶汽车在低附着系数的路面(例如泥泞或有冰雪的路面)上快速起步或加速行驶时,驱动车轮会发生滑转(俗称车轮“打滑”)。
这种现象是什么原因造成的呢?想一想,我们已经知道了汽车在制动过程中,制动器制力与地面制动力之间的不和谐关系造成了制动车轮的抱死滑移。
而在车轮的驱动过程中,车轮的驱动力与地面所提供的最大附着力之间是否也存在这种不和谐的关系?正是由于存在这种不和谐,使发动机传递给车轮的驱动力大于驱动车轮与地面的附着力时,车轮就会出现滑转的现象。
一、驱动防滑系统的作用驱动防滑系统能在车轮开始滑转时,降低发动机的输出扭矩,同时控制制动系统,以降低传递给驱动车轮的扭矩,使之达到合适的驱动力,使汽车的起步和加速达到快速而稳定的效果。
二、滑转率及其与路面附着系数的关系汽车在驱动过程中,驱动车轮可能相对于路面发生滑转。
滑转成分在车轮纵向运动中所占的比例称为驱动车轮的滑转率,通常用“S A”表示。
S A=(rω—ν)/rω×100%式中:S A—车轮的滑转率;r—车轮的自由滚动半径;ω—车轮的转动角速度;ν—车轮中心的纵向速度。
当车轮在路面上自由滚动时,车轮中心的纵向速度完全是由于车轮滚动产生的。
此时ν= rω,其滑转率S A=0;当车轮在路面上完全滑转(即汽车原地不动,而驱动轮的圆周速度不为0)时,车轮中心的纵向速度ν=0,其滑动率S A=100%;当车轮在路面上一边滚动一边滑转时,0<S A<100%。
与汽车在制动过程中的滑移率相同,在汽车的驱动过程中,车轮与路面间的附着系数的大小随着滑转率的变化而变化。
在干路面或湿路面上,当滑转率在15%~30%范围内时,车轮具有最大的纵向附着系数,此时可产生的地面驱动力最大。
在雪路或冰路面上时,最佳滑移率在20%~50%的范围内;当滑转率为零,即车轮处于纯滚动状态时,其侧向附着系数也最大,此时汽车保持转向和防止侧滑的能力最强。
驱动防滑控制系统名词解释
驱动防滑控制系统名词解释本文主要介绍驱动防滑控制系统 (ASR) 的定义、功能和优点,以及其主要组成部分和工作原理。
下面是本店铺为大家精心编写的3篇《驱动防滑控制系统名词解释》,供大家借鉴与参考,希望对大家有所帮助。
《驱动防滑控制系统名词解释》篇1一、定义驱动防滑控制系统 (Acceleration Slip Regulation,简称 ASR) 是一种辅助驾驶者控制车辆驱动轮滑转的系统,主要用于提高车辆的行驶安全性和性能。
二、功能和优点ASR 的主要功能是在车辆驱动轮滑转时自动调节滑转率,充分利用驱动轮的最大附着力,从而提高车辆的动力性、方向稳定性和前轮驱动汽车的转向控制能力,并减少轮胎磨损和降低发动机油耗。
具体优点如下:1. 提高车辆的动力性:ASR 能够在车辆起步、行驶过程中提供最佳驱动力,尤其是在附着系数较小的路面上,起步、加速性能和爬坡能力良好。
2. 保持车辆的方向稳定性和前轮驱动汽车的转向控制能力:ASR 能够保持车辆的方向稳定性和前轮驱动汽车的转向控制能力,提高车辆的行驶安全性和稳定性。
3. 减少轮胎磨损和降低发动机油耗:ASR 能够减少轮胎磨损和降低发动机油耗,降低车辆的使用成本和环境污染。
三、主要组成部分和工作原理ASR 主要由电子控制节气门的制动装置、点火正时、变速器改变换档定时、调节差速器制动驱动车轮和控制驱动滑转等组成部分组成。
《驱动防滑控制系统名词解释》篇2驱动防滑控制系统是一种汽车控制系统,旨在防止汽车在驱动过程中发生滑转。
它通过电子控制单元(ECU)对车轮转速传感器、制动压力调节器、副节气门和节气门位置传感器等部件进行控制,以调节汽车的牵引力和稳定性,防止驱动轮在加速时打滑。
驱动防滑控制系统可以提高汽车的起步性能、加速性能和在滑溜路面的通过性能,同时保持汽车的行驶稳定性和方向控制能力。
加速驱动轮防滑控制系统是驱动防滑控制系统的一种,它是 Accelerate Slip Regulation 的英文缩写,意思是加速防滑控制。
驱动防滑控制系统制动压力调节器的结构、工作原理
感谢聆听!
驱动防滑控制系统制动压力调节 器的结构、工作原理
教学目标
掌握驱动防滑控制系统的组成部件 掌握驱动防滑控制系统的基本工作原理 能正确找出驱动防滑控制系统组成部件的位置 自动变速器的类型
、驱动防滑控制系统的工作原理
汽车行驶过程中,轮速传感器将驱动车轮的转速及非驱动车轮的转速转变为电信号输送给 ASR 控制单元,ASR 控制单元根据车轮转速计算驱动车轮的滑转率。如果滑转率超出了目 标范围,ASR 控制单元则综合各方面参数选择控制方式,首先通过控制发动机的输出功率, 使其输出转矩减小,驱动轮驱动力随之下降。若驱动车轮的滑转率仍未降到设定的控制范 围内,ASR ECU 会控制制动压力调节装置,对驱动车轮施加一定的制动力,从而使驱动车 轮的滑转率控制在目标范围之内
单独结构方式的 ASR 制动压力调节器
所谓单独结构方式是指 ASR 制动压力调节器和 ABS制动压力调节器在结构上各自分开,其结构如图 1 所示。ASR 制动压力调节器主要由调压缸、蓄能器、三位三通电磁阀、储液器、增压泵及电机等部件 组成
1—ASR 制动压力调节器; 2—蓄能器; 3—调压缸; 4—三位三通电磁阀; 5—驱动车轮制动
ASR 与 ABS 的区别与联系
(1)ABS 和 ASR 都是通过控制作用于被控制车轮的力矩,而 将车轮的滑动率控制在设定的理想范围之内,从而缩短汽车制动距离 或提高汽车的加速性能。 (2)ABS 和 ASR 都要求系统具有快速的反应能力,以适应车 轮附着力的变化;都要求控制偏差量尽可能达到最小;都要求尽量减 少调节过程中的能量消耗。
相关知识
一、ABS的基本特性与类型 汽车防抱死制动系统ABS(Anti-locked Braking System)是一种安全控制制动系统,已经成 为轿车的标准配置。ABS既有普通制动系统的制动功能,又能防止车轮制动抱死,保证汽车制动时 的方向稳定性,防止产生侧滑和跑偏,使车辆可以获得良好的制动性能、操纵性能和稳定性能,是 汽车安全控制的一项重要内容。 1.ABS的功用 ABS的功用就是通过对作用于制动轮缸内的制动液压力进行瞬时的自动控制(每秒约10次),从而 控制制动车轮上的制动器压力,使制动车轮尽可能保持在最佳的滑移率范围内运动,从而使汽车的 实际制动过程接近于最佳制动过程。
ASR
ASR的中文意思为汽车加速驱动防滑系统。
是在ABS基础上进一步拓展的又一种汽车安全装置,该系统的产生使汽车的安全性能得到进一步提高。
ASR的功能是防止汽车在起步或加速时驱动轮打滑,特别防止汽车在非对称路面或转弯时驱动轮空转及在冰、雪、积水、泥等路况下的行车安全。
其功能须在ABS系统基础上增加相应的软件和部件就可实现,并形成ABS/ASR系统。
ASR的作用是当汽车加速时将滑动率控制在一定的范围内,从而防止驱动轮快速滑动。
它的功能一是提高牵引力;二是保持汽车的行驶稳定。
行驶在易滑的路面上,没有ASR的汽车加速时驱动轮容易打滑;如是后驱动的车辆容易甩尾,如是前驱动的车辆容易方向失控。
有ASR时,汽车在加速时就不会有或能够减轻这种现象。
在转弯时,如果发生驱动轮打滑会导致整个车辆向一侧偏移,当有ASR时就会使车辆沿着正确的路线转向。
汽车的牵引力控制可以通过减少节气门开度来降低发动机功率或者由制动器控制车轮打滑来达到目的,装有ASR的汽车综合这两种方法来工作,也就是ABS/ASR形式。
宝来/高尔夫轿车就是典型的应用代表.装有ASR的车上,从油门踏板到汽油机节气门(柴油机喷油泵操纵杆)之间的机械连接被电子控制油门(E-gas)装置所取替。
当传感器将油门踏板的位置及轮速信号送至发动机控制单元(ECU)时,控制单元就会产生控制电压信号,伺服电机依此信号重新调整节气门的位置(或者柴油机操纵杆的位置),然后将该位置信号反馈至控制单元,以便及时调整制动器.ASR的正确含义与功能是防驱动轮滑转的电子控制系统,或称驱动力控制调节系统。
当汽车在起步、加速或上坡时,驾驶员猛踩油门,驱动轮上的驱动力一旦超过该轮地面附着力的允许极限时,驱动轮将开始滑转——原地打滑;这时,ASR的测速元件会立即将驱动轮滑转信号传送至控制电脑,电脑将立即发出指令信号,即使驾驶员的油门踏板并未收回,发动机的输出功率与扭矩会立即相应降低,从而避免驱动轮滑转。
汽车驱动防滑转系统
驱动轮的滑转程度用驱动轮滑转率Sd来表示: Sd=(vw-v)/vw 100% 式中:vw——驱动车轮轮缘速度(m/s); v——汽车行驶(车身)速度(m/s ) ; r——车轮半径(m); w——车轮转动角速度(rad/s)。
图1:附着系数(纵向)与滑转率的关系
ASR的工作原理: 在驱动轮滑转时自动调节滑转率(10-20%),充分利用驱动 车轮的最大附着力。
第6讲 汽车驱动防滑转系统(ASR)
滑转——当车轮转动而车身不动或汽车的移动速度低 于转动车轮的轮缘速度时,车轮胎面与地面之间就有 相对的滑动。 • ASR的作用:在车轮出现滑转时,减少驱动力以 防止驱动力超过轮胎与路面的附着 力而导致车轮空转打滑,保持最佳 的驱动力。
ASR的工作原理
汽车的驱动力或牵引力 Ft=Mn/r≤Fz=Z 式中:Ft——汽车驱动力(N); Mn——作用在驱动轮上的转矩(Nm); r——车轮半径(m); Fz——车轮与地面之间的附着力(N); Z——地面作用在车轮上的法向反作用力; ——车轮与地面之间的附着系数。
思考题
1.ASR的作用是什么? 2.ASR的控制方式主要有哪些? 3.ASR和ABS有什么共同点和不同点?
基本原理:车轮速度传感器车轮转速转变为电信号,输送给 控制器,控制器计算出驱动车轮的滑转率,如果滑转率超出 了目标范围,控制器确定控制方式,输出控制信号使执行器 动作,将驱动车轮的滑转率控制在目标范围内.
.ABS和ASR的组合使用
图:S的比较:
(1)ABS和ASR都是用来控制车轮相对地面的滑动, 以使车轮与地面的附着力不下降,但ABS控制的是汽车 制动时车轮的“拖滑”;而ASR是控制车轮的“滑转 ”。 (2)ASR和ABS一样,可通过控制车轮的制动力大小 来抑制车轮与地面的滑动,但ASR只对驱动车轮实施制 动控制。 (3)ABS在车速很低时不起作用;而ASR当车速很高 一般不起作用。
ASR系统专项知识讲座
单独方式旳ASR制动压力调整器——与ABS制动压 力调整器在构造上各自分开
ASR ECU通过电磁阀旳控制实现对驱动轮制动力旳控制。
控制过程如下
两个调压缸 两个三位三通
电磁阀 高压蓄压器
增压泵 压力控制开关
储液器
正常制动时ASR不起作用,电磁阀不通电,阀在左位,调压 缸旳活塞被回位弹簧推至右边极限位置。
第二节 ASR系统旳构造与工作原理
一、ASR旳基本构成与工作原理 ASR旳基本构成: ECU:ASR电控单元 执行器:制动压力调整器 节气门驱动装置 传感器:车轮轮速传感器 节气门开度传感器
ASR旳基本构成
ASR旳工作原理
车速传感器将行驶汽车驱动车轮转速及非驱动车轮转速 转变为电信号,输送给电控单元ECU。
ECU根据车速传感器旳信号计算驱动车轮旳滑移率,若 滑移率超限,控制器再综合考虑节气门开度信号、发动机 转速信号、转向信号等原因确定控制方式,输出控制信号, 使对应旳执行器动作,使驱动车轮旳滑移率控制在目旳范 围之内。
二、ASR旳传感器
1.车轮轮速传感器:与ABS系统共享。 2.节气门开度传感器:与发动机电控系统共享。 3.ASR选择开关:ASR专用旳信号输入装置。ASR选择开关关
起步或加速时若驱动轮出现滑转需要实行制动时,ASR使电 磁阀通电,阀至右位,蓄压器中旳制动液推活塞左移。
压力保持过程:此时电磁阀半通电,阀在中位,调压缸与储 液室和蓄压器都隔断,于是活塞保持原位不动,制动压力保 持不变。
压力减少过程:此时电磁阀断电,阀回左位,使调压腔右腔 与蓄压器隔断而与储液室接通,于是调压缸右腔压力下降, 制动压力下降。
2、ASR系统旳功能:
驱动防滑系统
ASR系统的应用
随着各大公司不断开 发出结构更紧凑、成 本更低、可靠性更强、 功能更全面的 ABS/ASR系统, ABS/ASR系统也逐 渐应用于中低档汽车 上,到1997年时, 已有27家汽车厂商 近30种车型使用了 ABS/ASR系统。
ASR系统不足
ABS/ASR只是解决了紧急制 动时附着系数的利用,并可获 得较短制动距离和制动方向稳 定性,但它不能解决制动系统 中所有缺陷。因为其控制方法 以门限值为主。此种方法虽简 单但逻辑复杂,所有门限值都 需大量实验确定,调试很困难, 而且逻辑门限值控制的 ABS/ASR通用性差,需要针 对不同车型重新开发。
2.保压过程
当轮速传感器发出抱死危险 信号时,ECU想电磁线圈通入一 个较小的保持电流(约为最大 电流的1/2)时,电磁阀处于 “保压”状态。此时主缸、轮 缸和回油孔之间相互隔离密封, 轮缸中的制动压力保持一定。
3.减压过程
如果在"保持压力”命令发 出后,仍有车轮抱死信号, ECU即向电磁线圈通入一个最 大电流,电磁阀处于“减压” 位置,此时电磁阀将轮缸与回 油通道或储液室接通,轮缸中 制动液经电磁阀流入储液室, 轮缸压力下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.2 ASR系统主要部件的工作原理与结构
9.2.3 ASR 执行 器
9.2 ASR系统主要部件的工作原理与结构
9.2.4 电子控制单元 通常与ABS共用。 根据转速计算车速,估
算汽车行驶车速,计算滑转状态,并作出对发 动机转矩和轮速的控制的判断。还有自诊断和 故障保护功能
760Turbo上,采用调节燃油供给量来调节 发动机的输出转矩来控制滑转率。 1986年通用公司的英迪牌车装上ASR 1987年开始生产ABS/ASR系统,两种ASR不 同控制原理:一种控制发动机输出转矩;另 一种同时控制发动机输出转矩和驱动轮的制 动力。
第九章 汽车驱动防滑控制系统
ASR与ABS的区别:
通过副节气门开度的调节来调节进气量, 工作平稳,响应时间比较长。
(2)驱动轮的制动控制:直接对发生滑转的驱动 轮施加制动力以降低驱动力使车轮能重新恢复正 常的驱动能力。该方法反应快,控制强度和灵敏 度最为理想。能够对不同的车轮单独控制,适用 于较低速度下使用(小于48km/h),制动力不能太 大,一般作为发动机输出转矩控制的补充。
第九章 汽车驱动防滑控制系统
汽车行驶时车速低于轮缘速度即出现车 轮滑转。滑转造成纵向附着力的下降,纵向 附着力的下降导致驱动车轮产生的牵引力减 少。
汽车的防滑控制系统(ASR: Anti-Slip Regulation)就是当车轮出现滑转时,通过 对滑转侧的车轮施加制动力或控制发动机的 输出转矩以抑制车轮的滑转。从而避免汽车 牵引力和行驶稳定性的下降。因此汽车的驱 动防滑控制系统 又被称为汽车牵引力控制系 统(TCS:Traction Control System,或 TRAC:Traction Control)
9.1 ASR技术的理论基础
9.1.1 驱动力、行驶阻力和路面附着力之间的关系
驱动力: F Mi i /r 12
行驶阻力:
F 滚动阻力 坡阻 风阻 加速阻力 w
路面附着力: F
G z
汽车行驶驱动和附着条件:
F w
F
F
9.1 ASR技术的理论基础
9.1.1 驱动力、行驶阻力和路面附着力之间的关系
第九章 汽车驱动防滑控制系统
ASR与ABS的联系:
1、都以改善行驶稳定性为前提,以控制车 轮运动状态为目标。
2、从系统的构成上讲,与ABS共享传感器 信号、共用ECU、共用执行机构(液压系统)部 分功能等等说明ASR是ABS在技术上的延伸。
9.2 ASR系统主要部件的工作原理与结构
9.2.1 传感器系统
ABS:制动时使制动力尽可能利用地面附着系数, 达到既保证制动效能,同时保持汽车的转向能力和行驶 稳定性;控制滑移率(15~20%)使车轮转动角速度不 出现为零的情况(车轮抱死);一般低车速下(小于 8Km/h)不起作用。 ABS只在制动时才工作。
ASR:起动、加速时使驱动轮驱动力尽可能大但不 超过轮胎与地面的附着力,以获得尽可能大的加速度, 同时保持操纵稳定性和行驶平顺性;控制滑转率 (8~15%)使车速不出现为零的情况(车轮滑转);一 般车速很高下(大于80~120Km/h)不起作用。ASR在 整个行驶过程中都工作。
9.1 ASR技术的理论基础
9.1.4 ASR系统的基本组成
传感系统:与ABS共用减速度和轮速信号; 同时向 ECU提供制动系统工作信号以判断车轮是否制动或驱 动状态,以及节气门位置、变速器工况等信息。
ECU系统:可以与ABS共用一个处理单元,同时控 制ABS/ASR之间的切换,系统故障自动关闭。
9.1 ASR技术的理论基础
9.1.2 附着力系数、驱动力与滑转率的关系
附着力系数 侧向力系数
峰值附着力系数(φp)
滑转率达到。
0~ ST为稳定区,可实现 稳定驱动。 ST ~ 100 %为非 稳定区,不能实现稳定驱动。
9.1 ASR技术的理论基础
9.1.2 附着力系数、驱动力与滑转率的关系
9.1 ASR技术的理论基础
9.1.3 ASR系统控制方式与基本的工作原理
(1)发动机输出转矩控制:通过调整点火时间或 中断部分气缸的点火;调解供油量;点火时间和 供油调节都会对汽油机的工作状态不利,影响发 动机的寿命和排放。
9.1 ASR技术的理论基础
9.1.3 ASR系统控制方式与基本的工作原理
例如:在一个分离附着力系数的路面行驶的车辆制 动力控制的工作原理:
9.1 ASR技术的理论基础
9.1.3 ASR系统控制方式与基本的工作原理
(3)差速器锁止控制:用一个电子控制的可变锁 止程度(锁止比)的液压锁止离合器来调节差速 器的转矩分配,使差速器的壳体和半轴具有一定 程度的刚性。当车辆在分离附着力系数路面上行 驶时,低附着力的一侧出现滑转后,锁止差速器 使两半轴刚性一体,高附着力一侧的驱动力强行 车轮轮轴。 稳定性变差 ,与发动机控制结合使 用。
执行系统:发动机转矩控制用副节气门执行器、 ASR执行器(在ABS压力调节装置的基础上增设ASR 控制分系统以及相应的控制通道实现驱动轮的制动控 制)、差速器锁止控制装置。
第九章 汽车驱动防滑控制系统
ASR系统的发展历史: ASR是ABS的技术延伸。 1985年Volov公司试制成功ASR安装在