培养中学生数学发散思维的重要环节

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

培养中学生数学发散思维的重要环节加强发散思维的训练,培养发散思维能力,可以避免思维的单一性,摆脱思维的僵化、刻板、呆滞,克服思维定势的消极影响,是促进学生的个性发展和进行创造性学习,把数学学活、学好的有效方法之一.发散思维不受知识的局限,不受传统知识的束缚,其结果是由已知导出未知,发现新事物和新理论.在整个数学教学中,教师若能加强学生发散思维能力的培养,则定能使学生思维敏捷,思路开阔,想象丰富,从而提高教与学的效率,更重要的是为学生今后成为创新型人才奠定了良好的基础.

发散思维是指在解决问题时能不拘一格地从仅有的信息中尽可能扩展开去,朝着各种方向,不同范围去探索各种不同的解决途径和答案的思维方式.在数学教学中,教师有意识地创造发散思维的条件或环境,如鼓励学生多角度、多方面地提出问题,解决问题,重视思维训练,发挥和培养学生发散思维能力,对于提高学生的数学素养是很有益的.

在数学学习中,发散思维表现为依据定义、定理、公式和已知条件,思维朝着各个可能的方向扩散前进,不局限于既定的模式,从不同的角度寻找解决问题的各种可能的途径.

发散思维具有流畅性、变通性和独创性.发散思维的流畅性是指思维者心智活动畅通无阻,迅速灵活,善于联想,能在较短的时间内表达较多的概念和原理.变通性是指思考随机应变、触类旁通,

不受消极定势的束缚.独创性是指从新的角度,用新的观点去认识事物,解决问题.

流畅性是数学思维的基础.数学的各个部分都是相互渗透、密切相关的,因此数学问题的解决既要注意横向联系,又要注意纵向联系,达到思维的流畅.变通性体现了发散思维的质和量,其结果带来发散思维量的增加.独创性是发散思维的标志,是流畅性和变通性的结果.

加强发散思维能力的训练,是培养学生思维的重要环节.可从以下方面进行.

一、利用开放型问题

开放型问题相对于常规问题而言,其主要特征是答案不唯一,常规问题的条件和结论已由题目给出,是确定的,完备的,学生解答时目标明确,解题的模式一般是固定的,但思维方式有一定的局限性,而开放型问题由其特点所致,学生需要通过观察、比较、分析、综合甚至猜想,展开发散思维,运用已学过的数学知识和数学方法,经过必要的推理,才能得出正确的结论,学生解答过程突出了思维的多样性,这类题对培养学生发散思维和创新意识,提高其独立解决问题的能力有很大的作用.教师若能结合教学内容,适时地在课堂中设计这类题目,对培养学生的发散思维能力就能收到事半功倍的效果.

如在学好一次函数图像后,复习课中让学生研究例1:图3表示

一骑自行车者与骑摩托车者在两城镇间旅行的函数图像,两城镇间的距离为80km,由图可知:骑自行车者用了6小时,骑摩托车者用了2小时.根据这个函数图像,你还能得到哪些关于这两个旅行者在这一旅途中的哪些信息?

在解决此题的过程中,学生可以应用已有的函数及图像的有关知识,展开想象的翅膀,尽量发挥自己的思维,至少可以得到以下信息:

(1)骑自行车者在第3个小时休息了1小时;

(2)摩托车的速度是40km/h;

(3)自行车的平均速度为40/3km/h,如果不计算他休息的1个小时,那么他骑自行车的平均速度为16km/h;

(4)自行车在前2小时的速度最快,为20km/h,最后1小时的速度最慢,为10km/h,休息后的1小时内的速度比休息前的1小时内的速度快;

(5)摩托车比自行车晚出发3小时,先到1小时;

(6)摩托车与自行车在60km处相遇,此时自行车已行驶了4.5小时(包括休息1小时),摩托车已行驶了1.5小时;

(7)两位旅行者可能都相互不认识,因为在相遇时他们都按原速度继续行驶(当然也可然他们认识但在相遇时没有相互认出来).

二、解题方法的发散

注重一题多解,一题多变,多题一解等,培养学生的发散思维.

一题多解,就是用不同的思维分析方法,多角度、多途径地解答问题.数学题目,由于其内在的规律,或思考的途径不同,可能会有许多不同的解法.因此,在平时的教学中,教师有意识地通过教材题目的引申拓宽,引导学生广开思路、发散思维,探求多种解法,以此来训练和培养他们思维的创造性.

例:解方程x+2x-624=0

解法一:用分解因式法,原方程可化为:

(x-24)(x+6)=0

∴x=24,x=-26.

解法二:用求根公式(具体过程略).

解法三:原方程可化为:

x+2x+1=625

(x+1)=625

∴x+1=±25

∴x=24,x=26.

许多学生都能想到用解法一和解法二来解此方程,却很少想到解法三,因为人都有心理惰性,解题时总是按个人习惯的现成途径去解.解题方法的发散对克服这种心理惰性很有帮助.

三、图形的发散

将图形作适当的变化,解题的思维过程也会跟着发散,从而得出多种解法.

例:已知下列图形各边的边长,求它的面积.

通过添加辅助线,此图可以看成是两个长方形相加,也可以看成是两个梯形相加,还可以看成是一个梯形减去两个三角形,等等.

四、问题条件的发散

这是一种知道问题的结论后再设计已知条件的方法,一方面可以揭示数学问题的层次,另一方面又可以展示学生自身的思维层次,使学生从中吸取数学知识的营养.

例:知道哪些条件可以求出直角三角形abc斜边上的高cd的长,请给出条件,并计算出来.

这种让学生自己出题自己做的方式,学生会感到较为轻松.基础差的学生也觉得可以一试,而基础好的学生则可以根据自己的情况设计较难的问题,进行自我挑战.

相关文档
最新文档