第二章 微生物发酵产酶
第二章 微生物发酵产酶

曲霉、欧文氏菌 啤酒酵母、假丝酵母
水勇果于加工开,始果,汁、才果能酒找澄到清,成麻类纤维脱胶
功的路
制造转化糖
凝乳酶
米赫毛霉、大肠杆菌和真菌生产的重组酶 制造乳酪
脂肪酶 葡萄糖氧化酶 葡萄糖异构酶 青霉素酰化酶
曲霉、根霉、酵母等 青霉、曲霉 凝结芽胞杆菌,白色链霉菌 细菌、霉菌、放线菌
加酶洗涤剂,油脂加工,生物化工 食品去氧、除葡萄糖,测定葡萄糖 生产果葡糖浆 制造6-氨基青霉烷酸
第三节 发酵工艺条件及控制
工艺流程
原生质体 固定化原生质体
培养基
保藏细胞 细胞活化 扩大培养
发酵 分离纯化
酶
固定化细胞
预培养 无菌空气
一、细胞活化与扩大培养
1、生产菌种的来源
(1)购买或筛选
向菌种保藏机构索取有关的菌株,从中筛选所需菌株。 中国工业微生物菌种保藏中心(CICC); 中国典型培养物保藏中心(CCTCC,又称武大保藏中心)
一、产酶菌种的要求
1、发酵周期短,产量高; 2、容易培养和管理; 3、产酶稳定性好,不易变异退化,不易被感染; 4、利于酶的分离纯化; 5、安全可靠,无毒性。(非致病菌)。
二、产酶微生物
菌种是发酵生产酶的重要条件。已经在自然界中 发现的酶有数千种,目前投入工业发酵生产的酶约有 50~60种。它们的生产菌种十分广泛,包括细菌、放 线菌、酵母菌、霉菌。
工业规模应用的微生物酶和它们的某些来源
酶
α-淀粉酶
葡萄糖淀粉酶 中性蛋白酶 碱性蛋白酶
植酸酶
产酶微生物 枯草芽胞杆菌, 地衣芽胞 杆菌, 米曲霉
米曲霉,黑曲霉,米根霉 枯草芽胞杆菌,米曲霉
地衣芽胞杆菌 黑曲霉,毕赤酵母工程菌株
酶工程期末复习题

第一章绪论问题:试述木瓜蛋白酶的生产方法?答:木瓜蛋白酶可以采用提取分离法、基因工程菌发酵法、植物细胞培养法等多种方法进行生产。
(1)提取分离法:从木瓜的果皮中获得木瓜乳汁,通过各种分离纯化技术获得木瓜蛋白酶。
(2)发酵法:通过DNA重组技术将木瓜蛋白酶的基因克隆到大肠杆菌等微生物中,获得基因工程菌,在通过基因工程菌发酵获得木瓜蛋白酶。
(3)植物细胞培养法:通过愈伤组织诱导获得木瓜细胞,在通过植物细胞培养获得木瓜蛋白酶。
第二章微生物发酵产酶1、解释酶的发酵生产、酶的诱导、酶的反馈阻遏(产物阻遏)、分解代谢物阻遏。
诱导物的种类?答:酶的发酵生产:利用微生物的生命活动获得所需的酶的技术过程;酶的诱导:加进某些物质,使酶的生物合成开始或加速的现象,称为诱导作用;产物阻遏(反馈阻遏):指酶催化反应的产物或代谢途径的末端产物使该酶的生物合成受到阻遏的现象。
分解代谢物阻遏(营养源阻遏):是指某些物质经过分解代谢产生的物质阻遏其他酶合成的现象。
诱导物的种类:诱导物一般是酶催化作用的底物或其底物类似物,有的也是反应产物。
2、微生物产酶模式几种?特点?最理想的合成模式是什么?答:(1)同步合成型特点:a.发酵开始,细胞生长,酶也开始合成,说明不受分解代谢物和终产物阻遏。
b.生长至平衡期后,酶浓度不再增长,说明mRNA很不稳定。
(2)延续合成型特点:a.该类酶一般不受分解代谢产物阻遏和终产物阻遏。
b.该酶对应的mRNA是相当稳定的。
(3)中期合成型特点:a.该类酶的合成受分解代谢物阻遏和终产物阻遏。
b.该酶对应的mRNA不稳定。
(4)滞后合成型特点:a.该类酶受分解代谢物阻遏和终产物阻遏作用的影响,阻遏解除后,酶才大量合成。
b.该酶对应的mRNA稳定性高。
选择:在酶的工业生产中,为了提高酶产率和缩短发酵周期,最理想的合成模式是延续合成型。
3、可以添加什么解除分解代谢物阻遏?表面活性剂的作用?答:(1)一些酶的发酵生产时要控制容易降解物质的量或添加一定量的cAMP,均可减少或解除分解代谢物阻遏作用。
第二章 (酶工程)微生物发酵产酶ppt课件

分解代谢物阻遏现象:
实验:细菌在含有葡萄糖和乳糖的培养基上生长,优先 利用葡萄糖。待葡萄糖耗尽后才开始利用乳糖,产生 了两个对数生长期中间隔开一个生长延滞期的“二次 生长现象”(diauxie或biphasic growth)。
这一现象又称葡萄糖效应, 产生的原因是由于葡萄糖降解 物阻遏了分解乳糖酶系的合成。 此调节基因的产物是环腺苷酸 受体蛋白(CRP),亦称降解物 基因活化蛋白(CAP)。
腺苷酸 环化酶 cAMP
抑制
CAP:降解物基因活化蛋白(catabolic gene activation protein)
5'-AMP
磷酸二酯 酶 激活
分解代 谢产物
三、提高酶产量的策略
(一)菌种选育(一劳永逸) 1.诱变育种
(1) 使诱导型变为组成型——选育组成型突变株
(2)使阻遏型变为去阻遏型
C R P c A M P 复 合 物
C R P + c A M P
cAMP-CRP复合物的作用示意图
操纵基因(Operater gene):
位于启动基因和结构基因之间的一段碱基 顺序,能特异性地与调节基因产生的变构蛋 白结合,操纵酶合成的时机与速度。
结构基因(Structural gene):
决定某一多肽的DNA模板,与酶有各自 的对应关系,其中的遗传信息可转录为 mRNA,再翻译为蛋白质。
阻遏蛋白
蛋白质
诱导剂
调节基因(regulator gene):
可产生一种组成型调节蛋白(regulatory protein) (一种变构蛋白),通过与效应物 (effector) (包括诱导物和辅阻遏物)的特异结合 而发生变构作用,从而改变它与操纵基因的结合力。 调节基因常位于调控区的上游。
酶的发酵生产

分解代谢物阻遏
定义:容易利用的基质(常为碳源)阻遏某些酶 (主要是诱导酶)生物合成的现象。
cAMP receptor protein
第四节 酶的发酵生产技术
一、微生物发酵产酶方式
1、固体培养 利用麸皮和米糠为主要原料,添加谷 壳,豆饼等,加水拌成半固体状态,供 微生物生长和产酶用。 浅盘法、转桶法、厚层通气法
含菌体较少,利于产品分离。 缺点:(1)不能强烈搅拌;(2)技术要求高,传质 传热效果差(氧气供给,温度控制。培养基成分的控 制);理论研究阶段;(3)只适用于胞外酶的生产。
4、固定化原生质体发酵(80年代中期)
优点:(1)解除细胞壁扩散障碍,可使胞内物质分泌 到胞外,变革了胞内酶的生产工艺和技术路线;(2) 可使细胞胞间质中的物质,如碱性磷酸酶等变为胞外 产物;(3)稳定性良好,可反复或连续使用。 。缺点:(1)原生质体的制备比较复杂;(2)发酵培 养基中需维持较高的渗透压;(3)要防止细胞壁再生
河南科技学院
第二章 酶的发酵生产
Producting Enzyme by Fermention
第一节 酶的生产方法
一、酶的生产:指经过预先设计,通过人工操 作控制而获得所需的酶的过程。 二、酶的生产方法 1、提取法:最早采用的方法,现仍继续使用。 指采用各种提取、分离技术从动、植物或微 生物细胞或组织中将酶提取分离出来。 优缺点:方法简单,有时候需先培养含酶组织 或细胞而使工艺路线变得复杂,且产品杂质 多造成分离纯化困难。
பைடு நூலகம்
工业规模应用的微生物酶和它们的某些来源
纤维素酶 半纤维素 酶 里氏木霉、黑曲霉
木霉、曲霉、根霉
水洗布生产,饲料添加剂,消 化植物细胞壁 饲料添加剂,消化植物细胞壁, 低聚木糖生产
02第二章 微生物发酵产酶 第三章 动植物细胞培养产酶

Amylase from Bacillus Protease from Bacillus Phosphatase from Bacillus Glucoamylase from Aspergillus …… Plant cell culture Animal cell culture
Few examples
30
进 位
成肽 转 位
31
合成终止
32
高效率的蛋白 质合成体系
33
蛋白质的折叠
蛋白质的空间结构如何形成? 功能与结构如何统一? 体外、体内的结构如何变化?
蛋白质分子设计及蛋白质工程的需要 越来越多的基因工程产物需要复性复活, 要求蛋白质折叠 的理论及技术的指导。基因工程重组蛋白类产物必须要形 成正确的折叠才能表现出功能和活性。
19
蛋白质合成的几个要素-遗传密码,nucleotide triplet codon
mRNA分子中,每三个相邻的核苷酸组成的三联体 代表某种氨基酸或其它信息,称为密码子或三联 密码。 四种核苷酸编成三联体可形成43个即64个密码子。 其中: 一个起始密码: AUG
三个终止密码: UAA
可产生一种组成型调节蛋白(regulatory protein) (一种变构蛋白),通过与效应物 (effector) (包括诱导物和辅阻遏物)的特异 结合而发生变构作用,从而改变它与操纵基因 的结合力。 调节基因常位于调控区的上游。
38
启动基因(promotor gene)(启动子):
有两个位点: (1)RNA聚合酶的结合位点 (2)cAMP-CAP的结合位点。 CAP:分解代谢产物基因活化蛋白(catabolite gene activator protein),又称环腺苷酸受体蛋白(cAMP receptor protein,CRP)。 只有cAMP-CRP复合物结合到启动子的位点上,RNA 聚合酶才能结合到其在启动子的位点上,酶的合成才 能开始。 P S DNA O R
第二章 微生物发酵产酶

细胞发酵产酶的最适温度与最适生长温度有所 不同,而且往往低于最适生长温度,这是由于在较 低的温度条件下,可提高酶的稳定性,延长细胞产 酶时间。
在细胞生长和发酵产酶过程中,由于细胞的新 陈代谢作用,不断放出热量,会使培养基的温度升 高,同时,热量不断扩散和散失,又会使培养基温 度降低,两者综合,决定了培养基的温度. 温度控制的方法一般采用热水升温,冷水降温, 故此在发酵罐中,均设计有足够传热面积的热交换 装置,如排管、蛇管、夹套、喷淋管等。
8、 毛霉(Mucor)
毛霉的菌丝体在基质上或基质内广泛蔓延,菌 丝体上直接生出孢子囊梗,分枝较小或单生,孢子 囊梗顶端有膨大成球形的孢子囊,囊壁上常带有针 状的草酸钙结晶。
毛霉用于生产蛋白酶、糖化酶、α—淀粉酶、脂 肪酶、果胶酶、凝乳酶等。
9、 链霉菌(Streptomyces)
链霉菌是生产葡萄糖异构酶的主要菌株,还可以用于生 产青霉素酰化酶、纤维素酶、碱性蛋白酶、中性蛋白酶、 几丁质酶等。此外,链霉菌还含有丰富的16α羟化酶,可 用于甾体转化。
3.无机盐
无机盐的主要作用是提供细胞生命活动不可缺少 的无机元素,并对培养基的pH值、氧化还原电位 和渗透压起调节作用。 主要元素有:磷、硫、钾、钠、镁、钙等。 微量元素有:铜、锰、锌、钼、钴、碘等。 微量元素是细胞生命活动不可缺少的,但 需要量很少,过量反而会引起不良效果, 必须严加控制
4.生长因素(酵母膏、玉米浆、麦芽糖)
4、 提高酶产量的措施
–除了选育优良的产酶细胞,保证发酵工艺条 件并根据需要和变化情况及时加以调节控制 以外,还可以来取某些行之有效的措施,诸 如添加诱导物,控制阻遏物浓度,添加表面 活性剂或其他产酶促进剂等。
• 1)添加诱导物
– 对于诱导酶的发酵生产,在发酵培养基中添 加适当的诱导物,可使产酶量显著提高。
酶工程第二章微生物发酵产酶

精品医学ppt
6
精品医学ppt
7
参与白酒生产中的微生物
1.霉菌
白酒生产常见的霉菌菌种:曲霉、根霉、念珠霉、青
霉、链孢霉等。
2.酵母菌
常见的酵母菌菌种:酒精酵母、产酯酵母、假丝酵母
采用固态配醅发酵,发酵物料的含水量较低,常 控制在55%~65%;
在较低温度下边糖化边发酵,保证酶和酵母的活 性,有利于香味物质的形成和累积;
多种微生物混合发酵,保证有益微生物正常生长 繁殖和发酵代谢;
固态甑桶蒸馏提取成品酒。大曲酒酿造分为清渣 法和续渣法两种。
精品医学ppt
22
精品医学ppt
精品医学ppt
10
大曲分类(按微生物来源)
传统大曲,菌种来源于大自然。 强化大曲,人工接入某些特殊菌种,使大曲在
糖化力、发酵力或产香方面更加突出。 纯种大曲,采用多菌纯种培养大曲,该大曲出
酒率高,是今后发展方向。
精品医学ppt
11
大曲分类(按制曲温度分)
高温大曲,培养制曲的最高温度在60℃以上,酱 香型和部分浓香型大曲酒,采用此大曲。
用的碳源等)经过分解代谢产生的物质阻遏某 些酶(主要是诱导酶)生物合成的现象。 例如:葡萄糖阻遏 – 半乳糖苷酶的生物合成。
精品医学ppt
30
转录水平的调节——操纵子学说
转录水平的调节机制 2、酶生物合成的诱导作用 加入某些物质使酶的生物合成开始或加速进行
的现象,成为酶生物合成的诱导作用,简称为 诱导作用。 如:乳糖诱导分解乳糖相关酶的产生。
第二章 微生物发酵产酶
微生物发酵产酶

抗体酶 (abzyme)
是一种具有催化功能的抗体分子,在其可变区赋予了酶的属性。
抗体酶制备的理论依据: 1948年, Pauling提出的过渡态理论; 1975年,Kohler和 Milstein发明的单克隆抗体制备技术; 1986年,Lerner和Schultz 分别获得具有催化活性的抗体酶。此 后,不少抗体酶被制备出来。
本章小结
1. 不是所有的微生物都能用于发酵产酶;
2. 微生物生长有4个时期,微生物培养产酶有4种方式,可根据 蛋白质生物合成理论、操纵子理论调节控制;
3. 影响微生物生长的环境因素有:培养基的组成、pH、温度、 溶解氧,精心调节,效益增加;
4. 固定化微生物发酵产酶是在传统方式上的一种新尝试,优点 很多。
一、酶生物合成的模式 二、细胞生长动力学 三、产酶动力学
酶生物合成的模式
细胞生长过程(4个阶段): 调整期、生长期、平衡期、衰退期。
酶生物合成模式(4种): P60图2-9 ➢ 同步合成型 ➢ 延续合成型 ➢ 中期合成型 ➢ 滞后合成型 结论:最理想的合成模式是延续合成型。
第五节 固定化微生物细胞发酵产酶 第六节 固定化微生物原生质体发酵产酶
P53
调节pH值的必要性: 培养基的pH值与细胞的生长、繁殖以及 发酵产酶关系密切。
pH值变化的原因:
细胞的生长和代谢产物的积累;
细胞特性;
培养基的组成成分;
P54
发酵工艺条件。
调节pH值常用的的方法:
改变培养基的组分或其比例; 使用缓冲液; 通过流加适宜的酸、碱溶液到培养 基中。
Back
产生一种阻遏 决定酶的合成
蛋白,由多个 是否开始,有
亚基组成。 两个位点:一
酶工程--酶的微生物发酵生产 ppt课件

酶发酵生产的一般工艺流程图
保藏菌种
试管斜面培养(活化)
摇瓶扩大培养
种子罐培养 培养基 发酵罐
分离纯化 酶
无菌空气
二、酶生产菌种 (一)产酶菌种的要求
(1)产酶量高; (2)繁殖快,发酵周期短;
(3)产酶稳定性好,不易退化,不易被感染;
(4)能够利用廉价原料,容易培养和管理; (5)安全性可靠,非致病菌。
液体培养基,经灭菌、冷却后,接入产酶细胞,在一定条件 下发酵。
2、固体培养发酵
培养基以麸皮、米糠等为主要原料,经灭菌后,接入产酶菌 株,在一定条件下发酵。
3、固定化细胞发酵(70年代后期发展)
将细胞固定在载体上后,进行发酵生产。
4、固定化原生质体发酵(80年代中期发展)
原生质体是指除去了细胞壁的微生物细胞或植物细胞。
酶合成的基因调控类型:诱导和阻遏
1、酶合成的诱导作用
加进某些物质,使酶的生物合成开始或加速的现象,称为 诱导作用。 诱导物一般是酶催化作用的底物或其底物类似物。 例:乳糖诱导ß-半乳糖苷酶的合成 淀粉诱导a-淀粉酶的合成
2、酶合成的阻遏 (1)终产物阻遏
指酶催化反应的产物或代谢途 径的末端产物使该酶的生物合成受 到阻遏的现象。
二、应用微生物来开发酶的优点 1、微生物种类多,酶种丰富; 2、微生物生长繁殖快,易提取酶,特别是胞外酶; 3、微生物培养基来源广泛,价格便宜; 4、可采用微电脑等新技术,控制酶发酵生产过程; 5、可利用以基因工程为主的近代分子生物学技术选 育菌种,增加酶的产率和开发新酶种。
三、酶发酵生产的类型 1、液体深层发酵:
第二节 酶生物合成的基本理论
一、酶生物合成的过程
DNA
转录
RNA
酶工程 1~10章题目及答案

第一章绪论试题精选一、名词解释1、酶2、酶工程3、核酸类酶4、蛋白类酶5、酶的生产6、酶的改性7、酶的应用8、酶的专一性9、酶的转换数二、填空题1、根据分子中起催化作用的主要组分的不同,酶可以分为_蛋白类酶_和核酸类酶_两大类。
2、核酸类酶分子中起催化作用的主要组分是_核糖核酸,蛋白类酶分子中起催化作用的主要组分是_蛋白质_。
3、进行分子内催化作用的核酸类酶可以分为_自我剪切酶_,_自我剪接酶_。
4、酶活力是_酶量_的量度指标,酶的比活力是_酶纯度_的量度指标,酶的转换数的主要组分是_酶催化效率_的度量指标。
5、非竞争性抑制的特点是最大反应速度Vm_减小_,米氏常数Km__不变_。
三、选择题1、酶工程是(C)的技术过程。
A、利用酶的催化作用将底物转化为产物B、通过发酵生产和分离纯化获得所需酶C、酶的生产与应用D、酶在工业上大规模应用2、核酸类酶是(D)。
A、催化RNA进行水解反应的一类酶B、催化RNA进行剪接反应的一类酶C、由RNA组成的一类酶D、分子中起催化作用的主要组分为RNA的一类酶3、RNA剪切酶是(B)。
A、催化其他RNA分子进行反应的酶B、催化其他RNA分子进行剪切反应的R酶C、催化本身RNA分子进行剪切反应的R酶D、催化本身RNA分子进行剪接反应的R酶4、酶的改性是指通过各种方法(A)的技术过程。
A、改进酶的催化特性B、改变酶的催化特性C、提高酶的催化效率D、提高酶的稳定性5、酶的转换数是指(C)。
A、酶催化底物转化成产物的数量B、每个酶分子催化底物转化为产物的分子数C、每个酶分子每分钟催化底物转化为产物的分子数D、每摩尔酶催化底物转化为产物的摩尔数四、判断题(V)1、相同的酶在不同的pH条件下进行测定时,酶活力不同。
(V)2、竞争性抑制的特点是最大反应速度Vm不变,米氏常数Km 增大。
(X)3、催化两个化合物缩成一个化合物的酶称为合成酶。
(X )4、RNA剪切酶是催化RNA分子进行剪切反应的核酸类酶。
微生物的发酵与产酶过程

微生物的发酵与产酶过程微生物的发酵与产酶过程是一种重要的生物技术,在食品工业、药品制造以及环境保护等领域扮演着重要角色。
微生物发酵通过利用微生物的代谢作用,将有机废弃物转变为有用的化合物,产酶则是指微生物在发酵过程中产生并分泌的特定酶类。
本文将从微生物发酵和产酶的定义、发酵与产酶的应用以及发酵与产酶的前景等方面来探讨微生物的发酵与产酶过程。
一、微生物发酵和产酶的定义微生物发酵是指在合适的条件下,利用微生物的代谢活动,通过控制发酵过程,获得所需产物的一种生物技术。
微生物发酵一般分为液态发酵和固态发酵两种形式。
液态发酵常用于大规模工业生产,而固态发酵则更适用于小规模生产和特定产品的制备。
产酶是微生物在发酵过程中分泌的特定酶类,这些酶能够催化特定底物的转化反应。
产酶的种类很多,包括脂肪酶、蛋白酶、纤维素酶等。
这些酶在医药、食品、化工等行业中具有重要的应用价值。
二、发酵与产酶的应用1. 食品工业中的应用微生物发酵在食品工业中被广泛应用。
例如,嗜酸乳杆菌可以发酵牛奶,制成酸奶。
酸奶中的乳酸菌有助于改善肠道菌群,增强人体免疫能力。
此外,假丝酵母菌的发酵可以产生酵母、面包、啤酒等食品。
2. 药品制造中的应用微生物发酵在药品制造中也起到重要的作用。
通过微生物发酵,可以产生多种药用物质,如抗生素、肽类药物等。
其中,青霉素是一种广泛应用的抗生素,通过青霉菌的发酵生产得到。
3. 环境保护中的应用微生物发酵还可以应用于环境保护领域。
例如,利用微生物发酵处理有机废弃物,可以将废物转化为有机肥料或生物柴油。
这种方法不仅能减少废弃物对环境的污染,还能获得可再利用的资源。
三、发酵与产酶的前景微生物的发酵与产酶技术在许多领域都显示出广阔的应用前景。
随着科学技术的不断发展,微生物的发酵与产酶技术也在不断创新和改进。
以下是展望微生物发酵与产酶技术的几个发展方向。
1. 高效产酶菌株的筛选与改造在微生物发酵过程中,寻找和改造高产酶菌株是提高产酶效率的关键。
《酶工程》课件-微生物发酵产酶

05
微生物发酵产酶存在问题与挑战
产量问题
微生物发酵产酶产量低
由于微生物发酵过程中受到多种因素 的影响,如营养物质的供应、发酵条 件、微生物菌种等,导致酶的产量较 低。
发酵周期长
微生物发酵产酶通常需要较长的发酵 周期,这增加了生产成本和时间成本。
稳定性问题
酶稳定性差
许多酶在发酵过程中容易受到温度、pH值、金属离子等因素的影响,导致酶的稳定性降低。
04
微生物发酵产酶应用实例
工业应用
洗涤剂制造
微生物发酵产生的酶可用于制造 洗涤剂,如蛋白酶用于去除蛋白 质污渍,淀粉酶用于去除淀粉污
渍。
纺织工业
利用微生物发酵产生的酶处理纺织 品,可以改善其质地、手感和外观, 如纤维素酶用于棉织物的生物抛光。
造纸工业
通过微生物发酵产酶技术,可以改 进造纸工艺,提高纸张质量和降低 环境污染,如木聚糖酶用于纸浆漂 白。
过程优化与控制
通过人工智能技术,对微生物发酵产酶过程进行建模和优化,提高 目标酶的产量和质量。
个性化定制酶
结合人工智能和基因工程技术,实现个性化定制酶的合成,满足不 同领域的需求。
THANKS
感谢观看
《酶工程》课件-微生物发酵 产酶
• 微生物发酵产酶概述 • 微生物发酵产酶原理与过程 • 微生物发酵产酶技术与方法
• 微生物发酵产酶应用实例 • 微生物发酵产酶存在问题与挑战 • 未来发展趋势与展望
01
微生物发酵产酶概述
酶工程简介
酶工程定义
酶工程是生物工程的重要组成部分,是利用酶或者微生物细胞、动植物细胞、 细胞器等具有的生物催化功能,借助工程手段来生产有用物质、设计改造酶或 者生产细胞、器官乃至整个生物体的一门科学技术。
酶的发酵工程

图2-1 温度调节装臵
第二章 酶的发酵工程
3. 溶解氧对产酶的影响与调节控制 临界氧浓度——不影响细胞正常代谢的最低氧浓度
溶氧浓度是由溶氧速率和耗氧速率来决定的。 调节控制 ① 调节氧分压 ② 增加通气量 ③ 延长气液接触时间,增加气液接触面积 ④ 改变培养液的性质 改变组分或浓度,添加消泡剂 改变进气压力或罐压,改变氧含量, 添加氧载体
第二章 酶的发酵工程
一、酶的生产菌种
(一)产酶微生物的种类 1. 细菌:大肠杆菌—青霉素酰化酶、L-天冬酰胺酶;
枯草芽孢杆菌—中性蛋白酶、中温α-淀粉酶; 地衣芽孢杆菌—高温α-淀粉
2. 放线菌:葡萄糖异构酶、谷氨酰胺转氨酶 3. 酵母菌:凝血激酶、尿激酶、植酸酶 4. 霉菌:黑曲霉、米曲霉—α-淀粉酶、糖化酶、乳糖酶、
醚,泡敌(聚环氧丙烷环氧乙烷甘油)。勤加、少加较好
第二章 酶的发酵工程
5. 湿度对产酶的影响与控制
对固体发酵产酶而言,影响微生物的产酶量,也会影
响产酶达到高峰的时间。
特定菌种,发酵过程的不同时期,对湿度要求不同。 固态发酵产酶,前期湿度低,后期湿度高,有利于产酶。
调节控制
配制培养基时,控制物料的含水量;控制鼓风量大小, 或调节空气的湿度;喷洒水分
第一节
酶生物合成的调节机制
一、原核生物中酶生物合成的调节
原核生物酶的合成主要是在转录水平上进行调节,调 节方式主要有酶合成的诱导和酶合成的阻遏两种方式 原核生物中酶合成的诱导和阻遏作用机制:Jacob和 Monod提出的操纵子理论
第二章 酶的发酵工程
(一)乳糖操纵子学说
1. 基本概念
操纵子:在代谢途径中功能密切相关的一组蛋白质编码
第二章_酶的生物合成法生产

Section 4 固定化微生物细胞发酵产酶
一、固定化微生物细胞发酵产酶的特点: 二、固定化微生物细胞发酵产酶的工艺条件控制: 三、固定化微生物细胞生长和产酶动力学:
Section 5 固定化微生物原生质体发酵产酶
一、固定化微生物原生质体的特点: 二、固定化微生物原生质体发酵产酶的工艺条件控制:
三、发酵工艺条件及其控制 1、细胞活化与扩大培养
2、培养基的配制: ①碳源: ②氮源: ③无机盐: ④生长因子等。 3、pH值的调节控制: 4、温度的调节控制: 5、溶解氧的调节控制:
四、提高酶产量的措施: 1、添加诱导物: ①酶的作用底物 ②酶的反应产物 ③酶的底物类似物: 2、控制阻遏物的浓度: 3、添加表面活性剂: 如:吐温(Tween)、特里顿(Triton)等, 4、添加产酶活性剂:
Chapter Two 酶的生物合成法生产
Section 1 基本概述 一、酶的生物合成法生产概念 1、酶的生物合成 2、酶的发酵生产 3、酶的生物合成法生产 二、优良的产酶细胞应具备的条件 1、酶的产量高; 2、易培养和管理; 3、产酶稳定性好; 4、利于分离纯化; 5、安全可靠等。
开始,而在细胞进入平衡期后,酶的合成也随之停止。
④滞后合成型:只有当细胞生长进人平衡以后,酶才
开始合成并大量积累。
2、细胞生长动力学:
在培养过程中,细胞生长速率与细胞浓度成正比:
式中: rX——细胞生长速率 X-----细胞浓度 μ——比生长速率
当培养物中只有一种限制性基质,而不 存在其它限制生长的因素时,μ为此限制性 基质浓度的函数,这就是Monod生长动力学 模型:
第二章 微生物产酶

滞后合成型
• 1)细胞生长一段时间或进入平衡期以后才开始酶 的合成,又称非生长偶联型。
• 2)许多水解酶属于此合成模型。 • 3)阻碍物存在延缓了酶的合成。 • 4)酶的mRNA稳定。 • 5)滞后合成型↔延续合成型。
6)典型例子:黑曲霉培养合成羧基蛋白酶
图2-11,黑曲霉细胞生长约 24h后,几乎进入平衡期, 此时羧基蛋白酶才开始合成, 直至80h,酶的合成还在继 续。
④最好分泌胞外酶,产量高且易纯化。
⑤能利用廉价原料,营养要求低,对培养基要 求不苛刻,发酵周期短、原料利用率高、易于 培养。
采用一个新的产酶菌时,应有大量病理或动物 喂养实验数据作基础。美国FDA认定可用于食 品医药工业的生产菌有:曲霉(黑曲霉、米曲 霉)、枯草杆菌、某些芽孢杆菌、某些酵母、 根霉等。
5)典型例子:米曲霉培养生产单宁酶
图2-8 所示,单宁酶的生物合成与米曲霉细胞生长同步,属于同步合成 型(生长偶联型)
延续合成型
1)酶的生物合成伴随细胞生长开始,当细胞进入 平衡期后酶还可以继续合成。
2)酶的生物合成可以被诱导物诱导,一般不被细 胞代谢物阻碍。
3)酶的mRNA相当稳定。在平台期仍然可以翻译成 酶。
4)典型的例子, 黑曲霉培养生产聚半乳糖醛酸酶(图2-9A)。
图2-9A,以半乳糖醛酸为诱导物的情况下,培养一段时间以后(约40h), 细胞生长旺盛,半乳糖醛酸酶开始合成;当细胞生长达到平衡期(约 80h),此酶继续合成,直至约120h以后。呈现延续合成型模式。 图2-9B,以粗果胶(含葡萄糖)为诱导物时,细胞生长较快,但是聚半乳 糖醛酸酶的合成被推迟。 因此,酶合成受到分解代谢物阻遏,葡萄糖被细胞利用完之后,酶才开始 合成,细胞进入平衡期,酶的合成还在继续。呈现滞后合成型模式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Reverse transcription
2、RNA的生物合成(转录)- Transcription
细胞内RNA的生物功能 在蛋白质的生物合成过程中,各种RNA起着 重要的作用。其中,tRNA作为氨基酸载体, 并由其上的反密码子识别mRNA分子上的密码 子;mRNA作为蛋白质合成的模板,由其分子 上的三联体密码控制蛋白质分子中氨基酸的 排列顺序;rRNA与蛋白质一起组成核糖核蛋 白体(核糖体),作为蛋白质生物合成的场 所。
1、细菌
细菌属于真细菌纲(Schizomycetes),是单细胞, 横分裂或二分裂繁殖,依细胞的形状和分裂后的 集合状态而给予各种名称。按形状分为球菌、杆 菌、螺旋菌等。球菌又有单球菌、双球菌、四联 球菌、八叠球菌、链球菌、葡萄球菌等。
常见产酶微生物 Common microorganism in Enzyme Production
Go
Go
Go
酶的生产方法
提取分离法 (Extraction)
生物合成 (Biosynthesis)
化学合成 (chemicalsynthesis)
SOD - blood Papain-Papaya Chymotrypsin-Pancrea …… organ/tissue/cell
Amylase from Bacillus Protease from Bacillus Phosphatase from Bacillus Glucoamylase from Aspergillus …… Plant cell culture Animal cell culture
常用的产酶微生物
放线菌
链霉菌属 诺卡氏菌属
常用的产酶微生物
放线菌
诺卡氏菌属
多为需氧型腐生菌,少数厌 氧型寄生菌。已报道有 100 余种,主要分布于土壤。许 多种能产生抗生素,如利福 霉 素 ( rifomycin ) 等 , 有 的用于石油脱蜡,烃类发酵 及 污 水 处 理 等 。
球菌
链球菌
常见产酶微生物 Common microorganism in Enzyme Production
四联球菌
葡萄球菌
常见产酶微生物 Common microorganism in Enzyme Production
杆菌
螺旋菌
(1) 大肠埃希氏杆菌,简称为大肠杆菌,是最为著 名的原核生物。
诱导型操纵子(Inducible operon)—大肠杆菌 乳糖操纵子
酶生物合成的调节
原核生物中酶生物合成的调节机制 操纵子学说概述
阻遏型操纵子(Repressible operon)—色氨酸 操纵子 ( Trp operon ) 色氨酸操纵子 (tryptophane operon) 负责色氨酸 的生物合成,当培养基中有足够的色氨酸时,这 个操纵子自动关闭,缺乏色氨酸时操纵子被打开, trp基因表达,色氨酸或与其代谢有关的某种物质 在阻遏过程(而不是诱导过程)中起作用。
酶生物合成的调节
原核生物中酶生物合成的调节机制 操纵子学说概述
结构基因(Strutural gene):结构基因与多肽 链有各自的对应关系。结构基因上的遗传信息可 以转录成为mRNA上的遗传密码,再经翻译成为酶 蛋白的多肽链,每一个结构基因对应一条多肽链。
酶生物合成的调节
原核生物中酶生物合成的调节机制 操纵子学说概述
Chapter 2 The production of Enzyme by Fermentation of Microorganism
微生物发酵产酶
制作:崔建东 cjd007cn@
Contents of chapter 2
Go
1、酶生物合成过程 2、常见产酶微生物 3、酶的发酵工艺条件及控制 4、酶生产过程的动力学
酶生物合成的调节
原核生物中酶生物合成的调节机制 操纵子学说概述
调节基因(Regulator gene): 产生一种阻遏蛋 白。阻遏蛋白是一种由多个亚基组成的变构蛋白, 它可以通过与某些小分子效应物(诱导物或阻遏 物)的特异结合而改变其结构,从而改变它与操 纵基因的结合力。当阻遏蛋白与操纵基因结合时, 由于空间排挤作用,RNA聚合酶就无法结合到启动 基因的位点上,也无法进行结构基因的位置进行 转录,酶的生物合成也就无法进行。
常见产酶微生物 Common microorganism in Enzyme Production
(2) 醋酸杆菌(Acetobacter)
菌体从椭圆至杆状,单个、 成对或成链,革兰氏阴性, 运动(周毛)或不运动, 不生芽孢。好气。含糖、 乙醇和酵母膏的培养基上 生长良好。 应用:有机酸(食醋等)、 葡萄糖异构酶(高果糖浆 )、 山梨糖 (维C中间体)
(3)枯草芽孢杆菌(Bacillus subtilis)
Few example
微生物发酵产酶
酶的发酵生产:经过预先设计,通过人工操作, 利用微生物的生命活动,获得所需的酶的技术 过程。 大多数酶的生产采用发酵生产→原因:微生物 具有种类多、繁殖快、易培养、代谢能力强等 特点
微生物发酵产酶
优良的产酶微生物具备的条件: (1)酶的产量高; (2)产酶稳定性好; (3)容易培养和管理; (4)利于酶的分离纯化; (5)安全可靠、无毒性等。
曲霉(Aspergillus)
分类:多数属于子囊菌亚门, 少数属于半知菌亚门。 分布:广泛分布于土壤、空气 和谷物上,可引起食物、谷物 和果蔬的霉腐变质,有的可产 生致癌性的黄曲霉毒素。 代表种:黑曲霉Asp. Niger、 黄曲霉Asp.flavus 应用:是制酱、酿酒、制醋的 主要菌种。是生产酶制剂(蛋 白酶、淀粉酶、果胶酶)的菌 种。生产有机酸(如柠檬酸、 葡萄糖酸等)。农业上用作生 产糖化饲料的菌种。
直状、近直状的杆菌, 周生或侧生鞭毛,革兰 氏阳性,无荚膜,芽孢 0.5×1.51.8m,中生 或近中生。 枯草芽孢杆菌是工业发 酵的重要菌种之一。生 产淀粉酶、蛋白酶、 5’-核苷酸酶、某些氨 基酸及核苷。
常用的产酶微生物
放线菌(actinomycetes)
放线菌是具有分支状菌丝的单细胞原核微生物。常用于酶 发酵生产的放线菌主要是链霉菌(Streptomyces)。 链 霉 菌 菌 落 呈 放 射状 , 具 有分 枝 的菌丝 体 ,菌丝 直 径 0.2 ~ 1.2μm。革兰氏染色阳性。菌丝有气生菌丝和基内 菌丝之分,基内菌丝不断裂,只有气生菌丝形成孢子链。 链霉菌是生产葡萄糖异构酶的主要微生物。还可以用于生 产青霉素酰化酶、纤维素酶、碱性蛋白酶、中性蛋白酶、 几丁质酶等。此外,链霉菌还含有丰富的16α羟化酶,可 用于甾体转化。
常见产酶微生物 Common microorganism in Enzyme Production
常见产酶微生物 Common microorganism in Enzyme Production
米曲霉(Aspergillus oryzae) 米曲霉是曲霉属黄曲霉群霉菌。பைடு நூலகம்丛一般为黄 绿色,后变为黄褐色,分生孢子头呈放射形, 顶囊球形或瓶形,小梗一般为单层,分生孢子 球形,平滑,少数有刺,分生孢子梗长达 2 mm 左右,粗糙。 米曲霉中糖化酶和蛋白酶的活力较强,这使米 曲霉在我国传统的酒曲和酱油曲的制造中广泛 应用。此外,米曲霉还可以用于生产氨基酰化 酶、磷酸二酯酶、果胶酶、核酸酶P等。
常见产酶微生物 Common microorganism in Enzyme Production
1、细菌 细菌是在工业上有重要应用价值的原核微生物。 在酶的生产中常用的细菌有大肠杆菌、枯草芽 孢杆菌等。
常见产酶微生物 Common microorganism in Enzyme Production
酶生物合成的调节
真核生物酶生物合成的调节 目前为止,还没有统一的理论和模型来阐述真 核生物酶生物合成的调节规律。
常见产酶微生物 Common microorganism in Enzyme Production
基本要求:
不是致病菌 发酵周期短,产酶量高 不易变异退化 最好是产生胞外酶的菌种,利于分离。 对医药和食品用酶,还应考虑安全性: 凡从可食部分或食品加工中传统使用的微生物生产的酶, 安全! 由非致病微生物制取的酶,需作短期毒性实验。 非常见微生物制取的酶,需做广泛的毒性实验,包括慢性中 毒实验。
微生物发酵产酶
酶的发酵生产的方式: 固体培养发酵 液体深层发酵 固定化微生物细胞发酵 固定化微生物原生质体发酵
微生物发酵产酶
酶生物合成的基本理论 蛋白类酶和核酸类酶→酶的生物合成主要是指 细胞内RNA和蛋白质的合成过程. 合成过程: 酶的基因(DNA)→(转录)→RNA →(翻 译)→多肽链→(加工、组装)蛋白质
酶生物合成的调节
原核生物中酶生物合成的调节机制 操纵子学说概述
操纵子(Operon):是基因表达和控制的一个完 整单元,其中包括结构基因,调节基因,操纵基 因和启动基因。
酶生物合成的调节
原核生物中酶生物合成的调节机制 操纵子学说概述
启动基因(Promoter gene):由两个位点组成, 一个是RNA聚合酶的结合位点,另一个是环腺苷酸 ( cyclic AMP, cAMP ) 与 CAP 组 成 的 复 合 物 ( cAMP-CAP) 的结合位点。 操纵基因(Operator gene):与调节基因产生的 变构蛋白(阻遏蛋白)中的一种结构结合,从而 操纵酶生物合成的时机和合成速度。