浙江省第一届初中数学素养大赛复赛试卷 八年级数学试题含答案
2019年学科素养竞赛初二年数学答案
2019年学科素养竞赛初二年数学参考答案11.解:移项得43423x x -=--+ 原方程可变形为:32035640x x +-= 解得:10x =,252x =,3710x =检验:把10x =,252x =,3710x =代入原方程,分母都不等于0∴原方程的解为:10x =,252x =,3710x =都是原方程的解.12.解:设甲施工队单独完成此项工程需要x 天,根据题意可知:1012145x x+= 解得25x =,经检验,25x =是原方程的解当25x =时,4205x =13. 解:过A 做BC 垂线交BC 于N ,交BD 于M .因为AB=AC ,∠BAC=90°. 所以∠BAM=∠DAM=∠C=45° 又因为AE ⊥BD 所以∠1=∠2,所以Rt △ABM 与Rt △CAF 中 ∠BAM =∠C ,AB=AC ,∠1=∠2 所以Rt △ABM ≌ Rt △CAF (ASA ) 所以AM=CF,所以△ADM 与△CDF 中, AD=CD, ∠DAM=∠C, AM=CF 所以△ADM ≌△CDF (SAS ) 所以∠ADB =∠CDF .B14.解:(1)证明:延长AM 到点N ,使MN =MA ,连接BN , ∵AM 是△ABC 中BC 边上的中线, ∴CM =BM , 在△MBN 和△MCA 中AM MN AMC NMB CM BM =⎧⎪∠=∠⎨⎪=⎩∴△MBN ≌△MCA (SAS ), ∴∠BNM =∠CAM ,NB =AC , ∴BN ∥AC ,NB =AG , ∴∠NBA +∠BAC =180°,∵∠GAE +∠BAC =360°﹣90°﹣90°=180°, ∴∠NBA =∠GAE , 在△NBA 和△GAE 中NB GA NBA GAE BA AE =⎧⎪∠=∠⎨⎪=⎩∴△NBA ≌△GAE (SAS ), ∴AN =EG , ∴AM =12EG ; (2)证明:由(1)△NBA ≌△GAE 得∠BAN =∠AEG , ∵∠HAE +∠BAN =180°﹣90°=90°, ∴∠HAE +∠AEH =90°, ∴∠AHE =90°, 即AH ⊥EG ;(3)证明:连接CE 、BG , 易证△ACE ≌△ABG ∴CE ⊥BG ,∴EG 2+BC 2=CG 2+BE 2, ∴EG 2+BC 2=2(AB 2+AC 2), 由(1)可知AM =12EG , ∵BM =12BC , ∴AB 2+AC 2=2(12EG )2+12BC •BC , ∴EG 2+BC 2=2(AB 2+AC 2).FF。
浙教版2018-2019学年八年级数学竞赛试卷(含答案)
绝密★启用前浙教版2018-2019学年八年级数学竞赛试卷A题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共8小题,3*8=24)1.设a=﹣(﹣2)2,b=﹣(﹣3)3,c=﹣(﹣42),则﹣[a﹣(b﹣c)]=()A.15 B.7 C.﹣39 D.472.方程的解是x=()A.B.﹣C.D.﹣3.以下三个判断中,正确的判断的个数是()(1)x2+3x﹣1=0,则x3﹣10x=﹣3(2)若b+c﹣a=2+,c+a﹣b=4﹣,a+b﹣c=﹣2,则a4+b4+c4﹣2(a2b2+b2c2+c2a2)=﹣11 (3)若a2=a1q,a3=a2q,a4=a3q,则a1+a2+a3+a4=(q≠1)A.0 B.1 C.2 D.34.如图,D,E,F为等边三角形ABC三边中点,AE、BF、CD交于O,DE,EF,FD为三条中位线,则图中能数出不同的直角三角形的个数是()A.36 B.32 C.30 D.285.5名学生身高两两不同,把他们按从高到低排列,设前三名的平均身高为a米,后两名的平均身高为b米.又前两名的平均身高为c米,后三名的平均身高为d米,则()A.B.C.D.以上都不对6.把红珠、蓝珠各四颗串成一条(项链可以旋转,翻转),则实质不同的串法数是()A.6 B.7 C.8 D.107.能整除任意5个连续整数之和的最大整数是()A.1 B.2 C.3 D.58.一个屏幕封闭图形,只要有一条边不是直线段,就称为曲边形,例如圆、弓形、扇形等都是曲边形,则如图中,可以数出()个不同的曲边形.A.42 B.36 C.30 D.28第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,3*8=24)9.已知a﹣b=4,ab+c2+4=0,则a+b+c的值为.10.已知,则的值为.11.在平面直角坐标系中,点P[m(m+1),m﹣1](m为实数)不可能在第象限.12.有一只手表每小时比准确时间慢3分钟,若在清晨4:30与准确时间对准,则当天上午手表指示的时间是10:50,准确时间应该是.13.如图,P是平行四边形ABCD内一点,且S△P AB=5,S△P AD=2,则阴影部分的面积为.14.若10个数据的平均数是,平方和是10,则方差是.15.若直线323x+457y=1103与直线177x+543y=897的交点坐标是(a,b),则a2+2004b2的值是.16.某校组织师生春游,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可以少租一辆,且余30个座位.则该校去参加春游的人数为;若已知45座客车的租金为每辆250元,60座客车租金为每辆300元,这次春游同时租用这两种客车,其中60座客车比45座客车多租1辆,所以租金比单独一种客车要节省,按这种方案需要租金元.评卷人得分三.解答题(共4小题,52分)17.(10分)已知关于x、y的方程组:,求出所有整数a,使得方程组有整数解(即x、y都是整数),并求出所有的整数解.18.(12分)求出所有的正整数n,使得12+22+32+42+…+n2﹣(n+1)2﹣(n+2)2﹣(n+3)2﹣…﹣(2n﹣1)2﹣(2n)2=﹣10115.(参考公式:1+2+3+4+…+n=)19.(15分)某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.根据上表的表格中的数据,求a、b、c.20.(15分)如图,把一张长10cm,宽8cm的长方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使无盖长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你认为折合而成的无盖长方体盒子的侧面积有可能等于52cm2吗?请说明理由;(3)如果把长方形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的长方形,然后折合成一个有盖的长方体盒子,那么它的侧面积(指的是高为剪去的正方形边长的长方体的侧面积)可以达到30cm2吗?请说明理由.参考答案与试题解析1.解:a=﹣(﹣2)2=﹣4,b=﹣(﹣3)3=27,c=﹣(﹣42)=16,∴﹣[a﹣(b﹣c)],=﹣[﹣4﹣(27﹣16)],=15.故选:A.2.解:移项合并同类项得:﹣[﹣(﹣1﹣x)﹣]=,∴﹣(﹣1﹣x)﹣=﹣,移项合并同类项得:﹣(﹣1﹣x)=,∴﹣1﹣x=﹣,∴x=﹣,故选:D.3.解:(1)x3﹣10x=x(x2﹣10)=x(1﹣3x﹣10)=﹣3(x2+3x)=﹣3,故(1)正确;(2)a4+b4+c4﹣2(a2b2+b2c2+c2a2)=(a2﹣b2﹣c2)2﹣4b2c2=(a2﹣b2﹣c2+2bc)(a2﹣b2﹣c2﹣2bc)=(a+b﹣c)(a﹣b+c)(a+b+c)(a﹣b﹣c)又知b+c﹣a=2+,c+a﹣b=4﹣,a+b﹣c=﹣2,可得a+b+c=4+,故a4+b4+c4﹣2(a2b2+b2c2+c2a2)=﹣11,故(2)正确;(3)当q=1时,a1+a2+a3+a4=4a1,当q≠1时,a1+a2+a3+a4=,故(3)正确,正确的有3个,故选D.4.解:①∵DE,EF,FD为等边△ABC三条中位线,∴AB=AC=BC,∴EF AB,ED AC,∴四边形CEDF是菱形,∴EF⊥CD,∴在菱形CEDF中有6个不同的直角三角形:Rt△CEG、Rt△CFG、Rt△DGE、Rt△DFG、Rt△EOG、Rt△FOG;同理,在菱形ADEF、菱形BEFD中各有6个不同的直角三角形;②∵D为等边三角形ABC三边中点,∴CD⊥AB,∴△ADC、△BDC、AOD、△BOD是直角三角形;同理,以BF、AE为直角边的三角形各有4个;综上所述,图中能数出的直角三角形由6×3+4×3=30(个);故选:C.5.解:∵3a+2b=2c+3d,∵a>d,∴2a+2b<2c+2d,∴a+b<c+d,∴<,即>,故选:B.6.解:①第一个●和第二个●两珠间隔0个蓝珠,即●●…;②第一个●和第二个●两珠间隔1个蓝珠,即●○●…;③第一个●和第二个●两珠间隔2个蓝珠,即●○○●…;④第一个●和第二个●两珠间隔3个蓝珠,即●○○○●…;⑤第一个●和第二个●两珠间隔4个蓝珠,即●○○○○●…;⑥第二个●和第三个●两珠间隔2个蓝珠,即●●○○…;⑦第二个●和第三个●两珠间隔3个蓝珠,即●●○○○…;⑧第二个●和第三个●两珠间隔4个蓝珠,即●●○○○○••;∵项链可以旋转,翻转,∴第三个●和第四个●两珠间隔珠的情况和第一和第二红珠间隔相同,以此类推…∴共8种方法.故选:C.7.解:设五个连续整数分别为a﹣2,a﹣1,a,a+1,a+2,所以这五个数的和为a﹣2+a﹣1+a+a+1+a+2=5a,因为5a是5的倍数,所以不论a为何值,五个连续整数的和都可以被5整除.故选:D.8.解:数曲边形,一定要有弧,五角星把圆周分成5个弧,我们按含有1个弧、2个弧、…、5个弧来分类,仅含1个弧有两种情况,每种情况按5个弧转一圈各有5个曲边形,共有5+5个;仅含2个弧可以分相连和不相连2种情况,相连的2个弧,按5个弧转一圈有5个曲边形;不相连的2个弧,似乎又有2种情况,按5个弧转一圈各有5个曲边形,但实际上转圈数时这两种情况是重复的,故不相连的2个弧可数出5个曲边形;仅含3个弧可以分相连和不相连2种情况,每种情况按5个弧转一圈可数出有5个曲边形,共有5+5个;仅含4个弧的情况,每种情况按5个弧转一圈可数出有5个曲边形;含全部5个弧的情况,1个曲边形.综上,一共有5+5+5+5+5+5+5+1=36个.故选:B.9.解:∵a﹣b=4,∴a=b+4,代入ab+c2+4=0,可得(b+4)b+c2+4=0,(b+2)2+c2=0,∴b=﹣2,c=0,∴a=b+4=2.∴a+b+c=0.故答案为:0.10.解:根据非负数性质可知a﹣1=0且ab﹣2=0解得a=1 b=2则原式=裂项得;故答案为11.解:(1)当m(m+1)>0时,有或,所以m>0或m<﹣1,因此m﹣1>﹣1或m﹣1<﹣2,即P[m(m+1),m﹣1]可能经过第一或四象限.(2)当m(m+1)<0时,有或,所以﹣1<m<0,因此﹣2<m﹣1<﹣1,即P[m(m+1),m﹣1]经过第三象限.综合得,P[m(m+1),m﹣1]不经过第二象限.12.解:设标准时间经过了x分钟,则57:60=380:x.解得x=400.400分钟合6小时40分钟,再加4小时30分钟=11小时10分钟.所以准确时间应该是11:10.故应填:11:10.13解:∵S△P AB+S△PCD=S▱ABCD=S△ACD,∴S△ACD﹣S△PCD=S△P AB,则S△P AC=S△ACD﹣S△PCD﹣S△P AD,=S△P AB﹣S△P AD,=5﹣2,=3.故答案为:3.14.解:方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=[x12+x22+…+x n2﹣2(x1+x2+…+x n)+n2]=[x12+x22+…+x n2﹣2×n+n2]=[x12+x22+…+x n2]﹣2=×10﹣()2=.故填.15.解:把323x+457y=1103与177x+543y=897联立,解得,∴a=2,b=1,因此a2+2004b2=2008.故答案为:2008.16.解:设该校去参加春游的人数为a人,则有,解得:a=270设租用45座客车x辆,则租用60座客车(x+1)辆,由题意若单独租45座客车需要270÷45=6辆,租金250×6=1500元,若单独租60座客车需要(270+30)÷60=5辆,租金300×5=1500元,则有:,解得:2≤x<∵x为正整数∴x=2即租45座客车2辆,60座客车3辆,此时租金为:250×2+300×3=1400(元).故答案为270,1400.17.解:解原方程组得,,假设x=1时,可求得a=﹣7,y=﹣1;同样设x为其他整数,a、y的值都不能为整数,∴原方程组的整数解为.18.解:原式可化为:12﹣(n+1)2+22﹣(n+2)2+…n2﹣(2n)2=﹣10115,﹣n(n+2)﹣n(n+4)﹣n(n+6)﹣…﹣n(3n)=﹣10115,﹣n(n+2+n+4+n+6+…+3n﹣2+3n)=﹣10115,﹣n3﹣2n(1+2+3+…+n)=﹣10115,﹣n3﹣2n()=﹣10115,2n3+n2=10115∴n=17.19.解:设每月用水量为xm3,支付水费为y元.则y=,由题意知:0<c≤5∴8<8+c≤13从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得解得b=2,2a=c+19 ⑤再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9﹣a)+c,即2a=c+17 ⑥⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.答:a=10,b=2,c=1.20.解:(1)设剪去的正方形边长为xcm,由题意,得(10﹣2x)(8﹣2x)=48,即x2﹣9x+8=0解得x1=8(不合题意,舍去),x2=1.∴剪去的正方形的边长为1cm.…(2分)(2)折合而成的无盖长方体盒子的侧面积不可能等于52 cm2,理由如下:设剪去的正方形边长为xcm,由题意,得2[x(10﹣2x)+x(8﹣2x)]=52…(2分)整理得2x2﹣9x+13=0∵△=b2﹣4ac=81﹣4×2×13<0,∴原方程没有实数解.即折合而成的无盖长方体盒子的侧面积不可能等于52 cm2.…(2分)(3)设剪去的正方形边长为xcm,若按图1所示的方法剪折,解方程,得该方程没有实数解.…(3分)若按图2所示的方法剪折,解方程,得.∴当按图2所示的方法剪去的正方形边长为cm或3cm时,能使得到的有盖长方体盒子的侧面积达到30 cm2.…(3分)。
2020-2021学年浙江省八年级下学期数学竞赛卷1(解析版)
2020-2021学年浙江省八年级下学期数学竞赛卷1 一.选择题(共8小题)1.设a=﹣2,则代数式a3+4a2﹣a+6的值为()A.6B.4C.2+2D.2﹣2【解答】解:∵a=﹣2,∴(a+2)2=()2,即a2+4a=1,∴a3+4a2﹣a+6=a(a2+4a)﹣a+6=a×1﹣a+6=6.故选:A.2.关于x的方程x2﹣bx+4=0有两个相等的正实数根,则b的值为()A.4B.﹣4C.﹣4或4D.0【解答】解:∵关于x的方程x2+bx+4=0有两个相等的正实数根,∴△=b2﹣4×1×4=b2﹣16=0,解得:b=4.故选:A.3.如图所示,∠A+∠B+∠C+∠D+∠E+∠F+∠G=()A.360°B.450°C.540°D.720°【解答】解:如图,在四边形ACEH中,∠A+∠C+∠E+∠1=360°,在四边形BDFP中,∠B+∠D+∠F+∠2=360°,∵180°﹣∠1+180°﹣∠2+∠G=180°,∴∠A+∠C+∠E+∠1+∠B+∠D+∠F+∠2+180°﹣∠1+180°﹣∠2+∠G=360°+360°+180°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G=360°+180°=540°.故选:C.4.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4,那么BC的长等于()A.3B.5C.2D.【解答】解:如图,作EQ⊥x轴,以C为坐标原点建立直角坐标系,CB为x轴,CA为y轴,则A(0,3).设B(x,0),由于O点为以AB一边向三角形外作正方形ABEF的中心,∴AB=BE,∠ABE=90°,∵∠ACB=90°,∴∠BAC+∠ABC=90°,∠ABC+∠EBQ=90°,∴∠BAC=∠EBQ,在△ABC和△BEQ中,∴△ACB≌△BQE(AAS),∴AC=BQ=3,BC=EQ,设BC=EQ=x,∴O为AE中点,∴OM为梯形ACQE的中位线,∴OM=,又∵CM=CQ=,∴O点坐标为(,),根据题意得:OC=4=,解得x=5,则BC=5.故选:B.5.如图正方形ABCD的顶点A在第二象限y=图象上,点B、点C分别在x轴、y轴负半轴上,点D在第一象限直线y=x的图象上,若S阴影=,则k的值为()A.﹣1B.C.D.﹣2【解答】解:如图,过点A作AG⊥x轴,过点D作DE⊥x轴,作DF⊥AG交y轴于H,∴四边形DHOE是矩形∵∠ADC=∠HDE=90°∴∠ADC﹣∠FDC=∠HDE﹣∠FDC∴∠ADF=∠CDE,∵点D在第一象限直线y=x的图象上,∴DH=DE,且∠ADF=∠CDE,∠DHM=∠DEN∴△DHM≌△DEN(ASA)∴S△DHM=S△DNE,∴=S四边形DHOE=DH×DE∴DH=DE=同理可证:△AFD≌△BGA≌△COB≌△DHC∴AF=HD=BG=OC,AG=DF=BO=HC∴OC=HD==AF=BG∴CH=∴AG==BO∴GO=∴点A坐标(﹣,)∴k=﹣×=﹣故选:B.6.如图,在平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°【解答】解:过F作FG∥AB∥CD,交BC于G;则四边形ABGF是平行四边形,所以AF=BG,即G是BC的中点;连接EG,在Rt△BEC中,EG是斜边上的中线,则BG=GE=FG=BC;∵AE∥FG,∴∠EFG=∠AEF=∠FEG=54°,∴∠AEG=∠AEF+∠FEG=108°,∴∠B=∠BEG=180°﹣108°=72°.故选:D.7.若m是关于x的方程x2﹣2020x+1=0的根,则(m2﹣2020m+4)•(m2﹣2020m﹣5)的值为()A.18B.﹣18C.20D.﹣20【解答】解:∵m是关于x的方程x2﹣2020x+1=0的根,∴m2﹣2020m+1=0,∴m2﹣2020m=﹣1,∴(m2﹣2020m+4)•(m2﹣2020m﹣5)=(﹣1+4)×(1﹣5)=﹣18.故选:B.8.如图,四边形OABC为平行四边形,A在x轴上,且∠AOC=60°,反比例函数y=(k >0)在第一象限内过点C,且与AB交于点E.若E为AB的中点,且S△OCE=8,则OC的长为()A.8B.4C.D.【解答】解:过点C作CD⊥x轴于点D,过点E作EF⊥x轴于点F,如图:∵四边形OABC为平行四边形,∴OC=AB,OC∥AB,∴∠EAF=∠AOC=60°,在Rt△COD中,∵∠DOC=60°,∴∠DOC=30°,设OD=t,则CD=t,OC=AB=2t,在Rt△EAF中,∵∠EAF=60°,AE=AB=t,∴AF=,EF=AF=t,∵点C与点E都在反比例函数y=的图象上,∴OD×CD=OF×EF,∴OF==2t,∴OA=2t﹣=t,∴S四边形OABC=2S△OCE,∴t×t=2×8,∴解得:t=(舍负),∴OC=.故选:D.二.填空题(共6小题)9.已知关于x的一元二次方程(1﹣2k)x2﹣2x﹣1=0有两个不相等的实数根,则k 的取值范围﹣3≤k<4且k≠.【解答】解:∵关于x的一元二次方程(1﹣2k)x2﹣2x﹣1=0有两个不相等的实数根,∴,解得:﹣3≤k<4且k≠.故答案为:﹣3≤k<4且k≠.10.若<0,化简﹣﹣3的结果为﹣2x.【解答】解:由题意得,或,解得,﹣2<x<,则原式=|5﹣3x|﹣|x﹣2|﹣3=5﹣3x﹣2+x﹣3=﹣2x,故答案为:﹣2x.11.如图,双曲线y=(x>0)的图象上.△OA1B1,△A1A2B2,…,△A n﹣1A n B n均为正三角形,过B1作B1C⊥x轴于C,过B2作B2D⊥x轴于D,则点A n的坐标为(,0).【解答】解:∵点B1,B2在双曲线y=(x>0)的图象上,∴OC•B1C=3,∵△OA1B1,△A1A2B2,…,△A n﹣1A n B n均为正三角形,∴B1C=OC,∴OC=,∴OA1=2,∴;连接OB2,则OD•B2D=3,∵OD=OA1+A1D=2+,,∴∴,∴,同理可得,,…由上可知,.故答案为:(,0).12.P是正方形ABCD内一点,AB=5,P A=,PC=5,则PB=或2.【解答】解:如图所示,∴PB==或PB==2,故答案为:或2.13.已知x1,x2,x3,x4,x5为正整数,任取四个数求和,只能得到44,45,46,47这样四个结果,则这5个数的众数是11.【解答】解:根据题意,设这个重复的和为z,可得:(x1+x2+x3+x4+x5)×4=44+45+46+47+z,可得:z=46,可得五个数据之和为57,所以五个数据为:10,11,12,13,11,故答案为:1114.如图,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连接AC.若△ABC是等腰三角形,则k的值是或.【解答】解:∵点B是y=kx和y=的交点,y=kx=,∴点B坐标为(,2),同理可求出点A的坐标为(,),∵BD⊥x轴,∴点C横坐标为,纵坐标为,∴BA=,AC=,BC=,∴BA2﹣AC2=k>0,∴BA≠AC,若△ABC是等腰三角形,①当AB=BC时,则=,解得:k=±(舍去负值);②当AC=BC时,同理可得:k=;故答案为:或.三.解答题(共4小题)15.已知x﹣y=6,,求的值.【解答】解:∵x﹣y=6,∴,∴,∵+=•+•=(+)=9,∴,即,∴=(﹣)=×=4.16.已知实数a,b,c满足:a+b+c=2,abc=4.(1)求a,b,c中的最大者的最小值;(2)求|a|+|b|+|c|的最小值.【解答】解:(1)不妨设a是a,b,c中的最大者,即a≥b,a≥c,由题设知a>0,且b+c=2﹣a,.于是b,c是一元二次方程的两实根,≥0,a3﹣4a2+4a﹣16≥0,(a2+4)(a﹣4)≥0.所以a≥4.又当a=4,b=c=﹣1时,满足题意.故a,b,c中最大者的最小值为4.(2)因为abc>0,所以a,b,c为全大于0或一正二负.①若a,b,c均大于0,则由(1)知,a,b,c中的最大者不小于4,这与a+b+c=2矛盾.②若a,b,c为或一正二负,设a>0,b<0,c<0,则|a|+|b|+|c|=a﹣b﹣c=a﹣(2﹣a)=2a﹣2,由(1)知a≥4,故2a﹣2≥6,当a=4,b=c=﹣1时,满足题设条件且使得不等式等号成立.故|a|+|b|+|c|的最小值为6.17.如图,四边形ABCD是矩形,E是对角线BD上不同于B、D的任意一点,AF=BE,∠DAF=∠CBD.(1)求证:△ADF≌△BCE;(2)求证:四边形ABEF是平行四边形;(3)试确定当点E在什么位置时,四边形AEDF为菱形?并说明理由.【解答】(1)证明:∵四边形ABCD是矩形,∴AD=BC,在△ADF和△BCE中,,∴△ADF≌△BCE(SAS);(2)证明:∵四边形ABCD是矩形,∴AD∥BC,∠BAD=90°,∴∠DBC=∠ADB,∵∠DAF=∠CBD,∴∠DAF=∠ADB,∴AF∥BE,∵AF=BE,∴四边形ABEF是平行四边形;(3)解:当E为BD的中点时,四边形AEDF变为菱形,理由如下:如图所示:∵E为BD的中点,∠BAD=90°,∴AE=BE=DE,∵AF=BE,AF∥BD,∴AF∥DE,AF=DE,AF=AE,∴四边形AEDF是平行四边形,∴四边形AEDF是菱形.18.请你利用直角坐标平面上任意两点(x1,y1),(x2,y2)间的距离公式d=解答下列问题:已知:反比例函数y=与正比例函数y=x的图象交于A,B两点(A在第一象限),点F1(﹣2,﹣2),F2(2,2)在直线y=x上.设点P(x0,y0)是反比例函数y=图象上的任意一点,记点P与F1,F2两点之间的距离之差d=|PF1﹣PF2|.(1)试比较线段AB的长度与d的大小,并由此归纳出双曲线的一个重要定义(用简练的语言表述).(2)现请你在反比例函数y=第一象限内的分支上找一点P,使点P到F2(2,2)和点C(6,4)的距离之和最小,求点P的坐标.【解答】:解由y=和y=x组成的方程组可得A、B两点的坐标分别为,(,)、(﹣,﹣),线段AB的长度=4.∵点P(x0,y0)是反比例函数y=图象上一点,∴y0=.∴PF1==||,PF2==||,∴d=|PF1﹣PF2|=|||﹣|||,当x0>0时,d=4;当x0<0时,d=4.因此,无论点P的位置如何,线段AB的长度与d一定相等.由此可知:到两个定点的距离之差(取正值)是定值的点的集合(轨迹)是双曲线.(2)由条件PF2=PF1﹣4,知PF2+PC=PF1+PC﹣4,由F1,﹣P,C三点共线时最小,此时可解得P(2,1).。
慈溪数学初二竞赛试题及答案
慈溪数学初二竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. -3B. 0C. 1D. 22. 如果一个数的平方等于16,那么这个数是?A. 4B. -4C. 4或-4D. 163. 一个直角三角形的两个直角边的长度分别是3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 84. 如果一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 25D. 505. 一个数列的前三项是1,3,6,那么第四项是多少?A. 10B. 9C. 12D. 156. 一个长方体的长、宽、高分别是4cm、3cm和2cm,它的体积是多少?A. 24cm³B. 36cm³C. 48cm³D. 60cm³7. 一个数的立方根是5,那么这个数是多少?A. 125B. 25C. 5D. 158. 一个分数的分子是15,分母是25,化简后是多少?A. 3/5B. 1/2C. 5/4D. 15/259. 一个正数的倒数是1/4,这个数是多少?A. 4B. 1C. 2D. 310. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0二、填空题(每题2分,共20分)11. 一个数的平方是25,这个数是________。
12. 一个直角三角形的斜边长是13,一个直角边长是5,另一个直角边长是________。
13. 一个圆的周长是44cm,它的半径是________。
14. 一个数列的前四项是1,3,6,10,那么第五项是________。
15. 一个长方体的体积是96cm³,长是4cm,宽是3cm,高是________。
16. 一个数的立方是-27,这个数是________。
17. 一个分数的值是2/3,它的倒数是________。
18. 一个正数的绝对值是3,这个数是________。
19. 一个数的平方根是4,这个数是________。
浙教版八年级数学下册第1章综合素质评价 附答案
浙教版八年级数学下册第1章综合素质评价一、选择题(每题3分,共30分)1.若二次根式8-2x在实数范围内有意义,则x的取值范围是() A.x≤4 B.x<4 C.x≤-4 D.x≥4 2.下列二次根式中,能与2合并的是()A. 5 B.8 C.12 D.27 3.【2022·温州期中】下列二次根式中,是最简二次根式的是()A.13B.20 C.15 D.0.44.下列计算正确的是()A.(-3)2=-3B.(-2)×(-3)=-2×-3C.32+22=5D.4÷2=2 25.已知y=2x-5+5-2x-3,则2xy的值为()A.-15 B.15 C.-152D.1526.计算(27-12)×13的结果是()A.33B.1 C. 5 D.37.已知a=12+1,b=12-1,则a与b的关系是()A.相等B.互为相反数C.互为倒数D.平方值相等8.如果一个三角形的三边长分别为1,k,4,则化简||2k-5-k2-12k+36得到结果为()A.3k-11 B.k+1 C.1 D.11-3k9.用四张一样大小的长方形纸片拼成一个如图所示的正方形ABCD,若它的面积是75, AE=3 3 ,图中空白的地方是一个小正方形,那么这个小正方形的周长为()A.2 3 B.4 3 C.5 3 D.6 310.在如图所示的正方形网格中,每个小正方形的边长为1,小正方形的顶点称为格点.M、N均在格点上,连结MN.若点P也在格点上,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是()A.4 2 B.6 C.2 10 D.3 5二、填空题(每题4分,共24分)11.化简:20=________.12.【2022·哈尔滨】计算3+3 13的结果是________.13.若a是11的小数部分,则a(a+6)=________.14.三角形的三边长分别为48 cm,50 cm,75 cm,这个三角形的周长是________cm.15.已知实数a,b,c在数轴上的位置如图所示,化简代数式a2-|a+c|+(b-c)2-|-b|=________.16.若实数m、n满足等式||m-2+n-4=0,且m、n恰好是等腰三角形ABC两条边的长,则△ABC的面积是________.三、解答题(共66分)17.(6分)计算:(1)18-6÷3+2 12;(2)||5-3-(3+1)0+15-2.18.(6分)若a=3-2,求代数式a+1a及a2+a-2的值.19.(6分)先化简,再求值:a2-2ab+b2a-b+⎝⎛⎭⎪⎫1b-1a,其中a=2-1,b=2+1.20.(8分)请在如图所示的5×5方格内画△ABC,使它的顶点都在格点上,且三边长分别为2,2 5,2 2(每个方格的边长都是1),求最长边上的高.21.(8分)如图,扶梯AB的坡比为1∶3,滑梯CD的坡比为1∶2,若FD=4 m,BC=2 m,某人从扶梯上去,经过顶部BC,再沿滑梯滑下,他共经过多少路程?(结果精确到0.1 m,2≈1.41,3≈1.73,5≈2.24)22.(10分)如图,已知在等腰三角形ABC中,AB=AC,D是BC边上的一点,DE ⊥AB,DF⊥AC,E,F为垂足.DE+DF=2 2,三角形ABC的面积为3 2+2 6,求AB的长.23.(10分)【2022·延津县期中】一只虫子在平面直角坐标系内爬行,从点P出发向右爬行3个单位,再向上爬行5个单位后到达点Q,设点P的坐标为(2,n),点Q的坐标为(m,2+1).(1)求m和n的值;(2)已知y=x-2+2-x,求x,y及代数式|m-y|+|n+x|的值.24.(12分)王老师让同学们根据二次根式的相关内容编写一道题,以下是王老师选出的两道题和她自己编写的一道题.先阅读,再回答问题. (1)小青编的题,观察下列等式:23+1=2(3-1)(3+1)(3-1)=2(3-1)(3)2-12=2(3-1)3-1=3-1. 25+3=2(5-3)(5+3)(5-3)=2(5-3)(5)2-(3)2=2(5-3)5-3=5- 3.直接写出以下算式的结果:27+5=________;22n +1+2n -1=______________(n 为正整数); (2)小明编的题,由二次根式的乘法可知:(3+1)2=4+2 3,(5+3)2=8+2 15,再根据平方根的定义可得4+2 3=3+1,8+2 15=5+ 3. 直接写出以下算式的结果:6+2 5=________;4-2 3=________;7+4 3=________; (3)王老师编的题,根据你的发现,完成以下计算:⎝ ⎛⎭⎪⎫23+1+25+3+27+5+29+7+211+9·12+2 11.答案一、1.A2.B3.C4.D5.A 6.B7.C8.A提示:∵三角形三边长分别为1,k,4,∴3<k<5,∴原式=|2k-5|-|k-6|=2k-5-(6-k)=3k-11.9.B提示:4×[3 3-(75-3 3)]=4×[3 3-(5 3-3 3)]=4×(3 3-2 3)=4 3.10.C提示:由题图可知MN=42+22=2 5.因为∠MPN=45°,所以当△PMN为等腰直角三角形,PM为斜边时,PM的长为最大值.易知PM=2MN=2×2 5=2 10.二、11.2 512.2 313.214.(9 3+5 2)15.0提示:∵a<0,c<0,b>0,∴a+c<0,b-c>0,∴原式=-a+a+c+b-c-b=0.16.15提示:∵|m-2|+n-4=0,∴m-2=0,n-4=0.∴m=2,n=4.当m=2为腰长时,三边长分别为2,2,4,不符合三边关系;当n=4为腰长时,三边长分别为2,4,4,此时三角形的面积为12×2×15=15.三、17.解:(1)原式=3 2-2+2=3 2.(2)原式=3-5-1+5+2(5-2)(5+2)=4.18.解:a +1a =3-2+3+2(3-2)(3+2)=2 3.a 2+a -2=(3-2)2+3-2-2=3-2 6+2+3-2-2=3-2 6+3- 2.19.解:原式=(a -b )2a -b+a -b ab =a -b +a -bab .∵a =2-1,b =2+1, ∴a -b =-2,ab =1, ∴原式=-2-2=-4.20.解:如图,△ABC 即为所求作.由图可知最长边为AB ,AC 边上的高为2.设AB 边上的高为h , 则S △ABC =12AB ·h =12AC ×2=2.∵AB =2 5,∴h =2×2AB =42 5=2 55.故最长边上的高为2 55.21.解:∵滑梯CD 的坡比为1∶2,即CF ∶FD =1∶2,FD =4 m , ∴BE =CF =2 m ,∴CD =CF 2+FD 2=22+42=2 5(m). ∵扶梯AB 的坡比为1∶3, 即BE ∶AE =1∶3,BE =2 m , ∴AE =3BE =2 3 m ,∴AB =AE 2+BE 2=4 m ,∴他经过的路程为AB +BC +CD =4+2+2 5≈10.5(m). 22.解:如图,连结AD .∵AB =AC ,DE ⊥AB ,DF ⊥AC , ∴S △ABC =S △ABD +S △ACD =12AB ·DE +12AC ·DF =12AB (DE +DF ), ∵DE +DF =2 2,∴12AB ×2 2=3 2+2 6, ∴AB =3 2+2 62=3+2 3. 23.解:(1)由题意得m =2+3,n =2+1-5=2-4. (2)∵y =x -2+2-x , ∴⎩⎨⎧x -2≥0,2-x ≥0,解得x =2, ∴y =0,∴m -y =2+3>0,n +x =2-2<0, ∴|m -y |+|n +x |=2+3+2-2=5. 24.解:(1)7-5;2n +1-2n -1(2)5+1;3-1;2+ 3(3)(23+1+25+3+27+5+29+7+211+9)·12+2 11=(3-1+5-3+7-5+9-7+11-9)(11+1)=(11-1)(11+1)=10.浙教版八年级数学下册期末综合素质评价一、选择题(每题3分,共30分)1.如果二次根式a-1有意义,那么实数a的取值范围是()A.a>1 B.a≥1C.a<1 D.a≤12.在下列环保标志中既是轴对称图形又是中心对称图形的是()3.已知m、n是一元二次方程x2+2x-5=0的两个根,则m2+mn+2m的值为() A.0 B.-10 C.3 D.104.开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温(℃) 36.2 36.3 36.5 36.6 36.8天数(天) 3 3 4 2 2这14天中,小宁体温的众数和中位数分别为()A.36.6℃,36.4℃B.36.5℃,36.5℃C.36.8℃,36.4℃D.36.8℃,36.5℃5.如图,在△ABC中,AB=4,BC=8,AC=6,点D,E,F分别为边AB,AC,BC的中点,则△DEF的周长为()A.9B.12C.14D.166.若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x2<x1<x37.今年我国小麦大丰收,农业专家在某种植片区随机抽取了10株小麦,测得其麦穗长(单位:cm)分别为8,8,6,7,9,9,7,8,10,8,那么这组数据的方差为()A.1.5 cm2B.1.4 cm2C.1.3 cm2D.1.2 cm28.如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连结DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°9.【2022·宿迁】如图,点A在反比例函数y=2x(x>0)的图象上,以OA为一边作等腰直角三角形OAB,其中∠OAB=90°,AO=AB,则线段OB长的最小值是() A.1 B. 2 C.2 2 D.410.【2022·绍兴】如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是() A.1 B.2 C.3 D.4二、填空题(每题4分,共24分)11.计算(-2)2的结果是________.12.若关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是________.13.已知矩形的一边长为6 cm ,一条对角线的长为10 cm ,则矩形的面积为________cm 2.14.两组数据:3,a ,2b ,5与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的众数为________.15.如图,在▱ABCD 中,AB ⊥AC ,分别以A ,C 为圆心,以大于12AC 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线,与BC 交于点E ,与AD 交于点F ,连结AE ,CF ,若AE =2.5,则四边形AECF 的周长为________.16.如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2x的图象上,AC ⊥y 轴于点E ,BD ⊥y 轴于点F ,AC =3,BD =2,EF =5,则k 1-k 2的值是________. 三、解答题(共66分) 17.(6分)计算: (1)12-6 13+48; (2)2×3-24.18.(6分)解方程:(1)(x -3)2+2x (x -3)=0; (2)x 2-4x -5=0.19.(6分)若一次函数y=2x-1和反比例函数y=kx(k≠0)的图象都经过点(1,1).(1)求反比例函数的表达式;(2)已知点A在第三象限,且同时在两个函数的图象上,求点A的坐标.20.(8分)一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制计算,然后再按演讲内容∶演讲能力∶演讲效果=5∶4∶1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:请决出两人的名次.21.(8分)【2022·温州】如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.(1)求证:四边形DEFG是平行四边形;(2)当AD=5,ADDC=52时,求FG的长.22.(10分)甲商品的进价为每件20元,商场将其售价从原来的每件40元进行两次调价.已知该商品现价为每件32.4元.(1)若该商场两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若商场希望该商品每月能盈利10 000元,且尽可能扩大销售量,则该商品在现价的基础上还应如何调整?23.(10分)心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,第________分钟时学生的注意力更集中;(2)一道数学题,需要讲18分钟,为了使学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?请说明理由.24.(12分)如图,在矩形ABCD中,AB=4 cm,BC=8 cm,点P从点D出发向点A运动,运动到点A即停止,同时,点Q从点B出发向点C运动,运动到点C 即停止,点P,Q的速度都是1 cm/s.连结PQ,AQ,CP.设点P,Q运动的时间为t s.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.答案一、1.B 2.B 3.A 4.B 5.A 6.B 7.D8.C 提示:∵四边形ABCD 是正方形,∴AD =AB ,∠DAF =∠B =∠ADC =90°,∠BAC =45°, ∵AE 平分∠BAC 交BC 于点E , ∴∠BAE =12∠BAC =22.5°, 在△ABE 和△DAF 中,⎩⎨⎧AB =AD ,∠B =∠DAF ,BE =AF ,∴△ABE ≌△DAF (SAS), ∴∠ADF =∠BAE =22.5°,∴∠CDF =∠ADC -∠ADF =90°-22.5°=67.5°.9.C 提示:如图,过A 作AM ∥x 轴,交y 轴于M ,过B 作BD ⊥x 轴,垂足为D ,交MA 的延长线于H ,则∠OMA =∠AHB =90°, ∴∠MOA +∠MAO =90°, ∵∠OAB =90°,∴∠MAO +∠BAH =90°, ∴∠MOA =∠BAH , 又∵AO =AB , ∴△AOM ≌△BAH , ∴OM =AH ,AM =BH ,设A (m ,2m ), 则AM =m ,OM =2m ,MH =m +2m ,BD =2m -m ,∴ B (m +2m ,2m -m ), ∴OB =(m +2m )2+(2m -m )2=2m 2+8m 2,∵⎝⎛⎭⎪⎫2m -2 2m 2≥0, ∴2m 2+8m 2-8≥0, ∴2m 2+8m 2≥8,∴2m 2+8m 2的最小值是8, ∴OB 的最小值是2 2.10.C 提示:如图,连结AC ,与BD 交于点O ,连结ME ,MF ,NF ,EN ,MN , ∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD . ∵BE =DF , ∴OE =OF .∵点E ,F 是BD 上的点,∴只要MN 过点O ,四边形MENF 就是平行四边形, ∴存在无数个平行四边形MENF ,故①正确; 只要MN =EF ,MN 过点O ,则四边形MENF 是矩形, ∵点E ,F 是BD 上的动点,∴存在无数个矩形MENF,故②正确;只要MN⊥EF,MN过点O,则四边形MENF是菱形,∵点E,F是BD上的动点,∴存在无数个菱形MENF,故③正确;只要MN=EF,MN⊥EF,MN过点O,则四边形MENF是正方形,而符合要求的正方形只有一个,故④错误.二、11.212.k≤5且k≠113.4814.815.10提示:设AC与MN的交点为O,根据作图可得MN⊥AC,且平分AC,∴AO=OC,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠F AO=∠OCE,又∵∠AOF=∠COE,AO=CO,∴△AOF≌△COE,∴AF=EC,∵AF∥CE,∴四边形AECF是平行四边形,∵MN垂直平分AC,∴EA=EC,∴四边形AECF是菱形,∵AE=2.5,∴四边形AECF的周长为4AE=10.16.6提示:连结OA、OC、OD、OB,如图.由反比例函数的性质可知S△AOE=S△BOF=12|k1|=12k1,S△COE=S△DOF=12|k2|=-12k2,∵S △AOC =S △AOE +S △COE ,∴12AC ·OE =12×3OE =32OE =12(k 1-k 2)…①, ∵S △BOD =S △DOF +S △BOF ,∴12BD ·OF =12×BD (EF -OE )=12×BD (5-OE )=5-OE =12(k 1-k 2)…②, 由①②两式解得OE =2, 则k 1-k 2=6.三、17.解:(1)原式=2 3-2 3+4 3=4 3;(2)原式=6-2 6=- 6. 18.解:(1)x 1=3,x 2=1.(2)x 1=5,x 2=-1.19.解:(1)∵反比例函数y =kx 的图象经过点(1,1),∴1=k1,解得k =1,∴反比例函数的表达式为y =1x . (2)解方程组⎩⎪⎨⎪⎧y =2x -1,y =1x ,得⎩⎨⎧x =1,y =1或⎩⎪⎨⎪⎧x =-12,y =-2,∵点A 在第三象限,且同时在两个函数图象上, ∴A (-12,-2).20.解:选手A 的最后得分是(85×5+95×4+95×1)÷(5+4+1)=90(分),选手B的最后得分是(95×5+85×4+95×1)÷(5+4+1)=91(分).由以上可知,选手B获得第一名,选手A获得第二名.21.(1)证明:∵E,F分别是AC,AB的中点,∴EF∥BC,∴∠FEO=∠DGO,∠EFO=∠GDO,∵O是DF的中点,∴FO=DO,∴△EFO≌△GDO(AAS),∴EF=GD,∴四边形DEFG是平行四边形.(2)解:∵AD⊥BC,E是AC中点,∴DE=12AC=EC,∵ADDC=52,AD=5,∴CD=2,∴DE=12AC=12AD2+CD2=12×52+22=292.∵四边形DEFG为平行四边形,∴FG=DE=29 2.22.解:(1)设这种商品的降价率是x,依题意得40(1-x)2=32.4,解得x1=0.1=10%,x2=1.9(舍去);故这个降价率为10%.(2)设在原售价40元的基础上降价y元,根据题意得(40-20-y)(500+50y)=10 000.解得y=0(舍去)或y=10,原售价40元降价10元时,应为40-10=30(元),∵现价为每件32.4元,∴32.4-30=2.4(元),答:在现价的基础上,再降低2.4元.23.解:(1)5(2)设线段AB 的表达式为y AB =kx +b ,把(10,50)和(0,30)代入得,⎩⎨⎧10k +b =50,b =30,解得⎩⎨⎧k =2,b =30,∴线段AB 的表达式为y AB =2x +30;设双曲线CD 的函数表达式为y CD =a x ,把(20,50)代入得,50=a 20, ∴a =1 000,∴双曲线CD 的函数表达式为y CD =1 000x ;当y =40时,代入y AB =2x +30,得2x +30=40, 解得x =5;当y =40时,代入y CD =1 000x ,得1 000x =40,解得x =25.∵25-5=20>18,∴教师能在学生注意力达到所需求状态下讲完这道题.24.解:(1)由题意得,BQ =t cm ,DP =t cm ,∵四边形ABCD 是矩形,BC =8 cm ,∴AD =BC =8 cm ,∴AP =(8-t )cm.当四边形ABQP 是矩形时,BQ =AP ,∴t =8-t ,解得t =4,∴当t =4时,四边形ABQP 是矩形.(2)∵∠B =90°,AB =4 cm ,BQ =t cm ,∴AQ 2=AB 2+BQ 2=42+t 2.当四边形AQCP 是菱形时,AP =AQ ,∴AP 2=AQ 2,∴42+t2=(8-t)2,解得t=3,∴当t=3时,四边形AQCP是菱形.(3)由(2)可知当t=3时,BQ=3 cm,∴CQ=BC-BQ=5 cm,∴C菱形AQCP =4CQ=4×5=20(cm),S菱形AQCP=CQ·AB=5×4=20(cm2).。
浙教版八年级数学竞赛试卷与答案
浙教版八年级数学竞赛试题卷(一、精心选一选(本题有10个小题,每小题4分,共40分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在相应的括号内。
1. 不论x 、y 为何实数,346422+-+-y y xy x 的值总是 ( )A.正数B.负数 C . 0 D. 非负数2. 一次函数y=ax-3a+1的图象必通过一定点,此定点坐标是 ( ) A. (1,3) B. (0,1) C. (3,1) D.(0,3)3.若关于x 的方程x 2-2k x-1=0有两个不相等的实数根,则直线y=kx +3必不经过 ( )A. 第三象限B. 第四象限C. 第一、二象限D. 第三、四象限 4.某商品的进价是100元,标价为150元,商店要求以利润率不低于5%的售价打折出售,售货员最低可打 ( )A.8折B. 7折C.6折D. 9折 5.梯形的两底角之和为900,上底长为5,下底长为11,则连结两底中点的线段长是 ( )A. 3B.4C.5D.6 6.已知M (3,2)、N (1,-1),点P 在y 轴上,使PM+PN 最短,则点P 的坐标是( )A .(0,21-) B. (0,0) C. (0,611) D.(0,41-)7.如果等腰三角形一腰上的高线等于腰长的一半,那么它的底角等于 ( )A .750 B. 150 C. 300 D 750或1508.如图,D 、E 分别是△ABC 的边BC 、AC 上的点,若AB=AC ,AD=AE ,∠α=300时,则∠CDE ( ) A .150 B.300 C.450 D.2009.某商店有5袋面粉,各袋重量在25~30公斤之间,店里有一磅秤,但只有能称50~70公斤重量的秤砣,现要确定各袋面粉的重量,至少要称 ( )A .4次B .5次C .6次 D. 7次10.如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( ) A .S=2 B .S=2.4 C .S=4 D .S 与BE 长度有关二.细心填一填(本题有10个小题,每小题4分,共40分)11.如果不等式组⎩⎨⎧<->-01a x x 无解,则a 的取值范围是____________12.如图的号码是由14位数字组成的,每一位数字写在下面的方格中,若任何相邻的三个数字之和都等于14,则x 的值等于13. 若一个数的平方根等于这个数的立方根,则这个数是14..如图是2002年北京第24届国际数学家大会会标,它由4个全等 的直角三角形拼合而成,若图中大、小正方形的面积分别为13和1, 则直角三角形的较长直角边长为 .15.如图△ABC 中,AC >AB ,AB=4,AC=x ,AD 平分∠BAC ,BD ⊥AD 于D ,点E 是BC 的中点,DE=y ,则y 关于x 的 函数关系式为 16.已知1=-b a ,122-=-b a ,则=-20082008b a_________17.已知方程0119992001)2000(2=-⨯-x x 较大的根为α,方程0199919982=-+x x 较小的根为βαβ-则,的值是 。
2020年数学素养团体赛八年级试题及参考答案
,没有一个是完全平方数,说明当 a2=9 时,
, 无解.
若 a2=16,则
.类似地,可得:16<b2<32,即 b2=25,此时,
不是整
数.综上所述,方程
无整数解,即原方程无整数解.
8. 由费马小定理得:x3 x(mod3),x5 x(mod5), ∴3x5+5x3+22x 3x+5x3+2x 0(mod5),3x5+5x3+22x 3x5+5x+x 0(mod3), ∴3|(3x5+5x3+22x),5|(3x5+5x3+22x),∵(3,5)=1,∴15|(3x5+5x3+22x).
8. ∵x-3≠0(易知),∴27-x2= ,27-x2=
①,
令
,则 3x=xy-3y,即 3(x+y)=xy ②,
且①式变为 x2+y2=27 ③, 联立②,③,得:
,
∴(x+y)2-6(x+y)=27,(x+y-9)(x+y+3)=0,∴x+y=9 或-3, 当 x+y=9 时,xy=27,构造以 x,y 为根的方程 m2-9m+27=0,△=81-4×27<0,无解.
八年级9
' :
(第 衽题 )
6.如 图 ,在 △彳BC中 ,zBzC叫 5° ,‘D山 4B于 点 D,'E±BC于 点 £,彳 E与 CD交 于 点 F,连 结 BF,若 ∠0四 -30° ,
证 明 :'CuF刽 `
(第 6题 )
7.如 图 所 示 ,在 口 犭BCD中 ,乙4BC=75° ,'F△BC于 点 F,'F交 BD于 点 E,若 0肛 珈 ,求乙 4ED的 度 数 .
括正三角形 )。 求 ″的最小值 。
¢
≈
八年级叫
(第 8题 )
浙江省丽水市第一届“瓯江杯”初中生学科素养邀请赛数学竞赛试题卷(..
使得,则称n 为一个ab b a n ++=的方程的解是正数,则实数a 的取值范围是__________________.122-=-+x a x3、解答题(本题有4小题,其中15题8分,16到18题每题10分,共38分)15.已知 求的值.⎩⎨⎧+=+=+++,2933,07xy y x y x xy 22y x +16.小林利用所学的长方体表面展开图知识,用长为100cm ,宽为80cm 的长方形纸板制作出了大小不同的长方体纸盒,请你帮助小林进行相关的计算.(1)小林将纸板沿图1的虚线剪开,剪去部分是四个大小相同的小正方形,把所得部分通过折叠,制作出成无盖的长方体纸盒(如图2),若纸盒的底面长是宽的2倍,求这个纸盒的底面积.(2)小林仿照图1,裁去长方形纸板的四个角(剪去的四个角是大小相同的小长方形),用裁剪后所得的纸板折叠制作成有双层上盖的长方体纸盒(上盖纸板面积刚好等于底面面积的2倍),如图3,若该纸盒的底面积等于875,求这个纸盒的高?2cm17.在中,D 是AB 的中点,正方形DEFG 绕点D 转ABC ∆,12,90===∠BC AC ACB动,交的两边AC 、BC 于点P 、Q .ABC ∆(1)连接CD ,如图1.求证:.BDQ CDP ∆≅∆(2)正方形DEFG 的对角线DF 交BC 边于点M ,连接PM ,如图2.设BQ =x .①若QM =5,求x 的值;②若BM =a ,求x 的值(用含a 的代数式表示).18.甲、乙两人同时从A 地出发,沿同一条道路去B 地,途中都使用两种不同的速度与1v ,甲前一半的路程使用速度、后一半路程使用速度;乙前一半时间使用2v )(21v v 1v 2v 速度,后一半时间使用速度.2v 1v (1)甲、乙两人从A 地道B 地的平均速度各是多少(用和表示)?1v 2v (2)甲、乙两人谁先到达B 地?为什么?(3)如图是甲从A 地到达B 地的路程S 与时间t 的函数图像,请你在图中画出相应的乙从A 地到达B 地的路程S 与时间t 的函数图像.。
浙江省宁波市某校八年级第一学期数学竞赛测试卷(含答案)(浙教版)
八年级第一学期数学竞赛测试卷(浙教版)(测试时间120分钟,满分120分)(第一卷)一、选择题(每小题4分,一共32分) 1、下面各说法:① x 2+y 2+1≤ 2x +2y 的整数解有5种② 若△ABC 的三条高分别为12、15、20,则△ABC 是直角三角形 ③ 若2、3、x 是三角形的三边,且这个三角形是一个锐角三角形,则可知< x<其中正确的有( )A. 0个B. 1个C. 2个D. 3个 2、如图,这是一个六边形,每个内角都120°,连续四边的长为1、3、4、2,则这个六边形的周长为( ) A. 17 B. 18 C. 19 D. 203、某商场经销一种商品,由于进货时的价格比原进价降低了8%,使利润率增加了10%,则经销这种商品原来的利润率为( )A. 1.2%B. 1.5%C. 15%D. 14%4、杭州市某公交车站每天6:30~7:00开往学校的三辆班车的票价相同,但是车的舒适程度不同,小明先观察后上车,当第一辆车开来时,他不上车,而是仔细观察车的舒适状况,若第二辆车的状况比第一辆好,他就上第二辆车;若第二辆车不如第一辆车,他就上第三辆车。
若按这三辆车的舒适程度分为优、中、差三等,则小明坐上优等车的概率是( ) A.B.C.D.5、若三角形三边a 、b 、c 满足- + =,则这个三角形一定是( )A. 等腰三角形B. 直角三角形C. 正三角形D. 等腰直角三角形 6、在平面直角坐标系中,A (1,0),B 在直线y =3x 上,若△AOB 为等腰三角形,则这样的点B 有( )A. 2个B. 3个C. 4个D. 5个13 427、如图(1)是某条公共汽车线路收支差额y 与乘客数量x 的图像(收支差额=车票收入-支出费用)由于目前本条线路亏损,公司提出两条建议:① 不改变票价,减少支出费用;② 不改变支出费用,提高票价。
下面给出了甲、乙、丙、丁四个图像,说法正确的为( ) A. 甲反映了建议② ,丙反映了建议① B. 甲反映了建议① ,丙反映了建议② C. 乙反映了建议① ,丁反映了建议② D. 丁反映了建议① ,乙反映了建议② (1) 甲 乙 丙 丁8、若有自然数x 1<x 2<x 3<……<x 100,满足x 1+x 2+x 3+……+x 100=7001,则x 1+x 2+x 3+……+x 50的最大值为( )A. 2225B. 2226C. 2227D. 2228 二、填空题(每空5分,共30分)9、若a +b +c =0,a ≤b ≤c ,a c ≠0,则的取值范围为__________________10、已知a x +5≥0的负整数解为x = -1,-2; 则可知a 的取值范围为_______________11、如图,四边形ABCD 的面积为8,其中AD =CD , ∠ADC =∠ABC =90°,DE ⊥AB ,则DE =__________12、如图,一个白色边长为1的正方形放在水平桌面上,现在有两个相同的黑色直角扇形(半径长度等于1),它们放在正方形上方,然后把两个扇形互相重叠的部分涂成白色.图中出现了一大一小的两个白色区域,它们的面积之差为_______ 13、利用图形面积可以解释代数恒等式的正确性,也可以解释不等式的正确性,如图所示的图形可表示为: (a -b )2= (a +b )2- 4ab 。
浙教版2018-2019学年度八年级数学竞赛试题(含解析)
绝密★启用前2018-2019学年浙教版八年级数学竞赛试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共6小题,每小题4分,共24分)1.已知m为正整数,且关于x,y的二元一次方程组有整数解,则m2的值为()A.4 B.1,4 C.1,4,49 D.无法确定2.已知+=3,则代数式的值为()A.3 B.﹣2 C.﹣D.﹣3.正方形ABCD中,点P,Q分别是边AB,AD上的点,连接PQ、PC、QC,下列说法:①若∠PCQ=45°,则PB+QD=PQ;②若AP=AQ=,∠PCQ=36°,则;③若△PQC是正三角形,若PB=1,则AP=.其中正确的说法有()A.3个B.2个C.1个D.0个4.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为()A.B.C.D.5.如图所示,某工厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点在同一直线上),已知AB=300米,BC=600米.为了方便职工上下班,该厂的接送车打算在此路段只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.AB之间D.BC之间6.试卷上有6道选择题,每题有3个选项,结果阅卷老师发现,在所有卷子中任选3张答卷,都有一道题的选择互不相同,请问最多有()人参加了这次考试.A.11 B.12 C.13 D.14第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二.填空题(共6小题,每小题4分,共24分)7.一条大河有A、B两个港口,水由A流向B,水流速度是4千米/时,甲、乙两船同时由A向B行驶,各自不停地在A、B之间往返航行.甲在静水中的速度是28千米/时,乙在静水中的速度是20千米/时,已知两船第二次迎面相遇与甲船第二次追上乙船(不算开始时甲、乙在A处的那一次)的地点相距40千米,则A、B两港口的距离为千米.8.在环行自行车赛场内,甲、乙、丙三人骑自行车进行训练,他们的速度是:甲每分钟圈,乙每分钟圈,丙每分钟圈,他们同时出发,起点如图所示(甲从A点出发,沿圆周逆时针运动;乙从B点出发,沿圆周逆时针运动;丙从C点出发,沿圆周顺时针运动),则出发后分三人第一次相遇.9.表2、表3是从表1中截取的一部分,则a+b=表1表2表310.杨辉是我国南宋时期杰出的数学家和教育家,下图是杨辉在公元1261年著作《详解九章算法》里面的一张图,即“杨辉三角”,该图中有很多规律,请仔细观察,解答下列问题:(1)图中给出了七行数字,根据构成规律,第8行中从右边数第3个数是;(2)利用不完全归纳法探索出第n行中的所有数字之和为.11.已知x、y、z满足,对于数a、[a]表示不大于a的最大整数,{a}=a﹣[a],则10(x+y)+z的值为.12.甲、乙、丙三人进行智力抢答活动,规定:第一个问题由乙提出,由甲、丙抢答.以后在抢答过程中若甲答对1题,就可提6个问题,乙答对1题就可提5个问题,丙答对l题就可提4个问题,供另两人抢答.抢答结束后,总共有16个问题没有任何人答对,则甲、乙、丙答对的题数分别是.三.解答题(共4小题,52分)13.(12分)观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=()2=.根据以上规律填空:(1)13+23+33+…+n3=()2=[]2.(2)猜想:113+123+133+143+153=.14.(12分)某中学的1号教学大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行了测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)该中学的2号教学大楼,有和1号教学大楼相同的正门和侧门共5道,若这栋大楼的教室里最多有1920名学生,安全检查规定,在紧急情况下,全大楼学生应在4分钟内通过这5道门安全撤离,该栋大楼正门和侧门各有几道?15.(14分)如图1,小明将一张长方形纸片沿对角线剪开,得到两张三角形纸片(如图2)量得它们的斜边长为10cm,较小锐角为30°再将这两张三角形纸片摆成如图3的形状,但点B、C、F、D 在同一条直线上,且点C与点F重合(在图3至图6中统一用F表示).小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮忙解决.(1)将图3中的△ABC沿BD向右平移到图4的位置,使点B与点F重合,请你求出平移的距离;(2)将图3中的△ABC绕点F顺时针方向旋转30°到图5的位置,A1F交DE于G,若DG=kEG,求k的值;(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.16.(14分)探究问题:(1)阅读理解:①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P 为△ABC的费马点,此时P A+PB+PC的值为△ABC的费马距离;②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•B D.此为托勒密定理;(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的上任意一点.求证:PB+PC=P A;②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+;第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.参考答案与试题解析1.解:两式相加得:(3+m)x=10,则x=,代入第二个方程得:y=,当方程组有整数解时,3+m是10和15的公约数.∴3+m=±1或±5.即m=﹣2或﹣4或2或﹣8.又∵m是正整数,∴m=2,则m2=4.故选:A.2.解:+==3,即a+2b=6ab,则原式===﹣,故选:D.3.(1)证明:延长AB至点E,使BE=DQ,连接EC,AC,∵正方形ABCD,∴∠BCA=∠DCA=45°,CD=DA=AB=BC,∠D=∠EBC=90°,∴在△BEC和△DQC中,,∴△BEC≌△DQC(SAS),∴CE=CQ,∠BCE=∠DCQ,∵∠PCQ=45°,∴∠DCQ+∠PCB=45°,∴∠BCE+∠PCB=45°,即∠ECP=45°,∵在△PCE和△PCQ中,,∴△PCE≌△PCQ(SAS),∴PE=PQ,∵PE=PB+BE=PB+QD,∴PQ=PB+QD,(2)过点Q作∠PQC的角平分线,交PC于点E,∵正方形ABCD,∴∠A=∠D=∠B=90°,AD=AB=BC=CD,∵∠PCQ=36°,AP=AQ=,∴PQ=2,PB=QD,∴PE=PC﹣2,∵在△PBC和△QDC中,,∴△PBC≌△QDC(SAS),∴QC=PC,∴∠CPQ=∠CQP=72°,∴∠PQE=∠EQC=36°,∴QE=QP=EC=2,∵△QPE∽△CQP,∴PQ:QC=PE:PQ,即PQ2=PE•PC,∵PQ=2,∴PE•PC=4,∵PE=PC﹣2,∴PC2﹣2PC﹣4=0,解得:PC1=1﹣<0(舍去),PC2=1+,∴PC=+1,(3)取PC的中点E,连接BE,做BM⊥PC于点M,∵正方形ABCD,∴BC=CD=AB=AD,∠D=∠B=∠A=∠BCD=90°,∵△PCQ为正三角形,∴QC=PQ=PC,∠QCP=60°,∵在Rt△PBC和Rt△QDC中,,∴Rt△PBC≌Rt△QDC(HL),∴∠BCP=∠DCQ=,PB=QD,∵E为PC的中点,∴BE=EC=PE=,∴∠BEM=30°,∴2BM=BE,∴4BM=PC,∵PC=AP,∴4BM=AP,∵BM⊥PC,∠BCP=15°,∴∠PBM=15°,∴△PBM∽△PCB,∴BP:PC=BM:BC,∵PB=1,∴BC=AB=AP+1,∴,∴AP2﹣AP﹣1=0,解得:AP1=1+,AP2=1﹣<0(舍去),∴AP=+1,∴其中说法正确的共3个,故选:A.4.解:这10个有理数,每9个相加,一共得出另外10个数,由于原10个有理数互不相等,可以轻易得出它们相加后得出的另外10个数也是互不相等的,而这10个数根据题意都是分母22的既约真分数,而满足这个条件的真分数恰好正好有10个,∴这10项分别是:1/22,3/22,5/22,7/22,9/22,13/22,15/22,17/22,19/22,21/22.它们每一个都是原来10个有理数其中9个相加的和,那么,如果再把这10个以22为分母的真分数相加,得出来的结果必然是原来的10个有理数之和的9倍.所以,10个真分数相加得出结果为5,于是所求的10个有理数之和为5/9.故选:D.5.解:①以点A为停靠点,则所有人的路程的和=15×300+10×900=13500(米),②以点B为停靠点,则所有人的路程的和=30×300+10×600=15000(米),③以点C为停靠点,则所有人的路程的和=30×900+15×600=36000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(300﹣m)+10(900﹣m)=13500+5m>13500,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(300+n)+15n+10(600﹣n)=15000+35n>13500.∴该停靠点的位置应设在点A;故选:A.6.解:法一:第一道题有三个人分别选了1、2、3;第二道题他们三个人选了同一个答案(就是1吧,因为所有答案条件相同无所谓的),另外两个人选了2、3;第三道题他们五个人选了1,其他两个人选了2、3;第四题他们7个选1,另两个2、3;第五题他们9个选1,另两个2、3;第六题他们11个选1,另两个2、3;一共13人.只有这种情况才能保证随便三张卷子都有1题答案互不相同,这是抽屉定理中的穷举法.法二:首先只有一道试题时候最多3人,只有两道试题的时候最多4人,这个很容易用穷举法知道.现在,如果有14人做这道题的话,14人中任取3人的组合共有364种,根据抽屉原理,这里至少有122种取法第一题的答案相同.同样,在这122种取法中,至少41种取法第2题答案相同,接下来有14种取法第3题答案相同,5种取法第4题答案相同,这样根据两道题时候的情况,可以知道14人是不可能的,所以最多13人.7.解:设A、B两个港口的距离为d,甲顺水速度:28+4=32千米/时,甲逆水速度:28﹣4=24千米/时,乙顺水速度:20+4=24千米/时,乙逆水速度:20﹣4=16千米/时,第二次相遇地点:从A到B:甲速:乙速=32:24=4:3,甲到B,乙到E;甲从B到A,速度24,甲速:乙速=24:24=1:1,甲、乙在EB的中点F点第一次相遇;乙到B时,甲到E,这时甲速:乙速=24:16=3:2,甲到A点时,乙到C点;甲又从A顺水,这时甲速:乙速=32:16=2:1,所以甲、乙第二次相遇地点是AC处的点H,AH=×AB=AB=d,第二次追上地点:甲比乙多行1来回时第一次追上,多行2来回时第二次追上.甲行一个来回2AB时间+=d乙行一个来回2AB时间+=,一个来回甲比乙少用时间:﹣=,甲多行2来回的时间是:×2=,说明乙第二次被追上时行的来回数是:=4,甲第二次追上乙时,乙在第5个来回中,甲在第7个来回中.甲行6个来回时间是×6=,乙行4个来回时间是×4=,﹣=,从A到B甲少用时间:﹣=,说明第二次追上是在乙行到第五个来回的返回途中.﹣=,从B到A,甲比乙少用时间:﹣=,=,追上地点是从B到A的中点C处.根据题中条件,HC=40(千米),即=40,解得d=240千米.故答案为:240.8.解:设出发后x分钟后三人第一次相遇,由甲和乙相遇得:x=,解得:x=5,此时,甲逆时针行驶了=圈,当出发5分钟后,丙顺时针行驶了×5=圈,此时,甲乙丙第一次相遇.故答案为:5.9.解:表2中,∵15是5的3倍,24是6的4倍,∴a是5的6倍是30,或a是7的4倍是28,表3中,∵16是2的8倍,24是3的8倍,∴b是4的7倍是28,∴a+b=30+28=58或a+b=28+28=56.故答案为:58或56.10.解:(1)设第n行第2个数为a n(n≥2,n为正整数),第n行第3个数为b n(n≥3,n为正整数),观察,发现规律:∵a2=1,a3=2,a4=3,a5=4,a6=5,∴a n=n﹣1;∵b3=1,b4=3=1+2=b3+2,b5=6=3+3=b4+3,b6=10=6+4=b5+4,…,∴b n﹣b n﹣1=n﹣2,∴b n=b3+b4﹣b3+b5﹣b4+b6﹣b5+…+b n﹣b n﹣1=1+2+3+…+n﹣2=.当n=8时,b3==21;故答案为:21;(2)∵第1行数字之和1=20,第2行数字之和2=21,第3行数字之和4=22,第4行数字之和8=23,…∴第n行数字之和为2n﹣1.故答案为:2n﹣1.11.解:∵{a}=a﹣[a],∴a={a}+[a],∵①+②+③得:x+[x]+{x}+y+[y]+{y}+z+[z]+{z}=0.6,2x+2y+2z=0.6,x+y+z=0.3④,④﹣①得:{y}+[z]=1.2,所以{y}=0.2,[z]=1,④﹣②得:{x}+[y]=0.1,所以[y]=0,{x}=0.1,④﹣③得:[x]+{z}=﹣1,所以{z}=0,[x]=﹣1,∴x=[x]+{x}=﹣1+0.1=﹣0.9,y=[y]+{y}=0+0.2=0.2,z=[z]+{z}=1+0=1,∴10(x+y)+z=10×(﹣0.9+0.2)+1=﹣6.12.解:设甲、乙、丙答对得题数分别为x,y,z,根据题意列方程得,6x+5y+4z+1=x+y+z+16,整理得,5x+4y+3z=15,∵x,y,z为非负整数.∴x=1,y=1,z=2;或x=0,y=3,z=1.故答案为:(1,1,2)或(0,3,1).13.解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+...+153﹣(13+23+33+ (103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.故答案为:1+2+3+4+5;225;1+2+…+n;;11375.14.解:(1)设平均每分钟一道正门可通过x名学生,一道侧门可以通过y名学生.则,解得.答:平均每分钟一道正门可通过120名学生,一道侧门可以通过80名学生;(2)设该栋大楼正门有m道,侧门有n道,则,解得.故该栋大楼正门有2道,侧门有3道.15.解:∵AB=DE=10,∠A=∠D=30°,∴FB=FE=5,∠B=∠FED=60°,FD=EF=5.(1)如图4,FC1=BF=5,所以△ABC沿BD向右平移的距离为5;(2)∵△ABC绕点F顺时针方向旋转30°到图5的位置,∴∠AF A1=30°,∴∠A1FD=60°,而∠D=30°,∴FG⊥CD,∴EG=EF=,∴DG=10﹣=,∴DG=3EG,∴k的值为3;(3)∵△ABF沿直线AF翻折到图6的位置,∴B1F=BF=EF,∠AB1F=∠B=60°,∴DB1=AE,∠DB1H=∠AEH=120°,而∠DHB1=∠AHE,在△DB1H与△AEH中,∵∠DB1H=∠AEH,DB1=AE,∠DHB1=∠AHE,∴△DB1H≌△AEH,∴AH=DH.16.(2)①证明:由托勒密定理可知PB•AC+PC•AB=P A•BC∵△ABC是等边三角形∴AB=AC=BC,∴PB+PC=P A,②P′D、AD,(3)解:如图,以BC为边长在△ABC的外部作等边△BCD,连接AD,则知线段AD的长即为最短距离.∵△BCD为等边三角形,BC=4,∴∠CBD=60°,BD=BC=4,∵∠ABC=30°,∴∠ABD=90°,在Rt△ABD中,∵AB=3,BD=4,∴AD===5(km),∴从水井P到三村庄A、B、C所铺设的输水管总长度的最小值为5km.。
浙江初二考试题目及答案
浙江初二考试题目及答案考试题目:浙江初二数学考试一、选择题(每题2分,共20分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于16,那么这个数是?A. 4B. -4C. 4 或 -4D. 163. 一个三角形的内角和是多少度?A. 90度B. 180度C. 360度D. 720度4. 以下哪个是完全平方数?A. 12B. 15C. 16D. 215. 一个数的绝对值是其本身,这个数是?A. 正数B. 负数C. 零D. 正数或零6. 以下哪个是偶数?A. 2B. 3C. 4D. 57. 一个数的倒数是1/4,这个数是?A. 4B. 1/4C. 1D. 28. 一个圆的周长是2πr,其中r是?A. 面积B. 半径C. 直径D. 周长9. 以下哪个是质数?A. 2B. 4C. 6D. 810. 一个数的立方是-8,这个数是?A. -2B. 2C. -8D. 8答案:1. B2. C3. B4. C5. D6. A7. A8. B9. A 10. A二、填空题(每题2分,共20分)11. 一个数的平方根是3,那么这个数是________。
12. 一个数的立方根是2,那么这个数是________。
13. 一个数的相反数是-5,那么这个数是________。
14. 如果a和b互为倒数,那么ab=________。
15. 一个数的绝对值是5,那么这个数可以是________或________。
16. 一个三角形的三个内角分别是40度,70度,那么第三个角是________度。
17. 一个圆的直径是14cm,那么它的半径是________cm。
18. 如果一个数的平方是25,那么这个数可以是________或________。
19. 一个数的平方和它的立方相等,这个数是________。
20. 一个数的平方是16,那么这个数的立方是________。
答案:11. 9 12. 8 13. 5 14. 1 15. 5, -5 16. 70 17. 7 18. 5, -5 19.0 20. 64三、解答题(每题10分,共60分)21. 解方程:2x - 3 = 722. 求一个直角三角形的斜边长,已知两直角边分别为3cm和4cm。
第2章 浙教版数学八年级上册素养综合检测(含解析)
第2章• 素养综合检测卷(考查范围:第2章 时间:60分钟 满分:100分)一、选择题(每小题4分,共32分)1. 【跨学科·语文】甲骨文是中国的一种古代文字,下列是“北”“比”“鼎”“射”四个字甲骨文的大致写法,其中不是轴对称图形的是( )A B C D2. (2023浙江杭州大关中学联考)在△ABC中,它的三边长分别为a,b,c,条件:①∠A=∠C-∠B;②∠A=∠B=2∠C;③∠A∶∠B∶∠C=3∶4∶5;④a∶b∶c=1∶2∶2中,能确定△ABC是直角三角形的有( )A. 1个B. 2个C. 3个D. 4个3. 【新定义试题】(2023浙江杭州拱墅月考)若一个等腰三角形的一条边长是另一条边长的k倍,我们把这样的等腰三角形叫做“k倍边等腰三角形”.如果一个等腰三角形是“4倍边等腰三角形”,且周长为18 cm,则该等腰三角形的底边长为( )A. 12 cmB. 12 cm或2 cmC. 2 cmD. 4 cm或12 cm4. 【一题多解】(2023浙江杭州第十四中学附属学校期中)如图,在△ABC中,点D在边BC上,且满足AB=AD=DC,过点D作DE⊥AD,交AC于点E.设∠BAD=α,∠CAD=β,∠CDE=γ,则( )A. 2α+3β=180°B. 3α+2β=180°C. β+2γ=90°D. 2β+γ=90°5. 【跨学科·科学】如图,某自动感应门的正上方A处装着一个感应器,离地2.5米(AB=2.5米),当人体进入感应器的感应范围时,感应门就会自动打开.一个身高为1.6米的学生CD正对门,走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则学生头顶离感应器的距离AD等于( )A. 1.2米B. 1.5米C. 2.0米D. 2.5米6. (2023浙江兰溪外国语中学期中)如图,△ABC中,AC=8,点D,E分别在BC,AC上,F是BD的中点.若AB=AD,EF=EC,则EF的长是( )A. 3B. 4C. 5D. 67. (2023浙江宁波海曙雅戈尔中学期中)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=9,AB=15,则CE的长为( )A. 4B. 92C. 245D. 58. 【数学文化】(2023浙江余姚梨洲中学期中)勾股定理是人类最伟大的科学发现之一,在中国古算书《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两个正方形按图②所示的方式放置在最大的正方形内.若知道图中阴影部分的面积,则一定能求出( )图① 图②A. 直角三角形的面积 B. 最大正方形的面积C. 较小两个正方形重叠部分的面积 D. 最大正方形与直角三角形的面积差二、填空题(每小题4分,共24分)9. (2023浙江杭州中学期中)命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是 .它是 命题(填“真”或“假”).10. 【新考法】(2022浙江嘉兴中考)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件: .11. (2022湖南株洲中考)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON⊥BC于点N,若OM=ON,则∠ABO= 度.12. (2023浙江杭州十三中教育集团检测)如图,在等边三角形ABC的边AB,AC上各取一点D,E,连结CD,BE交于点F,使∠EFC=60°,若BD=1,CE=2,则BC= .13. 【新独家原创】如图,△ABC的边AB,AC的垂直平分线l1与l2分别交BC于点D,E,且l1与l2交于点O,过点O作OF⊥BC于点F,BF=5 cm,则△ADE的周长为 .14. (2023浙江宁波鄞州七校联考)如图,在△ABC中,∠C=90°,BC=6 cm,AC=8 cm,BD是∠ABC的平分线.(1)CD= cm;(2)若点E是线段AB上的一个动点,从点B以每秒1 cm的速度向A 运动, 秒时△EAD是直角三角形.三、解答题44分)15. (2023浙江杭州大关中学、风帆中学、春蕾中学联考)(8分)如图,网格中每个小正方形的边长都为1,点A、B、C均在格点上.(1)画出与△ABC关于直线l成轴对称的△A'B'C';(2)求△ABC的面积.16. (2023浙江杭州观成教育集团期中)(10分)如图,△ABC为等腰直角三角形,∠ACB=90°,E是AC上一点,D是BC延长线上一点,连结AD.(1)若AD=BE,求证:∠CBE=∠CAD;(2)若BC=2,△ABD是等腰三角形,求CD的长.17. (2022浙江杭州中考)(12分)如图,在Rt△ACB中,∠ACB=90°,点M 为边AB的中点,点E在线段AM上,EF⊥AC于点F,连结CM,CE.已知∠A=50°,∠ACE=30°(在直角三角形中,30°角所对的直角边等于斜边的一半).(1)求证:CE=CM;(2)若AB=4,求线段FC的长.18. 【项目式学习试题】(2023浙江宁波海曙雅戈尔中学期中)(14分)【概念学习】规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.【理解概念】(1)如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中的“等角三角形”;【概念应用】(2)如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的“等角分割线”;(3)在△ABC中,∠A=42°,CD是△ABC的“等角分割线”,直接写出∠ACB 的度数.图1 图2答案全解全析1. B 根据轴对称图形的概念可得,选项B中的图形不是轴对称图形.故选B.2. A ∵∠A=∠C-∠B,∴∠A+∠B=∠C,∵∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故①符合题意;∵∠A=∠B=2∠C,∠A+∠B+∠C=180°,∴2∠C+2∠C+∠C=180°,∴∠C=36°,∴∠A=∠B=72°,∴△ABC不是直角三角形,故②不符合题意;∵∠A∶∠B∶∠C=3∶4∶5,∠A+∠B+∠C=180°,=75°,∴△ABC不是直角三角形,故③不符合题意;∴∠C=180°×53+4+5∵a∶b∶c=1∶2∶2,∴设a=k,b=2k,c=2k,∴a2+b2=k2+(2k)2=3k2,c2=(2k)2=2k2,∴a2+b2≠c2,∴△ABC不是直角三角形,故④不符合题意.∴能确定△ABC是直角三角形的条件有1个.故选A.3. C 设该等腰三角形较短边的长为x cm(x>0),则较长边的长为4x cm.①当腰长为x cm时,∵x+x<4x,∴x,x,4x不能组成三角形;②当腰长为4x cm时,4x,4x,x能够组成三角形,∵4x+4x+x=18,∴x=2,∴该等腰三角形的底边长为2 cm.故选C.4. D 解法一(利用直角三角形的性质):∵AD=DC,∴∠C=∠CAD=β,∵DE⊥AD,∴∠ADE=90°,∴∠CAD+∠AED=90°,∵∠CDE=γ,∠AED=∠CDE+∠C,∴∠AED=γ+β,∴2β+γ=90°.故选D.解法二(利用平角的定义):∵AD=DC,∴∠C=∠CAD=β,∴∠ADB=∠C+∠CAD=2β,∵DE⊥AD,∴∠ADE=90°,∴∠ADB+∠CDE=90°,即2β+γ=90°.故选D.5. B 如图,过点D作DE⊥AB于点E,易知BE=CD=1.6米,ED=BC=1.2米,∴AE=AB-BE=2.5-1.6=0.9(米),在Rt△ADE中,AD2=AE2+DE2,∴AD=1.5米.故选B.6. B 如图,连结AF,∵AB= AD,F是BD的中点,∴AF⊥BD,∴∠AFD=90°,∴∠EAF+∠C=90°,∠AFE+∠EFC=90°,∵EF=EC,∴∠EFC=∠C,∴∠EAF=∠AFE,∴EA=EF,∴EF=EA=EC=12 AC=4.故选B.7. B 过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CAF+∠CFA=90°,∠CDA=90°,∴∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵在Rt△ABC中,AC=9,AB=15,BC2=AB2-AC2,∴BC=12,在Rt △ACF 和Rt △AGF 中,AF =AF ,FC =FG ,∴Rt △ACF ≌Rt △AGF(HL),∴AG=AC=9,∴BG=15-9=6,设CE=x,则FC=FG=x,∴BF=12-x,∵FG 2+BG 2=BF 2,即x 2+62=(12-x)2,解得x=92,即CE=92.故选 B.8. C 设直角三角形的斜边长为c,较长的直角边长为b,较短的直角边长为a,根据勾股定理得c 2=a 2+b 2,∴阴影部分的面积=c 2-b 2-a(c-b)=a 2-ac+ab=a(a+b-c),∵较小的两个正方形重叠部分的一边长=a-(c-b),其邻边长=a,∴较小的两个正方形重叠部分的面积=a·[a-(c-b)]=a(a+b-c)=阴影部分的面积,∴知道题图中阴影部分的面积,一定能求的是较小两个正方形重叠部分的面积.故选C.9. 答案 如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;真解析 该命题的条件为“一个三角形是直角三角形”,结论为“它斜边上的中线等于斜边的一半”,所以逆命题为“如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形”,它是真命题.10. 答案 ∠B=60°(答案不唯一)解析 该题借助图形考查特殊三角形与三角形之间的关系,考查形式新颖.答案不唯一.如:根据“有一个角是60°的等腰三角形是等边三角形”可得∠B=60°.11. 答案 15解析 由题意知ON⊥BC,OM⊥AB,OM=ON,∴BO是∠ABC的平分线,∵∠ABC=30°,∴∠ABO=12∠ABC=15°.12. 答案 3解析 ∵△ABC为等边三角形,∴AB=CB=AC,∠A=∠ABC=60°,∴∠ABE+∠CBF=60°,又∵∠EFC=∠CBF+∠BCF=60°,∴∠ABE=∠BCF,在△ABE和△BCD中,∠A=∠DBC, AB=BC,∠ABE=∠BCD,∴△ABE≌△BCD (ASA),∴AE=BD,∴BC=AC=AE+CE=DB+CE=1+2=3.13. 答案 10 cm解析 连结OA,OB,OC,∵l1是AB边的垂直平分线,l2是AC边的垂直平分线,∴OA=OB,AD=BD,EA=EC,OA=OC,∴OB=OC,∴点O在线段BC的垂直平分线上,∵OF⊥BC,∴BC=2BF=10 cm,∴△ADE的周长=AD+AE+DE=BD+DE+EC=BC=10 cm.14. 答案 (1)3 (2)6或154解析 (1)如图1,过点D作DE⊥AB于E,在Rt△ABC中,由勾股定理得,AB2=AC2+BC2,∴AB=10 cm,∵BC⊥AC,DE⊥BE,BD是∠ABC的平分线,∴CD=DE,∵S △ABD =12AD·BC=12AB·DE,∴设CD=DE=x cm,则(8-x)×6=10x,解得x=3,即CD=3 cm.图1 图2(2)设t 秒时△EAD 是直角三角形,则BE=t cm.如图2,当ED ⊥AD 时,ED ∥BC,∴∠CBD=∠BDE,∵BD 为∠ABC 的平分线,∴∠CBD=∠EBD,∴∠BDE=∠EBD,∴DE=BE=t cm,由(1)知CD=3 cm,∴AD=5 cm,在Rt △ADE 中,由勾股定理得52+t 2=(10-t)2,解得t=154;当DE ⊥AB 时,由(1)得CD=DE,∵BD=BD,∴Rt △CBD ≌Rt △EBD(HL),∴BE=BC=6 cm,∴t=6.综上,t=6或154时△EAD 是直角三角形.15. 解析 (1)如图,△A'B'C'即为所求作.(2)△ABC 的面积=3×4-12×1×2-12×1×4-12×3×3=4.5.16. 解析 (1)证明:∵△ABC 为等腰直角三角形,∠ACB=90°,∴AC=BC,∠ACD=∠ACB=90°,在Rt △BCE 和Rt △ACD 中,BE =AD ,BC =AC ,∴Rt △BCE ≌Rt △ACD(HL),∴∠CBE=∠CAD.(2)当AB=AD时,∵AC⊥BD,∴CD=BC=2;当BD=AB时,在Rt△ABC中,AB2=AC2+BC2,∴AB=8,∴BD=AB=8,∴CD=BD-BC=8-2.不存在AD=BD的情况,∴CD的长为2或8-2.17. 解析 (1)证明:∵∠ACB=90°,点M为边AB的中点,∴MC=MA=MB,∴∠MCA=∠A,∠MCB=∠B,∵∠A=50°,∴∠MCA=50°,∠MCB=∠B=40°,∴∠EMC=∠MCB+∠B=80°,∵∠ACE=30°,∴∠MEC=∠A+∠ACE=80°,∴∠MEC=∠EMC,∴CE=CM.AB=2,(2)∵AB=4,∴CE=CM=12CE=1,∵EF⊥AC,∠ACE=30°,∴EF=12在Rt△CEF中,FC2=CE2-EF2,∴FC=3.18. 解析 (1)△ABC与△ACD,△ABC与△BCD,△ACD与△BCD是“等角三角形”.(2)证明:∵在△ABC中,∠A=40°,∠B=60°,∴∠ACB=180°-∠A-∠B=80°,∵CD为角平分线,∠ACB=40°,∴∠ACD=∠DCB=12∴∠ACD=∠A,∠DCB=∠A,∴CD=DA,∵在△DBC中,∠DCB=40°,∠B=60°,∴∠BDC=180°-∠DCB-∠B=80°,∴∠BDC=∠ACB,∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,∠B=∠B,∴CD为△ABC的“等角分割线”.(3)∠ACB的度数为111°或84°或106°或92°.详解:当△ACD是等腰三角形,DA=DC时,∠ACD=∠A=42°,∴∠ACB=∠BDC=42°+42°=84°;当△ACD是等腰三角形,DA=AC时,∠ACD=∠ADC=69°,∠BCD=∠A=42°,∴∠ACB=69°+42°=111°;不存在△ACD是等腰三角形,AC=CD的情况;当△BCD是等腰三角形,DC=BD时,∠ACD=∠BCD=∠B=46°,∴∠ACB=92°;当△BCD是等腰三角形,DB=BC时,∠BDC=∠BCD,设∠BDC=∠BCD=x,则∠B=180°-2x,则∠ACD=∠B=180°-2x,由题意得180°-2x+42°=x,解得x=74°,∴∠ACD=180°-2x=32°,∴∠ACB=106°;不存在△BCD是等腰三角形,DC=BC的情况.∴∠ACB的度数为84°或111°或92°或106°.。
新版浙教版2023-2024学年八年级数学下学期期末综合素质检测试题1(含答案)
新版浙教版2023-2024学年八年级数学下学期期末综合素质检测试题一、选择题(本题有10小题,每小题3分,共30分)1. [2023·绍兴嵊州市期末]要使二次根式有意义,则x不可能是( )A. 0B. 1C. 2D. 32. [2023·永州]企业标志反映了思想、理念等企业文化,在设计上特别注重对称美,下列企业标志图为中心对称图形的是( )3. [2023·北京房山区期末]用配方法解方程x2+4x-1=0,配方后得到的方程是( )A. (x+2)2=5B. (x-2)2=5C. (x+4)2=3D. (x-4)2=34. 如果反比例函数y=的图象经过点(1,n2+1),那么这个函数的图象位于( )A. 第一、三象限B. 第二、四象限C. 第一、二象限D. 第三、四象限5. [2023·温州鹿城区期中]一组数据:2,2,2,3,4,8,12,若加入一个整数n,一定不会发生变化的统计量是( )A. 众数B. 平均数C. 中位数D. 方差6. [2023·丽水]如图,四边形ABCD的对角线AC,BD相交于点O,且OA=OC,OB=OD,下列结论不一定成立的是( )A. AB∥DCB. AD=BCC. ∠ABC=∠ADCD. ∠DBC=∠BAC7. [2023·杭州西湖区期末]随着科技水平的提高,某种电子产品的价格呈下降趋势,今年年底的价格是两年前价格的. 这种电子产品的价格在这两年中平均每年下降的百分率为( )A. 25%B. 37. 5%C. 50%D. 75%8. [2023·杭州期中]设实数的整数部分为m,小数部分为n,则(2m+n)(2m-n)的值是( )A. 2B. -2C. 2-2D. 2-29. [2023·湖州模拟]如图,点B在y轴的正半轴上,点C在反比例函数y=(x<0)的图象上,菱形OABC 的面积为12,则k 的值为 ( )A. -6B. 6C. -3D. 310. 如图,E ,F 为矩形ABCD 内两点,AE ⊥EF ,CF ⊥EF ,垂足分别为E ,F ,若AE =1,CF =2,EF =4,则BD 的长为( )A.B. 5C.D. 6(第9题) (第10题) (第16题)二、填空题(本题有6小题,每小题4分,共24分)11.计算:×=________.12. [2023·温州乐清市期末]老师对甲、乙两名同学近六次数学测试成绩进行统计分析,已知甲的方差是2. 2,甲的成绩比乙的成绩更稳定,则乙的方差可能是________. 13.一个多边形所有内角都是135°,则这个多边形的边数为______.14. [2023·杭州拱墅区月考]如果x =1是关于x 的一元二次方程(k 2-5k +6)x 2+(2k +1)x -5=0的一个根,那么k 的值为________.15.已知反比例函数y 1=,y 2=-(k>0),当1≤x ≤3时,函数y 1的最大值为a ,函数y 2的最小值为a -4,则k =________.16.[2022·山西]如图,在正方形ABCD 中,E 是边BC 上的一点,点F 在边CD 的延长线上,且BE =DF ,连结EF 交边AD 于点G. 过点A 作AN ⊥EF ,垂足为M ,交边CD 于点N. 若BE =5,CN =8,则线段AN 的长为________. 三、解答题(本题有8小题,共66分)17. (6分)计算:(1)×÷; (2).18. (6分)已知反比例函数y=的图象经过点A(-2,-3).(1)求这个函数的表达式;(2)请判断点B(1,6),点C(-3,2)是否在这个反比例函数的图象上,并说明理由.19. (6分) [2023·温州模拟]如图,在▱ABCD中,延长BC至点F,延长CB至点E,且BE=CF,DE=AF. 求证:▱ABCD是矩形.20. (8分)已知关于x的一元二次方程x2-4x+k=0有两个不相等的实数根.(1)求k的取值范围;(2)k取最大整数值时,解方程x2-4x+k=0.21. (8分) [2023·宁波第七中学期中]如图,在8×8的正方形网格中,网格线的交点称为格点,点A,B,C在格点上,每一个小正方形的边长为1.(1)在图中作△ABC关于点C成中心对称的三角形;(2)在图中以AB为边作一个平行四边形,使每个顶点都在格点上,且面积是△ABC的4倍.22. (10分)某校为培养学生的数学思维,激发学生学习数学的兴趣,开展了学生数学说题比赛,分别从八年级和九年级学生中各选出10名选手参赛,成绩(单位:分)如下:八年级:85 85 90 75 90 95 80 85 70 95九年级:80 95 80 90 85 75 95 80 90 80数据整理分析如下:平均数/分中位数/分众数/分方差八年级85a8560九年级8582. 5b45根据以上统计信息,回答下列问题:(1)表中a=________,b=________;(2)九年级的小红参加了本次说题比赛,已知她的成绩是中等偏上,则小红的成绩最低可能为________分;(3)根据以上数据,你认为在此次说题比赛中,哪个年级的成绩更好?请选择适当的统计量说明理由.23. (10分) [2023·温州一模]某科研单位准备将院内一块长30 m,宽20 m的矩形ABCD空地建成一个矩形花园,要求在花园内修两条纵向平行和一条横向弯折的小道(小道的宽度相等,且每段小道均为平行四边形),剩余的地方种植花草.(1)如图①,要使种植花草的面积为532 m2,求小道的宽度;(2)现将矩形花园的四个角建成休闲活动区,如图②,△AEQ,△BGF,△CMH,△DPN均为全等的直角三角形,其中AE=BF=CM=DN,设EF=HG=MN=PQ=a m,纵向道路和横向弯折道路的宽度都为2 m,且纵向道路出口位于MN和EF之间,横向弯折道路出口位于PQ和HG之间.①求剩余的种植花草区域的面积(用含有a的代数式表示);②如果种植花草区域的建造成本是100元/m2,建造花草区域的总成本为42 000元,求a的值.24. (12分)已知DE是△ABC的中位线,点M为射线ED上的一个动点(不与点E重合),作MF∥AC交AB边于点F,连结EF.(1)如图①,当点M与点D重合时,求证:四边形CEFM是平行四边形;(2)如图②,∠B=45°,BC=4,点M在线段ED上运动,当四边形CEFM是菱形时,BF=2AF,求菱形CEFM的面积;(3)如图③,∠B=45°,在ED的延长线上(可以与点D重合)存在一点M,使得四边形CEFM为矩形,求∠ACB的度数范围.答案一、1. A 2. C 3. A 4. A 5. A 6. D7. C 【点拨】设这种电子产品的价格在这两年中平均每年下降x,根据题意得(1-x)2=,解得x1=0. 5=50%,x2=1. 5(不合题意,舍去),即这种电子产品的价格在这两年中平均每年下降50%.8. A 【点拨】∵1<<2,∴的整数部分为m=1,小数部分为n=-1,∴(2m+n)(2m-n)=4m2-n2=4×12-(-1)2=4-(3-2+1)=2.9. A 【点拨】过点C作CD⊥BO于点D,在菱形OABC中,OC=BC,∴OD=BD.∵菱形OABC的面积为12,∴△OCB的面积为6,∴△OCD的面积为3,∴=3,∴=6. 易得k<0,∴k=-6.10. B 【点拨】如图,连结AC,过点A作AG⊥CF,交CF的延长线于点G,则∠G=90°.∵AE⊥EF ,CF⊥EF,∴∠AEF=∠EFG=90°=∠G,∴四边形AEFG是矩形,∴FG=AE=1,AG=EF=4,∴CG=CF+FG=2+1=3. 在Rt△ACG中,由勾股定理,得AC==5. ∵四边形ABCD为矩形,∴BD=AC=5.二、11. 2 12. 3(答案不唯一) 13. 8 14. 115. 2 【点拨】∵反比例函数y1=(k>0),∴在每个象限内,y1随x的增大而减小.∵当1≤x≤3时,函数y1的最大值为a,∴当x=1时,y1=k=a.∵反比例函数y2=(k>0),∴在每个象限内,y2随x的增大而增大.∵当1≤x≤3时,函数y2的最小值为a-4,∴当x=1时,y2=-k=a-4,∴k=4-a,∴a=4-a,解得a=2. ∴k=2.16. 4 【点拨】如图,连结AE,AF,EN.∵四边形ABCD是正方形,∴ AB=BC=CD=AD,∠B=∠ADC=90°,∴∠ADF=90°=∠B.在△ABE与△ADF中,∴△ABE≌△ADF(SAS),∴AE=AF,∴△AEF是等腰三角形.又∵AM⊥EF,∴AN垂直平分EF,∴EN=FN=DN+DF=CD-CN+DF. 设AB=BC=CD=AD=a,则EN=a-8+5=a-3,EC=BC-BE=a-5,在Rt△ECN中,∵EN2=EC2+CN2,∴(a-3)2=(a-5)2+82,解得a=20,∴AD=20,DN=CD-CN=20-8=12,在Rt△ADN中,∵AN2=AD2+DN2,∴AN===4 .三、17. 【解】(1)原式===4.(2)原式====.18. 【解】(1)把点A(-2,-3)的坐标代入y=,得k=-2×(-3)=6,∴反比例函数的表达式为y=.(2)点B在这个反比例函数的图象上,点C不在这个反比例函数的图象上.理由:∵1×6=6,-3×2=-6,∴点B在反比例函数图象上,点C不在反比例函数图象上.19. 【证明】∵BE=CF,∴BE+BC=CF+BC,即BF=CE. ∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABF+∠DCE =180°.在△ABF和△DCE中,∴△ABF≌△DCE(SSS),∴∠ABF=∠DCE =90°,∴▱ABCD是矩形.20. 【解】(1)∵一元二次方程x2-4x+k=0有两个不相等的实数根,∴(-4)2-4k=16-4k>0, ∴k<4.(2)∵k取符合条件的最大整数,∴k=3,∴原方程为x2-4x+3=0,解得x1=1,x2=3.21. 【解】(1)如图,△DEC即为所作.(2)如图,▱ABDE即为所作.22. 【解】(1)85;80 (2)85(3)八年级成绩更好,因为八、九年级成绩的平均数相同,但八年级成绩的中位数、众数都比九年级要高,所以八年级的成绩更好. (答案不唯一)23. 【解】(1)设小道的宽度为x m,依题意得(30-2x)(20-x)=532. 解得x1=1, x2=34.∵34>20,∴x=1.答:小道的宽度为1 m.(2)①剩余的种植花草区域的面积为(30-4)(20-2)-4××(30-a)×(20-a)=-a2+25a+168(m2).②由题意得100×(-a2+25a+168)=42 000,则a2-50a+504=0,解得a1=14, a2=36(舍去). 故a=14.24. (1)【证明】∵DE是△ABC的中位线,点M与点D重合,∴点M为BC的中点,点E为AC的中点.又∵MF∥AC,∴MF是△ABC的中位线,∴FM=AC=EC,∴四边形CEFM是平行四边形.(2)【解】连结CF,交DE于点G.∵四边形CEFM是菱形,∴CF⊥DE.易得DE∥AB,∴∠BFC=∠DGC=90°.∵DE∥AB,MF∥AC,∴四边形FMEA是平行四边形,∴ME=AF.在Rt△BFC中,∠B=45°,BC=4,∴BF=CF=2.∵BF=2AF,∴ME=AF=,∴菱形CEFM的面积=CF·ME=×2 ×=2.(3)【解】如图①,∵点M在ED的延长线上(可以与点D重合),四边形CEFM为矩形,∴∠ACB≤∠MCE=90°.随着∠ACB的减小,点F逐渐向点B接近,当点F与点B重合时,∠ACB的度数最小. 如图②,当点F与点B重合时,四边形CEFM是矩形,∴BC=ME. 易得四边形MFAE 是平行四边形,∴ME=AF,∴BC=AF=AB.∵∠B=45°,∴∠ACB=∠BAC=×(180°-45°)=67. 5°,∴67. 5°≤∠ACB≤90°.。
浙教版2018-2019学年度八年级数学竞赛试卷B(含解析)
浙教版2018-2019学年八年级数学竞赛试卷B一.选择题(共8小题,3*8=24)1.x=1时,多项式ax2+bx+1的值为3,则多项式2(3a﹣b)﹣(5a﹣3b)值的值等于()A.0 B.1 C.2 D.﹣22.解方程﹣1的步骤如下:解:第一步:﹣1(分数的基本性质)第二步:2x﹣1=3(2x+8)﹣3……(①)第三步:2x﹣1=6x+24﹣3……(②)第四步:2x﹣6x=24﹣3+1……(③)第五步:﹣4x=22(④)第六步:x=﹣……(⑤)以上解方程第二步到第六步的计算依据有:①去括号法则.②等式性质一.③等式性质二.④合并同类项法则.请选择排序完全正确的一个选项()A.②①③④②B.②①③④③C.③①②④③D.③①④②③3.若,那么k等于()A.B.C.﹣D.不能确定4.如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行B.相交C.垂直D.平行、相交或垂直5.已知a、b、c、d都是正实数,且<,给出下列四个不等式:①<;②<;③;④<其中不等式正确的是()A.①③B.①④C.②④D.②③6.如图中不同的长方形(包括正方形)的个数为()A.36 B.87 C.72 D.1027.下列各数能整除(﹣8)2011+(﹣8)2010的是()A.3 B.5 C.7 D.98.如图,2×5的正方形网格中,用5张1×2的矩形纸片将网格完全覆盖,则不同的覆盖方法有()A.3种B.5种C.8种D.13种二.填空题(共8小题,3*8=24)9.若|a﹣2|+(﹣b)2=0,则b a=.10.设a、b、c都是实数,且满足,ax2+bx+c=0;则代数式x2+2x+1的值为.11.点M在y轴的左侧,且到x轴,y轴的距离分别是3和5,则点M的坐标是.12.时针指示6点15分,它的时针和分针所夹的角是度.13.如图,▱ABCD中,∠B=60°,AB=4,BC=5,P是对角线AC上任一点(点P不与点A,C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是.14.若40个数据的平方和是56,平均数是,则这组数据的方差.15.若直线y=2x+3与直线y=mx+5平行,则m+2的值为.16.某中学生暑期社会调查团共17人到几个地方去考察,事先预算住宿费平均每人每天不超过x元.一日到达某地,该地有两处招待所A,B.A有甲级床位8个,乙级床位11个;B有甲级床位10个,乙级床位4个,丙级床位6个.已知甲,乙,丙床位每天分别为14元,8元,5元.若全团集中住在一个招待所里,按预算只能住B处,那么整数x的值为三.解答题(共4小题,52分)17.(10分)甲、乙两人解关于x,y的方程组,甲因看错a,解得,乙将其中一个方程的b写成了它的相反数,解得,求a、b的值.18.(12分)观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=36,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=()2=.根据以上规律填空:(1)13+23+33+…+n3=()2=[]2.(2)猜想:113+123+133+143+153=.19.(15分)某中学的1号教学大楼共有4道门,其中两道正门大小相同,两道侧门也大小相同,安全检查时,对4道门进行了测试,当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生,当同时开启一道正门和一道侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)该中学的2号教学大楼,有和1号教学大楼相同的正门和侧门共5道,若这栋大楼的教室里最多有1920名学生,安全检查规定,在紧急情况下,全大楼学生应在4分钟内通过这5道门安全撤离,该栋大楼正门和侧门各有几道?20.(15分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?参考答案与试题解析1.解:把x=1代入多项式ax2+bx+1得:a+b+1=3,∵x=1时,多项式ax2+bx+1的值为3,∴a+b+1=3,a+b=2,∴2(3a﹣b)﹣(5a﹣3b)=6a﹣2b﹣5a+3b=a+b=2,故选:C.2.解:第一步:﹣1(分数的基本性质)第二步:2x﹣1=3(2x+8)﹣3……(等式性质二)第三步:2x﹣1=6x+24﹣3……(去括号法则)第四步:2x﹣6x=24﹣3+1……(等式性质一)第五步:﹣4x=22(合并同类项法则)第六步:x=﹣……(等式性质二),故选:C.3.解:方法一:利用大除法,若,∴.方法二:令2x+=0,x=﹣,代入原式=0,解得k=﹣7.方法三、∵,∴设2x3+x2+kx﹣2=(2x+)(x+m)(x+n),∴2x3+x2+kx﹣2=(2x+)(x+m)(x+n)=2x3+[2(m+n)+]x2+[2mn+(m+n)]x+mn,∴mn=﹣2,2(m+n)+=1,2mn+(m+n)=k,∴mn=﹣4,m+n=,∴k=﹣8+×=﹣7,故选:C.4.解:∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,②当点C在OB的延长线上时,如图2,同①的方法得出OA∥BD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠DBE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选:A.5.解:∵<,a、b、c、d都是正实数,∴ad<bc,∴ac+ad<ac+bc,即a(c+d)<c(a+b),∴<,所以①正确,②不正确;∵<,a、b、c、d都是正实数,∴ad<bc,∴bd+ad<bd+bc,即d(a+b)<b(d+c),∴<,所以③正确,④不正确.故选:A.6.解:(1)按照水平方向计算,①先看一行,符合题意的有18个;②两行一起看,符合题意的有12个,③三行一起看,符合题意的有6个;综合①②③可得共有36个符合题意;(2)按照对角线的方向进行计算,①含有一个小正方形的有12个,②含有两个小正方形的有16个,③含有三个小正方形的有8个,④含有四个小正方形的有9个,⑤含有六个小正方形的有4个,含有八个小正方形的有2个,综合①②③④⑤此时符合题意的故共有51个.综合(1)(2)可得共有36+51=87个.故选:B.7.解:(﹣8)2011+(﹣8)2010=(﹣8)2010(﹣8+1)=7×(﹣8)2010,∴能整除(﹣8)2011+(﹣8)2010的是7.故选:C.8.解:如图所示,直线代表一个1×2的小矩形纸片:1+4+3=8(种).答:不同的覆盖方法有8种.故选:C.9.解:根据题意得:,解得:,则原式=.故答案是:.10.解:根据题意得,2﹣a=0,a2+b+c=0,c+8=0,解得a=2,b=4,c=﹣8,∴ax2+bx+c=2x2+4x﹣8=0,即x2+2x﹣4=0,解得x2+2x=4,∴x2+2x+1=4+1=5.故答案为:5.11.解:∵点M在y轴的左侧,∴点M在第二或第三象限,∵点M到x轴,y轴的距离分别是3和5,∴点M的横坐标为﹣5,纵坐标为3或﹣3,∴点M的坐标是(﹣5,3)和(﹣5,﹣3).故答案为:(﹣5,3)和(﹣5,﹣3).12.解:把6点作为起始时间.15分钟,时针旋转了一个大格的,即30°×=7.5°,此时分针指向3,3与6之间有三个大格,共30°×3=90°,故针和分针所夹角的度数是90°+7.5°=97.5°.13.解:∵▱ABCD,∴AB∥CD,AD∥BC∵PE∥BC,∴PE∥AD∵PF∥CD,∴PF∥AB,∴四边形AEPF为▱.设▱AEPF的对角线AP、EF相交于O,则AO=PO,EO=FO,∠AOE=∠POF∴△POF≌△AOE,∴图中阴影部分的面积等于△ABC的面积,过A作AM⊥BC交BC于M,∵∠B=60°,AB=4,∴AM=2,S△ABC=×5×2=5,即阴影部分的面积等于5.故填5.14.解:由方差的计算公式可得:S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=[x12+x22+…+x n2+n2﹣2(x1+x2+…+x n)]=[x12+x22+…+x n2+n2﹣2n2]=[x12+x22+…+x n2]﹣2=﹣=1.4﹣0.5=0.9.故填0.9.15.解:∵两直线平行∴两直线的k值相同∴m=2∴m+2=4.16.解:若住在A处,即使是最经济地选择床位,总的住宿费为8×11+14×6=172元,平均每人的住宿费为172÷17≈10.12(元)若住在B处,合理选择床位,就能满足预算,总的住宿费为5×6+8×4+14×7=160(元),平均每人的住宿费为160÷17≈9.41(元)∵9.41≤x≤10.12,且x为整数∴x=10,即住宿费平均每人每天不超过10元.故答案为10.17.解:将x=2,y=3分别代入4x﹣by=﹣1得:8﹣3b=﹣1,解得:b=3,将x=﹣1,y=﹣1代入4x+3y=﹣1后,左右两边不相等,故:ax﹣3y=5,将x=﹣1,y=﹣1代入后可得:﹣a+3=5,解得:a=﹣2,故答案为:a=﹣2,b=3.18.解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+...+153﹣(13+23+33+ (103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.故答案为:1+2+3+4+5;225;1+2+…+n;;11375.19.解:(1)设平均每分钟一道正门可通过x名学生,一道侧门可以通过y名学生.则,解得.答:平均每分钟一道正门可通过120名学生,一道侧门可以通过80名学生;(2)设该栋大楼正门有m道,侧门有n道,则,解得.故该栋大楼正门有2道,侧门有3道.20.解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.。
新版浙教版2023-2024学年八年级数学下学期期末综合素质检测试题(含答案)
新版浙教版2023-2024学年八年级数学下学期期末综合素质检测试题一、选择题(本题有10小题,每小题3分,共30分)1. [2023·北京]下列图形中,既是轴对称图形又是中心对称图形的是( )2. [2023·杭州上城区期中]下列运算正确的是( )A. -=B. =3C. -=D. =-13. [2023·宁波期中]已知m是一元二次方程x2+2x-5=0的一个根,则m2+2m+5的值为( )A. 3B. -10C. 0D. 104. 调查某少年足球队18位队员的年龄,得到数据结果如表:则该足球队队员年龄的众数和中位数分别是( )A. 13岁、12岁B. 13岁、14岁C. 13岁、13岁D. 13岁、15岁5. 下列说法中不正确的是( )A. 四个角相等的四边形是矩形B. 对角线互相垂直平分的四边形是正方形C. 对角线互相垂直的平行四边形是菱形D. 两组对边分别平行的四边形是平行四边形6. [2023·天津南开区三模]若点A(-1,y1),B(2,y2),C(3,y3)在反比例函数y=-的图象上,则y1,y2,y3的大小关系是( )A. y1<y2<y3B. y2<y3<y1C. y3<y2<y1D. y2<y1<y37. 如图,在▱ABCD 中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是( )A. B. 2 C. 2 D. 4(第7题) (第8题)8. 如图,池塘边有一块长为20 m ,宽为10 m 的矩形土地,现在将其余三面留出宽都是x m 的小路,中间余下的矩形部分作菜地,若菜地的面积为24 m 2,则可列方程为( )A. (20-2x)(10-x)=20×10-24B. (20-2x)(10-x)=24C. (20-2x)(10-2x)=24D. (20-2x)(10-2x)=20×10-249. [2023·台州温岭市模拟]如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO =∠ADB =90°,反比例函数y =在第二象限的图象经过点B ,且OA 2-AB 2=8,则k 的值是( )A. -8B. -4C. 4D. 8(第9题) (第10题) (第14题)10. [2023·青岛一模]如图,已知正方形ABCD 的边长是6,点P 是线段BC 上一动点,过点D 作DE ⊥AP 于点E. 连结EC ,若CE =CD ,则△CDE 的面积是( )A. 18B. 4C. 14. 4D. 6二、填空题(本题有6小题,每小题4分,共24分)11. [2023·宁波镇海区期中]二次根式在实数范围内有意义,则x 的取值范围是________.12.关于x 的一元二次方程(k -1)x 2-2x +3=0有两个实数根,则k 的取值范围是________.13.[2023·杭州北苑实验中学]已知一组数据1,5,2,4,x的平均数是3,则这组数据的方差为________.14.如图,矩形ABCD的对角线交于点O,点E在线段AO上,且DE=DC,若∠EDO=15°,则∠DEC=________°.15.如图,点A在反比例函数y=(x>0)的图象上,点B在反比例函数y=(x>0)的图象上,且AB∥y轴,P是y轴上的任意一点,则△PAB的面积为________.(第15题) (第16题)16. [2023·绍兴改编]如图,在▱ABCD中,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD, BC上的动点. 下列四个结论:①存在无数个▱MENF; ②存在无数个矩形MENF;③存在无数个菱形MENF; ④存在两个正方形MENF.其中正确的结论是________(填序号).三、解答题(本题有8小题,共66分)17. (6 分)计算:(1)-6 +; (2) ×.18. (6分)解方程:(1) (x-3)2+2x(x-3)=0; (2)x2-3x-1=0.19. (6分) [2023·杭州上城区期末]已知点A(2,3),B(b,-2)都在反比例函数y=(k≠0)的图象上.(1)求反比例函数表达式及点B的坐标;(2)当y>6时,求x的取值范围.20. (8分) [2023·宁波北仑区期中]某超市于今年年初以每件25元的进价购进一批商品. 当每件商品售价为40元时,一月份的销售量为256件. 二、三月份该商品十分畅销,销售量持续走高. 在售价不变的基础上,三月份的销售量达到400件. 已知二、三月份这两个月的月增长率相同.(1)求二、三月份这两个月的月增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每件每降价1元,月销售量增加5件,当每件商品降价多少元时,商场获利4 250元?21. (8分)[教材P107目标与评定T19变式]如图,在△ABC中,AD⊥BC于点D,点E,F分别是AC,AB的中点,O是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.(1)求证:四边形DEFG是平行四边形;(2)当AD=5,DC=2时,求FG的长.22. (10分) [2023·河南]蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利. 不同的快递公司在配送、服务、收费和投递范围等方面各具优势. 樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析数据如下:a. 配送速度得分(满分10分):甲:6 6 7 7 7 8 9 9 9 10乙:6 7 7 8 8 8 8 9 9 10b. 服务质量得分统计图(满分10分):c. 配送速度和服务质量得分统计表:根据以上信息,回答下列问题:(1)表格中的m=________,S2甲________S2乙(填“>”“=”或“<”).(2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)?23. (10分)心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化. 学生的注意力指数y随时间x(分钟)的变化规律如图所示(其中AB,BC为线段,CD为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,第________分钟时学生的注意力更集中;(2)一道数学题,需要讲18分钟,为了使学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?请说明理由.24. (12 分)如图,在矩形ABCD中,AB=4 cm,BC=8 cm,点P从点D出发沿DA向点A运动,运动到点A即停止,同时,点Q从点B出发沿BC向点C运动,运动到点C即停止,点P,Q的速度都是1 cm/s. 连结PQ,AQ,CP. 设点P,Q运动的时间为t s.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.答案一、1. A 2. A 3. D4. C 【点拨】该足球队队员的年龄中,13岁出现的次数最多,故众数为13岁. 这组数据共有18个,数据按从小到大的顺序排列后,中位数为第9个数据和第10个数据的平均数,∴中位数为=13(岁).5. B 【点拨】对角线互相垂直平分的四边形是菱形,不一定是正方形.6. B 【点拨】∵点A(-1,y1),B(2,y2),C(3,y3)在反比例函数y=-的图象上,∴y1=2,y2=-1,y3=-,∴y2<y3<y1.7. C 【点拨】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ACB=∠CAD=45°.∴∠ABC=45°=∠ACB,∴∠BAC=90°,AC=AB=2,∴BC===2.8. B 【点拨】∵其余三面留出宽都是x m的小路,∴菜地的长为(20-2x)m,宽为(10-x)m,由题意得(20-2x)(10-x)=24.9. B 【点拨】设点B的坐标为(a,b),∵△OAC和△BAD都是等腰直角三角形,∴OA=AC,AB=AD,OC=AC,AD=BD.∵OA2-AB2=8,∴2AC2-2AD2=8,即AC2-AD2=4,∴(AC+AD)(AC-AD)=4,∴(OC+BD)·CD=4,∴|ab|=4,∴k=±4.∵反比例函数的图象位于第二象限,∴k<0,∴k=-4.10. C 【点拨】如图,过点C作CF⊥ED于点F.∵四边形ABCD是正方形,∴AD=DC,∠CDA=90°,∴∠ADE+∠FDC=90°.∵CF⊥DE,CD=CE,∴EF=DF=DE,∠DFC=90°,∴∠FDC+∠DCF=90°,∴∠ADE=∠DCF.∵DE⊥AP,∴∠AED=90°=∠DFC.在△ADE和△DCF中,∴△ADE≌△DCF(AAS),∴DE=CF,∴DF=CF.∵∠CFD=90°,CD=6,∴DF2+CF2=CD2,即DF2+(2DF)2=62,解得DF2=7. 2,∴S△CDE==2DF2=2×7. 2=14. 4.二、11. x≥-2 12. k≤且k≠113. 2 【点拨】由题意得×(1+5+2+4+x)=3,解得x=3,∴方差为×[(1-3)2+(5-3)2+(2-3)2+(4-3)2+(3-3)2]=2.14. 55 【点拨】∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OC=OD,∴∠OCD=∠ODC.∵DE=DC,∴∠DEC=∠OCD,∴∠DEC=∠OCD=∠ODC.设∠DEC=∠OCD=∠ODC=x,则∠COD=180°-2x.又∵∠COD=∠DEC+∠EDO,∴180°-2x=x+15°,解得x=55°,即∠DEC=55°.15. 1 【点拨】如图,延长BA交x轴于点H,连结OB,OA. ∵AB∥y轴,点P在y轴上,∴∠BHO=90°,S△PAB=S△OAB.根据题意得S△AHO==1,S△BOH==2,∴S△AOB=S△BOH-S△AHO=2-1=1,∴S△PAB=S△OAB=1.16. ①②③ 【点拨】如图,连结AC,与BD相交于点O,连结MN,∵四边形ABCD是平行四边形,∴OB=OD.∵BE=DF,∴OE=OF,只要MN过点O,可得OM=ON,那么四边形MENF就是平行四边形.∵点E,F是BD上的动点,∴存在无数个▱MENF,故①正确;只要MN=EF,MN过点O,则四边形MENF就是矩形.∵点E,F是BD上的动点,∴存在无数个矩形MENF,故②正确;只要MN⊥EF,MN 过点O,则四边形MENF就是菱形.∵点E,F是BD上的动点,∴存在无数个菱形MENF,故③正确;若MN=EF,MN⊥EF,MN过点O,则四边形MENF是正方形,而符合要求的正方形只有一个,故④错误.三、17. 【解】(1)原式=2-2+4 =4 .(2)原式=-2 =-.18. 【解】(1)(x-3)2+2x(x-3)=0,x2-6x+9+2x2-6x=0,x2-4x+3=0,(x-1)(x-3)=0,x1=1, x2=3.(2) x2-3x-1=0,则a=1,b=-3,c=-1,∴b2-4ac=(-3)2-4×1×(-1)=9+4=13>0,∴x=,解得x1=,x2=.19. 【解】(1)将点A(2,3)的坐标代入y=,得3=,解得k=6,∴反比例函数的表达式为y=,把点B(b,-2)的坐标代入y=,得-2=,解得b=-3,∴点B的坐标为(-3,-2).(2)当y>6时,>6,∴0<x<1.20. 【解】(1)设二、三月份这两个月的月增长率为x,根据题意得256(1+x)2=400,解得x1==25%,x2=-(不合题意舍去).答:二、三月份这两个月的月增长率为25%.(2)设每件商品降价m元,根据题意得(40-25-m)(400+5m)=4 250,解得m1=5,m2=-70(不合题意舍去).答:当每件商品降价5元时,商品获利4 250元.21. (1)【证明】∵E,F分别是AC,AB的中点,∴EF是△ABC的中位线,∴EF∥BC,∴∠EFO=∠GDO.∵O是DF的中点,∴OF=OD.在△OEF和△OGD中,∴△OEF≌△OGD(ASA),∴EF=GD,∴四边形DEFG是平行四边形.(2)【解】∵AD⊥BC,∴∠ADC=90°.∵E是AC的中点,∴DE=AC.在Rt△ACD中,AD=5,DC=2,∴AC===,∴DE=AC=,由(1)可知四边形DEFG是平行四边形,∴FG=DE=.22. 【解】(1)7. 5;<(2)∵配送速度得分甲和乙的平均数相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差,∴甲更稳定,∴小丽应选择甲公司. (答案不唯一,言之有理即可)(3)还应收集甲、乙两家公司的收费情况. (答案不唯一,言之有理即可)23. 【解】(1)5(2)能. 理由:设线段AB的表达式为y AB=kx+b,把点(10,50)和(0,30)的坐标代入得,解得∴线段AB的表达式为y AB=2x+30;设双曲线CD的函数表达式为y CD=,把点(20,50)的坐标代入得,50=,∴a=1 000,∴双曲线CD的函数表达式为y CD=;将y=40代入y AB=2x+30,得2x+30=40,解得x=5;将y=40代入y CD=,得=40,解得x=25.∵25-5=20(分钟)>18 分钟,∴教师能在学生注意力达到所需状态下讲完这道题.24. 【解】(1)由题意得,BQ=t cm,DP=t cm,∵四边形ABCD是矩形,BC=8 cm,∴AD=BC=8 cm,∴AP=(8-t)cm.当四边形ABQP是矩形时,BQ=AP,即t=8-t,解得t=4,∴当t=4时,四边形ABQP是矩形.(2)易得∠B=90°,∵AB=4 cm,BQ=t cm,∴AQ2=AB2+BQ2=42+t2.当四边形AQCP是菱形时,AP=AQ=QC,即42+t2=(8-t)2,解得t=3,∴当t=3时,四边形AQCP是菱形.(3)由(2)可知当t=3时,BQ=3 cm,∴CQ=BC-BQ=5 cm,∴C菱形AQCP=4CQ=4×5=20(cm),S菱形AQCP=CQ·AB=5×4=20(cm2).。
浙教版八年级数学下册第4章综合素质评价 附答案
浙教版八年级数学下册第4章综合素质评价一、选择题(每题3分,共30分)1.下列图形中,是中心对称图形的是()2.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形3.已知▱ABCD的周长为10 cm,AB=3 cm,则BC的长度为() A.2 cm B.3 cm C.4 cm D.7 cm4.在平面直角坐标系中,点P(1,2)关于原点对称的点P′的坐标是() A.(1,2) B.(-1,2) C.(1,-2) D.(-1,-2) 5.如图,点E是▱ABCD的边BC延长线上的一点,下列结论不一定成立的是() A.AB=CD B.∠ABD+∠ADB=∠DCEC.∠BAD=∠BCD D.∠ABD=∠CBD6.用反证法证明“在四边形中,至少有一个内角不小于90°”时,应假设() A.四边形中有一个内角小于90°B.四边形中每一个内角都小于90°C.四边形中有一个内角大于90°D.四边形中每一个内角都大于90°7.如图,在▱ABCD中,连结AC,∠ABC=∠CAD=45°,AB=2,则BC的长是() A. 2 B.2 C.2 2 D.4 8.【2022·丽水】如图,在△ABC中,D,E,F分别是BC,AC,AB的中点.若AB =6,BC=8,则四边形BDEF的周长是()A.28 B.14 C.10 D.79.如图,在▱ABCD中,对角线AC,BD交于点E,AC⊥BC,F是BE的中点,连结CF.若BC=4,CF=2.5,则AB的长是()A.2 13 B.6 C.8 D.1010.如图,已知▱ABCD,分别以AB,AD为边向外作等边三角形ABE和等边三角形ADF,延长CB交AE于点G,点G在点A,E之间,连结CE,CF,EF,则以下四个结论:①CG⊥AE;②△CDF≌△EBC;③∠CDF=∠EAF;④△ECF 是等边三角形.其中一定正确的是()A.①②B.②③④C.③④D.①②③④二、填空题(每题4分,共24分)11.正八边形(各边相等,各内角相等)的一个内角的度数是________度.12.如图,在▱ABCD中,∠A=45°,BC=2,则AB与CD之间的距离是________.13.如图,在四边形ABCD中,AO=OC,添加一个条件,使四边形ABCD为平行四边形,则这个条件可以是________.14.如图,四边形AOEF是平行四边形,B为OE上一点,延长FO至点C,使FO=3OC,连结AB,BC,则S△AOB∶S△BOC=________.15.如图,在▱ABCD中,∠D=60°,AD=4,P是CD上一动点,E,F分别是BA,BP的中点,则线段EF长度的最小值是________.16.如图,在▱ABCD中,∠ADC=60°,点F在CD的延长线上,连结BF,G是BF的中点,连结AG.若AB=2,BC=6,DF=3,则AG的长是________.三、解答题(共66分)17.(6分)如图,D,E分别是△ABC的边AB,AC的中点,点O是△ABC内部任意一点,连结OB,OC,G,F分别是OB,OC的中点,顺次连结点D,G,F,E.求证:四边形DGFE是平行四边形.18.(6分)如图,在△ABC中,点D是AB的中点,已知AC=4,BC=6.(1)画出△BCD关于点D的中心对称图形;(2)根据图形说明线段CD的长的取值范围.19.(6分)如图,l1,l2,l3是平面内的三条直线,l1⊥l2,l3与l2斜交.求证:l3和l1必相交.(用反证法)20.(8分)如图,六边形ABCDEF的每个内角都相等,连结AD.(1)若∠1=48°,求∠2的度数;(2)求证:AB∥DE.21.(8分)如图,在四边形ABCD中,AB∥CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,连结AC.求证:(1)△ABE≌△CDF;(2)AC与BD互相平分.22.(10分)如图,在▱ABCD中,E,F分别为BC,AD的中点.(1)求证:△ABE≌△CDF;(2)若AE=CE,BC=2AB=6,求四边形AECF的面积.23.(10分)如图,在▱ABCD中,O是对角线AC的中点,E是BC上一点,且AB =AE,连结EO并延长交AD于点F,过点B作AE的垂线,垂足为H,延长BH交AC于点G.(1)求证:BE=DF;(2)若∠ACB=45°,求证:AB=BG.24.(12分)如图,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC 的中点,N是AB的中点.(1)求证:∠PMN=∠PNM;(2)延长AD交NM的延长线于点E,延长BC交NM的延长线于点F.求证:∠AEN=∠F;(3)若∠A+∠ABC=122°,则∠F=________°.答案一、1.A2.C3.A4.D5.D 6.B7.C 8.B提示:∵D,E,F分别是BC,AC,AB的中点,∴BD=12BC=4,BF=12AB=3,EF,ED是△ABC的中位线.∴EF=12BC=4,ED=12AB=3.∴四边形BDEF的周长为BF+BD+ED+EF=3+4+3+4=14.9.A提示:∵AC⊥BC,F是BE的中点,∴BE=2CF=5.在Rt△BCE中,BC=4,∴CE=BE2-BC2=3.∵四边形ABCD是平行四边形,∴AC=2CE=6.∴AB=BC2+AC2=2 13.10.B提示:∵四边形ABCD是平行四边形,∴AB∥CD,∠ADC=∠ABC,AD=BC,CD=AB.∵△ADF,△ABE都是等边三角形,∴AD=DF,AB=EB,∠ADF=∠DAF=∠ABE=∠BAE=60°,∴DF=BC,CD=EB,∠CDF=360°-∠ADC-∠ADF=300°-∠ADC,∠EBC =360°-∠ABC-∠ABE=300°-∠ABC,∴∠CDF=∠EBC,∴△CDF≌△EBC.故②正确;∵AB∥CD,∴∠DAB=180°-∠ADC,∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,∴∠CDF=∠EAF.故③正确;易证△CDF≌△EAF,∴CF=EF.∵△CDF≌△EBC,∴CF=EC,∴EC=CF=EF,∴△ECF是等边三角形,故④正确;当CG⊥AE时,∵△ABE是等边三角形,∴∠ABG=12∠ABE=30°,∴∠ABC=180°-∠ABG=150°.由题中已知条件无法得出∠ABC=150°,故①不一定正确.二、11.13512. 213.BO=OD(答案不唯一)14.3∶1提示:连结BF,∵四边形AOEF是平行四边形,∴AF∥OE.∴S△OBF=S△AOB.∵FO=3OC,∴S△OBF=3S△BOC.∴S△AOB=3S△BOC.∴S△AOB∶S△BOC=3∶1.15.3提示:连结AP,∵E,F分别是BA,BP的中点,∴EF=12AP.易知当AP⊥CD时,AP的长度最小,此时EF的长度最小.由∠APD=90°,∠D=60°,AD=4,易得AP=2 3,∴EF长度的最小值为 3.16.432提示:如图,过点A作AN⊥CD交DC的延长线于点N,延长AG交DF于点M,∵四边形ABCD是平行四边形,∴AD=BC=6,CD∥AB,∴∠ABG=∠F,∠GAB=∠GMF. ∵G为BF的中点,∴BG=GF,∴△AGB≌△MGF,∴MF=AB=2,AG=GM,∴AG=12AM,DM=DF-MF=1.∵∠AND=90°,∠ADC=60°,∴∠DAN=30°.易得DN=12AD=3,∴AN=AD2-DN2=62-32=3 3,MN=DN+DM=4.在Rt△AMN中,AN2+MN2=AM2,∴AM=43,∴AG=43 2.三、17.证明:∵D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=12BC.同理可得GF∥BC,GF=12BC,∴DE∥GF,DE=GF,∴四边形DGFE是平行四边形.18.解:(1)如图,延长CD至点E,使DE=CD,连结AE,△ADE即为所求.(2)由(1)知CD=DE,AE=BC,∴CE=2CD.由三角形的三边关系可知AE-AC<CE<AE+AC,∴BC-AC<2CD<BC+AC,∴2<2CD<10,∴1<CD<5.19.证明:如图.假设l3和l1不相交,则l1∥l3.∴∠1=∠2(两直线平行,同位角相等).又∵l1⊥l2(已知),∴∠1=90°(垂直的定义).∴∠2=∠1=90°.∴l3⊥l2(垂直的定义),这和l3与l2斜交矛盾,∴假设不成立.∴l3和l1必相交.20.(1)解:∵六边形ABCDEF的每个内角都相等,∴∠E=∠F=∠F AB=(6-2)×180°6=120°.又∵∠1=48°,∴∠F AD=∠F AB-∠1=120°-48°=72°.∵∠2+∠F AD+∠F+∠E=360°,∴∠2=360°-∠F AD-∠F-∠E=48°.(2)证明:由(1)知∠E=∠F=∠F AB=120°,∴∠1=∠F AB-∠F AD=120°-∠F AD,∠2=360°-∠F-∠E-∠F AD =120°-∠F AD,∴∠1=∠2,∴AB∥DE.21.证明:(1)∵AB∥CD,∴∠ABE=∠CDF.∵BF =DE ,∴BF -EF =DE -EF ,即BE =DF . ∵AE ⊥BD ,CF ⊥BD , ∴∠AEB =∠CFD =90°, ∴△ABE ≌△CDF . (2)∵△ABE ≌△CDF , ∴AB =CD . 又∵AB ∥CD ,∴四边形ABCD 是平行四边形, ∴AC 与BD 互相平分.22.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,BC =AD ,∠B =∠D . ∵E ,F 分别是BC ,AD 的中点, ∴BE =12BC ,DF =12AD , ∴BE =DF .在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠B =∠D ,BE =DF ,∴△ABE ≌△CDF .(2)解:过点A 作AH ⊥BC 于点H .∵BC =2AB =6,E 是BC 的中点,F 是AD 的中点,BC =AD , ∴AB =BE =CE =AF =3. ∵四边形ABCD 是平行四边形, ∴AF ∥CE ,∴四边形AECF 是平行四边形. ∵AE =CE ,∴AE =CE =AB =BE , ∴△ABE 是等边三角形.∵AH⊥BC,∴BH=12BE=32,∴AH=AB2-BH2=3 3 2,∴S四边形AECF =CE·AH=3×3 32=9 32.23.证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠OAF=∠OCE.∵O是对角线AC的中点,∴OA=OC.又∵∠AOF=∠COE,∴△OAF≌△OCE,∴AF=CE,∴BC-CE=AD-AF,即BE=DF.(2)过点A作AM⊥BC于点M,交BG于点K,则∠AMB=∠AME=90°.∵∠ACB=45°,∴∠MAC=45°.∵AB=AE,AM⊥BC,∴∠BAM=∠MAE.∵AE⊥BG,∴∠AHK=90°=∠AMB.又∵∠AKH=∠B KM,∴∠MAE=∠CBG.∵∠BAG=∠MAC+∠BAM=45°+∠BAM,∠BGA=∠ACB+∠CBG=45°+∠CBG,∴∠BAG=∠BGA.∴AB=BG.24.(1)证明:∵P,M分别是BD,DC的中点,∴PM=12BC.∵P,N分别是BD,AB的中点,∴PN=12AD.∵AD=BC,∴PM=PN,∴∠PMN=∠PNM.(2)证明:∵P,M分别是BD,DC的中点,∴PM∥BC,∴∠PMN=∠F.∵P,N分别是BD,AB的中点,∴PN∥AD,∴∠PNM=∠AEN.∵∠PMN=∠PNM,∴∠AEN=∠F.(3)29提示:∵PN∥AD,∴∠PNB=∠A,∴∠DPN=∠PNB+∠ABD=∠A+∠ABD.∵PM∥BC,∴∠MPD=∠DBC,∴∠MPN=∠DPN+∠MPD=∠A+∠ABD+∠DBC=∠A+∠ABC=122°. ∵∠PMN=∠PNM,∴∠PMN=12×(180°-∠MPN)=12×(180°-122°)=29°,又∵∠PMN=∠F,∴∠F=29°.浙教版八年级数学下册期末综合素质评价一、选择题(每题3分,共30分)1.如果二次根式a-1有意义,那么实数a的取值范围是()A.a>1 B.a≥1C.a<1 D.a≤12.在下列环保标志中既是轴对称图形又是中心对称图形的是()3.已知m、n是一元二次方程x2+2x-5=0的两个根,则m2+mn+2m的值为() A.0 B.-10 C.3 D.104.开学前,根据学校防疫要求,小宁同学连续14天进行了体温测量,结果统计如下表:体温(℃) 36.2 36.3 36.5 36.6 36.8天数(天) 3 3 4 2 2这14天中,小宁体温的众数和中位数分别为()A.36.6℃,36.4℃B.36.5℃,36.5℃C.36.8℃,36.4℃D.36.8℃,36.5℃5.如图,在△ABC中,AB=4,BC=8,AC=6,点D,E,F分别为边AB,AC,BC的中点,则△DEF的周长为()A.9B.12C.14D.166.若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x2<x1<x37.今年我国小麦大丰收,农业专家在某种植片区随机抽取了10株小麦,测得其麦穗长(单位:cm)分别为8,8,6,7,9,9,7,8,10,8,那么这组数据的方差为()A.1.5 cm2B.1.4 cm2C.1.3 cm2D.1.2 cm28.如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连结DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°9.【2022·宿迁】如图,点A 在反比例函数y =2x (x >0)的图象上,以OA 为一边作等腰直角三角形OAB ,其中∠OAB =90°,AO =AB ,则线段OB 长的最小值是( ) A .1 B. 2 C .2 2 D .410.【2022·绍兴】如图,在平行四边形ABCD 中,AD =2AB =2,∠ABC =60°,E ,F 是对角线BD 上的动点,且BE =DF ,M ,N 分别是边AD ,边BC 上的动点.下列四种说法:①存在无数个平行四边形MENF ;②存在无数个矩形MENF ;③存在无数个菱形MENF ;④存在无数个正方形MENF .其中正确的个数是( ) A .1 B .2 C .3 D .4 二、填空题(每题4分,共24分) 11.计算(-2)2的结果是________.12.若关于x 的一元二次方程(k -1)x 2+4x +1=0有实数根,则k 的取值范围是________.13.已知矩形的一边长为6 cm ,一条对角线的长为10 cm ,则矩形的面积为________cm 2.14.两组数据:3,a ,2b ,5与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的众数为________.15.如图,在▱ABCD 中,AB ⊥AC ,分别以A ,C 为圆心,以大于12AC 的长为半径画弧,两弧相交于点M ,N ,过M ,N 两点作直线,与BC 交于点E ,与AD 交于点F ,连结AE ,CF ,若AE =2.5,则四边形AECF 的周长为________.16.如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2x的图象上,AC ⊥y 轴于点E ,BD ⊥y 轴于点F ,AC =3,BD =2,EF =5,则k 1-k2的值是________.三、解答题(共66分) 17.(6分)计算:(1)12-6 13+48;(2)2×3-24.18.(6分)解方程:(1)(x-3)2+2x(x-3)=0; (2)x2-4x-5=0.19.(6分)若一次函数y=2x-1和反比例函数y=kx(k≠0)的图象都经过点(1,1).(1)求反比例函数的表达式;(2)已知点A在第三象限,且同时在两个函数的图象上,求点A的坐标.20.(8分)一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制计算,然后再按演讲内容∶演讲能力∶演讲效果=5∶4∶1的比例计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A85 95 95B95 85 95请决出两人的名次.21.(8分)【2022·温州】如图,在△ABC中,AD⊥BC于点D,E,F分别是AC,AB的中点,O是DF的中点,EO的延长线交线段BD于点G,连结DE,EF,FG.(1)求证:四边形DEFG是平行四边形;(2)当AD=5,ADDC=52时,求FG的长.22.(10分)甲商品的进价为每件20元,商场将其售价从原来的每件40元进行两次调价.已知该商品现价为每件32.4元.(1)若该商场两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,即可多销售10件.已知甲商品售价40元时每月可销售500件,若商场希望该商品每月能盈利10 000元,且尽可能扩大销售量,则该商品在现价的基础上还应如何调整?23.(10分)心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,第________分钟时学生的注意力更集中;(2)一道数学题,需要讲18分钟,为了使学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?请说明理由.24.(12分)如图,在矩形ABCD中,AB=4 cm,BC=8 cm,点P从点D出发向点A运动,运动到点A即停止,同时,点Q从点B出发向点C运动,运动到点C 即停止,点P,Q的速度都是1 cm/s.连结PQ,AQ,CP.设点P,Q运动的时间为t s.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.答案一、1.B 2.B 3.A 4.B 5.A6.B7.D8.C提示:∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠B=∠ADC=90°,∠BAC=45°,∵AE平分∠BAC交BC于点E,∴∠BAE=12∠BAC=22.5°,在△ABE 和△DAF 中,⎩⎨⎧AB =AD ,∠B =∠DAF ,BE =AF ,∴△ABE ≌△DAF (SAS), ∴∠ADF =∠BAE =22.5°,∴∠CDF =∠ADC -∠ADF =90°-22.5°=67.5°.9.C 提示:如图,过A 作AM ∥x 轴,交y 轴于M ,过B 作BD ⊥x 轴,垂足为D ,交MA 的延长线于H ,则∠OMA =∠AHB =90°, ∴∠MOA +∠MAO =90°, ∵∠OAB =90°,∴∠MAO +∠BAH =90°, ∴∠MOA =∠BAH , 又∵AO =AB , ∴△AOM ≌△BAH , ∴OM =AH ,AM =BH ,设A (m ,2m ), 则AM =m ,OM =2m ,MH =m +2m ,BD =2m -m , ∴ B (m +2m ,2m -m ), ∴OB =(m +2m )2+(2m -m )2=2m 2+8m 2,∵⎝⎛⎭⎪⎫2m -2 2m 2≥0, ∴2m 2+8m 2-8≥0, ∴2m 2+8m 2≥8,∴2m 2+8m 2的最小值是8, ∴OB 的最小值是2 2.10.C提示:如图,连结AC,与BD交于点O,连结ME,MF,NF,EN,MN,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵BE=DF,∴OE=OF.∵点E,F是BD上的点,∴只要MN过点O,四边形MENF就是平行四边形,∴存在无数个平行四边形MENF,故①正确;只要MN=EF,MN过点O,则四边形MENF是矩形,∵点E,F是BD上的动点,∴存在无数个矩形MENF,故②正确;只要MN⊥EF,MN过点O,则四边形MENF是菱形,∵点E,F是BD上的动点,∴存在无数个菱形MENF,故③正确;只要MN=EF,MN⊥EF,MN过点O,则四边形MENF是正方形,而符合要求的正方形只有一个,故④错误.二、11.212.k≤5且k≠113.4814.815.10提示:设AC与MN的交点为O,根据作图可得MN⊥AC,且平分AC,∴AO=OC,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠F AO =∠OCE ,又∵∠AOF =∠COE ,AO =CO ,∴△AOF ≌△COE ,∴AF =EC ,∵AF ∥CE ,∴四边形AECF 是平行四边形,∵MN 垂直平分AC ,∴EA =EC ,∴四边形AECF 是菱形,∵AE =2.5,∴四边形AECF 的周长为4AE =10.16.6 提示:连结OA 、OC 、OD 、OB ,如图.由反比例函数的性质可知S △AOE =S △BOF =12|k 1|=12k 1,S △COE =S △DOF =12|k 2|=-12k 2,∵S △AOC =S △AOE +S △COE ,∴12AC ·OE =12×3OE =32OE =12(k 1-k 2)…①,∵S △BOD =S △DOF +S △BOF ,∴12BD ·OF =12×BD (EF -OE )=12×BD (5-OE )=5-OE =12(k 1-k 2)…②, 由①②两式解得OE =2,则k 1-k 2=6.三、17.解:(1)原式=2 3-2 3+4 3=4 3;(2)原式=6-2 6=- 6.18.解:(1)x 1=3,x 2=1.(2)x 1=5,x 2=-1.19.解:(1)∵反比例函数y =k x 的图象经过点(1,1),∴1=k 1,解得k =1,∴反比例函数的表达式为y =1x .(2)解方程组⎩⎪⎨⎪⎧y =2x -1,y =1x, 得⎩⎨⎧x =1,y =1或⎩⎪⎨⎪⎧x =-12,y =-2,∵点A 在第三象限,且同时在两个函数图象上,∴A (-12,-2).20.解:选手A 的最后得分是(85×5+95×4+95×1)÷(5+4+1)=90(分),选手B 的最后得分是(95×5+85×4+95×1)÷(5+4+1)=91(分).由以上可知,选手B 获得第一名,选手A 获得第二名.21.(1)证明:∵E ,F 分别是AC ,AB 的中点,∴EF ∥BC ,∴∠FEO =∠DGO ,∠EFO =∠GDO ,∵O 是DF 的中点,∴FO =DO ,∴△EFO ≌△GDO (AAS ),∴EF =GD ,∴四边形DEFG 是平行四边形.(2)解:∵AD ⊥BC ,E 是AC 中点,∴DE =12AC =EC ,∵AD DC =52,AD =5,∴CD =2,∴DE =12AC =12 AD 2+CD 2=12×52+22=292.∵四边形DEFG 为平行四边形,∴FG =DE =292.22.解:(1)设这种商品的降价率是x ,依题意得40(1-x )2=32.4,解得x 1=0.1=10%,x 2=1.9(舍去);故这个降价率为10%.(2)设在原售价40元的基础上降价y 元,根据题意得(40-20-y )(500+50y )=10 000.解得y =0(舍去)或y =10,原售价40元降价10元时,应为40-10=30(元),∵现价为每件32.4元,∴32.4-30=2.4(元),答:在现价的基础上,再降低2.4元.23.解:(1)5(2)设线段AB 的表达式为y AB =kx +b ,把(10,50)和(0,30)代入得,⎩⎨⎧10k +b =50,b =30,解得⎩⎨⎧k =2,b =30,∴线段AB 的表达式为y AB =2x +30;设双曲线CD 的函数表达式为y CD =a x ,把(20,50)代入得,50=a 20,∴a =1 000,∴双曲线CD 的函数表达式为y CD =1 000x ;当y=40时,代入y AB=2x+30,得2x+30=40,解得x=5;当y=40时,代入y CD=1 000x,得1 000x=40,解得x=25.∵25-5=20>18,∴教师能在学生注意力达到所需求状态下讲完这道题.24.解:(1)由题意得,BQ=t cm,DP=t cm,∵四边形ABCD是矩形,BC=8 cm,∴AD=BC=8 cm,∴AP=(8-t)cm.当四边形ABQP是矩形时,BQ=AP,∴t=8-t,解得t=4,∴当t=4时,四边形ABQP是矩形.(2)∵∠B=90°,AB=4 cm,BQ=t cm,∴AQ2=AB2+BQ2=42+t2.当四边形AQCP是菱形时,AP=AQ,∴AP2=AQ2,∴42+t2=(8-t)2,解得t=3,∴当t=3时,四边形AQCP是菱形.(3)由(2)可知当t=3时,BQ=3 cm,∴CQ=BC-BQ=5 cm,∴C菱形AQCP =4CQ=4×5=20(cm),S菱形AQCP=CQ·AB=5×4=20(cm2).。