液压驱动系统.ppt

合集下载

典型液压传动系统PPT课件

典型液压传动系统PPT课件
•25
是液压泵→顺序阀7→上液压缸换向阀6(中位)→下液压缸换向阀14(中位)→油箱。
4. 快速返回:时间继电器延时到时后,保压结束,电磁铁2YA通电,先导 阀5右位接入系统,释压阀8使上液压缸换向阀6也以右位接入系统(下文说明)。 这时,液控单向阀12被打开,上液压缸快速返回。
进油路:液压泵→顺序阀7→上液压缸换向阀6(右位)→液控单 向阀11→ 上液压缸下腔;
1. 系统使用一个高压轴向柱塞式变量泵供油,系统压力由远程调压阀3调定。
2.系统中的顺序阀7规定了液压泵必须在2.5MPa的压力下卸荷,从而使控制油
路能确保具有一定的控制压力。
3.系统中采用了专用的QFl型释压阀来实现上滑块快速返回时上缸换向阀的换
向,保证液压机动作平稳,不会在换向时产生液压冲击和噪声。
工作进给速度范围为 6.6mm/min~660mm/min 最大快进速度为7300mm/min 最大推力为45kN
•1
•2
二、 YT 4543型动力滑台液压系统工作原理
动画演示
•3
•4
•5
•6
•7
•8
•9
元件1 为限压式变量叶片泵,供油
压力不大于6.3MPa,和调速阀一
起组成容积节流调速回路。
动画演示 •22
一、 YB 32―200型液压机的液压系统
•23
•24
液压机上滑块的工作原理
1.快速下行:电磁铁1YA通电,先导阀5和上缸主换向阀6左位接入系统,液 控单向 阀11被打开,上液压缸快速下行。
进油路:液压泵→顺序阀7→上缸换向阀6(左位)→单向阀10→上液压缸上腔; 回油路:上液压缸下腔→液控单向阀11→上缸换向阀6(左位)→下缸换向阀
7. 机床的润滑

起重机液压系统ppt课件

起重机液压系统ppt课件
.
3 液压缸变幅机构传动回路
图4 双缸变幅机构液压原理 平衡阀的安装应尽可能靠近变幅缸,以缩短无杆腔中高压油对油 管的作用长度。平衡阀与变幅缸无杆腔之间也不允许采用软管联接。
.
四 起升机构液压传动回 路
.
4 支腿油缸所应用的双向液压锁原理 起重机液压系统中广泛使用的是液控单向阀.图5就是液控单向阀 的结构简图和职能符号。当液控口K不通压力油时,油只可以从进油 口P1进去,顶开单向阀从P2流出。若油液从P2进入时,单向阀3闭死, 油不能通到P1这时和普通单向阀的作用没有什么不同。当控制油口K 接通压力油时,则活塞1左部受油压作用,因活塞的右腔a是和泄油口 相通的(图中未画),所以活塞1向右运动,通过顶杆2将单向阀向右顶 开,这时P1和P2两腔接通,油可以逆向流动。这种液控单向阀在不通 控制油压时,能在一个方向锁紧油路,故常称单向液压锁。
.
图1 汽车起重机液压传动示意图
1.内燃机 2.分动箱 3.传动轴 4.液压泵 5.中心回转接头 6.控制阀
7.制动器油缸 8.离合器油缸 9.蓄能器 10.起升油马达 11.伸缩臂油缸
12.变幅油缸 13.分流阀 14.回转油马达 15.垂直支腿油缸 16.水平支
腿油缸 17.过滤器 18.油箱
变幅回路中的平衡阀的限速作用与在起升回路中的作用是一致的, 但在换向阀中位时两个回路的平衡阀作用则完全不同。在起升机构回 路中,当换向阀处于中位时,起升载荷在机构上产生的扭矩完全由制 动器来承受,平衡阀上并无油压作用。所以,其反向的密封性与起升 机构的重物下沉没有关系。但在变幅机构中,平衡阀除了有限速作用, 还在机构不动时起到封闭变幅缸无杆腔的作用。因此,其反向密封性 能的好坏将直接影响变幅缸受载以后的回缩量。

完整液压系统ppt课件

完整液压系统ppt课件

元件的检查与保养
总结词
元件的检查与保养是液压系统维护的基础工作,能够及时发现并解决潜在问题,防止故 障扩大。
详细描述
在日常检查中,应重点关注油泵、油缸、阀件等关键元件的工作状态,检查其是否有异 常声响、泄漏、卡滞等现象。对于出现问题的元件,应及时进行维修或更换。同时,为
了保持元件的性能和寿命,还需要定期对元件进行保养,如清洗、润滑、除锈等。
排除技巧
先易后难、逐一排查、利用系统本身 进行控制等。
实践经验
定期维护保养、保持油液清洁、合理 设计液压系统等。
THANKS
感谢观看
速度控制回路
速度控制回路主要用于调节和控 制系统中的执行元件的运动速度

速度控制回路通常由节流阀、调 速阀等组成,通过调节这些阀门 的参数,可以实现对执行元件运
动速度的精确控制。
速度控制回路在液压系统中具有 重要的作用,能够提高系统的生
产效率和精度。
方向控制回路
方向控制回路主要用于控制液压 系统中执行元件的运动方向。
06
液压系统故障诊断与 排除
故障分类与原因分析
故障分类
泄漏故障、噪声故障、振动故障 、性能故障、液压冲击等。
原因分析
密封件损坏、元件磨损、油液污 染、液压系统设计不合理等。
故障诊断方法与流程
诊断方法
感官诊断、仪表测量、逻辑分析等。
诊断流程
初步检查、元件检查、系统测试、综 合分析等。
故障排除技巧与实践
负载分析
负载分类
固定负载、变位负载、加 速负载、减速负载
负载特点
随工作条件、工况和工艺 要求而变化
负载计算
根据工作需求,计算各执 行元件所承受的负载,为 后续元件选择提供依据

液压系统完整 ppt课件

液压系统完整 ppt课件
叶片泵的工作原理
由转、定子,叶片,配油盘组成。转子有 径向斜槽,内装叶片,配油盘装在转子两 边,旋转时惯性和油压力的作用使叶片紧 靠定子,使其形成多个密封空间。配油盘 有吸油窗和压油窗,是工作时叶片神出, 密封容积增大行成真空从吸油窗吸油,叶 片逐渐压入,油从压油窗出能从p1→p2;当控制油口通压力油时,正、反向的
油液均可自由通过。
2020/12/27
43
3.2 换向阀
换向阀是利用阀芯在阀体孔内作相对运动,使油路 接通或切断而改变油流方向的阀。
换向阀的分类
• 按结构形式可分:滑阀式、转阀式、球阀式。 • 按阀体连通的主油路数可分:两通、三通、四通…等。 • 按阀芯在阀体内的工作位置可分:两位、三位、四位等
2020/12/27
5
齿轮泵的原理图
在一个紧密配合的 壳体内相互啮合旋 转,这个壳体的内 部类似“8”字形, 两个齿轮装在里面 ,齿轮的外径及两 侧与壳体紧密配合
2020/12/27
6
齿轮泵的原理图
挤出机的物料在吸入口进入两个齿轮中间,并充满这
一空间,随着齿的旋转沿壳体运动,最后在两齿啮合
时排出 2020/12/27
▪锥阀 锥阀阀芯半锥角一般为12 °~
20 °,阀口关闭时为线密封,密封性能好
且动作灵敏。
▪球阀 性能与锥阀相同。
2020/12/27
37
三、方向控制阀
方向控制阀的作用:
流方向
在液压系统中控制液
方向控制阀包括: 单向阀和换向阀
2020/12/27
38
3.1 单向阀
单向阀包括:普通单向阀和液控单向阀
2020/12/27
53
图形符号含义
位—用方格表示,几位即几个方格

液压传动基本原理PPT课件

液压传动基本原理PPT课件
◆液压传动主要是利用液体的压力能来传递能量; 液力传动则主要是利用液体的动能来传递能量。
2
一. 液压传动的基本原理
液压传动是以液体为工作介质,通过驱动装置 将原动机的机械能转换为液体的压力能,然后通过 管道、液压控制及调节装置等,借助执行装置,将 液体的压力能转换为机械能,驱动负载实现直线或 回转运动。
16
4
2.1 液压传动系统的工作原理
千斤顶中,小缸、小活塞以及 单向阀4和7组合在一起,就可以不 断从油箱中吸油和将油压入大缸, 这个组合体的作用是向系统中提供 一定量的压力油液,称为液压泵。
大活塞和缸用于带动负载,使 之获得所需运动及输出力,这个部 分称为执行机构。
放油阀门11的启闭决定W是否 向下运动,是一个方向控制阀。
液压传动基本原理
第一节 液压传动的基本概念
一部完整的机器是由动力机构、传动机构和工作机构等 三部分组成。
◆传动机构通常分为机械传动、电气传动和流体传动机构。
◆流体传动是以流体为工作介质进行能量转换、传递和控制 的传动。它包括液压传动、液力传动和气压传动 。
◆液压传动和液力传动均是以液体作为工作介质来进行能量 传递的传动方式。
8
10
三 液压系统的图形符号
9
图1.1(a)所示的液压系统图是 一种半结构式的工作原理图。它:
直观性强,容易理解,但难 于绘制。
4
在实际工作中,除少数特殊情 况外,一般都采用液压图形符号 (参看附录)来绘制,如图1.2所示。
8
7 6
5
3 2
1
图1.2
9
10
19
18 17
16
液压缸 换向阀
9 8
液压缸 换向阀

6.2.16.2机器人液压驱动系统

6.2.16.2机器人液压驱动系统

第六章 机器人动力与驱动系统
6.2.1 液压伺服驱动系统
(2)电液伺服阀的工作原理
喷嘴挡板式电液伺服阀的工作原理图
1—线圈;2,3—导磁体;4— 永久磁铁;5—衔铁;6—弹簧 管;7,8—喷嘴;9—挡板; 10,13—固定节流孔;11—反
馈弹簧杆;12—主滑阀
第六章 机器人动力与驱动系统
6.2.2 电液比例控制
电液比例控制是介于普通液压阀的开关控制和电液伺服控制之间的控制 方式,能实现对液流压力和流量连续地、按比例的跟随控制信号而变化。 因此,其控制性能优于开关控制,与电液伺服控制相比,其控制精度和相 应速度较低。因为它的核心元件是电液比例阀,所以简称比例阀。
电液比例压力阀
第六章 机器人动力与驱动系统
6.2.3 电液比例换向阀
第六章 机器人动力与驱动系统
6.2.1 液压伺服驱动系统
(1)电液伺服阀的构成 电液伺服阀通常由电气—机械转换装置、液压放大器和反馈(平衡) 机构三部分组成。 电气—机械转换装置用来将输入的电信号转换为转角或直线位移输出。 输出转角的装置称为力矩马达,输出直线位移的装置称为力马达。 液压放大器接受小功率的电气—机械转换装置输入的转角或直线位移 信号,对大功率的压力油进行调节和分配,实现控制功率的转换和放大。 反馈和平衡机构使电液伺服阀输出的流量或压力获b)双叶式摆动缸
第六章 机器人动力与驱动系统
6.2.5 齿条传动液压缸
齿条传动液压缸结构形式很多,图为是一种用于驱动回转工作台回转的 齿条传动液压缸。
齿条传动液压缸
1,9—螺钉 ; 2,8—端盖; 3—半圆环; 4,7—活塞; 5—齿条; 6—齿轮
第六章 机器人动力与驱动系统
6.2.6 液压伺服马达

液压系统设计PPT课件

液压系统设计PPT课件

详细描述
节能环保的设计理念与实践不仅有利于保护环境,也能 够为企业带来经济效益。通过采用节能环保技术,可以 降低液压系统的运行成本和维护成本,提高系统的使用 寿命和可靠性,从而促进液压系统的可持续发展。
THANKS FOR WATCHING
感谢您的观看
智能化与自动化技术的应用
要点一
总结词
要点二
详细描述
智能化与自动化技术的应用将提高液压系统的控制精度和 响应速度。
随着人工智能、机器学习等技术的发展,液压系统的智能 化和自动化水平将得到显著提升。通过引入智能传感器、 控制器和执行器等设备,实现对液压系统的实时监测、自 动控制和优化调节,提高系统的控制精度和响应速度,降 低能耗和减少维护成本。
系统维护与保养问题
维护保养困难
液压系统的维护和保养涉及到多个方面,如油液清洁度控制、元件更换、滤芯更换等。由于液压系统 的封闭性,使得维护保养工作变得相对困难,需要专业的技术和工具来完成。
06 未来液压系统设计展望
新型液压元件的研发与应用
总结词
新型液压元件的研发将推动液压系统设 计的进步,提高系统的性能和效率。
控制液压系统的压力,如调压 回路、卸荷回路和减压回路等

速度控制回路
控制执行元件的运动速度,如 节流调速回路、容积调速回路 等。
方向控制回路
控制执行元件的运动方向,如 换向回路、锁紧回路等。
多路换向阀控制回路
通过多路换向阀实现对多个执 行元件的控制,实现同时或顺
序动作。
03 液压系统设计流程
明确设计要求与目标
液压系统设计ppt课件
目录
• 液压系统概述 • 液压系统设计基础 • 液压系统设计流程 • 液压系统设计实例 • 液压系统设计的挑战与解决方案 • 未来液压系统设计展望

挖掘机液压系统介绍ppt课件

挖掘机液压系统介绍ppt课件

阀原理图(31)
资金是运 动的价 值,资 金的价 值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
负流量控制(32)
资金是运 动的价 值,资 金的价 值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
1
资金是运 动的价 值,资 金的价 值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
简略原理图(00)
资金是运 动的价 值,资 金的价 值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
回转马达
资金是运 动的价 值,资 金的价 值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
回转马达外形(01)
资金是运 动的价 值,资 金的价 值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运 动的价 值,资 金的价 值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
液压系统概述
行走:直行功能, 大臂提升:2-泵流, 大臂下降:油量再生, 大臂:保持功能, 大臂:优先, 小臂收进和伸出:2-泵流, 小臂:持功能小臂收进: 油量再生, 回转:对于小臂优先
泵外形
资金是运 动的价 值,资 金的价 值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值

液压技术教学课件(全)pptx

液压技术教学课件(全)pptx

齿轮马达
通过输入压力油使齿轮旋 转,从而输出扭矩和转速 。
叶片马达
压力油作用在叶片上,使 叶片带动转子旋转,输出 扭矩和转速。
柱塞马达
通过柱塞在缸体内的往复 运动,将液压能转换为机 械能,输出扭矩和转速。
液压缸的类型与工作原理
单作用液压缸
只能向一个方向运动,靠外力实 现反向运动。
双作用液压缸
可向两个方向运动,通过换向阀改 变油液流动方向实现正反向运动。
速度异常
可能是由于节流阀、调速阀等 元件故障或调整不当导致的。
动作异常
可能是由于换向阀、顺序阀等 元件故障或调整不当导致的。
噪声和振动
可能是由于液压泵、马达等元 件磨损严重或气穴现象导致的

故障诊断方法与步骤
观察法
通过观察液压系统的外观、液 位、油质等判断系统是否正常

听诊法
通过听液压系统的声音判断是 否有异常噪声。
为满足高精度制造和高端装备的需求,高 精度、高响应液压控制技术的研究和应用 将受到关注。
复杂环境下的液压系统可靠性
多领域融合与跨学科合作
在极端温度、强腐蚀等复杂环境下,如何 保证液压系统的可靠性和稳定性是一个重 要挑战。
随着液压技术与机械、电子、控制等多领域 的深度融合,跨学科合作将成为推动液压技 术发展的重要途径。
THANKS
感谢观看
液压传动与控制系统的设计与应用
液压传动与控制系统的设计
在设计液压传动与控制系统时,需要根据实际需求选择合适的液压泵、执行元件、控制元件和辅助元件,并进行 合理的布局和连接。同时,还需要考虑系统的压力、流量、温度等参数,以确保系统的稳定性和可靠性。
液压传动与控制系统的应用

第4章机器人驱动系统PPT课件

第4章机器人驱动系统PPT课件
2)液压系统介质的可压缩 性小,工作平稳可靠,并可得 到较高的位置精度。
3)液压传动中,力、速度 和方向比较容易实现自动控制。
4)液压系统采用油液作介 质,具有防锈性和自润滑性能, 可以提高机械效率,使用寿命 长。
不足之处:
1)油液的粘度随温度 变化而变化,影响工 作性能,高温容易引 起燃烧爆炸等危险。 2)液体的泄漏难于克 服,要求液压元件有 较高的精度和质量, 故造价较高。 3)需要相应的供油系 统,尤其是电液伺服 系统要求严格的滤油 装置,否则会引起故 障精选。PPT课件
安全性 对环境的影响
液压驱动
防爆性能较好,用液压油作传动介 质,在一定条件下有火灾危险
液压系统易漏油,对环境有污染
气动驱动
电动驱动
防爆性能好,高于1000kPa(10个大气 压)时应注意设备的抗压性
排气时有噪声
设备自身无爆炸和火灾危险,直流 有刷电动机换向时有火花,对环境的 防爆性能较差

在工业机器人中应 用范围
应用:
多用于开关控制和顺序控 制的机器人中。
精选PPT课件
3
电气驱动的特点及应用
优点:
电气驱动是利用各种电 动机产生力和力矩,直接或 经过减速机构去驱动机器人 的关节,从而获得机器人的 位置、速度和加速度。因省 去中间的能量转换过程,因 此比液压和气压驱动的效率 高,且具有无环境污染、易 于控制、运动精度高、成本 低等优点。应用最广泛。
第4章 机器人的驱动系统
❖4.1 机器人的驱动方式 ❖4.2 液压驱动系统 ❖4.3 气压驱动系统 ❖4.4 电气驱动系统 ❖4.5 新型驱动器
精选PPT课件
1
4.1 机器人的驱动方式
4.1.1 概述
液压驱动的特点及应用

液压伺服系统电液伺服系统课件

液压伺服系统电液伺服系统课件
发展趋势
随着科技的不断发展,液压伺服系统也在不断创新和完善。未来,液压伺服系统将朝着智能化、数字 化、网络化方向发展,实现更高效、更精准的控制。同时,液压伺服系统还将更加注重环保和节能, 推动绿色制造和可持续发展。
02 电液伺服系统基础知识
电液转换元件
01
02
03
伺服阀
将电气信号转换为液压流 量或压力,实现液压执行 机构的精确控制。
速度同步
采用液压伺服系统实现多工位、多执行机构的速 度同步,优化生产流程。
航空航天领域中的应用
飞机起落架收放系统
通过电液伺服系统实现飞机起落架的平稳收放,确保飞行安全。
发动机推力控制
利用液压伺服系统对航空发动机进行精确的推力控制,提高飞行 性能。
飞行姿态调整
采用电液伺服系统实现飞行姿态的快速、精确调整,满足复杂飞 行需求。
仿真分析
在系统模型的基础上,进行仿真分析,包括系统动态响应、控制精度、稳定性等方面的评估,以验证设计的合理性。
优化设计
根据仿真分析结果,对系统进行优化设计,包括调整元件参数、改进控制策略等,以提高系统性能。
04 电液伺服系统实现技术
硬件平台搭建
控制器选择
根据系统需求,选用合适的控制器,如PLC、DSP等,确保控制精 度和实时性。
元件选型与计算
元件选型
根据规格书要求,选择合适的液压泵 、马达、阀等元件,确保系统性能达 标。
元件计算
对所选元件进行详细的计算和分析, 包括流量、压力、功率等参数,确保 元件之间的匹配性和系统的稳定性。
系统仿真与优化
系统建模
利用AMESim、MATLAB/Simulink等仿真软件,建立液压伺服系统的数学模型,为后续仿真分析提供基础。

起重机液压系统ppt

起重机液压系统ppt

1.换向阀
2.平衡阀 3.液压马达
4.制动液压缸
5.单向节流阀
图2 起升机构液压回路
2起升机构液压传动回路
若手动换向阀回到中位,则系统压力迅速下降,马达停止转动; 制动器在弹簧作用下,经单向节流阀中的单向阀排出制动器动作缸中 的液压油,实现制动。要下降载荷时,可将换向阀拔到Ⅱ位。这时, 泵的来油经换向阀进入回路的下降分支,同时经单向节流阀进入制动 器。当压力增大到一定程度时,制动器将开启,下降分支的压力将同 时使平衡阀中顺序阀有一定的开度。这样,马达在起升载荷和下降分 支压力的一同作用下旋转,使载荷下降,马达的排油经顺序阀、换向 阀流回油箱。
3 液压缸变幅பைடு நூலகம்构传动回路
图3 变幅机构液压原理图
3 液压缸变幅机构传动回路
平衡阀远控口的压力Pa,是由通过换向阀进人回路的流量决定的, 这一压力直接决定了平衡阀的开度。当变幅液压缸作用的推力不变时, 平衡阀的开度也就决定了通过平衡阀流量的大小,以及变幅液压缸的 回缩速度。因此,不论变幅缸受的压力有多大,只要适当控制进入回 路的流量,就可以完全控制变幅液压缸的回缩速度。所以平衡阀也称 限速阀。 变幅回路中的平衡阀的限速作用与在起升回路中的作用是一致的, 但在换向阀中位时两个回路的平衡阀作用则完全不同。在起升机构回 路中,当换向阀处于中位时,起升载荷在机构上产生的扭矩完全由制 动器来承受,平衡阀上并无油压作用。所以,其反向的密封性与起升 机构的重物下沉没有关系。但在变幅机构中,平衡阀除了有限速作用, 还在机构不动时起到封闭变幅缸无杆腔的作用。因此,其反向密封性 能的好坏将直接影响变幅缸受载以后的回缩量。
4 支腿油缸所应用的双向液压锁原理
图6
4 支腿油缸所应用的双向液压锁原理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流量公式: Q πd 4 Δp 128 μl
第10章 液压驱动系统
§10.1 液压驱动系统基本原理
10.1.2 液压传动相关理论 3、液体在管路中的流动
圆形管路中的最大流速
vmax
d2 16 μl
Δp
平均流速为最大流速的一半
流量公式: Q πd 4 Δp 128 μl
Δp
128 μlQ π
1 d4
第10章 液压驱动系统
§10.1 液压驱动系统基本原理
10.1.2 液压传动相关理论 2、流动液体力学
理想液体:没有粘性、不存在内摩擦、没有 压缩性。
过流截面的面积
流量 Q Av
平均流速
质量守恒 Q A1v1 A2v2
第10章 液压驱动系统
§10.1 液压驱动系统基本原理
10.1.2 液压传动相关理论
10.1.2 液压传动相关理论 3、液体在管路中的流动
沿程压力损失:
Δp f
λ
ρlv 2 2d
局部压力损失:
Δpζ
ζ
ρv 2 2
第10章 液压驱动系统
§10.1 液压驱动系统基本原理
10.1.3 液压驱动系统 基本原理
第10章 液压驱动系统
§10.1 液压驱动系统基本原理
10.1.3 液压驱动系统 基本原理
2、流动液体力学
能量守恒——伯努利方程
比动能 (速度头)
比压能 (压力头)
比势能
p v2 h 常数 (位置头) ρg 2g
密度
重力加速度 液面高度
第10章 液压驱动系统
§10.1 液压驱动系统基本原理
10.1.2 液压传动相关理论 2、流动液体力学
液体流动时,受到的作用力:
F ρQ(v2 v1)
第10章 液压驱动系统
§10.2 液压控制元件
10.2.1 液压泵
4、性能参数 功率:一般指输入功率,即电动机的输入功率。 总效率:输出功率与输入功率之比。
第10章 液压驱动系统
§10.1 液压驱动系统基本原理 §10.2 液压控制元件 §10.3 常用液压控制回路原理 §10.4 液压驱动系统设计方案
第10章 液压驱动系统
§10.1 液压驱动系统基本原理
10.1.1 液压驱动系统的特点 控制力和控制力矩可以很大。 ✓ 能够实现无级调速和无间隙传动。 ✓ 动作灵敏、响应速度快、惯性小。 ✓ 元件标准化、系列化和通用化。
§10.1 液压驱动系统基本原理
10.1.2 液压传动相关理论 3、液体在管路中的流动
液体的流动状态,一般用雷诺数Re来表示:
Re vd
液体的平均流速 圆形管路内径 液体的运动粘度
第10章 液压驱动系统
§10.1 液压驱动系统基本原理
10.1.2 液压传动相关理论 3、液体在管路中的流动
液体的流动状态,一般用雷诺数Re来表示:
§10.2 液压控制元件
10.2.1 液压泵
3、齿轮式液压泵
结构简单,体积 小,使用方便,价格 低,维护简单,对液 压油清洁度不敏感; 但只能应用于低压环 境,流量脉动大,噪 声也液压控制元件
10.2.1 液压泵
4、性能参数
额定输出压力:使用中允 许达到的最大工作压力。
§10.2 液压控制元件
10.2.1 液压泵
1、柱塞式液压泵
缺点:价格贵、对油 的清洁度要求高、维 护要求高。
第10章 液压驱动系统
§10.2 液压控制元件
10.2.1 液压泵
2、叶轮式液压泵
适用于中等液压 环境,效率较高, 转动惯量较小,价 格适中,但对液压 油的清洁度要求较 高。
第10章 液压驱动系统
第10章 液压驱动系统
§10.1 液压驱动系统基本原理
10.1.2 液压传动相关理论 3、液体在管路中的流动
截面积相等的圆形管路中的沿程能量损失:
hf
lv2 λ
2dg
沿程损失系数,与Re成反比
截面积变化处的局部能量损失:

ζ
v2 2g
局部损失系数,与截面变化有关
第10章 液压驱动系统
§10.1 液压驱动系统基本原理
第10章 液压驱动系统
§10.2 液压控制元件
10.2.1 液压泵
1、柱塞式液压泵
第10章 液压驱动系统
§10.2 液压控制元件
10.2.1 液压泵
1、柱塞式液压泵 优点:工作压力高、 寿命长、单位功率自 身重量小、流量调节 方便。常用于高压、 大流量、大功率以及 需要进行流量调节的 场合。
第10章 液压驱动系统
Re vd
流动液体处于层流与紊流 的切换点的雷诺数,称为临界 雷诺数,一般用Re0来表示。当 Re<Re0时,流动状态为层流。
第10章 液压驱动系统
§10.1 液压驱动系统基本原理
10.1.2 液压传动相关理论 3、液体在管路中的流动
圆形管路中的最大流速
vmax
d2 16 μl
Δp
平均流速为最大流速的一半
实际输出压力:由外界负 载决定。
第10章 液压驱动系统
§10.2 液压控制元件
10.2.1 液压泵
4、性能参数
排量:不考虑泄漏的情况下,每转一周输出的 液压油压力。液压泵的排量由密闭腔体的容积 决定,而与液压泵的转速无关。
流量:单位时间内输出的液压油的体积。不考 虑泄漏情况下的流量,称为理论流量,等于排 量与转速的乘积。
液体容易泄露,故障不易迅速排除。 传送效率低,不适于远距离控制。
第10章 液压驱动系统
§10.1 液压驱动系统基本原理
10.1.2 液压传动相关理论
1、静止流体力学
p F A
p lim ΔF ΔA0 ΔA
• 忽略自身重力,密闭容器内液体压力处处 相等。
F2
A2 A1
F1
若A2>A1,则F2>F1
第10章 液压驱动系统
§10.1 液压驱动系统基本原理
10.1.3 液压驱动系统 基本原理
停止
第10章 液压驱动系统
§10.2 液压控制元件
10.2.1 液压泵
液压泵的作用:是把存储在油箱中的液压油 注入到液压管路中,形成一定的液压。
基本工作原理:通过电动机和传动机构,带 动容积控制部件转动,改变液压泵腔体内的 容积,腔体容积增大时,压力变小,从油箱 内吸入液压油;腔体容积减小时,把液压油 压入管路。
液体对管壁的作用力,与之大小相等, 方向相反。
第10章 液压驱动系统
§10.1 液压驱动系统基本原理
10.1.2 液压传动相关理论 3、液体在管路中的流动
层流:液体质点运动方向与管 路的轴线方向平行。
紊流:液体质点运动杂乱无章, 既有与轴线方向平行的运动,也 有与轴线方向垂直的运动。
第10章 液压驱动系统
相关文档
最新文档