梁的有限元分析原理
第9章 桁架和梁的有限元分析
第9章桁架和梁的有限元分析第1节基本知识一、桁架和梁的有限元分析概要1.桁架杆系的有限元分析概要桁架杆系系统的有限元分析问题是工程中最常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。
桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。
由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。
2.梁的有限元分析概要梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。
梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。
根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。
二、桁架和梁的常用单元桁架和梁常用的单元类型和用途见表9-1。
通过对桁架和梁进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。
第2节 桁架的有限元分析实例一、案例1——2D 桁架的有限元分析图9-1 人字形屋架的示意图 问题人字形屋架的几何尺寸如图9-1所示。
杆件截面尺寸为0.01m 2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。
条件人字形屋架两端固定,弹性模量为2.0×1011 N/m 2,泊松比为0.3。
解题过程制定分析方案。
材料弹性材料,结构静力分析,属2D 桁架的静力分析问题,选用Link1单元。
建立坐标系及各节点定义如图9-1所示,边界条件为1点和5点固定,6、7、8点各受1000 N 的力作用。
1.ANSYS 分析开始准备工作(1)清空数据库并开始一个新的分析 选取Utility>Menu>File>Clear & Start New ,弹出Clears database and Start New 对话框,单击OK 按钮,弹出Verify 对话框,单击OK 按钮完成清空数据库。
杆梁结构的有限元分析原理
e
下面考察该简单问题的FEA求解过程。 (1) 离散化
两个杆单元,即:单元①和单元②
(2) 单元的特征及表达
对于二结点杆单元,设该单元的位移场为 么它的两个结点条件为
,那
设该单元的位移场具有模式(考虑两个待定系数)
利用结点条件,可以确定系数a0和a1,即
将系数a0和a1代入
,可将
表达成结点位移(u1, u2)的关系,即
其中, 为整体坐标系下的单元刚度矩阵, 为 整体坐标系下的结点力,即
由最小势能原理(针对该单元),将 对待定的 结点位移向量 取一阶极小值,有整体坐标系中 的刚度方程
对于本节给出的杆单元,具体有
4.3.3 空间问题中杆单元的坐标变换
就空间问题中杆单元,局部坐标系下的结点位移还 是 而整体坐标系中的结点位移为
这时由全部结点位移[0 u2 u3]分段所插值 出的位移场为全场许可位移场。
由最小势能原理(即针对未知位移u2和u3求 一阶导数),有
可解出
(5) 计算每个单元的应变及应力
在求得了所有的结点位移后,由几何方程
可求得各单元的应变
由方程 可求得各单元的应力
(6) 求结点1的支反力
就单元 ①的势能,对相应的结点位移求极值,可以 建立该单元的平衡方程,即
其中
由一维问题几何方程和物理方程,则该单元 的应变和应力为
其中
单元的势能
其中 叫做单元刚度矩阵。
叫做单元结点外载。
在得到“特征单元”的单元刚度矩阵和单元 结点外载后,就可以计算该单元的势能,因 此,计算各单元的矩阵 和 是一个关 键,下面就本题给出了个单元的 和 。
具体就单元①,有 单元①的结点位移向量
(5) 单元的刚度方程
梁的有限元分析原理
梁的有限元分析原理梁的有限元分析原理是一种工程结构分析方法,广泛应用于建筑、桥梁、航空航天、汽车等领域。
它通过将连续的结构离散化为有限数量的小单元,通过数学模型进行计算,得出结构的力学性能和响应情况。
梁的有限元分析原理是有限元分析的基础,下面将对其进行详细介绍。
首先,梁的有限元分析原理基于梁理论,即在横向较小、纵向较长的情况下,结构可以近似为一维梁。
梁的有限元分析原理通过将梁划分为多个单元,每个单元内部可以看作两个节点之间的一段杆件,通过建立节点之间的力学关系方程,得到整个结构的力学性能。
其次,梁的有限元分析原理利用了变分原理,即将结构的势能取极小值,建立了结构的力学方程。
通过对于梁的弯曲、剪切和轴向力等方面的力学模型进行合理的假设与简化,可以得到结构的位移与力的关系,从而解决结构的力学问题。
在梁的有限元分析中,需要进行以下几个步骤:1.几何离散化:将梁结构划分为多个单元,每个单元具有相同的形状与尺寸,通常为矩形或三角形。
2.模型建立:根据梁理论以及力学方程的简化假设,建立节点的力学关系方程,包括位移、应力、应变等参数。
3.材料性能定义:确定梁材料的力学性能参数,如弹性模量、截面惯性矩等。
这些参数对梁结构的力学性能具有重要影响。
4.边界条件施加:根据实际问题设定边界条件,包括固定支座、约束条件等。
这些条件对于解决梁结构的位移、应力等问题至关重要。
5.方程求解:通过数学方法求解得到节点之间的力学关系方程,利用数值计算技术进行迭代求解,得到梁结构的位移、应力等参数。
6.结果分析:根据求解得到的结果,进行力学性能分析,如最大应力、挠度、模态分析等。
根据分析结果评估结构的强度与稳定性。
总结起来,梁的有限元分析原理是一种基于梁理论的工程结构分析方法,通过将结构离散化为多个小单元,利用力学关系方程和数值计算技术求解得到结构的力学性能。
通过梁的有限元分析原理,工程师可以更加准确地评估结构的强度与稳定性,对结构进行优化设计。
杆梁结构有限元分析
3.1 杆梁结构的直接解法
机械分社
(1)平面压杆有限元法的直接法
由节点平衡有: 即有:
U1(1)u1 U1(1)u2 N1
U
u (1)
21
(U
(2 2
)
U
(1) 2
)u2
U
(2 2
)u3
F1
U
(2 3
)
u2
U
(2 3
)
u3
F2
EA1 l1
u1
EA1 l1
u2
N1
EA1 l1
u1
( EA1 l1
3.1 杆梁结构的直接解法
机械分社
杆梁结构是指长度远大于其横截面尺寸的构件组成的杆 件系统,例如机床中的传动轴,厂房刚架与桥梁结构中的梁 杆等,可以用杆单元或梁单元来进行离散化。
空间杆系:平面杆系是指各杆轴线和外力作用线位于一 个平面内,若各杆轴线和外力作用线不在一个平面内。 (1)平面压杆有限元法的直接法
单元刚度矩阵每一列元素表示一组平衡力系,对于平面 问题,每列元素之和为零。
3.1 杆梁结构的直接解法
机械分社
(2)平面梁单元有限元法的直接法 2)节点位移与节点力之间的关系
Ui
Vi
k11
k21
M i U j
k31
k41
V
j
M j
k51
k61
他们在轴和轴的投影之和等于零:
vi
6EI l2
i
12EI l3
vj
6EI l2
j
M
j
6EI l2
vi
2EI l
i
6EI l2
vj
4EI l
11.-组合梁有限元分析
弹塑性力学及有限元法题目:分析轮辐式组合梁在F X、F Y、F Z和M X作用下应力和应变(载荷大小自己选择)。
1 模型的建立1.1 3D实体模型的建立Ansys与UG等3D建模软件有许多数据接口,如IGES、SAT和X_T等,他们又不同的特性,适用于不同的模型。
本文是将UG中文件另存为X_T格式进行导入,这样能最大限度保证实体模型的完整性。
图1 轮辐式组合梁三维建模2有限元模型的建立2.1 定义单元属性a)定义单元类型选择菜单Main Menu:Preprocessor >Element Type >Add/Delete,在单元类型对话框中单击Add按钮。
弹出单元库对话框。
在其中的列表中选择Brick 8node45和MASS21。
MASS21单元是含有一个节点的单元,该节点有六个自由度:沿X,Y和Z 轴的平移自由度和绕X,Y和Z轴的旋转自由度。
其几何图形如下图5所示,图2 MASS21几何模型(3)选择MASS21的主要目的:可以将经MASS21划分的点的节点和经SOLID187划分的轮辐式组合梁的节点进行刚性连接,再在经MASS21划分的点的节点上施加转矩和力,将转矩和力传递到经过网格划分的轮辐式组合梁的节点上。
SOLID187单元上的节点含有三个平移自由度,无绕轴旋转自由度,无法施加转矩。
MASS21单元是含有一个节点的单元,该节点有六个自由度:沿X,Y 和Z轴的平移自由度和绕X,Y和Z轴的旋转自由度。
b)定义材料属性选择菜单Main Menu:Preprocessor >Material Props>Material>Moudle,在材料属性窗口中依次双击Structural,Linear,Elastic和Isotropic,在弹出的对话框中设置EX(弹性模量)为2.06E11,PRXY(泊松比)为0.3,density(密度)为7.85E3,单击OK即可。
第3讲有限元梁单元
梁单元在有限元法中的地位
有限元法是解决复杂工程问题的重要方法 之一,梁单元是有限元法中的基本元素之 一。
梁单元具有简单、易处理和计算效率高等 优点,因此在工程结构分析中广泛应用。
梁单元可以模拟各种形状和尺寸的梁,能 够提供准确的应力、应变和位移等结果, 为工程设计提供可靠依据。
梁单元在有限元法中的地位非常重要, 它是构成复杂结构的基础元素之一,对 于工程结构的分析和设计具有重要意义。
优化设计实例分析
案例一:某桥梁结构的有限元梁单元优化设计,提高了结构的稳定性和承载能力。
案例二:采用有限元梁单元优化设计方法对某高层建筑进行抗震分析,有效降低了地震对 结构的影响。
案例三:针对某机械装备的关键部件,通过有限元梁单元优化设计实现了轻量化和高性能 的设计目标。
案例四:在某航空航天器的结构设计中,有限元梁单元优化设计的应用提高了结构效率并 减轻了整体重量。
其他领域中的应用
建筑领域:用于 分析桥梁、大跨 度结构等
航空航天:用于 飞机机翼、尾翼 等部件的分析
船舶工程:用于 船体结构、桅杆 等部件的分析
汽车工业:用于 分析车架、发动 机等部件
建模的基本步骤
确定梁的长度、 截面尺寸和材
料属性
建立梁的离散 化模型,将梁 划分为若干个
小的单元
确定单元的节 点位置和节点
单击添加标题
有限元梁单元的 特性
有限元梁单元的 建模方法
有限元梁单元的 基本概念
有限元梁单元的 应用场景
有限元梁单元的 优化设计
有限元法的定义
有限元法是一种数值分析方法,用于求解偏微分方程和积分方程等数学问题
通过将连续的求解区域离散化为有限个小的单元,用代数方程代替微分方程进行求解
梁的有限元分析原理 - 考虑剪切变形影响的梁单元
代人
比较:弯曲梁 单元中的单刚
得到:
等截面梁单元有限元分析
8
长沙理工大学
小结
剪切变形的影响通过系数b反映在刚度矩阵中,使刚度减弱。 对矩形截面:
,当l >>h,b趋于0,可以忽略剪力变形的影响。
等截面梁单元有限元分析
9
长沙理工大学
Timoshenko梁单元
铁木辛柯梁单元——采用两个独立变量 挠度 w
几何关系,曲率
对比
等截面梁单元有限元分析
3
最小势能原理
长沙理工大学
k为截面剪切校正因子
1.经典梁单元 2.铁木辛柯梁单元
——C1型单元 ——C0型单元
等截面梁单元有限元分析
4
长沙理工大学
在经典梁单元基础上引入剪切变形的影响. 挠度叠加
结点位移
其中
采用不考虑剪切变形梁单元的w相同的Hermite插值; 采用2结点的Lagrange插值,即线性插值。
解决方法
假设剪切应变
代替插值函数
计算泛函的剪切应变能时,θ采用低一 阶,和dw/dx同阶插值函数代替原插值 函数
18
等截面梁单元有限元分析
长沙理工大学
等截面梁单元有限元分析
——考虑剪切变形的梁单元
2014.4.13
1
长沙理工大学
介绍.
轴力构件 axial elements 杆单元
受弯构件 flexural elements 梁单元
考虑剪切变形的梁单元
等截面梁单元有限元分析
2
长沙理工大学 假设:梁内的横向剪切力Q所产生的剪切变形将引起梁的附加挠度, 并使原来垂直于中面的截面变形后不再和中面垂直,而且发生翘曲。 考虑剪切变形的梁单元 但在这里,假设原来垂直于中面的截面变形后仍保持为平面。 几何描述
直梁的有限元分析ppt课件
26
K 为结构的整体刚度矩阵,也称总刚度矩阵
12 6l 12 6l
0
0 0 0
6l
4l 2
6l
2l 2
0
0
0
0
12 6l 12 12 6l 6l 12 6l 0 0
K
2EI l3
6l 0
2l2 6l 6l 4l2 4l2 0 12 6l
1
1
2
单元编号 1 节点:1,2
2
2
3
单元编号 2 节点:2,3
3
3
4
单元编号 3
节点:3,4
7
划分单元的原则(设置节点的原则)
M
1
2
1
2
3
4
3
• 几何形状发生改变处 • 外载荷规律发生改变处(含约束) • 边界点 • 计算关心的位置 • 单元尺寸要均匀
8
二、单元分析
M
1
2
1
2
3
4
3
截面法:
qi i
6l 2l 2 6l 3l 4l 2 2l 2 3l l2
0 0 6 3l 6 3l
0 0 3l l2 3l 2l 2
f
f2 2 f3 3 4 4
0
Z
24 0 12 6l 0 f2
m0
0
2EI l3
0
12
6l
8l 2 6l 2l 2
4l 2
6l
2l 2
0
0
0 0 f1 0
0
0
0
1
0
MZZ223
Z M 0
M3
悬臂梁的有限元分析
悬臂梁的有限元分析I. 内容综述悬臂梁的有限元分析是结构工程领域中的一个重要课题,它是一种数值计算方法,通过将连续的结构分解成许多小单元,然后对每个单元进行分析,最终得到整个结构的性能指标。
这种方法可以有效地模拟结构的变形和应力分布情况,为设计和优化提供可靠的依据。
在实际应用中,悬臂梁的有限元分析需要考虑多种因素,如材料属性、几何形状、载荷条件等。
因此在进行分析时,需要选择合适的模型和网格尺寸,并对边界条件进行合理设定。
此外由于悬臂梁的结构特点,其在不同位置的受力情况也有所不同,因此需要对各个部位进行分别分析。
悬臂梁的有限元分析是一项复杂而重要的工作,只有通过合理的建模和分析方法,才能得到准确的结果,并为实际工程提供有效的指导。
A. 研究背景和意义悬臂梁作为一种常见的结构形式,广泛应用于建筑、桥梁、机械等领域。
然而在实际应用过程中,由于各种因素的影响,悬臂梁的结构性能可能会发生退化,导致结构的安全性受到威胁。
因此对悬臂梁的有限元分析具有重要的研究意义。
有限元分析是一种基于数学模型的工程分析方法,通过将复杂的结构分解为若干个简单的单元,利用计算机模拟这些单元在受力作用下的变形和应力分布,从而预测结构的响应。
近年来随着计算机技术和数学方法的不断发展,有限元分析在工程领域中的应用越来越广泛,已经成为工程设计和施工的重要工具。
对于悬臂梁这种特殊结构,有限元分析不仅可以帮助我们了解其在不同工况下的性能表现,还可以为优化结构设计、提高结构强度和刚度提供理论依据。
此外通过对悬臂梁的有限元分析,我们还可以更好地了解其在使用过程中可能出现的缺陷和损伤,从而为预防事故、保障人员安全提供技术支持。
悬臂梁的有限元分析研究具有很高的实用价值和理论意义,对于推动工程技术的发展、提高人类生活质量具有重要作用。
B. 研究目的和方法本研究旨在通过有限元分析方法,对悬臂梁进行分析,以探究其在不同荷载下的应力分布情况。
我们将采用ANSYS软件进行模拟计算,并通过对计算结果的分析,得出悬臂梁的最大应力、最小应力以及平均应力等关键指标。
杆梁结构的有限元分析
【典型例题】3.1.2(2) 变截面杆单元的推导
如图3-5所示,有一受轴载荷的线性变截面杆件,两端的截 面积为A1和A2,长度为l,材料的弹性模量为E,试建立描述该 杆件的一个杆单元。
3.1.3 杆单元的坐标变换
1. 平面杆单元的坐标变换
在工程实际中,杆单元可能处于整体坐标系(global coordinate system)中的任意一个位置,如图3-6所示,这需要 将原来在局部坐标系(local coordinate system)中所得到的单元 表达等价地变换到整体坐标系中,这样,不同位置的单元才 有公共的坐标基准,以便对各个单元进行集成(即组装)。图3-6 中的整体坐标系为( ),杆单元的局部坐标系为(ox)。
下面针对图3-2所示的一端固定的拉杆问题,分别讨论 基于直接求解方法以及基于试函数的间接方法的求解过程。
【求解原理】3.1.1(3) 1D问题的直接求解
【求解原理】3.1.1(4) 1D问题的虚功原理求解
先以一个简单的结构静力平衡问题来描述虚功原理的基本思 想,然后再具体求解一端固定的拉杆问题。
【基本变量】3.1.1(1) 1D问题的基本变量 由于该问题是沿x方向的一维问题,因此只有沿x
方向的基本变量,即 定义沿x方向移动为位移: u(x) 定义沿x方向的相对伸长(或缩短)量为应变: εx(x) 定义沿x方向的单位横截面上的受力为应力:
【基本方程】3.1.1(2) 1D问题的基本方程 该问题的三大类基本方程和边界条件如下:
第3章 杆梁结构的有限元分析
3.1 杆件有限元分析的标准化表征与算例
3.1.1 杆件分析的基本力学原理
杆件是最常用的承力构件,它的特点是连接它的 两端一般都是铰接接头,因此,它主要是承受沿轴线 的轴向力,因两个连接的构件在铰接接头处可以转动, 则它不传递和承受弯矩。
ansys有限元分析结果与理论公式计算结果的对比
ansys 有限元分析结果与理论公式计算结果对比1、有限元是近似求解一般连续场问题的数值方法2、有限元法将连续的求解域离散为若干个子域,得到有限个单元,单元和单元之间用节点连接3、直梁在外力的作用下,横截面的内力有剪力和弯矩两个.解: (1)梁的最大弯矩m N m •=⨯==K 45.023.0102ql M 22ax(2抗弯截面模量 3333m m 1028.6324032d ⨯=⨯==ππz W(3)梁的最大弯曲应力Mpa 7.711028.61045.036m ax m a =⨯⨯==M W z x σ ANSYS 计算结果与分析一、 有限元原理:有限元的解题思路可简述为:从结构的位移出发,通过寻找位移和应变, 应变与应力,应力与内力,内力与外力的关系,建立相应的方程组,从而由已知的外力求出结构的内应力和位移。
有限元分析过程由其基本代数方程组成:[K] {V}={Q},[K]为整个结构的刚变矩阵,{V}为未知位移量,{Q}为载荷向量。
这些量是不确定的,依靠所需解决的问题进行定量描述。
上述结构方程是通过应用边界条件,将结构离散化成小单元,从综合平衡方程中获得。
有限元是通过单元划分, 在某种程度上模拟真实结构,并由数字对结构诸方面进行描述。
其描述的准确性依赖于单元细划的程度,载荷的真实性,材料力学参数的可信度,边界条件处理的正确程度。
本算例采用三角形六结点来划分单元。
二、 有限元解题步骤:有限元的解题步骤为: ①连续体的离散化;②选择单元位移函数;③建立单元刚度矩阵;④求解代数方程组,得到所有节点位移分量;⑤由节点位移求出内力或应力。
本例子中,梁的受力模型如图所示网格划分如图边界条件:根据受力情况,使用右手定则,判断横梁受弯曲m N m •=K 45.0M ax时施加在X 轴正方向。
计算结果及结果分析:如图示,最大弯曲应力值为71.849Mpa 。
通过与手动计算比较,准确率达99.8%以上。
梁的有限元分析原理
Advantages of 2D Storage 1)Space-saving; 2)Easy to be computerized Disadvantages of 2D Storage Enormous storage is required when local bandwidth is large.
输入基本数据 计算单元刚度矩阵 形成总体刚度矩阵 形成结点荷载向量
3、系统分析
(1)整体刚度矩阵[K]的组装; (2)整体载荷列阵{P}的形成;
引入约束条件 求解方程组,输出结点位移 计算单元应力,输出结果
[K]的存储;约束引入;求解
结束
40
总刚存贮
全矩阵存贮法:不利于节省计算机的存贮 空间,很少采用。K[i,j] 对称三角存贮法:存贮上三角或下三角元 素。 半带宽存贮法 :存贮上三角形(或下三角 形)半带宽以内的元素 。 一维压缩存贮法 :半带宽存贮中仍包含了 许多零元素。存贮每一行的第一个非零元 素到主对角线元素。
有限元程序设计
——梁单元,静力问题
谷 音 福州大学土木工程学院
2012
1
§1. 介绍. 框架结构,例如桁架、桥梁 轴力构件 axial elements 杆 受弯构件 flexural elements 梁 平面梁单元 plane beam element
2
§2. 经典梁单元 (Bernoulli-Euler) Beam : 梁在纯弯曲时的 平面假设 平面-梁-假设 Plane-beam-assumption 梁的各个横截面在变形后仍保持为平
除非ψ是常数(没有弯曲变形),否则, dw/dx-ψ不会为零。这种现象称为剪切闭锁。 shear-locking
17
梁单元有限元分析
梁单元-有限元分析一、有限元法介绍有限元法的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个节点相互连接,然后根据变形协调条件综合求解。
由于单元的数目是有限的,节点的数目也是有限的,所以称为有限元法(FEM,Finite Element Method)。
是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。
有限元法是最重要的工程分析技术之一。
它广泛应用于弹塑性力学、断裂力学、流体力学、热传导等领域。
有限元法是60年代以来发展起来的新的数值计算方法,是计算机时代的产物。
虽然有限元的概念早在40年代就有人提出,但由于当时计算机尚未出现,它并未受到人们的重视。
随着计算机技术的发展,有限元法在各个工程领域中不断得到深入应用,现已遍及宇航工业、核工业、机电、化工、建筑、海洋等工业,是机械产品动、静、热特性分析的重要手段。
早在70年代初期就有人给出结论:有限元法在产品结构设计中的应用,使机电产品设计产生革命性的变化,理论设计代替了经验类比设计。
目前,有限元法仍在不断发展,理论上不断完善,各种有限元分析程序包的功能越来越强大,使用越来越方便。
二.梁单元的分类所谓梁杆结构是指其长度比横截面尺寸大很多的梁和杆件、以及由它们组成的系统,这一类结构的应力、应变和位移都是一个坐标的函数,所以属于一维单元问题。
1.平面桁架特点:杆件位于一个平面内,杆件间用铰节点连接,作用力也在该平面内。
单元特性:只承受拉力或压力。
单元划分:常采用自然单元划分。
即以两个铰接点之间的杆件作为一个单元。
为使桁架杆件只产生轴力,桁架的计算常作以下假定:①桁架中每根杆件的两端由理想铰联结;②每根杆件的轴线必须是直线;③所有杆件的轴线都只交于所联理想铰的几何中心。
④荷载均只作用于理想铰的几何中心。
在此条件下所算得的各种应力称为主应力。
实际上各种桁架结构不可能完全满足上述各假定,因而杆件将产生弯曲,由这种弯曲而在杆件中所引起的轴向应力称为次应力。
第三章 杆梁结构的有限元分析原理
function y = LinearBarElementForces(k,u) %LinearBarElementForces This function returns the element nodal % force vector given the element stiffness % matrix k and the element nodal displacement % vector u. y = k * u;
function y = PlaneTrussElementLength(x1,y1,x2,y2) %PlaneTrussElementLength This function returns the length of the % plane truss element whose first node has % coordinates (x1,y1) and second node has % coordinates (x2,y2). y = sqrt((x2-x1)*(x2-x1) + (y2-y1)*(y2-y1));
function y = PlaneTrussElementStiffness(E,A,L, theta) %PlaneTrussElementStiffness This function returns the element % stiffness matrix for a plane truss % element with modulus of elasticity E, % cross-sectional area A, length L, and % angle theta (in degrees). % The size of the element stiffness % matrix is 4 x 4. x = theta*pi/180; C = cos(x); S = sin(x); y = E*A/L*[C*C C*S -C*C -C*S ; C*S S*S -C*S -S*S ; -C*C -C*S C*C C*S ; -C*S -S*S C*S S*S];
桥梁有限元仿真分析计算
ANSYS GUI中六个窗口的总体功能
输入
显示提示信息,输入ANSYS命令,所 有输入的命令将在此窗口显示。
应用菜单
包含例如文件管理、选择、显 示控制、参数设置等功能.
主菜单 包含ANSYS 的主要功能 ,分为前处 理、求解、 后处理等。
输出
显示软件的文本 输出。通常在其 他窗口后面,需 要查看时可提到 前面2。012/5/13
(4)单元特性定义 有限元单元中的每一个单元除了表现出一定的外部形状外,还 应具备一组计算所需的内部特征参数,这些参数用来定义结构材 料的性能、描述单元本身的物理特征和其他辅助几何特征等.
(5)网格划分 网格划分是建立有限元模型的中心工作,模型的合理性很大程
度上可以通过所划分的网格形式反映出来。目前广泛采用自动或 半自动网格划分方法,如在Ansys中采用的SmartSize网格划分方 法就是自动划分方法。
2、建立有限元模型的一般过程 有限元分析中建模过程有下面7个步骤: (1)分析问题定义 在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进
行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何 模型。
总的来说,要定义一个有限元分析问题时,应明确以下几点: a)结构类型;b)分析类型;c)分析内容;d)计算精度要求;e) 模型规模;f)计算数据的大致规律
ABAQUS有限元分析钢筋混凝土连续梁内力重分布的影响因素
ABAQUS有限元分析钢筋混凝土连续梁内力重分布的影响因素随着工程建设和技术水平的不断提升,ABAQUS有限元分析技术被广泛应用于工程力学领域,特别是结构力学方面的研究中。
钢筋混凝土连续梁是一种常见的工程结构,在受力过程中会出现内力分布的变化。
本文将以ABAQUS有限元分析钢筋混凝土连续梁内力重分布的影响因素为主题,对此进行探讨。
1. 梁的几何形状和区间长度钢筋混凝土连续梁的几何形状和区间长度是影响内力分布的主要因素之一。
随着几何形状的变化,梁的受力情况也会发生变化,因此影响内力分布的因素包括梁的截面形状、宽度、高度等方面,以及不同区间长度的差异等。
2. 材料性质材料性质是影响钢筋混凝土梁内力分布的另一个关键因素。
钢筋混凝土的强度、韧性等基本性质都会对内力分布产生重要的影响。
在ABAQUS有限元分析中,材料性质的设定是十分重要的,包括混凝土、钢筋的材料性质等方面。
3. 荷载类型和荷载大小荷载类型和荷载大小都对内力分布产生重要的影响。
不同类型的荷载会产生不同的力学响应,从而影响内力的分布情况。
同时,荷载大小的不同也会影响内力分布的程度和形态。
4. 支座形式支座形式是钢筋混凝土连续梁内力分布的另一个重要因素。
不同的支座形式会对梁的刚度产生不同的影响,从而对内力分布产生不同的影响。
在ABAQUS有限元分析中,支座形式的设定需要考虑支座的类型、位置、刚度等因素。
综上所述,钢筋混凝土连续梁内力重分布的影响因素包括梁的几何形状和区间长度、材料性质、荷载类型和荷载大小、支座形式等方面。
针对这些因素,我们可以通过ABAQUS有限元分析工具,对钢筋混凝土连续梁内力分布情况进行模拟和计算,并针对不同的影响因素进行分析和改进,进一步提高工程建设的质量和性能。
为了更好地分析钢筋混凝土连续梁内力重分布的影响因素,我们需要收集和整理相关的数据,进行量化和分析。
以下是一些可能的数据类型和分析方法。
1. 梁的截面面积和惯性矩梁的截面面积和惯性矩是直接影响内力分布的因素之一。
杆梁结构有限元分析(第四章)
由于在设计时并不知道结构的真实力学性能(或许还没有实验 结果,或许还得不到精确的解析解),仅有计算分析的一些结果, 因此,一种进行计算结果校核或验证的可能方法,就是对所分析 对象分别建立1D、2D、3D模型,来进行它们之间的相互验证和核 对;图4-1给出一个建筑结构中的杆梁框架以及建模简化过程。
c F EA
1D问题的最小势能原理求解
先介绍最小势能原理的基本表达式。设有满足位移边界条件BC(u)的许 可位移场,计算该系统的势能为
(u) U W
其中U为应变能,W为外力功,对于如图4-2所示的算例,有
U
1 2
x (u(x)) x (u(x))d
W Pu(x l)
4.2 杆件有限元分析的标准化标准与算例
4.1 杆梁结构分析的工程概念
图4-1 建筑结构中的杆梁框架以及建模简化过程
4.2 杆件有限元分析的标准化标准与算例
1 基本力学原理 杆件是最常用的承力构件,它的特点是连接它的两端一般都是铰
接接头,因此,它主要是承受沿轴线的轴向力,因两个连接的构件在 铰接接头处可以转动,则它不传递和承受弯矩。
有一个左端固定的拉杆,其右端承受一外力P。该拉杆的长度为l, 横截面积为A,弹性模量为E,如图4-2所示,这是一个一维问题,下 面讨论该问题的力学描述与求解。
K T eT K eT e
节点力阵
e
p T eT pe
刚度方程
ee
e
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
j
·
x
i·
Chapter 5 Bernoulli-Euler Beam
z
27
福州大学研究生课程-有限元程序设计
平面桁架杆单元(2D LINK1)
空间杆单元(3D
LINK8)
平面刚架,BEAM3 空间梁单元(BEAM4)
Chapter 5 Bernoulli-Euler Beam
28
福州大学研究生课程-有限元程序设计
举例说明
Chapter 5 Bernoulli-Euler Beam
18
福州大学研究生课程-有限元程序设计
这种高斯积分阶数低于被积函数所有项次精确 积分所需要阶数的积分方案称之为减缩积分。 实际计算表明:采用缩减积分往往可以取得较 完全积分更好的精度。这是由于: 精确积分常常是由插值函数中非完全项的 最高方次要求,而决定有限元精度的是完全多 项式的方次。这些非完全的最高方次项往往不 能提高精度,反而可能带来不好的影响。取较 低阶的高斯积分,使积分精度正好保证完全多 项式方次的要求,而不包括更高次的非完全多 项式的要求,其实质是相当用一种新的插值函 数替代原来的插值函数,从而一定情况下改善 19 Chapter 5 Bernoulli-Euler Beam 了单元的精度。
福州大学研究生课程-有限元程序设计
有限元程序设计
——梁单元,静力问题
谷 音 福州大学土木工程学院
2012
1
福州大学研究生课程-有限元程序设计
§1. 介绍. 框架结构,例如桁架、桥梁 轴力构件 axial elements 杆 受弯构件 flexural elements 梁 平面梁单元 plane beam element
Chapter 5 Bernoulli-Euler Beam
11
福州大学研究生课程-有限元程序设计
其中k为与截面及泊松比µ 相关的函数,可从弹性理论推导得到
假设变形场的整体势能为:
Chapter 5 Bernoulli-Euler Beam
12
福州大学研究生课程-有限元程序设计
Chapter 5 Bernoulli-Euler Beam
Y X
○ ○ ○
x
x y
○
○
P
Chapter 5 Bernoulli-Euler Beam
26
福州大学研究生课程-有限元程序设计
杆系结构单元主要有铰接杆单元和梁单元两种 类型。它们都只有2个节点i、j。 约定:单元坐标系的原点置于节点i;节点i到j的 杆轴(形心轴)方向为单元坐标系中x轴的正向。 y 轴、z轴都与x轴垂直,并符合右手螺旋法则。 对于梁单元, y轴和z轴分别为横截面上的两个惯 性主轴。
This element allows a different unsymmetrical geometry at each end and permits the end nodes to be offset from the centroidal axis of the beam
Chapter 5 Bernoulli-Euler Beam
除非ψ是常数(没有弯曲变形),否则, dw/dx-ψ不会为零。这种现象称为剪切闭锁。 shear-locking
Chapter 5 Bernoulli-Euler Beam
17
福州大学研究生课程-有限元程序设计
几种方法避免产生剪切闭锁
减缩积分
数值积分采用比精确积分要求少的积分点数
假设剪切应变 替代插值函数
Chapter 5 Bernoulli-Euler Beam
9
福州大学研究生课程-有限元程序设计
内部力
其中假设
Chapter 5 Bernoulli-Euler Beam
10
福州大学研究生课程-有限元程序设计
实际上τxz采用以下形式:
其中变量与z相关。
为了确定截面的不均匀剪应力分布,引入因素k修正剪应 力:
30
福州大学研究生课程-有限元程序设计
Chapter 5 Bernoulli-Euler Beam
31
福州大学研究生课程-有限元程序设计
3-D Elastic Beam
six degrees of freedom at each node BEAM4 is a uniaxial element with tension, compression, torsion, and bending capabilities.
Chapter 5 Bernoulli-Euler Beam
37
福州大学研究生课程-有限元程序设计
Chapter 5 Bernoulli-Euler Beam
15
福州大学研究生课程-有限元程序设计
Chapter 5 Bernoulli-Euler Beam
16
福州大学研究生课程-有限元程序设计
挠度与转动采用了同阶的插值表示式。 dw/dx 与ψ不同阶,因此,泛函中的第二项 中的dw/dx-ψ的积分,对于柔性梁(l/n 趋于 无穷大时)会被严重放大。
Chapter 5 Bernoulli-Euler Beam
20
福州大学研究生课程-有限元程序设计
Chapter 5 Bernoulli-Euler Beam
21
Timoshenko 梁 (采用精确积分)
福州大学研究生课程-有限元程序设计
Chapter 5 Bernoulli-Euler Beam
Chapter 5 Bernoulli-Euler Beam
6
福州大学研究生课程-有限元程序设计
Pj —— 集中荷载; Mj —— 弯矩力偶。
e.g. 对于均匀分布荷载
Chapter 5 Bernoulli-Euler Beam
7
福州大学研究生课程-有限元程序设计
§3. 铁木辛柯梁理论 3.1 理论
This element is well-suited for linear, large rotation, and/or large strain nonlinear applications.
Chapter 5 Bernoulli-Euler Beam
35
福州大学研究生课程-有限元程序设计
Chapter 5 Bernoulli-Euler Beam
Chapter 5 Bernoulli-Euler Beam
2
福州大学研究生课程-有限元程序设计
§2. 经典梁单元 (Bernoulli-Euler) Beam : 梁在纯弯曲时的平面假设 平面-梁-假设 Plane-beam-assumption 梁的各个横截面在变形后仍保持为平
面,并仍垂直于变形后的轴线,只是横截
36
福州大学研究生课程-有限元程序设计
BEAM189 3-D Quadratic Finite Strain Beam BEAM189 is a quadratic (3-node) beam element in 3-D. For a description of the low-order beam, see BEAM188.
BEAM24 3-D Thin-walled Beam The element has plastic, creep, and swelling capabilities in the axial direction as well as a user-defined cross-section. BEAM44 3-D Elastic Tapered Unsymmetric Beam This element allows a different unsymmetrical geometry at each end and permits the end nodes to be offset from the centroidal axis of the beam
小变形理论 面绕某一轴旋转了一个角度。 One-variable beam theory 几何关系
中面法线在变形后仍保持和中面垂直的直法线假设
物理关系(应力应变关系)
Chapter 5 Bernoulli-Euler Beam
3
福州大学研究生课程-有限元程序设计
平衡方程 边界条件
or or where k —— 曲率 M, Q —— 弯矩,剪力
22
福州大学研究生课程-有限元程序设计
采用缩减积分
Chapter 5 Bernoulli-Euler Beam
23
福州大学研究生课程-有限元程序设计
Chapter 5 Bernoulli-Euler Beam
24
福州大学研究生课程-有限元程序设计
结构离散
取杆件与杆件交点、集中力作用点、杆件与支承 的交点为节点。相邻两节点间的杆件段是单元。节 点编号时力求单元两端点号差最小。
对剪切变形的影响
只考虑剪切变形
变形后轴线切向与变形前轴线之间的转角 β( x).
Chapter 5 Bernoulli-Euler Beam
8
福州大学研究生课程-有限元程序设计
β( x) 相应给出沿着中线剪切角 γxz
其中 ψ (x) 为只考虑梁弯曲理论中的线性单元转角. 假设 : 截面上均匀分布剪应变 弯曲产生的位移:
BEAM188 3-D Linear Finite Strain Beam BEAM188 is suitable for analyzing slender to moderately stubby/thick beam structures. This element is based on Timoshenko beam theory. Shear deformation effects are included.