不等式的基本性质ppt课件一
合集下载
不等式的基本性质 课件
a b 0 a b;a b 0 a b;a b 0 a b.
问题
上述结论是用类比的方法得到的,它们一 定是正确的吗?你能够给出它们的证明吗?
注意
1、注意公式成立的条件,要特别注意 “符号问题”;
2、要会用自然语言描述上述基本性质;
3、上述基本性质是我们处理不等式问题 的理论基础。
不等式的基本性质
【知识回顾】
1、不等式的概念: 同向不等式; 异向不等式; 同解不等式.
2、比较两个实数大小的主要方法:
(1)作差比较法:作差——变形——定号——下结论; (2)作商比较法:作商——变形——与1比较大小——下 结论. 大多用于比较幂指式的大小.
探究!
类比等式的基本性质,不等 式有哪些基本性质呢?
例1已知a b 0,c d 0,求证 ab . dc
例2、已知a>b>0,C<d<0,e<0,求证:
e
e
ቤተ መጻሕፍቲ ባይዱ
ac bd
【解题回顾】在证明不等式时要依据不等式的性质进行,不能 自己“制造”性质来进行.
不等式的基本性质
(1)a b b a(对称性); 单向性 (2)a b,b c a ( c 传递性); (3)abacb( c 可加性); 双向性 ab,cd acbd; (4)ab,c0acbc;ab,c0acbc; ab0,cd 0acbd; (5)ab0,nN,n1an bn; (6)a b 0,nN ,n 1 n a n b.
问题
上述结论是用类比的方法得到的,它们一 定是正确的吗?你能够给出它们的证明吗?
注意
1、注意公式成立的条件,要特别注意 “符号问题”;
2、要会用自然语言描述上述基本性质;
3、上述基本性质是我们处理不等式问题 的理论基础。
不等式的基本性质
【知识回顾】
1、不等式的概念: 同向不等式; 异向不等式; 同解不等式.
2、比较两个实数大小的主要方法:
(1)作差比较法:作差——变形——定号——下结论; (2)作商比较法:作商——变形——与1比较大小——下 结论. 大多用于比较幂指式的大小.
探究!
类比等式的基本性质,不等 式有哪些基本性质呢?
例1已知a b 0,c d 0,求证 ab . dc
例2、已知a>b>0,C<d<0,e<0,求证:
e
e
ቤተ መጻሕፍቲ ባይዱ
ac bd
【解题回顾】在证明不等式时要依据不等式的性质进行,不能 自己“制造”性质来进行.
不等式的基本性质
(1)a b b a(对称性); 单向性 (2)a b,b c a ( c 传递性); (3)abacb( c 可加性); 双向性 ab,cd acbd; (4)ab,c0acbc;ab,c0acbc; ab0,cd 0acbd; (5)ab0,nN,n1an bn; (6)a b 0,nN ,n 1 n a n b.
基本不等式课件(共43张PPT)
02
基本不等式的证明方法
综合法证明基本不等式
利用已知的基本不等式推导
01
通过已知的不等式关系,结合不等式的性质(如传递性、可加
性等),推导出目标不等式。
构造辅助函数
02
根据不等式的特点,构造一个辅助函数,通过对辅助函数的分
析来证明原不等式。
利用数学归纳法
03
对于涉及自然数n的不等式,可以考虑使用数学归纳法进行证明。
分析法证明基本不等式
寻找反例
通过寻找反例来证明某个不等式不成 立,从而推导出原不等式。
利数,可以利用中间值定理 来证明存在某个点使得函数值满足给 定的不等式。
通过分析不等式在极限情况下的性质, 来证明原不等式。
归纳法证明基本不等式
第一数学归纳法
通过对n=1和n=k+1时的情况进行归纳假设和推导,来证 明对于所有正整数n,原不等式都成立。
拓展公式及其应用
要点一
幂平均不等式
对于正实数$a, b$和实数$p, q$,且$p < q$,有 $left(frac{a^p + b^p}{2}right)^{1/p} leq left(frac{a^q + b^q}{2}right)^{1/q}$,用于比较不同幂次的平均值大小。
要点二
切比雪夫不等式
算术-几何平均不等式(AM-GM不等式):对于非负实数$a_1, a_2, ldots, a_n$,有 $frac{a_1 + a_2 + ldots + a_n}{n} geq sqrt[n]{a_1a_2ldots a_n}$,用于求解最值问题。
柯西-施瓦茨不等式(Cauchy-Schwarz不等式):对于任意实数序列${a_i}$和${b_i}$,有 $left(sum_{i=1}^{n}a_i^2right)left(sum_{i=1}^{n}b_i^2right) geq left(sum_{i=1}^{n}a_ib_iright)^2$,用于证明与内积有关的不等式问题。
基本不等式ppt课件
对于任意实数a和b,$(a-b)^2 \geq 0$,即 $a^2 - 2ab + b^2 \geq 0$。
利用均值不等式证明
对于任意实数a和b,$a^2 + b^2 \geq 2ab$,即$(a-b)^2 \geq 0$。
利用导数证明
对于任意实数a和b,设f(x) = x^2 - 2x(a+b) + (a+b)^2,则f'(x) = 2x - 2(a+b) = 2(x-ab),当x≥a+b时,f'(x) ≥0;当x ≤ a+b时, f'(x) ≤0。故f(x)在区间[a+b, +\infty)上单调 递增,在区间(-\infty, a+b]上单调递减。于 是有f(x) ≥ f(a+b) = a^2 - 2ab + b^2 ≥0 。
02
基本不等式的应用
几何意义
直线和圆
利用基本不等式可以判断直线和圆的 位置关系,以及求解圆中弦长等几何 问题。
面积和体积
利用基本不等式可以求解一些涉及面 积和体积的问题,例如在给定周长的 条件下,求矩形或立方体的最大面积 或体积等。
代数意义
方程
利用基本不等式可以求解一些涉及方程的问题,例如利用基本不等式求根,判 断方程解的个数等。
证明方法
利用代数公式和实数的性质进行 证明。
基本不等式的性质
非负性
对于任意实数a和b,总有$(a-b)^2 \geq 0$,即$a^2 - 2ab + b^2 \geq 0$。
等号成立条件
当且仅当a=b时,基本不等式取等号。
传递性
若a≥b,c≥d,则ac≥bd。
基本不等式的证明
利用均值不等式证明
对于任意实数a和b,$a^2 + b^2 \geq 2ab$,即$(a-b)^2 \geq 0$。
利用导数证明
对于任意实数a和b,设f(x) = x^2 - 2x(a+b) + (a+b)^2,则f'(x) = 2x - 2(a+b) = 2(x-ab),当x≥a+b时,f'(x) ≥0;当x ≤ a+b时, f'(x) ≤0。故f(x)在区间[a+b, +\infty)上单调 递增,在区间(-\infty, a+b]上单调递减。于 是有f(x) ≥ f(a+b) = a^2 - 2ab + b^2 ≥0 。
02
基本不等式的应用
几何意义
直线和圆
利用基本不等式可以判断直线和圆的 位置关系,以及求解圆中弦长等几何 问题。
面积和体积
利用基本不等式可以求解一些涉及面 积和体积的问题,例如在给定周长的 条件下,求矩形或立方体的最大面积 或体积等。
代数意义
方程
利用基本不等式可以求解一些涉及方程的问题,例如利用基本不等式求根,判 断方程解的个数等。
证明方法
利用代数公式和实数的性质进行 证明。
基本不等式的性质
非负性
对于任意实数a和b,总有$(a-b)^2 \geq 0$,即$a^2 - 2ab + b^2 \geq 0$。
等号成立条件
当且仅当a=b时,基本不等式取等号。
传递性
若a≥b,c≥d,则ac≥bd。
基本不等式的证明
不等式的基本性质 课件
1)·(a2-a+1).
题型三
利用不等式的基本性质求范围
【例 3】 已知 60<x<84,28<y<33,则 x-y 的取值范围为
, 的取值范围为
.
解析:∵x-y=x+(-y),∴需先求出-y 的范围.
1
1
∵ = · , ∴ 需先求出 的范围.
1
1
60
∵60<x<84,∴27<x-y<56,
4
2
4
4
2
4
π
-
π
< .
∴− ≤
2
2
2
-
π
-
< 0.
< 0. ∴ − ≤
又 α<β,∴
222Fra bibliotekππ π -
+
的取值范围为 - ,0 .
,
的取值范围为 - ,
故
2
2 2 2
2
(4)如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc.
(5)如果a>b>0,那么an>bn(n∈N,n≥2).
n
(6)如果 a>b>0,那么 >
(∈N,n≥2).
3.作差比较法
(1)理论依据:a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.
(2)方法步骤:①作差;②变形;③判断符号;④下结论.
由a>b 就可知
答案:C
2 +1
>
, 故正确;选项
题型三
利用不等式的基本性质求范围
【例 3】 已知 60<x<84,28<y<33,则 x-y 的取值范围为
, 的取值范围为
.
解析:∵x-y=x+(-y),∴需先求出-y 的范围.
1
1
∵ = · , ∴ 需先求出 的范围.
1
1
60
∵60<x<84,∴27<x-y<56,
4
2
4
4
2
4
π
-
π
< .
∴− ≤
2
2
2
-
π
-
< 0.
< 0. ∴ − ≤
又 α<β,∴
222Fra bibliotekππ π -
+
的取值范围为 - ,0 .
,
的取值范围为 - ,
故
2
2 2 2
2
(4)如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc.
(5)如果a>b>0,那么an>bn(n∈N,n≥2).
n
(6)如果 a>b>0,那么 >
(∈N,n≥2).
3.作差比较法
(1)理论依据:a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.
(2)方法步骤:①作差;②变形;③判断符号;④下结论.
由a>b 就可知
答案:C
2 +1
>
, 故正确;选项
不等式的基本性质PPT课件
事实上,如果a>b, c>0,因为ac-bc=c(ab)>0,所以ac>bc.
(7)将不等式6>-3和-4<-2的两边都乘-3,不等号的 方向是否改变?两边都除以-2呢?
6×3 < (-3)×3; (-4)×3 > (-2)×3; 6÷2 < (-3)÷2; (-4)÷2 > (-2)÷2.
(8)由(7)你发现了什么结论?能用不等式表示 出来吗?
a>b;甲的年龄大,a+c>b+c
(2)在数轴上,点A与点B分别对应实数a,b, 并且点A在点B的右边,请你用不等式表示a, b之间的大小关系.如果同时将点A,B向右(或 向左)沿x轴移动c个单位长度,得到点A′,B ′ (如图).你能用不等式表示点A′,B ′所对应 的数的大小关系吗?
a>b;a+c>b+c;a-c>b-c
判断下列式子是不是不等式:
(1)-3<0
是
(2)4x+3y>0 是
(3)x=3
不是
(4) x2+xy+y2 不是
(5)x+2>y+5 是
2 不等式的性质
等式具有那些性质? 不等式是否具有这些类似性质?
等式基本性质1:
等式的两边都加上(或减去)同一个整 式,等式仍旧成立
如果a=b,那么a±c=b±c
(3)由(1)(2),你发现了有关不等式的什 么结论呢?你能用不等式表示表示出来吗?
如果a>b,那么a±c>b±c.
也就是说,不等式的两边都加上(或减 去)同一数或同一个整式,不等号的方 向不变。
我们把这一性质作为不等式基本性质1.
(7)将不等式6>-3和-4<-2的两边都乘-3,不等号的 方向是否改变?两边都除以-2呢?
6×3 < (-3)×3; (-4)×3 > (-2)×3; 6÷2 < (-3)÷2; (-4)÷2 > (-2)÷2.
(8)由(7)你发现了什么结论?能用不等式表示 出来吗?
a>b;甲的年龄大,a+c>b+c
(2)在数轴上,点A与点B分别对应实数a,b, 并且点A在点B的右边,请你用不等式表示a, b之间的大小关系.如果同时将点A,B向右(或 向左)沿x轴移动c个单位长度,得到点A′,B ′ (如图).你能用不等式表示点A′,B ′所对应 的数的大小关系吗?
a>b;a+c>b+c;a-c>b-c
判断下列式子是不是不等式:
(1)-3<0
是
(2)4x+3y>0 是
(3)x=3
不是
(4) x2+xy+y2 不是
(5)x+2>y+5 是
2 不等式的性质
等式具有那些性质? 不等式是否具有这些类似性质?
等式基本性质1:
等式的两边都加上(或减去)同一个整 式,等式仍旧成立
如果a=b,那么a±c=b±c
(3)由(1)(2),你发现了有关不等式的什 么结论呢?你能用不等式表示表示出来吗?
如果a>b,那么a±c>b±c.
也就是说,不等式的两边都加上(或减 去)同一数或同一个整式,不等号的方 向不变。
我们把这一性质作为不等式基本性质1.
人教初中数学七下 9.1.2 不等式的性质课件1 【经典初中数学课件 】
【例】利用不等式的性质解下列不等式:
(3) 2 x﹥50;
3
不等式的两边都除以
2
,不等号的方向不变,得
3
x﹥75
这个不等式的解集在数轴上的表示如图所示:
0
75
【例】利用不等式的性质解下列不等式: (4)-4x﹥3.
不等式两边都除以_-_4__,不等号的方向_改__变___,得
x﹤- 3 4
这个不等式的解集在数轴上的表示如图所示:
B
C
D
E
三、巩固提高
一、平面上利用有序数对确定物体位置的方法
• 1、行列定位法: 例如: 座位
• 2、方格纸定位法: 例如: 棋盘
• 3、经纬定位法 例如:地图
• 4、区域定位法 例如:探究四的简图
四、概括整合
生活中还有哪些确定位置的其他方法?
(1)如果全班同学站成一列做早操,现在教师 想找某个同学,是否还需要用2个数据呢?
根据发现的规律填空:当不等式两边加或减 同一个数(正数或负数)时,不等号的方向_不__变___.
(3) 6>2, 6×5__﹥__2×5 , 6×(-5)_﹤___2×(-5) ;
(4)–2<3, (-2)×6_﹤__3×6 , (-2) ×(-6)_﹥__3×(-6 ) 当不等式两边乘同一个正数时,不等号的方向_不__变__; 而乘同一个负数时,不等号的方向_改__变__;
这个不等式的解集在数轴上的表示为:
0
33
【例】利用不等式的性质解下列不等式: (2)3x<2x+1; 解:不等式两边都减去_2_x__,不等号的方向_不__变__,得
3x-2x﹤2x+1-2x x﹤1
这个不等式的解集在数轴上的表示如图所示:
基本不等式ppt课件
a+b
当且仅当a
2
= b时,等号成立.
思考:如图,是圆的直径,点是上一点, = ,
D
= .过点作垂直于的弦,连接,.
a+b
ab
2
半径 = _______________,则
= _______________
与大小关系怎么样?
a+b
≥
(1)当积xy等于定值P时,
≥
2
证明:∵ x,y都是正数, ∴
1 2
时,积有最大值 .
4
xy.
p, ∴ x + y ≥ 2 p,
积定和最小
当且仅当x = y时,上式等号成立.
于是,当x = y时,和x + y有最小值2 p.
(2)当和x + y等于定值S时, xy ≤
S
,∴xy
2
当且仅当x = y,上式等号成立.
2
2
∴x +
4
]
2−x
4
,得x
2−x
4
的最大值为−2.
x−2
+ 2 ≤ −2 (2 − x)(
4
)
2−x
+ 2 = −2,
= 0或x = 4(舍去),即x = 0时等号成立.
练习巩固
练习2:已知0 < < 1,求 1 − 的最大值.
解:∵0 < < 1,∴ 1 − x > 0
∴ 1 − ≤
∴x +
4
x+4
− 4 ≥ 2 (x + 4) ∙
4
,即x
x+4
4
的最小值为0.
基本不等式(共43张)ppt课件
解法步骤与技巧
01
02
03
移项
将不等式两边的同类项进 行合并,并把未知数移到 不等式的一边,常数移到 另一边。
合并同类项
将移项后的不等式两边的 同类项进行合并。
系数化为1
将不等式两边的系数化为 1,得到不等式的解集。
解法步骤与技巧
注意不等号的方向
在解不等式时,要注意不等号的方向,特别是在乘以或除以一个负数时,不等 号的方向要发生变化。
基本不等式(共43张)ppt课件
目录
• 基本不等式概念及性质 • 一元一次不等式解法 • 一元二次不等式解法 • 绝对值不等式解法 • 分式不等式和无理不等式解法 • 基本不等式在几何中的应用 • 基本不等式在函数中的应用 • 总结回顾与拓展延伸
01
基本不等式概念及性质
不等式定义与分类
不等式定义
根);
04
05
当 $Delta < 0$ 时,方程无 实根,有两个共轭复根。
04
绝对值不等式解法
绝对值概念及性质
绝对值定义
对于任意实数$x$,其绝对值$|x|$定义为:若$x geq 0$,则$|x| = x$;若$x < 0$,则$|x| = -x$。
绝对值的性质
非负性、对称性、三角不等式。
绝对值不等式解法步骤
将不等式左边进行因式分解,找出不 等式的临界点。
无理不等式解法
第一步
确定无理不等式的定义域,即根 号内的表达式必须大于等于零。
第二步
通过平方消去根号,将无理不等式 转化为有理不等式。
第三步
利用有理不等式的解法,求解转化 后的不等式,得到原无理不等式的 解集。
综合应用举例
例1
7.不等式的基本性质PPT课件(沪科版)
知识总结
不等式的基 不等式的两边都乘以(或除以)同 本性质3 一个负数,不等号的方向改变.
变号
不等式的基 本性质4
不等式的基 本性质5
如果a>b,那么b<a 如果a>b,b>c,那么a>c
变号
注意传递 性
方法规律总结: 不等式的基本性质与等式的基本性质的区分和联系. 区分:等式两边都乘(或除以)同一个负数时,等式仍然
性质5 如果a>b, b>c那么a>c. 例如,由∠A>∠B,∠B>30°,可得∠A>30°.
(来自《教材》)
例4•〈绵阳〉设“▲”“●”“■”分别表示三种不同的 物体,现用天平称两次,情况如图所示,那 么▲,●,■这三种物体按质量从大到小排列 应为( ) C
•A.■,●,▲
B.▲,■,●
•C.■,▲,●
cc
(来自《教材》)
知2-讲
例2 已知实数a、b ,若a>b ,则下列结论正确
的是( D )
A.a-5<b-5
a
C.3
<
b 3
B.2+a<2+b D.3a>3b
知2-讲
导引:不等式的两边同时加上或减去一个数,不等号 的方向不变,不等式的两边同时除以或乘以一 个正数,不等号的方向也不变,所以A、B、C 错误,选D.
• 这样,对于不等式a>b,两边同乘以-3, 会得到什么结果呢?
知3-导
×(-1)
×3
a>b a×(-1)<b×(-1) a×(-3)<b×(-3).
×(-3)
3. 如果a>b,c<0,那么ac与bc有怎样的大小关系?
(来自《教材》)
归纳
知3-导
性质3 不等式的两边都乘以(或除以)同一个负 数,不等号的方向改变.即 如果a>b,c<0,那么ac<bc,a < b .
《不等式的基本性质》PPT课件 (共23张PPT)
先×(-3),再+2
先再
1.已知x>y,比较2-3x与2-3y的大 前 定
小. 先×(-3),再+2
后不 比等
×(a-3)
较号
2.已知m<<n,且(a-3)m> >(a-3)n,求a的范
围.
×(a-3)
解: 由题意可得:a-3<0(不等式的基本性质3)
∴a<3(不等式的基本性质2)
例1:已知x>y,试比较-2x和-2y的大小,并 说明理由
一个不为0的数,所得结果仍是等式
如果a=b,那么ac=bc,a÷c=b÷c(c≠0)
探索与发现
观察:用“<”或“>”填空,并找一找其中的规律.
(1)6>4 6+2__>__4+2
6-2__>__4-2
(2) –1<3 -1+2__<__3+2 -1-3_<___3-3
发现:当不等式两边加上或减去同一个 数时,不等号的方向___不__变___
变式1:比较a-2x和a-2y的大小
变式2:比较 a 2x 和 a 2 y 的大小
3
3
变式3: 若x>y,且(a-3)x<(a-3)y,求a的取值范围。
变式4:若x>y,比较(a-3)x与(a-3)y的大小?
例2:由 5 >2可得( 5)2 >2 5 ,
不等式两边同时乘了
,
你能由 5 >2,推出 5 <2Байду номын сангаас5吗?
×(-3)
(6)若m>>-3,则-3m < 9;
×(-3)
(7)若a≥b,则2a ≥ 2b; (8)若-a<b,则a >-b.
不等式的基本性质ppt课件
你有什么发现? 当不等式的两边同乘同一个正数时,不等号的方 向不__变__;而乘同一个负数时,不等号的方向_改__变__.
8
不等式的两边都乘(或都除以)同一个正数,所
得的不等式仍成立; (不等号方向不变)
不等式的两边都乘(或都除以)同一个负数,必 须把不等号的方向改变,所得的不等式成立.
(不等号方向改变)
当不等式两边加或减去同一个数时,不等号的方向_不__变__
5
不等式的两边都加上(或 都减去)同一个数,所得到的 不等式仍成立. 即 如果a>b,那么a+c>b+c,a-c>b-c; 如果a<b,那么a+c<b+c,a-c<b-c.
6
不等式的基本性质2的证明: 如果a>b,那么a+c>b+c,a-c>b-c; 如果a<b,那么a+c<b+c,a-c<b-c.
23
例5、若 x y ,且 (a 3)x (a 3) y 求 a 的取值范围。
解:∵x<y, (a-3)x>(a-3)y ∴a-3<0 (不等式性质3) ∴a<3 (不等式性质2)
24
例6、某品牌计算机键盘的单价在60元至70元之 间,买3个这样的键盘需要多少钱?(用适当的 不等式表示)
依据__不__等__式__的__基_本__性__质. 3
(2)若 -2 x≤1,两边同除以-2,得X_≥__-__1_/_2_,依据 _不__等__式__的__基__本性质3 ;
(3)若-m>5,则m < -5.(依据 不等式的基本性)质3 (4)已知x>y,那么-3x < -3y
(依据 不等式的基本性质3 )
解:设计算机键盘的单价为x元, 由题意得:
60≤X≤70
8
不等式的两边都乘(或都除以)同一个正数,所
得的不等式仍成立; (不等号方向不变)
不等式的两边都乘(或都除以)同一个负数,必 须把不等号的方向改变,所得的不等式成立.
(不等号方向改变)
当不等式两边加或减去同一个数时,不等号的方向_不__变__
5
不等式的两边都加上(或 都减去)同一个数,所得到的 不等式仍成立. 即 如果a>b,那么a+c>b+c,a-c>b-c; 如果a<b,那么a+c<b+c,a-c<b-c.
6
不等式的基本性质2的证明: 如果a>b,那么a+c>b+c,a-c>b-c; 如果a<b,那么a+c<b+c,a-c<b-c.
23
例5、若 x y ,且 (a 3)x (a 3) y 求 a 的取值范围。
解:∵x<y, (a-3)x>(a-3)y ∴a-3<0 (不等式性质3) ∴a<3 (不等式性质2)
24
例6、某品牌计算机键盘的单价在60元至70元之 间,买3个这样的键盘需要多少钱?(用适当的 不等式表示)
依据__不__等__式__的__基_本__性__质. 3
(2)若 -2 x≤1,两边同除以-2,得X_≥__-__1_/_2_,依据 _不__等__式__的__基__本性质3 ;
(3)若-m>5,则m < -5.(依据 不等式的基本性)质3 (4)已知x>y,那么-3x < -3y
(依据 不等式的基本性质3 )
解:设计算机键盘的单价为x元, 由题意得:
60≤X≤70
不等式的基本性质(共16张PPT)
复习回顾
(1)什么叫做不等式?
例如: 5x12 x5
6
4
(2)等式有哪些性质?你能分别用文字语言和符号语言
表示吗?
问题:研究等式性质的基本思路是什么?
运算的 不变性
探究1 不等式的性质1
为了研究不等式的性质,我们可以先从一些数字的运算
开始.用“<”或“>”完成下列两组填空.
① 5>3 5+2 3+2 , 5+(-2)
(1)x-5<11 ; (2)3x+3>2x+7 .
巧记口诀(拍掌读口诀) 加减都用性质1,不等号方向不改变 乘除正数性质2,不等号方向还不变 乘除负数性质3,不等号方向必改变
运用新知:
例1: 设a>b,用“<”或”>”填空,并说明依据不等式的哪条性质:
(1) a +12 b +12
(2) b -10 a -10
(3) 3a
3b
(5)-3.5b+1 -3.5a+1
不等式性质2: 不等式两边都乘(或除以)同一个正数,不等号的方 向不变.
数学语言: 如果a>b,c>0,那么ac>bc,a/c>b/c .
问题3:类似等式性质的符号语言表示,你能把不等式的性质2用符号语言表示吗?
针对练习:
(1)在不等式-8<0的两边都除以-8得-8÷(-8) (2)在不等式-3>-4的两边都乘以-3可得 (3)在不等式a>b的两边都乘以-1可得
-2 ×(-3)____ 3 ×(-3) -2 ÷(-3)_____ 3 ÷(-3)
课堂检测: 加减都用性质1,不等号方向不改变
(1)不等式的性质是什么?不等式性质与等式性质的联系与区别是
不等式的基本性质 课件
不等式的基本性质
1、不等式的概念: 同向不等式; 异向不等式; 同解不等式.
2、比较两个实数大小的主要方法: (1)作差比较法:作差——变形——定号——下结论; (2)作商比较法:作商——变形——与1比较大小——下 结论. 大多用于比较幂指式的大小.
类比等式的基本性质,不等式有哪些基本 性质呢?
a b 0 a b; a b 0 a b; a b 0 a b.
上述结论是用类比的方法得到的,它们一定是 正确的吗?你能够给出它们的证明吗?
以性质(3)为例给出证明:
(3)a b a c b(c 可加性);
证明:(1)先证明:a b ac bc
a b a-b 0
ab .
dc
证明:1 1 c d c d 0 1 1 0
d c dc
dc
1 1 0又a b 0 a b 0
dc
dc
故 a,c<d<0,e<0,求证:
a
e
c
b
e
d
证明: a b 0,c d 0a c b d
则 1 1 bacd 0 a c b d (a c)(b d )
不等式的基本性质
(1)a b b a(对称性); (2)a b,b c a ( c 传递性); (3)abacb( c 可加性);
单向性 双向性
ab,cd acbd; (4)ab,c0acbc;ab,c0acbc;
ab0,cd 0acbd;
(5)ab0,nN,n1an bn;
(6)a b 0,nN ,n 1 n a n b.
例 4.“已知-π2≤α≤π2,-π2≤β≤π2”,求α+2 β,α-2 β的取
值范围.
解:∵-π2≤α≤π2, -π2≤β≤π2, ∴-π≤α+β≤π.∴-π2≤α+2 β≤π2. 又∵-π2≤α≤π2,-π2≤-β≤π2, ∴-π≤α-β≤π.∴-π2≤α-2 β≤π2. ∴α+2 β、α-2 β的取值范围均为[-π2,π2].
1、不等式的概念: 同向不等式; 异向不等式; 同解不等式.
2、比较两个实数大小的主要方法: (1)作差比较法:作差——变形——定号——下结论; (2)作商比较法:作商——变形——与1比较大小——下 结论. 大多用于比较幂指式的大小.
类比等式的基本性质,不等式有哪些基本 性质呢?
a b 0 a b; a b 0 a b; a b 0 a b.
上述结论是用类比的方法得到的,它们一定是 正确的吗?你能够给出它们的证明吗?
以性质(3)为例给出证明:
(3)a b a c b(c 可加性);
证明:(1)先证明:a b ac bc
a b a-b 0
ab .
dc
证明:1 1 c d c d 0 1 1 0
d c dc
dc
1 1 0又a b 0 a b 0
dc
dc
故 a,c<d<0,e<0,求证:
a
e
c
b
e
d
证明: a b 0,c d 0a c b d
则 1 1 bacd 0 a c b d (a c)(b d )
不等式的基本性质
(1)a b b a(对称性); (2)a b,b c a ( c 传递性); (3)abacb( c 可加性);
单向性 双向性
ab,cd acbd; (4)ab,c0acbc;ab,c0acbc;
ab0,cd 0acbd;
(5)ab0,nN,n1an bn;
(6)a b 0,nN ,n 1 n a n b.
例 4.“已知-π2≤α≤π2,-π2≤β≤π2”,求α+2 β,α-2 β的取
值范围.
解:∵-π2≤α≤π2, -π2≤β≤π2, ∴-π≤α+β≤π.∴-π2≤α+2 β≤π2. 又∵-π2≤α≤π2,-π2≤-β≤π2, ∴-π≤α-β≤π.∴-π2≤α-2 β≤π2. ∴α+2 β、α-2 β的取值范围均为[-π2,π2].
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
50x 650 650 >12%, 当x=14时,不等式不成
立,所以x=14不是不等式的解。
1、比较a与a+2的大小; 2、比较2与2+a的大小。
1、解: ∵ 0< 2, ∴ a < a+2 2、解:若a <0,则 2+a <2;
若a > 0,则 2+a > 2; 若a = 0,则 2+a = 2;
若x<y,且(a-3)x>(a-3)y, 求a的取值范围. 解:∵x<y,且(a-3)x>(a-3)y, ∴a-3<0(不等式的基本性质3)
② 、不等式的两边都乘以(或除以)同一 个 正数,不等号的方向不变;
③ 、*不等式的两边都乘以(或除以)同 一个负数,不等号的方向要改变 ;
(2)能正确应用性质对不等式进行变形;
注意事项
当不等式两边都乘以(或除以)同 一个数 时,一定要看清是正数还是负数;对于未给定 范围的字母,应分情况讨论.
P9:习题1.2 第1、2、3题
∴a<3(不等式的基本性质2)
若x<y,且(a-3)x>(a-3)y, 求a的取值范围.
解:∵x<y,且(a-3)x>(a-3)y, ∴a-3<0(不等式的基本性质3) ∴a<3(不等式的基本性质2)
1、某商店先在广州以每件15元的价格购进某 种商品10件,后来又到深圳以每件12.5元的 价格购进同一种商品40件。如果商店销售这 些商品时,每件定价为x元,可获得大于12% 的利润,用不等式表示问题中的不等关系, 并检验 x=14(元)是否使不等式成立?
解: (1)根据不等式的性质1,两边都加上2得:
x-2+2 > 3+2
即 x >5
(2)根据不等式的性质3,两边都除以-2得:
x < 3 2
选择适当的不等号填空,并说明理由:
(1)若a<b , 则-a___>_-b, 则2-a__>__2-b;
(2)若x>y,则2x-1_>___2y-1; (3)若6 x < 5x-1 ,
填空: 1、若x+1>0,两边同加上-1,
得__x_>_-_1____
(依据:不_等__式__的__基_本__性__质__2_); 2、若 1 x≤ 1,两边同乘-3,
32
得 _x_≥___3____
2
(依据:不__等__式__的__基_本__性__质__3_).
3、把下列不等式化成 x< a 或 x> a 的 形式: (1) x-2 > 3 (2) -2 x >3
则x__<__-1
已知a>0,试比较2a与a的大小.
解:在数轴上分别表示2a和a
的点(a>0),如图.
a
a
0t;a.
思考:当a<0呢? 当a=0呢?
试比较5a与3a 的大小。
解:∵ 5 > 3
∴ 5a 3a
想想:这种解法对吗?如果正确,说 出它根据的是不等式的哪一条基本性 质;如果不正确,请说明理由。
不等式与等式只有一字之差,那么它们的性 质是否也有相似之处呢?
初 小 崭 百锋 出 试 露 尺芒 茅 牛 头 竿毕 庐 刀 角 头露
选择适当的不等号填空,并说明理由.
(1)若a>b,则2a _>__2b
(2)若a>b,则–a <___–b
(3)若a>-b,则a+b__>__0;
(4)若–a<b,则a__>__–b
答:这种解法不正确,因为字母 a的取值范
围我们并不知道。如果 a 0,那么 5a 3a ;
如果a 0,那么 3a 5a 。
(1)掌握不等式的三条性质,尤其是性质3; (2)能正确应用性质对不等式进行变形;
本节重点
(1)掌握不等式的三条性质,尤其是性质3; 不等式的三条性质是:
① 、不等式的两边都加上(或减去)同一 个 数或同一个整式,不等号的方向不变;
§1.2 不等式的基本性质
读书改变命运 !刻苦成 就事业 !!态度决定一 切!!!
由a+5=b+5, 能得到a=b? 由a-5=b-5, 能得到a=b? 由5a=5b, 能得到a=b? 由–8a=–8b, 能得到a=b?
由2x+a=y+a,能得到2x=y?
挑战“记忆”:
还记得等式的基本性质吗?
等式的性质1:等式的两边都加上(或减去) 同一个整式,等式仍然成立. 等式的性质2:等式的两边都乘以(或除以) 同一个不为0的数,等式仍然成立.
50x 650 650 >12%, 当x=14时,不等式不成
立,所以x=14不是不等式的解。
1、比较a与a+2的大小; 2、比较2与2+a的大小。
1、解: ∵ 0< 2, ∴ a < a+2 2、解:若a <0,则 2+a <2;
若a > 0,则 2+a > 2; 若a = 0,则 2+a = 2;
若x<y,且(a-3)x>(a-3)y, 求a的取值范围. 解:∵x<y,且(a-3)x>(a-3)y, ∴a-3<0(不等式的基本性质3)
② 、不等式的两边都乘以(或除以)同一 个 正数,不等号的方向不变;
③ 、*不等式的两边都乘以(或除以)同 一个负数,不等号的方向要改变 ;
(2)能正确应用性质对不等式进行变形;
注意事项
当不等式两边都乘以(或除以)同 一个数 时,一定要看清是正数还是负数;对于未给定 范围的字母,应分情况讨论.
P9:习题1.2 第1、2、3题
∴a<3(不等式的基本性质2)
若x<y,且(a-3)x>(a-3)y, 求a的取值范围.
解:∵x<y,且(a-3)x>(a-3)y, ∴a-3<0(不等式的基本性质3) ∴a<3(不等式的基本性质2)
1、某商店先在广州以每件15元的价格购进某 种商品10件,后来又到深圳以每件12.5元的 价格购进同一种商品40件。如果商店销售这 些商品时,每件定价为x元,可获得大于12% 的利润,用不等式表示问题中的不等关系, 并检验 x=14(元)是否使不等式成立?
解: (1)根据不等式的性质1,两边都加上2得:
x-2+2 > 3+2
即 x >5
(2)根据不等式的性质3,两边都除以-2得:
x < 3 2
选择适当的不等号填空,并说明理由:
(1)若a<b , 则-a___>_-b, 则2-a__>__2-b;
(2)若x>y,则2x-1_>___2y-1; (3)若6 x < 5x-1 ,
填空: 1、若x+1>0,两边同加上-1,
得__x_>_-_1____
(依据:不_等__式__的__基_本__性__质__2_); 2、若 1 x≤ 1,两边同乘-3,
32
得 _x_≥___3____
2
(依据:不__等__式__的__基_本__性__质__3_).
3、把下列不等式化成 x< a 或 x> a 的 形式: (1) x-2 > 3 (2) -2 x >3
则x__<__-1
已知a>0,试比较2a与a的大小.
解:在数轴上分别表示2a和a
的点(a>0),如图.
a
a
0t;a.
思考:当a<0呢? 当a=0呢?
试比较5a与3a 的大小。
解:∵ 5 > 3
∴ 5a 3a
想想:这种解法对吗?如果正确,说 出它根据的是不等式的哪一条基本性 质;如果不正确,请说明理由。
不等式与等式只有一字之差,那么它们的性 质是否也有相似之处呢?
初 小 崭 百锋 出 试 露 尺芒 茅 牛 头 竿毕 庐 刀 角 头露
选择适当的不等号填空,并说明理由.
(1)若a>b,则2a _>__2b
(2)若a>b,则–a <___–b
(3)若a>-b,则a+b__>__0;
(4)若–a<b,则a__>__–b
答:这种解法不正确,因为字母 a的取值范
围我们并不知道。如果 a 0,那么 5a 3a ;
如果a 0,那么 3a 5a 。
(1)掌握不等式的三条性质,尤其是性质3; (2)能正确应用性质对不等式进行变形;
本节重点
(1)掌握不等式的三条性质,尤其是性质3; 不等式的三条性质是:
① 、不等式的两边都加上(或减去)同一 个 数或同一个整式,不等号的方向不变;
§1.2 不等式的基本性质
读书改变命运 !刻苦成 就事业 !!态度决定一 切!!!
由a+5=b+5, 能得到a=b? 由a-5=b-5, 能得到a=b? 由5a=5b, 能得到a=b? 由–8a=–8b, 能得到a=b?
由2x+a=y+a,能得到2x=y?
挑战“记忆”:
还记得等式的基本性质吗?
等式的性质1:等式的两边都加上(或减去) 同一个整式,等式仍然成立. 等式的性质2:等式的两边都乘以(或除以) 同一个不为0的数,等式仍然成立.