微体古生物学外文翻译
古生物学与地层学专业分析
古生物学与地层学一、专业介绍1、概述:古生物学与地层学是地质学研究领域的一门重要的基础学科,通过对保存于地层中的各类化石的形态、结构、生态、分类、演化及地史分布等特征的分析,结合多学科综合研究手段,查明地层成因、时空分布,进行地层的划分和对比,建立区域地层系统格架,恢复古地理、古环境。
古生物学与地层学的研究,对揭示地球的发展历史,认识地球生命的起源、演化以及古地理、古气候、古环境的变化等都具有十分重要的意义。
2、研究方向:古生物学与地层学专业的研究方向主要有:(01)演化生物学(古脊椎动物学、古无脊椎动物学)(02)微体古生物学(03)古生态环境学(04)古生物地理学(05)综合地层学(06)沉积地层学(注:各大院校的研究方向有所不同,以北京大学为例)3、培养目标:本专业培养研究生具有良好的地质学基础,及一定的数理化及生物学基础,掌握古生物学、地层学、沉积学等基础理论及专门知识和技能,了解本学科发展动态和研究前沿。
能在研究中应用计算机,能熟练地运用一门外语,基本上具有从事科学研究或独立担负专门技术工作的能力,有严谨求实的学风,并具备较强的创新能力、分析问题与解决问题的能力。
学位论文应具有一定的创新性和学术价值。
且经过严格的野外工作和室内综合研究的训练,成为能在古生物学及地层学领域和其相关领域,如石油、煤炭、区域地质测量、综合考察等方面从事科研、教学、生产及业务管理的专门人才。
4、研究生入学考试科目:(101)思想政治理论(201)英语一或(202)俄语或(203)日语或(240)法语或(241)德语(611)高等数学与地质学基础(827)岩石学或(830)地史学或(831)古生物学或(827)岩石学(注:各大院校的考试科目有所不同,以北京大学为例)5、与之相近的一级学科下的其他专业:矿物学、岩石学、矿床学;地球化学;构造地质学;第四纪地质学。
6、课程设置:(以中国地质大学(北京)为例)该学科的必修课主要有:第一外语;自然辩证法/科学社会主义;数值分析;C++程序设计;综合地层学;沉积地质学;现代古生物学。
英汉古生物学词汇
英汉古生物学词汇古生物学是研究地球上古代生物的科学,主要包括古生态学、古动物学和古植物学。
下面我们将介绍一些常用的英汉古生物学词汇,帮助读者更好地了解和学习古生物学。
1. 古生态学(Paleoecology)古生态学是研究古代生态系统的学科,通过化石和化石记录来重建古代生态环境,推测古代生物之间的相互作用和生态位。
2. 古动物学(Paleozoology)古动物学是研究古代动物的学科,通过化石记录来了解古代动物的起源、演化和灭绝过程,探索地球上古代生物多样性的变化。
3. 古植物学(Paleobotany)古植物学是研究古代植物的学科,通过研究化石植物和花粉化石来了解古代植物的形态、结构和植物群落的演化。
4. 化石(Fossil)化石是古生物学中的重要证据,是地球上古代生物的遗骸、遗迹或遗物在地质历史中保存下来的痕迹。
5. 生物化石(Biological fossil)生物化石是指古代生物的遗骸、遗迹或遗物在地质历史中保存下来并转化为化石的痕迹,如化石骨骼、木化石、化石植物等。
6. 同位素(Isotope)同位素是元素原子核中质子数相同、中子数不同的核素,同位素的存在可以通过自然放射性变化来测定地质年代或研究生物之间的关系。
7. 演化(Evolution)演化是生物种群在长期时间内的遗传变化过程,通过基因突变、自然选择等机制,使生物种群适应环境变化并产生新的物种。
8. 生物多样性(Biodiversity)生物多样性是指地球上生物的多样性和丰富性,包括物种多样性、基因多样性和生态系统多样性,是生态系统正常运作和生物进化的基础。
9. 灭绝(Extinction)灭绝是指某一物种在地球上完全消失的过程,可能是由于环境变化、天灾人祸或竞争失败等原因造成的。
10. 演化树(Phylogenetic tree)演化树是通过比较生物形态、遗传信息等数据建立起来的物种进化关系图,用于描述物种之间的亲缘关系和演化历史。
医学常用微生物学名词英汉翻译
医学常用微生物学名词英汉翻译微生物学作为医学领域中的重要学科,涉及到许多微生物学名词的英汉翻译。
准确的翻译对于医学研究和临床实践都具有重要意义。
以下是一些常用微生物学名词的英汉翻译示例。
1. Bacteria - 细菌Bacteria are single-celled microorganisms that can be found in various habitats.2. Virus - 病毒Viruses are infectious agents that can cause diseases in humans, animals, and plants.3. Fungi - 真菌Fungi are a group of organisms that include yeasts, molds, and mushrooms.4. Protozoa - 原生动物Protozoa are single-celled eukaryotic microorganisms that can be found in water and soil.5. Parasite - 寄生虫Parasites are organisms that live in or on another organism (host) and obtain nutrients from the host.6. Antibiotic - 抗生素Antibiotics are substances that can inhibit the growth of or destroy bacteria.7. Antimicrobial - 抗菌剂Antimicrobials are substances that can inhibit the growth of or destroy microorganisms, including bacteria, viruses, fungi, and protozoa.8. Pathogen - 病原体Pathogens are microorganisms that can cause diseases in their hosts.9. Pathogenesis - 致病机制Pathogenesis refers to the process by which a pathogen causes disease in an organism.10. Immunization - 免疫Immunization is the process of inducing immunity against a particular disease through vaccination.11. Contagious - 传染的Contagious refers to a disease that can be transmitted from one person to another through direct or indirect contact.12. Sterilization - 杀菌Sterilization is the process of completely removing or destroying all microorganisms, including bacteria, viruses, fungi, and spores.13. Disinfection - 消毒Disinfection is the process of eliminating or reducing the number of pathogenic microorganisms on surfaces or objects.14. Culture - 培养Culture refers to the process of growing microorganisms in a controlled environment for research or diagnostic purposes.15. Resistance - 耐药性Resistance refers to the ability of microorganisms to withstand the effects of antimicrobial drugs.以上是一些医学常用微生物学名词的英汉翻译示例。
第1章古生物地层讲解
常用拉丁语缩写词 :
cf. 为conformis (相似、比较)的缩写。 aff. 为affinis (亲近)的缩写。 sp. 为species(种)的缩写. sp.indet. 为species indeterminata(不能鉴定
的种)之意 sp.nov.和gen.nov. 分别为species nova(新
研究古代生物地理分布的学科称为古生物地理学, 它研究的是古生物地理分布区系及其形成因素、古生物 的地理起源、迁移与扩散、孑遗与灭绝等科学问题,是 古生物学与生物地理学相结合的一门交叉学科。
1.分区单位:生物在地理上的分布,根据地域大小 不同划分不同的等级:大区(realm)、区(region)、 省或分区(province)。
水生活的叶肢介等
相 是指能够反映沉积环境的岩石特征和古生物及 其生活环境的化石特征的总和。如:
黑色笔石页岩相代表较深的滞流水还原环境; 造礁珊瑚化石能指示温暖浅海的环境 ; 猛犸象则指示寒冷环境 等。
化石同时也能指示古气 候,植物常按照气候纬度分 布。
岩石中化石的保存状态 还可得到古水流的方向。
凸与实物相反。
印痕化石
3)核化石:常见于两壳、两瓣齐全的生物体,分为 两种:
内核 贝体掩埋后,泥砂充填两壳之空腔,石化 后其充填物形成内核,表面显示内模。
外核 贝体被埋,两壳内无充填物,但壳体溶解 后留下一个同形空间,再被外来物质充填,石化后形成外 核,其外形与壳饰与原核体一致,但内部没有任何生物结 构。
研究对象 化石 研究内容 生物的形态、构造、分类、分布、演化、 生态等。 基础研究工作 化石的采集和挖掘、化石的处理和复 原、化石的鉴定和描述、分类及生物的生活方式和进化规 律等。
二、古生物学的分类学科
微生物英文词汇
微生物英文词汇active immunity(主动免疫);active transport(主动运输);Alcohol fermentation(乙醇发酵);aerobe(好氧微生物);aflatoxin(黄曲霉毒素);AIDS(爱滋病);Ames test(艾姆氏实验);anabolism(合成代谢);anaerobe(厌氧微生物);antibiotic(抗生素);antibody(抗体);antigen(抗原);antigenic determinant(抗原决定基);antimetabolite(抗代谢物);antiseptic(防腐剂);antiserum(抗血清);antitoxin(抗毒素);arthrospore(节孢子);ascospore(子囊);asepsis(无菌);autoantibody(自身抗体);autoantigen(自身抗原);autoimmune disease(自身免疫疾病);bacteriophage(噬菌体);bacteriostatic(抑菌);binary fission(二分裂);broad spectrum(广谱);Capsid(衣壳);capsomer(衣壳粒):capsule(荚膜):Catabolism(分解代谢):cell-mediated immune(细胞介导免疫):chemoautotroph(化能自养菌):chemotaxis(趋化性):Chemotherapy(化学治疗剂):chitin(几丁质):complement(补体):Conldia(分生孢子):Conjugation(接合):Colony(菌落):Contaminant(污染物):Culture(培养物):differential medium(鉴别培养基):differential stain(鉴别染色):Disinfection(消毒):ELISA(酶联免疫):endospore(芽孢):endotoxin(内毒素):enriched medium(加富培养基):enveloped virus(包膜病毒):essential nutrient(必须营养):eucaryotic cell(真核细胞):Exotoxin(外毒素):Facultative(兼性的):Fermentation(发酵):Flagellum(鞭毛)Genotype(表型):Glycolysis(糖酵解):Gram stain(革兰氏染色):Granulocyte(粒细胞):growth factor(生长因子)Halophlle(嗜盐菌):H antigen(H-抗原):helper T cell(辅助T-细胞):Heterotroph(异养菌):Immunity(免疫):immunogen(免疫原):immune system(免疫系统):immunoglobulin(免疫球蛋白):Inclusion(内含物):Infection(感染):infectious disease(感染性疾病):Inflammation(发炎):Inoculation(接种):Interferon(干扰素):Isolation(分离):Latency(潜伏):L form(L-型菌):Lipopolysaccharide(脂多糖,LPS):Lysis(溶解):lysosome (溶酶体):病毒学virology噬菌体学bacteriophagology细菌学bacteriology鉴定细菌学determinative bacteriology系统细菌学systematic bacteriology真菌学mycology原生生物学protistology原生动物学protozoology普通微生物学general microbilogy微生物分类学microbial taxonomy微生物生理学microbial physiology微生物生物化学microbial biochemistry微生物遗传学microbial genetics微生物生态学microbial ecology古微生物学paleomicrobiology土壤微生物学soil microbiology水生微生物学aquatic microbiology海洋微生物学marine microbiology悉生生物学gnotobiology医学微生物学medical microbiology兽医微生物学veterinary microbiology农业微生物学agricultural microbiology工业微生物学industrial microbiology石油微生物学petroleum microbiology食品微生物学food microbiology乳品微生物学diary microbiology瘤胃微生物学rumen microbiology诊断微生物学diagnostic microbiology病原学etiology国际微生物学会联合会International Union of Microbiological Societies, IUMS中国微生物学会Chinese Society for Microbiology, CSM世界培养物保藏协会World Federation for Culture Collection, WFCC中国微生物菌种保藏管理委员会China Committee for Culture Collection of Microorganisms,CCCCM美国模式培养物保藏所American Type Culture Collection, A TCC自然发生说,无生源说spontaneous generation, abiogenesis原界urkingdom始祖生物progenote古始生物界archetista古细菌archaebacteria原生生物protista原生动物protozoan原生植物protophyte真核生物eukaryote原核生物prokaryote裂殖植物schizophyte微生物microorganism数值分类法numerical taxonomy模式目type order模式科type family模式属type genus模式种type species模式株type strain真菌fungi捕食真菌predacious fungi虫道真菌ambrosia fungi地下真菌hypogeal fungi虫生真菌entomogenous fungi菌根真菌mycorrhizal fungi木腐菌wood-decay fungi霉菌mold, mould半知菌imperfect fungi子囊菌ascomycetes粘菌slime mold, slime mould壶菌chytrid卵菌oomycetes接合菌zygomycetes担子菌basidiomycetes核菌pyrenomycetes盘菌cup fungi块菌truffles锈菌rust fungi蘑菇mushrooms毒蘑菇poisonous mushroom酵母菌yeast无孢子酵母菌asporogenous yeasts 有孢子酵母菌sporogenous yeasts 黑粉菌smut fungi双态性真菌dimorphic fungi毛外癣菌ectothrix毛内癣菌endothrix完全真菌perfect fungi黑粉病smut disease锈病rust disease菌丝hypha菌髓trama假菌丝体pseudomycelium气生菌丝体aerial mycelium基内菌丝体substrate mycelium球拍状菌丝体racquet mycelium 结节状菌丝nodular mycelium梳状菌丝pectinafe mycelium螺旋菌丝spiral mycelium匍匐菌丝stolon次生菌丝体secondary mycelium有隔菌丝septate hypha无隔菌丝nonseptate hypha生殖菌丝体reproductive mycelium 营养菌丝体vegetative mycelium不育菌丝体sterile mycelium菌丝体mycelium黄癣菌丝favic chandelier mycelium 产囊丝ascogenous hypha产囊体ascogonium原植体thallus粘菌体aethalium合胞体syncytium虫菌体hyphal body盾状体clypeus子实体fruiting body产孢体gleba子实层体hymenophore子实层hymenium子实下层subhymenium菌丝层subiculum菌丝段hyphal fragment菌丝束coremium菌丝索funiculus菌核sclerotium器菌核pycnosclerotium菌环annulus菌裙indusium菌盖pileus顶体apicle藏卵器oogonium雄器antheridium[锈菌]性孢子器pycnium锈子器aecium精子器spermogonium囊状体cystidium粉孢子梗oidiophore小梗sterigma接合孢子柄zygosporophore孢囊柄sporangiophore配囊柄suspensor孢子梗sporophore分生孢子梗conidiophore雄器柄androphore帚状枝penicillus瓶梗phialide梗基metulae芽孔germ pore芽管germ tube芽缝germ slit孢丝capillitium周丝periphysis类周丝periphysoid侧丝paraphysis拟侧丝pseudoparaphysis类侧丝paraphysoid[孢子]外壁exosporium外生菌根ectomycorrhiza内生菌根endomycorrhiza内外生菌根ectendomycorrhiza泡囊丛枝菌根vesicular-arbuscular mycorrhiza 刺突spike弹丝elater刚毛seta微体microbody泡囊vesicle隔膜septum假隔膜pseudoseptum分生孢子盘acervulus分生孢子座sporodochium精子团spermatium囊基膜hypothallus囊层基hypothecium囊层被epithecium囊间丝hamathecium囊托apophysis囊领collarette囊轴columella孔口ostiole菌托volva孢子角cirrus孢子球spore ball孢子印spore print聚簇cluster[菌丝]融合anastomosis[孢子]切落abjunction[孢子]缢断abstriction多态[现象] polymorphism缢缩[作用] constriction粉孢子oidium孢子spore掷孢子ballistospore厚壁孢子chlamydospore环痕孢子annellospore节孢子arthrospore卷旋孢子helicospore腊肠形孢子allantospore孔出孢子porospore星形孢子staurospore线形孢子scolecospore砖格孢子dictyospore侧生孢子aleuriospore芽生孢子blastospore瓶梗孢子phialospore无梗孢子thallospore分生孢子conidium大分生孢子macroconidium小分生孢子microconidium节分生孢子arthroconidium芽分生孢子blastoconidium器孢子pycnidiospore无隔孢子amerospore双胞孢子didymospore多隔孢子phragmospore休眠孢子hypnospore顶生孢子acrospore顶生厚壁孢子fuseau内分生孢子endoconidium担孢子basidiospore双孢担孢子dispore同形孢子isospore柄生孢子stylospore[锈菌]性孢子pycniospore产雄器孢子androspore锈孢子aeciospore夏孢子urediniospore, aeciospore 冬孢子teliospore四分孢子tetraspore粘孢子myxospore多核孢子coenospore孢囊孢子sporangiospore子囊孢子ascospore多核细胞coenocyte分生孢子果conidiocarp分生孢子器pycnidium孢[子]囊sporangium柱孢子囊merosporangium四分孢子囊tetrasporangium原孢子囊prosporangium多核孢子囊coenosporangium 休眠孢子囊hypnosporangium 子囊ascus接合孢子zygospore拟接合孢子azygospore原囊壁子囊prototunicate ascus 单囊壁子囊unitunicate ascus 双囊壁子囊bitunicate ascus子囊果ascocarp子囊壳perithecium闭囊壳cleistothecium闭囊果cleistocarp盘状子囊果discocarp孢囊果sporangiocarp[接]合子zygote单性合子azygote多核合子coenozygote异形合子heterozygote合子核zygotonucleus游动合子planozygote担子basidium半担子hemibasidium隔担子heterobasidium无隔担子holobasidium有隔担子phragmobasidium内生担子endobasidium原担子protobasidium上担子epibasidium下担子hypobasidium同担子homobasidium担子果basidiocarp担子体basidiophore配子gamete原配子progamete雄配子androgamete雄核发育androgenesis同形配子isogamete异形配子heterogamete游动配子zoogamete多核配子coenogamete配子囊gametangium配子母细胞gametocyte同形配子囊isogametangium原配子囊progametangium小孢子囊sporangiole微包囊microcyst足细胞foot cell脚胞foot cell固着器holdfast附着枝hyphopodium吸盘sucker锁状细胞clamp cell锁状联合clamp connection偶核细胞zeugite卵球oosphere卵质ooplasm孢原质sporoplasm卵配子oogamete卵孢子oospore球状胞sphaerocyst子囊腔locule子囊盘apothecium子囊座ascostroma缝裂壳hysterothecium下子座hypostroma包被peridium子座stroma壳心centrum拟包被pseudoperidium无融合生殖apomixis同宗配合homothallism准性生殖parasexuality异宗配合heterothallism同配生殖isogamy异配生殖heterogamy无配生殖apogamy配囊交配gametangial copulation 交配型mating type全型holomorph夏孢子期uredostage冬孢子堆teleutosorus, telium夏孢子堆uredinium子囊孢子形成ascosporulation孢子形成sporulation细菌bacteria薄壁[细]菌类gracilicutes硬壁[细]菌类fermicutes疵壁[细]菌类mendosicutes无壁[细]菌类tenericutes柔膜细菌mollicutes真细菌eubacteria暗细菌scotobacteria无氧光细菌anoxyphotobacteria生氧光细菌oxyphotobacteria放线菌actinomycetes螺[旋]菌spirilla粘细菌slime bacteria鞘细菌sheathed bacteria柄细菌caulobacteria弧菌vibrio根瘤细菌root nodule bacteria硫酸盐还原菌sulfate reducting bacteria硫细菌sulfur bacteria铁细菌iron bacteria紫色无硫细菌purple nonsulfur bacteria产甲烷菌methanogen硝化细菌nitrobacteria反硝化细菌denitrifying bacteria固氮细菌nitrogen fixing bacteria甲基营养菌methylotrophic bacteria产乙酸菌acetogen同型[产]乙酸细菌homoacetogenic bacteria光合作用细菌photosynthetic bacteria产氢产乙酸细菌hydrogen-producing acetogenic bacteria 同型发酵乳酸菌homofermentative lactic bacteria异型发酵乳酸菌heterofermentative lactic bacteria产氢菌hydrogenogens产气菌aerogen不产气菌anaerogen发光细菌luminous bacteria产色细菌chromogenic bacteria化能异养菌chemoheterotrophic bacteria化能自养菌chemoautotrophic bacteria光能异养菌photoheterotrophic bacteria光能自养菌photoautotrophic bacteria化能有机营养菌chemoorganotrophic bacteria 化能无机营养菌chemolithotrophic bacteria 光能有机营养菌photoorganotrophic bacteria 光能无机营养菌photolithotrophic bacteria有机营养菌organotrophic bacteria无机营养菌lithotrophic bacteria贫[营]养细菌oligotrophic bacteria一氧化碳营养菌carboxydotrophic bacteria自养菌autotrophic bacteria异养菌heterotrophic bacteria光养菌phototrophic bacteria需氧菌aerobe微需氧菌microaerobe耐氧菌aerotorelant bacteria厌氧菌anaerobe兼性厌氧菌facultative anaerobe专性厌氧菌obligate anaerobe溶原性细菌lysogenic bacteria腐生菌saprophytic bacteria苛求菌fastidious microorganism极端细菌extreme bacteria嗜压菌barophilic bacteria嗜盐菌halophilic bacteria嗜铁菌siderophilic bacteria嗜高渗细菌osmophilic bacteria微嗜氮菌oligonitrophilic bacteria嗜冷[细]菌psychrophilic bacteria嗜酸菌acidophilic bacteria嗜硫菌thiophilic bacteria中温菌mesophilic bacteria耐热细菌thermophilric bacteria氢营养菌hydrogenotrophic bacteria肠道细菌intestinal bacteria类菌体bacteroid细菌小体bacteriosome微生子gonidium蓝细菌cyanobacteria[蓝细菌]连锁体hormogonium类囊体thylakoid藻胆蛋白体phycobilisome静息孢子akinete滑行gliding异形[囊]胞heterocyst化学型chemotype化学变型chemovar血清型serotype血清变型serovar致病型pathotype致病变型pathovar生物型biotype生物变型biovar形态型morphotype形态变型morphovar革兰氏阳性菌Gram-positive bacteria 革兰氏阴性菌Gram-negative bacteria 球菌coccus双球菌diplococcus四联球菌tetrads八叠球菌sarcina球杆菌coccobacillus杆菌rod双杆菌diplobacillus棒状菌corynebacteria[细菌]毛状体trichome单鞭毛菌monotricha周[鞭]毛菌peritricha丛[鞭]毛菌lophotricha两端单[鞭]毛菌amphitrichate单端丛[鞭]毛菌cephalotricha滑行细菌gliding bacteria细菌L-型L-form of bacterium菌落colony酵母型菌落yeast type colony类酵母型菌落yeast like colony次生菌落secondary colony粗糙型菌落rough colony光滑型菌落smooth colony丝状型菌落filamentous type colony 子菌落daughter colony深层菌落deep colony粘液型菌落mucoid colony巨大菌落giant colony侏儒型菌落dwarf colony菌苔lawn菌胶团zoogloea菌膜pellicle[菌]醭mycoderm, pellicle群游现象swarming菌柄stipe[菌体]附器appendage鞭毛flagellum周质鞭毛periplasmic flagella轴丝axial filament菌毛pilus性丝sex pilus外生孢子exospore内生孢子endospore芽孢spore芽孢形成sporulation终端芽孢terminal spore近端芽孢subterminal spore中生芽孢central spore前芽孢forespore[芽孢]皮层cortex芽孢外膜exitine芽孢内膜intine外壁exine伴胞晶体parasporal crystal菌蜕ghost鞘sheath荚膜capsule粘液层slime layer微荚膜microcapsule壁膜间隙periplasmic space原生质体protoplast原生质球spheroplast气泡gas vacuole甲烷粒体methanochondria间体mesosome载色体chromatophore鞭毛基体flagellar basal body异染质volutin异染粒matachromatic granules致死颗粒killer particle紫膜purple membrane噬菌体bacteriophage无囊盖类inoperculatae超显微微生物ultramicroscopic organism 真菌噬菌体mycophage噬藻体phycophage烈性噬菌体virulent phage温和噬菌体temperate phage前原噬菌体preprophage原噬菌体prophage隐性前噬菌体cryptic prophage营养期噬菌体vegetative phage载体噬菌体carrier phageλ噬菌体lambda particles phage [可]诱导噬菌体inducible phage同源免疫噬菌体homoimmune phage 噬菌体分型bacteriophage typing噬菌体型phagetype噬菌体变型phagevar噬斑plaque[噬菌体]聚合头部polyhead[噬菌体]聚合尾鞘polysheath[噬菌体]伞毛fimbrium[噬菌体]颈须whisker[噬菌体]先导蛋白pilot protein[噬菌体]尾丝抗原fiber antigen[噬菌体]顶体apex[噬菌体]基片插孔base-plate hub [噬菌体]基片丝base-plate fibril [噬菌体]基片楔突base-plate wedge [噬菌体]串联体concatemer[噬菌体]颈部collar[噬菌体]顶部壳粒apical capsomere [噬菌体]尾丝tail fiber[噬菌体]畸形体monster[噬菌体]颈圈connector[噬菌体]髓部core[噬菌体]头部head[噬菌体]尾部tail[噬菌体]尾管tail tube[噬菌体]尾鞘tail sheath类病毒viroid病毒virus真病毒euvirus亚病毒subvirus原病毒provirus拟病毒virusoid卫星病毒satellite virus假型病毒pseudotype virus慢病毒slow virus辅助病毒helper virus过客病毒passenger virus多分体病毒multicomponent virus昆虫痘病毒entomopox virus, EPV颗粒体症病毒granulosis virus, GV多角体病毒polyhedrosis virus核型多角体病毒nuclear polyhedrosis virus, NPV质型多角体病毒cytoplasmic polyhedrosis virus,CPV 多粒包埋型病毒multiple embedded virus单粒包埋型病毒singly embedded virus伴随病毒associated virus浓核病毒densovirus,DNV内源病毒endogenous virus潜伏病毒latent virus肠道病毒enterovirus艾柯病毒ECHO virus虫媒病毒arbovirus腺病毒adenovirus腺伴随病毒adeno associated virus真菌病毒mycovirus肿瘤病毒oncovirus逆[转]录病毒retro virus坏死病毒necrosis virus虹彩病毒irido virus泛嗜性病毒pantropic virus毒株strain原[生小]体elementary body包含体inclusion body顾氏小体Guarnieri's bodies内氏小体Negri's body病毒[粒]体virion裸露病毒[粒]体naked virion假病毒体pseudovirion立体对称cubical symmetry二十面体对称icosahedral symmetry螺旋对称helical symmetry[病毒]五邻体pentomer,pentons[病毒]六邻体hexonmer,hexons复合对称complex symmetry包膜突起peplomerbody包膜envelope, peplos蛋白质包膜protein envelope[病毒]包膜抗原envelope antigen[病毒]壳体capsid[病毒]壳粒capsomer, capsomere二十面[体]壳体icosahedron capsid 核心core核壳nucleocapsid病毒原质体viroplasma病毒束virus bundle多角体polyhedron多角体蛋白polyhedrin颗粒体granule颗粒体蛋白granulin类核nucleoid内含颗粒inclusion granuleX体X-body[病毒]早期蛋白early protein[病毒]晚期蛋白late protein负链negative strand正链positive strand复制子replicon病毒发生基质virogenic stroma衣原体chlamydia[衣原体]始体initial body立克次氏体rickettsia假肽聚糖pseudopeptidoglycan肽聚糖peptidoglycan磷壁酸teichoic acid胞壁酸muramic acid2,6-吡啶二羧酸dipicolinic acid, DPA 脂多糖类lipopolysaccharides多糖包被glycocalyx鞭毛蛋白flagellin菌毛蛋白pilin杀白细胞素leucocidin豆血红蛋白leghaemoglobin藻胆蛋白phycobiliprotein藻青蛋白phycocyanin藻红蛋白phycoerythrin藻青素cyanophycin藻蓝素algocyan, leucocyan藻胆素phycobilin藻红[胆]素phycoerythrobilin藻蓝胆素phycocyanobilin藻青素颗粒cyanophycin granule别藻蓝素allophycocyanin类葫萝卜素carotenoids细菌淀粉粒granulose聚β羟基丁酸盐poly-β-hydroxy butyrate葡萄球菌A蛋白staphylococcal protein A, SPA 纯化蛋白衍生物purified protein derivative, PPD [葡萄球菌]凝固酶staphylocoagulaseβ[细胞]溶素β-lysinα淀粉酶α-amylase通透酶permease胞内酶intracellular enzyme胞外酶extracellular enzyme果胶酶pectinase逆[转]录酶reverse transcriptase凝固酶coagulase受体破坏酶receptor destroying enzyme, RDE透明质酸酶hyaluronidase纤维素酶cellulase链道酶streptodornase,SD链激酶streptokinase,SK神经氨酸酶neuraminidase青霉素酶penicillinase溶菌酶lysozyme[细菌]紫膜质bacteriorhodopsin菌紫素bacteriopurpurin[细]菌[叶]绿素bacteriochlorophyll自溶素autolysin亲菌素bacteriotropin攻击素aggressin抑殖素ablastin粘附素adhesin菌红素bacterioerythrin灵菌毒素prodigiosus toxin细菌素bacteriocin麻风菌素lepromin葡萄球菌素staphylococcin伞菌氨酸agarfitine苏云金菌素thuricin肠球菌素enterococcin布氏菌素brucellin大肠菌素colicin, colicine丁香假单胞菌素syringacin黄色粘球菌素xanthacin链球菌素streptocin流产菌素abortin绿脓[菌]素pyocyanin红假单胞菌素rhodopseudomonacin 绿脓菌荧光素pyofluorescein白喉毒素diphtheria toxin杯伞素clitocybine白细胞溶素leucolysin表皮溶解毒素epidermolytic toxin 产气荚膜梭菌素perfringocin肠毒素enterotoxin毒蝇碱muscarine肺炎球菌毒素pneumotoxin鬼笔[毒]环肽phalloidin根霉蝶呤rhizopterin肺炎[链]球菌溶血素pneumolysin 黑粉菌酸ustilagic acid分枝菌酸mycolic acid齿孔酸eburicoic acid根霉促进素rhizopin蘑菇素agaricin蘑菇酸agaricinic acid红斑毒素erythrogenic toxin黄曲霉毒素aflatoxin菌丝酰胺mycelianamide绿脓杆菌溶血素pyocyanolysin葡萄球菌溶血毒素staphylolysin真菌毒素mycotoxin曲霉毒素aspertoxin赭曲毒素ochratoxin曲酸kojic acid破伤风[菌]痉挛毒素tetanospasmin 溶葡萄球菌素lysostaphin破伤风[菌]溶血素tetanolysin溶纤维蛋白溶酶fibrinolysin溶血素hemolysin鼠疫菌素pesticin神经毒素neurotoxin杀[细]菌素bactericidin外毒素exotoxin内毒素endotoxin细菌毒素bacteriotoxin血凝素hemagglutinin杂色曲霉素A versicolorin A柄曲霉素sterigmatocystin毒植物素phytotoxin真菌醇mykol链球菌溶血素streptolysin剥脱性毒素exfoliative toxin细菌荧光素bacteriofluorescein[放线菌]土臭味素geosmins土壤杆菌素agrobacteriocin产甲烷[作用] methanogenesis生物转化bioconversion生长因子growth factor420 因子factor 420V 因子V factorX 因子X factormixed culture(混合培养):monoclonal antibody(单克隆抗体):Monocyte(单核细胞):Mutagen(诱变剂):Mutation(突变)Mycelium(菌丝体):narrow spectrum(窄谱):negative stain(负染色):nitrogen fixation(固氮):Nucleocapsid(核衣壳):Nucleoid(拟核):Nutrient(营养物质):Obligate(专性的):Parasite(寄生):Pasteurization(巴斯德消毒):Pathogen(病原体):Saprophytes(腐生型)Pathogenidty(致病性):Pathology(病原学):passive transport(被动扩散);Penicillins(青霉素):Peptidoglycan(肽聚糖):Plasmids(质粒)periplasmic space(周质空间):Phage(噬菌体):Phenotype(表型):Photoautotroph(光能自养菌):Pilus(性丝);prophage(前噬菌体):Protoplast(原生质体):Pseudohypha(假菌丝):Psychrophile(嗜冷菌):respiratory chain(呼吸链):reverse transcriptase(逆转录酶):SCP(单细胞蛋白):selective media(选择培养基):Serotyping(血清型):sexual reproduction(有性繁殖)Spheroplast(球形体):spike(刺突):Spirillum(螺菌):Spirochete(螺旋体):Sporangium(孢囊):Sterilization(灭菌):A Strain(菌株):subcellular vaccine(亚单位疫苗):superoxide ion(超氧离子):suppressor T cell(抑制T细胞):temperate phage(温和噬菌体):thermal death point(致死温度):thermal death time( 热致死时间):Therrnophlle(嗜热菌):Toxoid(类毒素):Transduction(转导):Transformation(转化):Transposon(转座):V accine(免疫法):V irold(类病毒):Zygospore(接合孢子)。
古生物学专业英语词汇
古生物学专业英语词汇摘要:古生物学是一门研究地球历史上生命的科学,它涉及到许多专业术语,这些术语对于古生物学的学习和研究是非常重要的。
本文根据不同的分类标准,整理了一些常用的古生物学专业英语词汇,并用表格的形式展示了它们的中文和英文对照。
1. 古生物学的分支古生物学是一门广泛的科学,它可以根据不同的研究对象、方法、目的等进行细分。
下表列出了一些常见的古生物学的分支及其英文名称。
中文英文古植物学paleobotany古动物学paleozoology微体古生物学micropaleontology古人类学paleoanthropology古遗传学paleogenetics古生态学paleoecology古气候学paleoclimatology古地理学paleogeography古生物地理学paleobiogeography古生化学paleobiochemistry古生物形态学paleobiomorphology古生物统计学paleobiostatistics2. 古生物学的研究对象古生物学的研究对象是地球历史上存在过的各种生命形式,它们通常通过化石或其他遗迹来保存和展示。
下表列出了一些常见的古生物学的研究对象及其英文名称。
中文英文化石fossil微化石microfossil无机化石inorganic fossil有机化石organic fossil原始化石primitive fossil进化化石evolutionary fossil指示化石index fossil活化石living fossil化石记录fossil record化石群落fossil community化石组合fossil assemblage化石遗迹trace fossil化石印迹impression fossil化石模式mold fossil化石腔填充物cast fossil3. 古生物学的方法和技术古生物学的方法和技术是指用于收集、分析、解释古生物数据的各种手段和工具。
古生物学的发展趋势及研究热点
古生物学的发展趋势及研究热点古生物学(Palaeontology)是研究地质历史时期的生物界及其发展的科学,旨在探索生命起源、发展及其与环境的协同演化,确定地层的顺序、时代,了解地壳发展的历史,推断地史时期水陆分布、气候变迁和沉积矿产形成与分布的规律。
研究范围包括各地史时期地层中保存的生物遗体、遗迹及一切与生命活动有关的地质记录。
具体研究内容分2个方面:①生物学方面,研究生物体的形态、结构、构造、分类、个体发育和系统发生、生物演变对环境的适应,乃至生物的生理和生物化学等;②地质学方面,研究古生物的地质时间含义、古生物的兴衰与迁移、古生物地理、古生物与能源和矿产资源等。
从古生物学发展历史看,目前主要朝着2个方向发展:描述古生物学方向,主要研究古生物化石的形态特征、分类位置及其时代分布和生态特征;理论古生物学方向,主要研究古生物的起源、进化方式、进化速率和进化机制等。
中国是拥有地质历史时期最为完整的地层和古生物记录的地区之一,沉积类型多样,化石资源丰富,具有独一无二的自然条件优势。
中国是当今国际古生物学研究最关键和最具潜力的地区,世界上许多重要古生物学的理论探究和全球重大地学问题的解决,都有赖于中国古生物资料的发现和研究。
1)元古代生物演化。
地球早期生命的研究在中国具有很好的发展前景,中国华北地台具有跨越古太古代和早、中元古代连续沉积岩层,在探讨真核生物的起源及其环境背景、真核生物的早期辐射方面具有很好的潜力。
中国扬子地台和新疆等地广泛发育了新元古代至早寒武世末变质的沉积岩石并保存了丰富的化石资源,一些特殊埋藏的化石生物群,如瓮安生物群、庙河生物群、蓝田植物群和高家山动物群等,是地球上真核生物多细胞化和早期适应辐射的见证。
珍稀化石是人类认识地球上生物进化最直观的证据,因此,应重视挖掘和研究生物进化关键环节的化石类群,应用Micro-CT、TEM、软X-ray、GC-IRMS等物理学方法进行化石分析,利用地球化学方法评估环境因素的影响,以深入探索真核生物起源、多细胞生物的起源和辐射、早期生态系统的演化、生物和环境的协调演化等。
第一章 微体古生物绪论
9
双目实体显微镜
双目生物显微镜
10
11
研究内容和目的:
缺点:易混样;变异多,种的界线不清;演化快,因属种多,易引起混乱.
12
藻类:a-f 孢粉:g-I 有孔虫:j-l 放射虫:m 苔藓虫:n 介形虫:o-p 牙形刺:q-r
13
一块岩心样品中的微体古生物群落
14
类别名称
Cyanophytes
蓝藻
Chlorophytes 绿藻
分类位置 低等植物 低等植物
微体化石包括的类别相当繁多,如图、表(微体化石的重要类别),所以对 他们有两种不同的分类方法:一是按其大小分,二是按其成份分。
按其个体的大小分,可分为两类:一是微化石(Microfossils),其度量以毫 米为单位,二是超微化石(nannofossils),其度量以微米(um)为单位。
7
就其本质而言,微体化石可分为以下几种类型: 1.微小古生物的完整个体(硬体):如有孔虫、介形虫、放射虫、硅藻,沟
主微 要体 研古 究生 内物 容学
微体化石的形态特征、微体化石的构造特征 微体化石的化学成分、微体化石的生物学特征 微体化石的生态学特征、微体化石的系统发生 微体化石的系统分类、微体化石的地质历程 微体化石的地理分布等
6
微体古生物学 研究主要任务
探讨有关化石方面的基本理论问题 解决生产中的实践问题
古生物学研究的对象是化石(大化石和微体化石),微体古生物学研究的对 象是微体化石。微体化石是保存在各地质时期岩层中的微体古生物的遗体和遗迹, 是肉眼不能识别的微小古生物化石,必需用显微镜或电子显微镜观察研究。遗体 化石是指微小古生物的本体或古生物本身的微小部分,其软组织一般都在石化作 用过程中被破坏,保存下来的是硬体部分;遗迹化石则是这类微小古生物生活活 动留下的痕迹或其排泄物,如潜穴、微钻孔、微爬痕、微粪粒等。也有人主张把 微遗迹化石学(Micropalichnology)分出来,形成一个独立的学科--微遗迹化石 学 ( Micropalichnology ) , 即是微体 古生物学的 一个分支 , 也是遗迹化 石学 (Palichnology)的一个分支。我们给大家讲的主要是微遗体化石。
大三专业英语作业(微生物翻译)
微生物的范围难以界定促使罗杰Dtanier提议,这个领域不仅要从它研究对象的
大小,而且要从它研究的方法技巧等方面来定义。
Add you title
一个微生物学家首先 把一个特定的微生物
A microbiologist usually first isolates a specific microoorganism from a population and then cultures it.
不清楚地生物体的研究,也就是研究微小生物。
Add you title
Its subjects are
viruses,bacteria,many
它研究的对象有病毒,细 菌,各种藻类,菌类和原 生动物。
algae and fungi,and
protozoa.
Add you title
Yet other members of these groups,particularly some of the algae and fungi,are larger and quite visible.
text
text text
余的显微镜使用者----荷
兰的列文虎克
Part one
Add Your Text Leeuwenhoek earned his living as a draper and haberdasher ,but spent much of his spare time
constructing simple microscopes lamo Fracastoro 认为疾病是由看不见得生活生
disease was caused by
invisible living creatures.
牙形石
牙形石(conodonts) 具有各种各样尖齿或锯齿状物的古代动物遗体,微体古生物学的重要研究内容之一。
牙形石可能是一类已经绝灭的海生动物的骨骼或器官所形成的微小化石。
形态特征和构成牙形石个体很小,从不足0.1毫米到约4毫米。
未经变质的牙形石一般呈琥珀光泽,浅褐黄、灰白色,透明或不透明。
其主要化学成分是磷酸钙,由磷灰石类矿物呈纤维状或薄片状排列而成。
牙形石外形很像某些鱼类的牙齿或环节动物的颚器,故名牙形石,也有人称为牙形刺。
牙形石个体微小,一般为0.3-2.0毫米。
形态多样,或简单,或复杂,主要由薄片状的磷酸钙组成,多呈灰色、琥珀色或黑色,透明或不透明。
牙形石虽个体微小,但数量众多,特征明显,演化迅速,始于寒武纪,止于三叠纪,广泛分布于世界各地的海相沉积中,是重要的微体化石之一。
分布范围牙形石的生物分类位置至今仍未确定。
牙形石分布甚广,但仅限于海相沉积物。
从寒武纪开始出现,以后几经盛衰,绝灭于三叠纪。
牙形石演化十分迅速,为标准化石,用于地层的划分和对比,尤其是井下地层的划分对比起着重要的作用。
60年代以前,主要有鱼牙说、虫颚说。
近来又有牙索动物说、触手环动物说等。
牙形石在各种沉积物中分布甚广。
灰岩和页岩中最多,白云岩、燧石次之,甚至在砂岩、砾岩中也可以发现。
但牙形石仅限于海相沉积物,浅海、广海沉积物中均有。
在非海相沉积物中至今尚未见到。
牙形石从古生代的寒武纪开始出现,以后几经盛衰,绝灭于中生代的三叠纪。
其演化历程达3亿年之久。
牙形石在这个期间演化十分迅速,使得它有可能成为标准化石,有效地用于地层的划分和对比。
牙形石的形体很小,在钻探工程的少量岩心和岩属中同样可以采到,这是它的另一优点,是其他大化石所不及的。
牙形石在地层划分和对比中,尤其是井下地层的划分对比中正日益起着重要的作用牙形石主要形态类内部构造内部构造一般由薄层,白色物质和基底充填三部分组成。
前二者构成牙形石分子本体,加上基底填充组成一个全牙形石分子,但基底填充容易从牙形石本体脱落,不易保存为化石。
医学细胞生物学英译汉总结
第一章 绪论cellcell biology cell theory central dogma cytomics cytoplasmelectron microscope ,EM epigenetics gene细胞细胞生物学 细胞学说 中心法则 细胞组学 细胞质 电子显微镜 表观遗传 基因genomicshuman genome project,HGP medical cell biology model animal noncoding RNA proteomics stem cell biology translational medicine基因组学人类基因组计划医学细胞生物学 模式动物 非编码RNA 蛋白质组学 干细胞生物学 转化医学第二章细胞的概念和分子基础anticodon archaea archaebacteria bacteria cell membrane chlamydia codon cytoplasm cytosol deoxyribonucleic acid,DNAenzyme eukarya eukaryotic cell glycolipids glycoproteins message RNA , mRNAmicroRNA, miRNA mycoplasma反密码子 古菌域 古细菌 细菌 细胞膜 衣原体 密码子 细胞质 细胞质溶胶 脱氧核糖核酸 酶 真核域 真核细胞 糖脂 糖蛋白 信使核糖核酸 微小RNA 支原体 nucleoid nucleus peptide plasmid prion prokaryotic cell protoplasm ribonucleic acid ,RNA ribosomeribosome RNA , rRNA ribozyme RNA silencingsmall nuclear RNA, snRNA structural domains transfer RNA, tRNA viroid virus 拟核细胞核 肽 质粒 朊病毒 原核细胞 原生质 核糖核酸 核糖体 核糖体RNA 核酶RNA 沉默 小核RNA 结构域 转运RNA 类病毒 病毒第三章细胞生物学研究方法Abbe limitagaroseatomic force microscope,AFM autoradiographybiochipcell culturecell free systemcell linecell strainChIPAbbe 限度 琼脂糖 原子力显微镜放射性自显影技术 生物芯片 细胞培养 非细胞体系 细胞系 细胞株 染色质免疫沉淀技术 CLIPcolumn chromatography cytochemistry technique differential centrifugation diffraction pattern DNA denaturation dNTPelectrospray ionization mass spectrometry,ESI-MS embedding紫外交联免疫沉淀技术 柱层析细胞化学技术 差速离心 X-射线衍射图 DNA 变性4种脱氧核苷酸 电喷雾电离质谱 包埋emission lightemzyme cytochemistryequilibrium sedimentation excitation lightfixationflow cytometerfluorescence microscope fluorescence resonanceemergy transfer,FRETfreeze-etchfreeze-fracturegene chipgreen fluorescentprotein,GFPhigh performance liquidchromatography,HPLCimmunocytochemistry,ICC immunomagnetic microsphere immuno-precipitation,IPin situ hybridization,ISHisoelectric focusinglaser capturemicrodissection,LCMmatrix-assisted laserdesorptionionization/time-of-flight , MALDI-TOF-MSmetal shadowingNorthern blotnuclear magnetic resonance spectroscopy,NMR over-expression phage display发射光 酶细胞化学技术 平衡沉降激发光 固定 流式细胞仪 荧光显微镜荧光共振能量转移 冰冻蚀刻 冰冻断裂 基因芯片 绿色荧光蛋白 高效液相层析 免疫细胞化学技术 免疫磁珠免疫沉淀 原位杂交技术 等点聚焦 激光俘获显微切割电泳 基质辅助激光解吸/电离飞行时间质谱金属投影法 Northern 印迹杂交 核磁共振光谱过表达 噬菌体展示polymerase chainreaction,PCR primary cultureprobeprotein chipproteomeproteomicsquantitative PCR ,qPCR radioisotoperenaturationresolutionrestriction nucleasescanning electronmicroscope,SEM scanning tunnelingmicroscope,STM SDS polyacrylamid gel electrophoresissecondary culturesectionsingle molecular fluorescence imaging southern blot stainingtandem massspectrometry,MS/MStransfectiontransmission electron microscope,TEM velocity sedimentation yeast two-hybridzation phase contrast microscope聚合酶链式反应原代培养 探针 蛋白质芯片 蛋白质组 蛋白质组学 荧光实时定量PCR 反应放射性同位素 复性 分辨率 限制性内切酶 扫描电子显微镜扫描隧道显微镜SDS-聚丙烯酰胺凝胶电泳 传代培养 切片 单分子荧光成像 Southern 印迹杂交染色 串联质谱 转染透射电子显微镜速度沉降 酵母双杂交 相差显微镜第四章细胞膜与物质的穿膜运输active transport adaptinantiportaquaporin ,AQPbilayerbiomembranecarrier proteincell coatcell membrane主动运输衔接蛋白 反向运输 双分子层 水孔蛋白 生物膜 载体蛋白 细胞外被 细胞膜 channel proteincholesterol clathrin coated pits coated vesicle constitutive secretion endocytosis exocytosis extrinsic protein通道蛋白 网格蛋白 胆固醇 有被小窝 有被小泡 连续性分泌 胞吞作用 胞吐作用 膜外在蛋白facilitated diffusion fluid mosaic model glycolipid intrinsic proteinligand-gated channel lipid raftslipid anchored protein lipid-linked protein lamella structure model membrane lipid membrane proteinmembrane transport protein micellepassive diffusion passive transport 易化扩散 流动镶嵌模型 糖脂膜内在蛋白 配体门控通道 脂筏脂锚定蛋白 脂连接蛋白 片层结构模型 膜脂 膜蛋白 膜运输蛋白 球状分子团 被动扩散 被动运输 peripheral protein phagocytosis phospholipid pinocytosis plasma membrane regulated secretion simple diffusionstress-activated channel symporttransmembrane protein unit membraneunit membrane model vesicular transport voltage-gated channel外周蛋白 吞噬作用 磷脂 胞饮作用 质膜 受调分泌 简单扩散 应力激活通道 同向运输 穿膜蛋白 单位膜 单位膜模型 小泡运输 电压门控通道第五章内膜系统annulate lamellaeautophagic lysosomecalreticulincis Golgi networkcisternaeclathrin-coated vesiclecontinuous secretioncotranslation insertiondiscontinuous secretionendoplasmic reticulumgated transportglucose regulated protein94,GRP94 glycosylationGolgi complexheavy-chain bindingprotein,BiP heterophagic lysosome internal signal peptideinternal start-transfer peptidelysosomemedial Golgi stackmolecular chaperonemyeloid bodyN-linked glycosylationphagolysosome孔环状片层 自噬溶酶体 钙网素 顺面高尔基网 扁平囊泡 网格蛋白有被囊泡 连续分泌 共翻译插入 非连续分泌 内质网 门孔运输 葡萄糖调节蛋白94糖基化 高尔基复合体 重链结合蛋白 异噬溶酶体内信号肽 内开始转移肽 溶酶体 高尔基中间膜囊 分子伴侣 髓样体 N-连接糖基化 异噬溶酶体 phospholipid exchangeproteins,PEP primary lysosome protein disulfide isomerase,PDI retention protein reticulo-plasmin rough endoplasmic reticulum ,RER sarcoplasmic reticulum secondary lysosome signal hypothesis signal patch signal peptide signal recognition particle,SRPSRP-receptor,SRP-R smooth endoplasmic reticulum ,SERtarget-SNAREs,t-SNAREs tertiary lysosome trans Golgi network translocontransmembrane transport unfolded protein response, UPR磷脂交换蛋白初级溶酶体蛋白二硫键异构酶驻留蛋白 网质蛋白 糙面内质网肌质网 次级溶酶体 信号肽假说 信号斑 信号肽信号识别颗粒信号识别颗粒受体 光面内质网靶SNAREs 三级溶酶体 反面高尔基网 转运体 穿膜运输未折叠蛋白反应vacuoles vesicle vesicles 大囊泡囊泡小囊泡vesicle-SNAREs,v- SNAREsvesicular transport囊泡SNAREs囊泡转运第六章线粒体与细胞的能量转换ATP synthase complex biological oxidation cellular oxidation cellular respiration chemiosmotic coupling hypothesiscristaeelementary particle glycolysisinner membrane intercristae space intermembrane space intracristae spacematrixmatrix spacematrix-targeting sequence,MTS ATP合酶复合体生物氧化细胞氧化细胞呼吸化学渗透假说嵴基粒糖酵解内膜嵴间腔膜间腔嵴内空间基质基质腔基质导入序列mitochondrial disordersmitochondrial phaseouter membraneoxidative phosphorylationpostmitochondrial phasepremitochondrial phasereactive oxygen species, ROSsubstrate-levelphosphorylationtranslocation contact sitetranslocon of the innermembrane,Timtranslocon of the outermembrane,Tomtricarboxylic acid cycle,TCAcycle线粒体疾病线粒体期外膜氧化磷酸化线粒体后期线粒体前期活性氧底物水平磷酸化转位接触点内膜转位子外膜转位子三羧酸循环第七章细胞骨架与细胞的运动actincell cortexcochicine contractile ring cytochalasin B cytoskeletondynamic instability model dyneinfilopodiaintegrin intermediate filaments, IF kinesin lamellipodia microfilaments , MF microfilament associated protein,MAP 肌动蛋白细胞皮层秋水仙素收缩环细胞松弛素B细胞骨架非稳态动力学模型动力蛋白丝状伪足整合蛋白中间纤维驱动蛋白片状伪足微丝微丝结合蛋白microtubule organizing center,MTOCmicrotubules, MTmicrotubule-associadedprotein ,MAPmyosinnucleation phasephalloidinpolymerization phasesliding filament modelsteady state phasetaxoltreadmilling modeltubulinvinblastine微管组织中心微管微管结合蛋白肌球蛋白成核期鬼笔环肽聚合期滑动丝模型稳定期紫杉醇踏车模型管蛋白长春新碱第八章细胞核acrocentric chromosome annular subunitbandcentral domaincentral plug centromerechromatidchromatin chromosomecolumn subunit constitutive heterochromatin cytoplasmic ringdense fibrillar component,DFCeuchromatinexportin facultative heterochromatinfibrillar center,FCfish-trapgenomegranular component,GC heterochromatin nucleosomenucleusouter nuclear membrane pairing domain perinuclear space primary constriction replication origin satellitescaffold radial loop structure model 近端着丝粒染色体环状亚单位带型中央结构域中央栓着丝粒染色单体染色质染色体柱状亚单位组成性异染色质胞质环致密纤维组分常染色质输出蛋白兼性异染色质纤维中心捕鱼笼基因组颗粒中心异染色质核小体细胞核外核膜配对结构域核周间隙主溢痕复制源随体染色体骨架-放射环模型histonekaryophilic proteinsecondary constrictionsolenoidkaryotypekinetochorekinetochore domainluminal subunitmetacentric chromosomeminibandmultiple coiling modelnuclear localization signal,NLSnuclear matrixnuclear matrix associatedproteinnuclear matrix proteinnuclear porenuclear pore complex,NPCnuclear ringnucleolar cyclenucleolar matrixnucleolar organizernucleolar organizing regionnucleolusnucleosomal histonespokesubmetacentric chromosomesupersolenoidtelocentric chromosometelomere组蛋白亲核蛋白次溢痕螺线管核型动粒动粒结构域腔内亚单位中着丝粒染色体微带多级螺旋化模型核内定位信号核基质核基质结合蛋白核基质蛋白核孔核孔复合体核质环核仁周期核仁基质核仁组织者核仁组织区核仁核小体组蛋白辐亚中着丝粒染色体超螺线管端着丝粒染色体端粒第九章基因信息的传递与蛋白质合成activating domain adaptive expression alternative splicing aminoacyl site aminoacyl-tRNA antibiotics anticodon antisense strand 转录激活域适应性表达可变剪接A位点氨酰-tRNA抗生素反密码子反义链CAAT boxcentral dogmachaperoninschromatin remoldingcis-acting elementcoding regioncoding strandcodonCAAT盒中心法则伴侣素染色质重塑顺式作用元件编码区编码链密码子commalessconstitutive expressionconstitutive splicingdegeneracydirectionDNA binding domainenhancerexonGC boxgenegene clustergene familygeneral transcription factor genetic codegenomehelix-loop-helix ,HLHhelix-turn-helix ,HTHheterogeneous nuclear RNA ,hnRNAhighly repetitive sequence inducible geneintronleucine zippermiddle repetitive sequence negative regulationnon-coding regiontranslocationtranspeptidaseubiquitin-proteasomeunique sequenceuniversalwobblezinc finger连续性 组成性表达 常规剪接 简并性 方向性 DNA 结合域 增强子 外显子 GC 盒 基因 基因簇 基因家族 通用转录因子遗传密码 基因组 螺旋-环-螺旋 螺旋-转角-螺旋 不均一核RNA高度重复序列可诱导基因 内含子 亮氨酸拉链 中等重复序列负性调控 非编码区 转位 转肽酶 泛素- 蛋白酶体 单一序列 通用性 摆动性 锌指 operonpeptide formation peptidyl-tRNA site polyribosome positive regulation pribnow box Promoter Registerregulatory gene repetitive sequence repressible gene repressor remodelerribosome circulation sense strandShine-Dalgarno sequence silencer small nuclearribonucleoprotein particle ,snRNPspatial specificity spliceosome split gene structural gene sumoylation TATA box template strand temporal specificity terminatortrans-acting factor transcriptiontranscription factor translation操纵子 成肽 P 位点多聚核糖体 正性调控 Pribnow 盒 启动子 进位 调控基因 重复序列 可阻遏基因 阻遏蛋白 染色质重建子 核糖体循环 有意义链 SD 序列 沉默子核糖核蛋白颗粒空间特异性 剪接体 断裂基因 结构基因 sumo 化 TATA 盒 模板链 时间特异性 终止子反式作用因子 转录 转录因子 翻译第十章细胞连接与细胞黏附adhering junctionadhesion beltanchoring junctioncadherincell adhesioncell adhesion molecule ,CAMcell junctionchemical synapse黏着连接 黏着带 锚定连接 钙黏着蛋白 细胞黏附 细胞黏附分子 细胞连接 化学突触 claudincommunicating junction connexon desmosomedesmosome junction electric coupling electronic synapse filamin密封蛋白 连接连接子 桥粒 桥粒连接 电耦联 电突触 细丝蛋白focal adhesiongap junction hemidesmosome heterophilic binding homophilic binding immunoglobin-superfamily, Ig-SF inside outintegrinintracellular anchor protein linker-dependent binding metabolic coupling epithelial-mesenchymal 黏着斑间隙连接半桥粒异亲型结合同亲型结合免疫球蛋白超家族由内向外整联蛋白细胞内锚定蛋白连接分子依赖性结合代谢耦联上皮-间质转型通讯neural cell adhesionmolecule,N-CAMoccludinoccluding junctionoutside inplectinselectinsynapsetalintransmembrane adhesionprotein神经细胞黏附分子闭合蛋白封闭连接由外向内网蛋白选择素突触踝蛋白穿膜黏连蛋白transition,EMT第十一章细胞外基质及其与细胞的相互作用anchorage dependent growth anoikisbasal lamina,basement membrane,BM chondroitin sulfate,CS collagencollagen disease collagenasecore proteindermatan sulfate,DS elastaseelastinextracellular matrix, ECM fibronectin, FN glycosaminoglycan, GAG 锚定依赖性生长失巢凋亡基膜硫酸软骨素胶原胶原病胶原酶核心蛋白硫酸皮肤素弹性蛋白酶弹性蛋白细胞外基质纤连蛋白糖胺聚糖glycosyltransferasesheparan sulfate,HSheparinhyaluronic acid,HAkeratan sulfate,KSlaminin,LNmatrix metalloproteinases,MMPnidogen,entactinperlecanproteoglycan,PGsyndecantriple helixtropoelastin糖基转移酶硫酸乙酰肝素肝素透明质酸硫酸角质素层粘连蛋白基质金属蛋白酶巢蛋白渗滤素蛋白聚糖连接素三股螺旋可溶性弹性蛋白原第十二章细胞的信号转导adenylate cyclase, AC calmodulin,CaM cAMP-dependent protein kinase A,PKA cascadecGMP depedent protein kinase G,PKG cyclic AMP,cAMP cyclic GMP,cGMP diacylglycerol,DAG effector protein 腺苷酸环化酶钙调蛋白cAMP依赖蛋白激酶A级联反应cGMP依赖蛋白激酶G环磷酸腺苷环磷酸鸟苷二酰基甘油效应蛋白first messengerG proteinG protein linked receptorguanylate cyclase,GCinositol trisphosphate,IP3insulinion channel receptorligandprotein tyrosine kinase,PTKreceptorsecond messenger第一信使G蛋白G蛋白偶联受体鸟苷酸环化酶三磷酸肌醇胰岛素离子通道受体配体酪氨酸蛋白激酶受体第二信使serine/threonine kinases ,STKsignal transduction丝氨酸/苏氨酸蛋白激酶 信号转导 signaling networktyrosine-specific protein kinase receptor ,TPKR信号网络酪氨酸蛋白激酶型受体第十三章细胞分裂与细胞周期amitosis anaphase anti oncogene aster bivalentCdk inhibitor ,CKI cell cycle cell divisioncellular oncogene ,C-onc centrosome chalone checkpoint chiasmachiasma terminalization contractile ring cyclincyclin-dependent kinase ,CDKcytostatic factor,CSF direct division growth factor无丝分裂 后期 抑癌基因 星体 二价体Cdk 激酶抑制物 细胞周期 细胞分裂 细胞癌基因 中心体 抑素 检测点 交叉 交叉端化 收缩环 细胞周期蛋白细胞周期蛋白依赖性激酶细胞静止因子 直接分裂 生长因子indirect divisioninterphasekinetochore microtubule maturation promotingfactor ,MPF meiosismetaphasemitosismitosis,Mmitotic apparatuspolar microtubuleprophaseproto-oncogenerecombination nodulespindlesynapsissynaptonemal complex ,SC telophasetetradV-oncogene ,V-onc间接分裂 分裂间期 动粒微管成熟促进因子减数分裂 中期 有丝分裂 分裂期 有丝分裂器 极微管 前期 原癌基因 重组小结 纺锤体 联会 联会复合体 末期 四分体 癌基因 第十五章细胞分化apical ectodermal cap cell determination cell differentiation cellular reprogramming cleavagecombinatory control compensatory regeneration dedifferentiation differential expression ectodermembryonic induction endoderm顶端外胚层帽 细胞决定 细胞分化 细胞重编程 卵裂 组合调控补偿性再生 去分化 差异表达 外胚层 胚胎诱导 内胚层epimorphosis regeneration gastrulation genomic imprinting grafting experiment histone code homeobox homeobox gene homeodomain homeodomain protein homeosis homeotic gene housekeeping gene微变态再生 原肠形成 基因组印记 胚胎移植实验 组蛋白密码 同源异形框 同源异形框基因 同源异形结构域 同源异形域蛋白 同源异形转变 同源异形基因 管家基因induced pluripotent stem cells juxtacrine interaction lateral inhibitionlocus control region,LCR long non-coding RNA,lncRNAluxury geneluxury proteinmaster control gene maternal effect gene,MEG mesoderm metamorphosis microRNA, miRNA morphallaxis regeneration non-coding RNA诱导多能干细胞,iPS细胞近分泌相互作用侧向抑制基因座控制区长链非编码RNA奢侈基因奢侈蛋白细胞分化主导基因母体效应基因中胚层变态微小RNA变形再生非编码RNAorganogenesisparacrine factorpluripotent cellregenerationregeneration blastemasmall interfering RNA, siRNAsomatic recombinationspatial specificitystage specificitytemporal specificitytotipotent celltotipotent nucleustransdeterminationtransdifferentiationunipotency器官发生旁分泌因子多能(干)细胞再生再生胚芽小干扰RNA体细胞重组阶段特异性空间特异性时间特异性全能(干)细胞全能性细胞核转决定转分化单能第十六章细胞衰老与细胞死亡anoikisanti-apoptosis gene apoptosis apoptotic bodies autophagosome autophagycell deathcell senescencecell shrinkage chromatin condensation ClassIIIPI3Kcytochrome C, cyt C death receptor, DR DNA ladders 失巢凋亡抗凋亡基因细胞凋亡凋亡小体自噬泡细胞自噬细胞死亡细胞衰老细胞皱缩染色质凝聚III型磷脂酰肌醇三磷酸激酶细胞色素C死亡受体DNA梯状条带DNA stainabilityendonucleaseHayflick life spaninterleukin-1β convertingenzyme, ICEnecrosisnerve growth factor receptor,NGFRpermeability transition pores,PT poresphosphatidylserine, PSprogrammed cell death, PCDreactive oxygen species, ROStumor necrosis factor receptor,TNFRDNA可染性核酸内切酶Hayflick 界限白细胞介素-1β转换酶细胞坏死神经生长因子受体渗透转变孔磷脂酰丝氨酸程序性细胞死亡活性氧类物质肿瘤坏死因子受体第十七章干细胞与组织的维持与再生adult stem cell asymmetry division cancer stem cell, CSC chimeracorneal stem cell directly induced differentiation 成体干细胞不对称分裂癌干细胞嵌合体角膜干细胞直接诱导分化dedifferentiationembryoid body, EBembryonic carcinoma cell,ECembryonic germ cell,EGembryonic stem cell,ESepidermal stem cell去分化类胚体胚胎癌细胞胚胎生殖细胞胚胎干细胞皮肤干细胞hematopoiesis stem cell ,HSCinner cell mass ,ICMintegral membrane protein induced pluripotent stem cellintegrinintestinal stem cellliver stem celllung stem cellmarrow cavitymesenchymal stem cell, MSCmultipotent stem cellmyogenic stem cellneural stem cells, NSCpancreatic stem cellplasticitypluripotent stem cell造血干细胞 内细胞团 整合膜蛋白诱导多能干细胞,iPS细胞 整联蛋白 小肠干细胞 肝干细胞 肺脏干细胞 骨髓腔 间充质干细胞 专能干细胞 肌肉干细胞 神经干细胞 胰腺干细胞 可塑性 多能干细胞 pluripotenyprogenitor cell renal stem cell self-maintenance somatic stem cellspermatogonial stem cell stage-specific embryonic antigen,SSEA stem cell stem cell niche symmetry division tissue specific stem cell totipotencytotipotent stem cell transdetermination transdifferentiation unipotency多能 前体细胞 肾脏干细胞 自稳定性 成体干细胞 精原干细胞胚胎阶段特异性抗原干细胞 干细胞巢 对称分裂组织特异性干细胞 全 能 全能干细胞 转决定 转分化 专 能。
英汉古生物学词汇
英汉古生物学词汇古生物学是研究地球历史上生物演化及其环境的学科。
它涉及生物分类单元、地质时代与年代、化石与遗迹等多个方面。
本文将介绍一些英汉古生物学词汇,以帮助大家更好地了解这一领域。
1.生物分类单元- Kingdom(界)- Phylum(门)- Class(纲)- Order(目)- Family(科)- Genus(属)- Species(种)2.地质时代与年代- Precambrian(前寒武纪)- Paleozoic(古生代)- Mesozoic(中生代)- Cenozoic(新生代)3.化石与遗迹- Fossil(化石)- Trace fossil(遗迹化石)- Body fossil(实体化石)-化石燃料(Fossil fuel)- Lagersttte(沉积盆地)4.生物演化与演化历程- Evolution(演化)- Natural selection(自然选择)- Speciation(物种形成)- Adaptation(适应)- Macroevolution(大演化)- Microevolution(小演化)5.生态环境与古生态学- Habitat(栖息地)- Ecological niche(生态位)- Paleoecology(古生态学)- Paleoenvironment(古环境)- Biogeography(生物地理学)6.地球生物学与生物地球化学- Geobiology(地球生物学)- Biogeochemistry(生物地球化学)- Organic geochemistry(有机地球化学)- Isotope geochemistry(同位素地球化学)- Stable isotope ratio(稳定同位素比值)7.实验古生物学与古生物技术- Paleobiology(实验古生物学)- Paleotechnology(古生物技术)- Fossil preparation(化石制备)- Imaging technique(成像技术)- Virtual paleontology(虚拟古生物学)8.古生物学在其他学科中的应用- Paleoanthropology(古人类学)- Paleoclimatology(古气候学)- Paleoceanography(古海洋学)- Paleogeography(古地理学)- Stratigraphy(地层学)掌握这些英汉古生物学词汇,将有助于我们更好地了解地球历史上的生命演变及其环境。
微生物学英文单词材料
Microorganism/Microbe微生物微生物学MicrobiologyPasteur 巴斯德细菌Bacteria古生菌(Archaea)细菌(Bacteria)真核生物(Eukaryotes)真核微生物Eukaryotic microorganisms 病毒(Virus)球菌coccus杆菌bacillus螺旋菌spirilla革兰氏阳性细菌 Gram positive bacteria) 革兰氏阴性细菌 Gram negative bacteria) Actinomycetes(放线菌)Yeast(酵母菌)Molds(霉菌)Culture dish/Petri dish(平皿)Shake Flask (三角瓶)Fermentor(发酵罐)菌落 colony平板plateInoculation (接种)Luise Pasteur(巴斯德)Robert Koch(柯赫)Cell wall(细胞壁)Cytoplasmic membrane细胞质膜Cytoplasm(细胞质)蓝细菌CyanobacteriaNuclear region(核区)Inclusion body(内含物)Glycocalyx(糖被)Flagella (鞭毛)Spore (芽孢)Pili(性毛)Fimbria(菌毛)Gram stain (革兰氏染色)脂多糖 (LPS)球状体(sphaeroplast)原生质体(protoplast)支原体(mycoplasma)Cytoplasmic membrane Cytoplasm贮藏物(Reserve materials)核糖体(Ribosome)质粒(plasmid)芽孢(Spore)鞭毛(Flagella)Fungi(真菌)菌丝体mycelium类病毒(Viroid)朊病毒(prion)噬菌体p h a g e病毒v i r u sNutrition(营养)Nutrient(营养物)Source of carbon (碳源)Source of Nitrogen (氮源)Inorganic salt(无机盐)Growth factor(生长因子)Water(水分)Energy source(能源)Source of carbon (碳源)Source of Nitrogen (氮源)Inorganic salt(无机盐)Growth factor(生长因子)Energy source(能源)Culture medium培养基呼吸respiration无氧呼吸anaerobic respiration发酵fermentation连续培养 continuous culture分批培养batch culture生长曲线growth curve纯培养(Pure culture)灭菌(sterilization)消毒(disinfection)抗生素antibiotics转化transformation转导transduction接合conjugation,mating诱变剂mutagen基因突变 gene mutation营养缺陷型auxotroph原养型prototroph野生型wild type菌种 culture或stock culture菌种保藏 preservation 或conservation或者maintenance疫苗vaccine防腐(antisepsis)化疗(chemotherapy) 艾姆斯试验法Ames test基因工程 Gene Engineering试熟记以下最基本的微生物学名:(1)细菌Bacillus subtilis[枯草芽孢杆菌Bacillus thuringiensis(苏云金芽孢杆菌)E.coli [大肠(埃希氏)杆菌],Rhizobium(根瘤菌)Staphalococcus aureus(金黄色葡萄球菌)(2)放线菌Actinomyces 放线菌Streptomyces griseus(灰色链霉菌)。
生物学英语中英对照
生物学英语中英对照1. 遗传学 Genetics基因 Gene染色体 Chromosome遗传变异 Genetic variation2. 细胞生物学 Cell Biology细胞 Cell细胞核 Nucleus细胞膜 Cell membrane3. 生态学 Ecology生态系统 Ecosystem生物多样性 Biodiversity生物群落 Biome4. 分子生物学 Molecular Biology蛋白质 Protein核酸 Nucleic acid酶 Enzyme5. 发育生物学 Developmental Biology胚胎发育 Embryonic development细胞分化 Cell differentiation形态发生 Morphogenesis6. 植物学 Botany叶绿体 Chloroplast光合作用 Photosynthesis根系 Root system7. 动物学 Zoology器官 Organ组织 Tissue神经系统 Nervous system8. 微生物学 Microbiology细菌 Bacteria病毒 Virus真菌 Fungus9. 生物化学 Biochemistry代谢 MetabolismATP(三磷酸腺苷) ATP (Adenosine Triphosphate)酶促反应 Enzymatic reaction10. 生理学 Physiology心脏 Heart肺 Lung肝脏 Liver生物学英语中英对照(续)11. 进化生物学 Evolutionary Biology自然选择 Natural selection物种形成 Speciation进化树 Evolutionary tree12. 行为生物学 Behavioral Biology繁殖行为 Reproductive behavior领域行为 Territorial behavior社会行为 Social behavior13. 神经生物学 Neurobiology神经元 Neuron突触 Synapse神经递质 Neurotransmitter14. 免疫学 Immunology抗体 Antibody免疫系统 Immune system炎症 Inflammation15. 营养学 Nutrition蛋白质 Protein碳水化合物 Carbohydrate脂肪 Fat16. 遗传工程 Genetic Engineering基因克隆 Gene cloning基因编辑 Gene editing转基因技术 Genetic modification 17. 生态遗传学 Ecological Genetics种群 Population环境适应性 Environmental adaptation遗传漂变 Genetic drift18. 生物信息学 Bioinformatics基因组学 Genomics蛋白质组学 Proteomics生物数据挖掘 Bioinformatics data mining19. 生物统计学 Biostatistics实验设计 Experimental design数据分析 Data analysis显著性检验 Significance test20. 环境生物学 Environmental Biology环境污染 Environmental pollution生态修复 Ecological restoration生物降解 Biodegradation这份生物学英语中英对照文档旨在帮助您更全面地了解生物学领域的专业术语。
微生物英文文献及翻译—翻译
A/O法活性污泥中氨氧化菌群落的动态与分布摘要:我们研究了在厌氧—好氧序批式反应器(SBR)中氨氧化菌群落(AOB)和亚硝酸盐氧化菌群落(NOB)的结构活性和分布。
在研究过程中,分子生物技术和微型技术被用于识别和鉴定这些微生物。
污泥微粒中的氨氧化菌群落结构大体上与初始的接种污泥中的结构不同。
与颗粒形成一起,由于过程条件中生物选择的压力,AOB的多样性下降了。
DGGE测序表明,亚硝化菌依然存在,这是因为它们能迅速的适应固定以对抗洗涤行为。
DGGE更进一步的分析揭露了较大的微粒对更多的AOB种类在反应器中的生存有好处。
在SBR反应器中有很多大小不一的微粒共存,颗粒的直径影响这AOB和NOB的分布。
中小微粒(直径<0.6mm)不能限制氧在所有污泥空间的传输。
大颗粒(直径>0.9mm)可以使含氧量降低从而限制NOB的生长。
所有这些研究提供了未来对AOB微粒系统机制可能性研究的支持。
关键词:氨氧化菌(AOB),污泥微粒,菌落发展,微粒大小,硝化菌分布,发育多样性•简介在浓度足够高的条件下,氨在水环境中对水生生物有毒,并且对富营养化有贡献。
因此,废水中氨的生物降解和去除是废水处理工程的基本功能。
硝化反应,将氨通过硝化转化为硝酸盐,是去除氨的一个重要途径。
这是分两步组成的,由氨氧化和亚硝酸盐氧化细菌完成。
好氧氨氧化一般是第一步,硝化反应的限制步骤:然而,这是废水中氨去除的本质。
对16S rRNA的对比分析显示,大多数活性污泥里的氨氧化菌系统的跟ß-变形菌有关联。
然而,一系列的研究表明,在氨氧化菌的不同代和不同系有生理和生态区别,而且环境因素例如处理常量,溶解氧,盐度,pH,自由氨例子浓度会影响氨氧化菌的种类。
因此,废水处理中氨氧化菌的生理活动和平衡对废水处理系统的设计和运行是至关重要的。
由于这个原因,对氨氧化菌生态和微生物学更深一层的了解对加强处理效果是必须的。
当今,有几个进阶技术在废水生物处理系统中被用作鉴别、刻画微生物种类的有价值的工具。
微生物英文文献及翻译—原文
Dynamic and distribution of ammonia-oxidizing bacteria communities during sludge granulation in an anaerobic e aerobic sequencing batch reactorZhang Bin a ,b ,Chen Zhe a ,b ,Qiu Zhigang a ,b ,Jin Min a ,b ,Chen Zhiqiang a ,b ,Chen Zhaoli a ,b ,Li Junwen a ,b ,Wang Xuan c ,*,Wang Jingfeng a ,b ,**aInstitute of Hygiene and Environmental Medicine,Academy of Military Medical Sciences,Tianjin 300050,PR China bTianjin Key Laboratory of Risk Assessment and Control for Environment and Food Safety,Tianjin 300050,PR China cTianjin Key Laboratory of Hollow Fiber Membrane Material and Membrane Process,Institute of Biological and Chemical Engineering,Tianjin Polytechnical University,Tianjin 300160,PR Chinaa r t i c l e i n f oArticle history:Received 30June 2011Received in revised form 10September 2011Accepted 10September 2011Available online xxx Keywords:Ammonia-oxidizing bacteria Granular sludgeCommunity development Granule sizeNitrifying bacteria distribution Phylogenetic diversitya b s t r a c tThe structure dynamic of ammonia-oxidizing bacteria (AOB)community and the distribution of AOB and nitrite-oxidizing bacteria (NOB)in granular sludge from an anaerobic e aerobic sequencing batch reactor (SBR)were investigated.A combination of process studies,molecular biotechniques and microscale techniques were employed to identify and characterize these organisms.The AOB community structure in granules was substantially different from that of the initial pattern of the inoculants sludge.Along with granules formation,the AOB diversity declined due to the selection pressure imposed by process conditions.Denaturing gradient gel electrophoresis (DGGE)and sequencing results demonstrated that most of Nitrosomonas in the inoculating sludge were remained because of their ability to rapidly adapt to the settling e washing out action.Furthermore,DGGE analysis revealed that larger granules benefit more AOB species surviving in the reactor.In the SBR were various size granules coexisted,granule diameter affected the distribution range of AOB and NOB.Small and medium granules (d <0.6mm)cannot restrict oxygen mass transfer in all spaces of the rger granules (d >0.9mm)can result in smaller aerobic volume fraction and inhibition of NOB growth.All these observations provide support to future studies on the mechanisms responsible for the AOB in granules systems.ª2011Elsevier Ltd.All rights reserved.1.IntroductionAt sufficiently high levels,ammonia in aquatic environments can be toxic to aquatic life and can contribute to eutrophica-tion.Accordingly,biodegradation and elimination of ammonia in wastewater are the primary functions of thewastewater treatment process.Nitrification,the conversion of ammonia to nitrate via nitrite,is an important way to remove ammonia nitrogen.It is a two-step process catalyzed by ammonia-oxidizing and nitrite-oxidizing bacteria (AOB and NOB).Aerobic ammonia-oxidation is often the first,rate-limiting step of nitrification;however,it is essential for the*Corresponding author .**Corresponding author.Institute of Hygiene and Environmental Medicine,Academy of Military Medical Sciences,Tianjin 300050,PR China.Tel.:+862284655498;fax:+862223328809.E-mail addresses:wangxuan0116@ (W.Xuan),jingfengwang@ (W.Jingfeng).Available online atjournal homepage:/locate/watresw a t e r r e s e a r c h x x x (2011)1e 100043-1354/$e see front matter ª2011Elsevier Ltd.All rights reserved.doi:10.1016/j.watres.2011.09.026removal of ammonia from the wastewater(Prosser and Nicol, 2008).Comparative analyses of16S rRNA sequences have revealed that most AOB in activated sludge are phylogeneti-cally closely related to the clade of b-Proteobacteria (Kowalchuk and Stephen,2001).However,a number of studies have suggested that there are physiological and ecological differences between different AOB genera and lineages,and that environmental factors such as process parameter,dis-solved oxygen,salinity,pH,and concentrations of free ammonia can impact certain species of AOB(Erguder et al., 2008;Kim et al.,2006;Koops and Pommerening-Ro¨ser,2001; Kowalchuk and Stephen,2001;Shi et al.,2010).Therefore, the physiological activity and abundance of AOB in waste-water processing is critical in the design and operation of waste treatment systems.For this reason,a better under-standing of the ecology and microbiology of AOB in waste-water treatment systems is necessary to enhance treatment performance.Recently,several developed techniques have served as valuable tools for the characterization of microbial diversity in biological wastewater treatment systems(Li et al., 2008;Yin and Xu,2009).Currently,the application of molec-ular biotechniques can provide clarification of the ammonia-oxidizing community in detail(Haseborg et al.,2010;Tawan et al.,2005;Vlaeminck et al.,2010).In recent years,the aerobic granular sludge process has become an attractive alternative to conventional processes for wastewater treatment mainly due to its cell immobilization strategy(de Bruin et al.,2004;Liu et al.,2009;Schwarzenbeck et al.,2005;Schwarzenbeck et al.,2004a,b;Xavier et al.,2007). Granules have a more tightly compact structure(Li et al.,2008; Liu and Tay,2008;Wang et al.,2004)and rapid settling velocity (Kong et al.,2009;Lemaire et al.,2008).Therefore,granular sludge systems have a higher mixed liquid suspended sludge (MLSS)concentration and longer solid retention times(SRT) than conventional activated sludge systems.Longer SRT can provide enough time for the growth of organisms that require a long generation time(e.g.,AOB).Some studies have indicated that nitrifying granules can be cultivated with ammonia-rich inorganic wastewater and the diameter of granules was small (Shi et al.,2010;Tsuneda et al.,2003).Other researchers reported that larger granules have been developed with the synthetic organic wastewater in sequencing batch reactors(SBRs)(Li et al., 2008;Liu and Tay,2008).The diverse populations of microor-ganisms that coexist in granules remove the chemical oxygen demand(COD),nitrogen and phosphate(de Kreuk et al.,2005). However,for larger granules with a particle diameter greater than0.6mm,an outer aerobic shell and an inner anaerobic zone coexist because of restricted oxygen diffusion to the granule core.These properties of granular sludge suggest that the inner environment of granules is unfavorable to AOB growth.Some research has shown that particle size and density induced the different distribution and dominance of AOB,NOB and anam-mox(Winkler et al.,2011b).Although a number of studies have been conducted to assess the ecology and microbiology of AOB in wastewater treatment systems,the information on the dynamics,distribution,and quantification of AOB communities during sludge granulation is still limited up to now.To address these concerns,the main objective of the present work was to investigate the population dynamics of AOB communities during the development of seedingflocs into granules,and the distribution of AOB and NOB in different size granules from an anaerobic e aerobic SBR.A combination of process studies,molecular biotechniques and microscale techniques were employed to identify and char-acterize these organisms.Based on these approaches,we demonstrate the differences in both AOB community evolu-tion and composition of theflocs and granules co-existing in the SBR and further elucidate the relationship between distribution of nitrifying bacteria and granule size.It is ex-pected that the work would be useful to better understand the mechanisms responsible for the AOB in granules and apply them for optimal control and management strategies of granulation systems.2.Material and methods2.1.Reactor set-up and operationThe granules were cultivated in a lab-scale SBR with an effective volume of4L.The effective diameter and height of the reactor was10cm and51cm,respectively.The hydraulic retention time was set at8h.Activated sludge from a full-scale sewage treat-ment plant(Jizhuangzi Sewage Treatment Works,Tianjin, China)was used as the seed sludge for the reactor at an initial sludge concentration of3876mg LÀ1in MLSS.The reactor was operated on6-h cycles,consisting of2-min influent feeding,90-min anaerobic phase(mixing),240-min aeration phase and5-min effluent discharge periods.The sludge settling time was reduced gradually from10to5min after80SBR cycles in20days, and only particles with a settling velocity higher than4.5m hÀ1 were retained in the reactor.The composition of the influent media were NaAc(450mg LÀ1),NH4Cl(100mg LÀ1),(NH4)2SO4 (10mg LÀ1),KH2PO4(20mg LÀ1),MgSO4$7H2O(50mg LÀ1),KCl (20mg LÀ1),CaCl2(20mg LÀ1),FeSO4$7H2O(1mg LÀ1),pH7.0e7.5, and0.1mL LÀ1trace element solution(Li et al.,2007).Analytical methods-The total organic carbon(TOC),NHþ4e N, NOÀ2e N,NOÀ3e N,total nitrogen(TN),total phosphate(TP) concentration,mixed liquid suspended solids(MLSS) concentration,and sludge volume index at10min(SVI10)were measured regularly according to the standard methods (APHA-AWWA-WEF,2005).Sludge size distribution was determined by the sieving method(Laguna et al.,1999).Screening was performed with four stainless steel sieves of5cm diameter having respective mesh openings of0.9,0.6,0.45,and0.2mm.A100mL volume of sludge from the reactor was sampled with a calibrated cylinder and then deposited on the0.9mm mesh sieve.The sample was subsequently washed with distilled water and particles less than0.9mm in diameter passed through this sieve to the sieves with smaller openings.The washing procedure was repeated several times to separate the gran-ules.The granules collected on the different screens were recovered by backwashing with distilled water.Each fraction was collected in a different beaker andfiltered on quantitative filter paper to determine the total suspended solid(TSS).Once the amount of total suspended solid(TSS)retained on each sieve was acquired,it was reasonable to determine for each class of size(<0.2,[0.2e0.45],[0.45e0.6],[0.6e0.9],>0.9mm) the percentage of the total weight that they represent.w a t e r r e s e a r c h x x x(2011)1e10 22.2.DNA extraction and nested PCR e DGGEThe sludge from approximately8mg of MLSS was transferred into a1.5-mL Eppendorf tube and then centrifuged at14,000g for10min.The supernatant was removed,and the pellet was added to1mL of sodium phosphate buffer solution and aseptically mixed with a sterilized pestle in order to detach granules.Genomic DNA was extracted from the pellets using E.Z.N.A.äSoil DNA kit(D5625-01,Omega Bio-tek Inc.,USA).To amplify ammonia-oxidizer specific16S rRNA for dena-turing gradient gel electrophoresis(DGGE),a nested PCR approach was performed as described previously(Zhang et al., 2010).30m l of nested PCR amplicons(with5m l6Âloading buffer)were loaded and separated by DGGE on polyacrylamide gels(8%,37.5:1acrylamide e bisacrylamide)with a linear gradient of35%e55%denaturant(100%denaturant¼7M urea plus40%formamide).The gel was run for6.5h at140V in 1ÂTAE buffer(40mM Tris-acetate,20mM sodium acetate, 1mM Na2EDTA,pH7.4)maintained at60 C(DCodeäUniversal Mutation Detection System,Bio-Rad,Hercules,CA, USA).After electrophoresis,silver-staining and development of the gels were performed as described by Sanguinetti et al. (1994).These were followed by air-drying and scanning with a gel imaging analysis system(Image Quant350,GE Inc.,USA). The gel images were analyzed with the software Quantity One,version4.31(Bio-rad).Dice index(Cs)of pair wise community similarity was calculated to evaluate the similarity of the AOB community among DGGE lanes(LaPara et al.,2002).This index ranges from0%(no common band)to100%(identical band patterns) with the assistance of Quantity One.The Shannon diversity index(H)was used to measure the microbial diversity that takes into account the richness and proportion of each species in a population.H was calculatedusing the following equation:H¼ÀPn iNlogn iN,where n i/Nis the proportion of community made up by species i(bright-ness of the band i/total brightness of all bands in the lane).Dendrograms relating band pattern similarities were automatically calculated without band weighting(consider-ation of band density)by the unweighted pair group method with arithmetic mean(UPGMA)algorithms in the Quantity One software.Prominent DGGE bands were excised and dissolved in30m L Milli-Q water overnight,at4 C.DNA was recovered from the gel by freeze e thawing thrice.Cloning and sequencing of the target DNA fragments were conducted following the estab-lished method(Zhang et al.,2010).2.3.Distribution of nitrifying bacteriaThree classes of size([0.2e0.45],[0.45e0.6],>0.9mm)were chosen on day180for FISH analysis in order to investigate the spatial distribution characteristics of AOB and NOB in granules.2mg sludge samples werefixed in4%para-formaldehyde solution for16e24h at4 C and then washed twice with sodium phosphate buffer;the samples were dehydrated in50%,80%and100%ethanol for10min each. Ethanol in the granules was then completely replaced by xylene by serial immersion in ethanol-xylene solutions of3:1, 1:1,and1:3by volume andfinally in100%xylene,for10min periods at room temperature.Subsequently,the granules were embedded in paraffin(m.p.56e58 C)by serial immer-sion in1:1xylene-paraffin for30min at60 C,followed by 100%paraffin.After solidification in paraffin,8-m m-thick sections were prepared and placed on gelatin-coated micro-scopic slides.Paraffin was removed by immersing the slide in xylene and ethanol for30min each,followed by air-drying of the slides.The three oligonucleotide probes were used for hybridiza-tion(Downing and Nerenberg,2008):FITC-labeled Nso190, which targets the majority of AOB;TRITC-labeled NIT3,which targets Nitrobacter sp.;TRITC-labeled NSR1156,which targets Nitrospira sp.All probe sequences,their hybridization condi-tions,and washing conditions are given in Table1.Oligonu-cleotides were synthesized andfluorescently labeled with fluorochomes by Takara,Inc.(Dalian,China).Hybridizations were performed at46 C for2h with a hybridization buffer(0.9M NaCl,formamide at the percentage shown in Table1,20mM Tris/HCl,pH8.0,0.01% SDS)containing each labeled probe(5ng m LÀ1).After hybrid-ization,unbound oligonucleotides were removed by a strin-gent washing step at48 C for15min in washing buffer containing the same components as the hybridization buffer except for the probes.For detection of all DNA,4,6-diamidino-2-phenylindole (DAPI)was diluted with methanol to afinal concentration of1ng m LÀ1.Cover the slides with DAPI e methanol and incubate for15min at37 C.The slides were subsequently washed once with methanol,rinsed briefly with ddH2O and immediately air-dried.Vectashield(Vector Laboratories)was used to prevent photo bleaching.The hybridization images were captured using a confocal laser scanning microscope (CLSM,Zeiss710).A total of10images were captured for each probe at each class of size.The representative images were selected andfinal image evaluation was done in Adobe PhotoShop.w a t e r r e s e a r c h x x x(2011)1e1033.Results3.1.SBR performance and granule characteristicsDuring the startup period,the reactor removed TOC and NH 4þ-N efficiently.98%of NH 4þ-N and 100%of TOC were removed from the influent by day 3and day 5respectively (Figs.S2,S3,Supporting information ).Removal of TN and TP were lower during this period (Figs.S3,S4,Supporting information ),though the removal of TP gradually improved to 100%removal by day 33(Fig.S4,Supporting information ).To determine the sludge volume index of granular sludge,a settling time of 10min was chosen instead of 30min,because granular sludge has a similar SVI after 60min and after 5min of settling (Schwarzenbeck et al.,2004b ).The SVI 10of the inoculating sludge was 108.2mL g À1.The changing patterns of MLSS and SVI 10in the continuous operation of the SBR are illustrated in Fig.1.The sludge settleability increased markedly during the set-up period.Fig.2reflects the slow andgradual process of sludge granulation,i.e.,from flocculentsludge to granules.3.2.DGGE analysis:AOB communities structure changes during sludge granulationThe results of nested PCR were shown in Fig.S1.The well-resolved DGGE bands were obtained at the representative points throughout the GSBR operation and the patterns revealed that the structure of the AOB communities was dynamic during sludge granulation and stabilization (Fig.3).The community structure at the end of experiment was different from that of the initial pattern of the seed sludge.The AOB communities on day 1showed 40%similarity only to that at the end of the GSBR operation (Table S1,Supporting information ),indicating the considerable difference of AOB communities structures between inoculated sludge and granular sludge.Biodiversity based on the DGGE patterns was analyzed by calculating the Shannon diversity index H as204060801001201401254159738494104115125135147160172188Time (d)S V I 10 (m L .g -1)10002000300040005000600070008000900010000M L S S (m g .L -1)Fig.1e Change in biomass content and SVI 10during whole operation.SVI,sludge volume index;MLSS,mixed liquid suspendedsolids.Fig.2e Variation in granule size distribution in the sludge during operation.d,particle diameter;TSS,total suspended solids.w a t e r r e s e a r c h x x x (2011)1e 104shown in Fig.S5.In the phase of sludge inoculation (before day 38),H decreased remarkably (from 0.94to 0.75)due to the absence of some species in the reactor.Though several dominant species (bands2,7,10,11)in the inoculating sludge were preserved,many bands disappeared or weakened (bands 3,4,6,8,13,14,15).After day 45,the diversity index tended to be stable and showed small fluctuation (from 0.72to 0.82).Banding pattern similarity was analyzed by applying UPGMA (Fig.4)algorithms.The UPGMA analysis showed three groups with intragroup similarity at approximately 67%e 78%and intergroup similarity at 44e 62%.Generally,the clustering followed the time course;and the algorithms showed a closer clustering of groups II and III.In the analysis,group I was associated with sludge inoculation and washout,group IIwithFig.3e DGGE profile of the AOB communities in the SBR during the sludge granulation process (lane labels along the top show the sampling time (days)from startup of the bioreactor).The major bands were labeled with the numbers (bands 1e15).Fig.4e UPGMA analysis dendrograms of AOB community DGGE banding patterns,showing schematics of banding patterns.Roman numerals indicate major clusters.w a t e r r e s e a r c h x x x (2011)1e 105startup sludge granulation and decreasing SVI 10,and group III with a stable system and excellent biomass settleability.In Fig.3,the locations of the predominant bands were excised from the gel.DNA in these bands were reamplified,cloned and sequenced.The comparative analysis of these partial 16S rRNA sequences (Table 2and Fig.S6)revealed the phylogenetic affiliation of 13sequences retrieved.The majority of the bacteria in seed sludge grouped with members of Nitrosomonas and Nitrosospira .Along with sludge granula-tion,most of Nitrosomonas (Bands 2,5,7,9,10,11)were remained or eventually became dominant in GSBR;however,all of Nitrosospira (Bands 6,13,15)were gradually eliminated from the reactor.3.3.Distribution of AOB and NOB in different sized granulesFISH was performed on the granule sections mainly to deter-mine the location of AOB and NOB within the different size classes of granules,and the images were not further analyzed for quantification of cell counts.As shown in Fig.6,in small granules (0.2mm <d <0.45mm),AOB located mainly in the outer part of granular space,whereas NOB were detected only in the core of granules.In medium granules (0.45mm <d <0.6mm),AOB distributed evenly throughout the whole granular space,whereas NOB still existed in the inner part.In the larger granules (d >0.9mm),AOB and NOB were mostly located in the surface area of the granules,and moreover,NOB became rare.4.Discussion4.1.Relationship between granule formation and reactor performanceAfter day 32,the SVI 10stabilized at 20e 35mL g À1,which is very low compared to the values measured for activated sludge (100e 150mL g À1).However,the size distribution of the granules measured on day 32(Fig.2)indicated that only 22%of the biomass was made of granular sludge with diameter largerthan 0.2mm.These results suggest that sludge settleability increased prior to granule formation and was not affected by different particle sizes in the sludge during the GSBR operation.It was observed,however,that the diameter of the granules fluctuated over longer durations.The large granules tended to destabilize due to endogenous respiration,and broke into smaller granules that could seed the formation of large granules again.Pochana and Keller reported that physically broken sludge flocs contribute to lower denitrification rates,due to their reduced anoxic zone (Pochana and Keller,1999).Therefore,TN removal efficiency raises fluctuantly throughout the experiment.Some previous research had demonstrated that bigger,more dense granules favored the enrichment of PAO (Winkler et al.,2011a ).Hence,after day 77,removal efficiency of TP was higher and relatively stable because the granules mass fraction was over 90%and more larger granules formed.4.2.Relationship between AOB communities dynamic and sludge granulationFor granule formation,a short settling time was set,and only particles with a settling velocity higher than 4.5m h À1were retained in the reactor.Moreover,as shown in Fig.1,the variation in SVI 10was greater before day 41(from 108.2mL g À1e 34.1mL g À1).During this phase,large amounts of biomass could not survive in the reactor.A clear shift in pop-ulations was evident,with 58%similarity between days 8and 18(Table S1).In the SBR system fed with acetate-based synthetic wastewater,heterotrophic bacteria can produce much larger amounts of extracellular polysaccharides than autotrophic bacteria (Tsuneda et al.,2003).Some researchers found that microorganisms in high shear environments adhered by extracellular polymeric substances (EPS)to resist the damage of suspended cells by environmental forces (Trinet et al.,1991).Additionally,it had been proved that the dominant heterotrophic species in the inoculating sludge were preserved throughout the process in our previous research (Zhang et al.,2011).It is well known that AOB are chemoau-totrophic and slow-growing;accordingly,numerous AOBw a t e r r e s e a r c h x x x (2011)1e 106populations that cannot become big and dense enough to settle fast were washed out from the system.As a result,the variation in AOB was remarkable in the period of sludge inoculation,and the diversity index of population decreased rapidly.After day 45,AOB communities’structure became stable due to the improvement of sludge settleability and the retention of more biomass.These results suggest that the short settling time (selection pressure)apparently stressed the biomass,leading to a violent dynamic of AOB communities.Further,these results suggest that certain populations may have been responsible for the operational success of the GSBR and were able to persist despite the large fluctuations in pop-ulation similarity.This bacterial population instability,coupled with a generally acceptable bioreactor performance,is congruent with the results obtained from a membrane biore-actor (MBR)for graywater treatment (Stamper et al.,2003).Nitrosomonas e like and Nitrosospira e like populations are the dominant AOB populations in wastewater treatment systems (Kowalchuk and Stephen,2001).A few previous studies revealed that the predominant populations in AOB communities are different in various wastewater treatment processes (Tawan et al.,2005;Thomas et al.,2010).Some researchers found that the community was dominated by AOB from the genus Nitrosospira in MBRs (Zhang et al.,2010),whereas Nitrosomonas sp.is the predominant population in biofilter sludge (Yin and Xu,2009).In the currentstudy,Fig.5e DGGE profile of the AOB communities in different size of granules (lane labels along the top show the range of particle diameter (d,mm)).Values along the bottom indicate the Shannon diversity index (H ).Bands labeled with the numbers were consistent with the bands in Fig.3.w a t e r r e s e a r c h x x x (2011)1e 107sequence analysis revealed that selection pressure evidently effect on the survival of Nitrosospira in granular sludge.Almost all of Nitrosospira were washed out initially and had no chance to evolve with the environmental changes.However,some members of Nitrosomonas sp.have been shown to produce more amounts of EPS than Nitrosospira ,especially under limited ammonia conditions (Stehr et al.,1995);and this feature has also been observed for other members of the same lineage.Accordingly,these EPS are helpful to communicate cells with each other and granulate sludge (Adav et al.,2008).Therefore,most of Nitrosomonas could adapt to this challenge (to become big and dense enough to settle fast)and were retained in the reactor.At the end of reactor operation (day 180),granules with different particle size were sieved.The effects of variation in granules size on the composition of the AOBcommunitiesFig.6e Micrographs of FISH performed on three size classes of granule sections.DAPI stain micrographs (A,D,G);AOB appear as green fluorescence (B,E,H),and NOB appear as red fluorescence (C,F,I).Bar [100m m in (A)e (C)and (G)e (I).d,particle diameter.(For interpretation of the references to colour in this figure legend,the reader is referred to the web version of this article.)w a t e r r e s e a r c h x x x (2011)1e 108were investigated.As shown in Fig.5,AOB communities structures in different size of granules were varied.Although several predominant bands(bands2,5,11)were present in all samples,only bands3and6appeared in the granules with diameters larger than0.6mm.Additionally,bands7and10 were intense in the granules larger than0.45mm.According to Table2,it can be clearly indicated that Nitrosospira could be retained merely in the granules larger than0.6mm.Therefore, Nitrosospira was not present at a high level in Fig.3due to the lower proportion of larger granules(d>0.6mm)in TSS along with reactor operation.DGGE analysis also revealed that larger granules had a greater microbial diversity than smaller ones. This result also demonstrates that more organisms can survive in larger granules as a result of more space,which can provide the suitable environment for the growth of microbes(Fig.6).4.3.Effect of variance in particle size on the distribution of AOB and NOB in granulesAlthough an influence of granule size has been observed in experiments and simulations for simultaneous N-and P-removal(de Kreuk et al.,2007),the effect of granule size on the distribution of different biomass species need be revealed further with the assistance of visible experimental results, especially in the same granular sludge reactors.Related studies on the diversity of bacterial communities in granular sludge often focus on the distribution of important functional bacteria populations in single-size granules(Matsumoto et al., 2010).In the present study,different size granules were sieved,and the distribution patterns of AOB and NOB were explored.In the nitrification processes considered,AOB and NOB compete for space and oxygen in the granules(Volcke et al.,2010).Since ammonium oxidizers have a higheroxygen affinity(K AOBO2<K NOBO2)and accumulate more rapidly inthe reactor than nitrite oxidizers(Volcke et al.,2010),NOB are located just below the layer of AOB,where still some oxygen is present and allows ready access to the nitrite produced.In smaller granules,the location boundaries of the both biomass species were distinct due to the limited existence space provided by granules for both microorganism’s growth.AOB exist outside of the granules where oxygen and ammonia are present.Medium granules can provide broader space for microbe multiplying;accordingly,AOB spread out in the whole granules.This result also confirms that oxygen could penetrate deep into the granule’s core without restriction when particle diameter is less than0.6mm.Some mathematic model also supposed that NOBs are favored to grow in smaller granules because of the higher fractional aerobic volume (Volcke et al.,2010).As shown in the results of the batch experiments(Zhang et al.,2011),nitrite accumulation temporarily occurred,accompanied by the more large gran-ules(d>0.9mm)forming.This phenomenon can be attrib-uted to the increased ammonium surface load associated with larger granules and smaller aerobic volume fraction,resulting in outcompetes of NOB.It also suggests that the core areas of large granules(d>0.9mm)could provide anoxic environment for the growth of anaerobic denitrificans(such as Tb.deni-trificans or Tb.thioparus in Fig.S7,Supporting information).As shown in Fig.2and Fig.S3,the removal efficiency of total nitrogen increased with formation of larger granules.5.ConclusionsThe variation in AOB communities’structure was remarkable during sludge inoculation,and the diversity index of pop-ulation decreased rapidly.Most of Nitrosomonas in the inocu-lating sludge were retained because of their capability to rapidly adapt to the settling e washing out action.DGGE anal-ysis also revealed that larger granules had greater AOB diversity than that of smaller ones.Oxygen penetration was not restricted in the granules of less than0.6mm particle diameter.However,the larger granules(d>0.9mm)can result in the smaller aerobic volume fraction and inhibition of NOB growth.Henceforth,further studies on controlling and opti-mizing distribution of granule size could be beneficial to the nitrogen removal and expansive application of granular sludge technology.AcknowledgmentsThis work was supported by grants from the National Natural Science Foundation of China(No.51108456,50908227)and the National High Technology Research and Development Program of China(No.2009AA06Z312).Appendix.Supplementary dataSupplementary data associated with this article can be found in online version at doi:10.1016/j.watres.2011.09.026.r e f e r e n c e sAdav,S.S.,Lee, D.J.,Show,K.Y.,2008.Aerobic granular sludge:recent advances.Biotechnology Advances26,411e423.APHA-AWWA-WEF,2005.Standard Methods for the Examination of Water and Wastewater,first ed.American Public Health Association/American Water Works Association/WaterEnvironment Federation,Washington,DC.de Bruin,L.M.,de Kreuk,M.,van der Roest,H.F.,Uijterlinde,C., van Loosdrecht,M.C.M.,2004.Aerobic granular sludgetechnology:an alternative to activated sludge?Water Science and Technology49,1e7.de Kreuk,M.,Heijnen,J.J.,van Loosdrecht,M.C.M.,2005.Simultaneous COD,nitrogen,and phosphate removal byaerobic granular sludge.Biotechnology and Bioengineering90, 761e769.de Kreuk,M.,Picioreanu,C.,Hosseini,M.,Xavier,J.B.,van Loosdrecht,M.C.M.,2007.Kinetic model of a granular sludge SBR:influences on nutrient removal.Biotechnology andBioengineering97,801e815.Downing,L.S.,Nerenberg,R.,2008.Total nitrogen removal ina hybrid,membrane-aerated activated sludge process.WaterResearch42,3697e3708.Erguder,T.H.,Boon,N.,Vlaeminck,S.E.,Verstraete,W.,2008.Partial nitrification achieved by pulse sulfide doses ina sequential batch reactor.Environmental Science andTechnology42,8715e8720.w a t e r r e s e a r c h x x x(2011)1e109。
(推荐)《古生物地史学》PPT课件
继续被埋藏,上覆沉积物逐渐增多,发生石化作用30
第二章 化石的形成与古生物学
第二节 化石的石化作用
地层倾斜、上升,露出水面
31
第二章 化石的形成与古生物学
第二节 化石的石化作用
露出水面的地层被风化、剥蚀,部分化石外露 32
第二章 化石的形成与古生物学
第二节 化石的石化作用
4
第二章 化石的形成与古生物学
第一节 化石-古生物学的研究对象 双壳纲生物
5
第二章 化石的形成与古生物学
第一节 化石-古生物学的研究对象 菊石
6
第二章 化石的形成与古生物学
第一节 化石-古生物学的研究对象 三叶虫
7
第二章 化石的形成与古生物学
第一节 化石-古生物学的研究对象
腕 足 动 物
8
第二章 化石的形成与古生物学
化石被发现
33
它们如何成为化石?
34
第二章 化石的形成与古生物学
第二节 化石的石化作用
化石的形成和保存取决以下下几方面的条件: 生物本身条件 生物死后的环境条件 埋藏条件 时间条件 成岩条件
35
第二章 化石的形成与古生物学
第二节 化石的石化作用
• 生物硬体 – 比较稳定的是方解石、 硅质化合物、甲氰磷酸 钙等 – 不太稳定的是霰石、含 镁方解石 – 有机质硬体如几丁质薄 膜、角质层、木质物等, 虽易遭受破坏,但可碳 化而保存为化石,如植 物叶子。
第一节 化石-古生物学的研究对象 鱼
9
第二章 化石的形成与古生物学
第一节 化石-古生物学的研究对象
青 蛙
10
第二章 化石的形成与古生物学
第一节 化石-古生物学的研究对象 恐龙
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与印度东北部,梅加拉亚邦,巴尔帕克莱姆峡谷植被和气候相关的现代花粉沉积对印缅古生态环境的指示意义摘要:位于梅加拉亚邦加罗部落的树林,巴尔帕克莱姆峡谷因其热带独特的生物多样性、自然地理特征、地震活动带而著名,并且毗邻乞拉朋齐(印度东北部的一个村庄)。
由于该峡谷偏僻,不可穿过的森林和野生动物,所以该区域之前没有进行过孢粉学的研究。
巴尔帕克莱姆峡谷中的由120个表土样品组成的现代花粉数据库指示了现代花粉、植被和气候的相关程度。
5个花粉带(森林类型)都是基于区域花粉标记分类对应于常绿和落叶林的元素比例(>30%表示森林类型)从而被记录下来。
现在的植被与印度-缅甸植被类似,除了一个独特的杜滨木属属-木荷属-猪笼草组合,因为该峡谷高季风活动带来的较强的常年性河流系统,常绿木本类群在丰度上与檀香科,胡椒科,凤仙花属组合一致,这种组合具有重要意义,而且指示了稠密森林强季风活动,禾本科的丰度与蒿-藜组合一致指示了热带草原类型,这归因于季节干旱和有限区域的弱的水流系统。
缺少龙脑香科花粉,一种印度梅加拉亚邦森林特有的类群,指示了区域影响。
竹花粉代表性差可能归因于低的花粉产量(一次开花)和保存率。
沉积物中猪笼草花粉表示了高降水量,同时也指示了高花粉产量和良好的保存状况。
没有观察到药用植物,尤其是闭鞘姜和印度獐牙,尽管在这个区域繁茂生长,可能是由于低的花粉产量。
桫椤属(树蕨类植物)与石松属和石韦属的丰度指示了高降雨量和湿润气候。
粪生真菌包括粪壳和尾柄的出现指示了野生动物在该区生活。
巴尔帕克莱姆峡谷独特的森林植被主要受该区常年性河流和小溪,水分有效性和高度变化带来的年降水量所控制。
这项研究有助于形成古生态数据用于邻近的生态区,包括东喜马拉雅和印度梅加拉亚邦地区,从而用来追溯印度-缅甸范围内植物和动物群落迁移的路线。
1.引言印度东北部,毗邻喜马拉雅山地区,在印度、印度-马来亚和印支的生物地理区中是一个独特的过渡带;同时也是喜马拉雅地区和印度半岛的交汇点。
但是,梅加拉亚邦因其丰富的生物多样性和地球上最大的降雨区而出名。
该区的植物群落与亚洲东南部和中国南部有密切关系。
该区域在世界上被植物学家和地理学家认为是早期植物移植的核能区之一。
梅加拉亚邦巴尔帕克莱姆峡谷字面上意思是“永恒风之地”,是一个神圣的小树林的加罗部落,他们认为亡灵是暂时踏上最后的旅行,而没有离他们远去。
该峡谷在1986年2月被宣布成为国家公园,之前在1979年确立为四级野生动物保护区。
该峡谷也被认为是亚洲象的发源地,并且记录了世界上最大密度的亚洲象地区之一,与印度猪笼草一样(梅加拉亚邦特有的植物)。
在这之前进行过一些初步的有关巴尔帕克莱姆峡谷植物和动物群落的研究工作。
在梅加拉亚邦的卡西山以及加罗山东部和南部进行过有限的孢粉学研究。
现代花粉谱可以作为一个背景库用于更好的表示化石孢粉组合,从而来恢复古植被和气候。
本文是第一次表土花粉研究,是基于南加罗山巴尔帕克莱姆峡谷总共120个样品采集点的一项研究,以表征该区域的植被类型和气候与印缅范围内相关。
2.区域背景印度东北部巴尔帕克莱姆峡谷位于北纬25º10′-25º30′,东经90º40′-90º50′之间,平均海拔为1485m,并且在阿拉贝拉和图拉山脉之间呈东西延伸。
地貌学上来讲,该峡谷由波状起伏的山脉组成,峡谷面积大约有220km2,发育常年性河流,主要有马哈德奥河,隆格拉河,马赫石科拉河,隆凯河。
该峡谷位于巴格马拉(地区总部)东北方向90km,距离西隆(州首府)约200km,途经孟加拉国边境公路的拉尼克市的Mawsynrame(村庄)。
地球上最潮湿的地方,其位于北回归线上,乞拉朋齐非常接近巴尔帕克莱姆峡谷。
该峡谷覆盖了加罗山的东南部。
峡谷在东南亚是一个非常重要的交汇点,它毗邻东喜马拉雅山北部和印缅东部。
地质学上来讲,该地区包含了从太古代至今的地层组合。
它是世界上最活跃的地震带之一,并处在严重的五级地震带之中(印度标准,国际清算银行代码)。
因此,利用高分辨率孢粉数据,该地区在地震活动影响区域植被的行为方式的研究中是一个重要的角色。
2.1气候和土壤该区的气候直接受形成于孟加拉湾和阿拉伯海的西南季风控制。
由于海拔高度的变化,气候条件基本上在不同地方变化很大。
巴尔帕克莱姆峡谷经历了一个高降雨量、高温、强湿润的季风气候。
该地区年均降雨量是2023mm,这与梅加拉亚邦政府区农业局2012年所记录的一致。
尽管某些地区(雨影区)因为季节变化受到的降雨量较少,但是该地区在一年中都受到相当高的降雨量。
夏天最高温度达到33ºC,冬天最低温度4ºC。
相对湿度在夏季达到98%,冬季55%。
森林土壤主要是红土壤,PH在5.6-6.2之间变化,土壤中有机物含量为10%。
3.材料和方法3.1野外工作尽管很难获得巴尔帕克莱姆峡谷的孢粉学样品,因为地处偏远,有茂密的灌木丛,野生动物和神圣的丛林,但是样品采集可用于估算与植被成分和气候相关的现代花粉雨。
大量的样品采集于不同的植被类型,用于建立花粉数据库(120样品)。
采集具花粉的材料为正确鉴定类群的花粉做准备。
各样品点的位置通过GPS记录。
120个表土样品中,30个(B1-30)从常绿林采集得到,30个(B31-60)来自于半常绿林,30个(B61-90)来自于混合落叶林,20个(B91-110)来自于热带稀树草原和草原,10个(B111-120)来自于竹林。
土壤和苔藓植物样品在研究区周围约50m间隔随机取样。
样品的详细位置、样品性质、森林类型以及主要花粉标志类群如表1所示。
表1 梅加拉亚邦,巴尔帕克莱姆峡谷采样位置、样品性质和森林类型以及它们主要的花粉标志类群3.2实验室工作花粉表土样品(土壤和苔藓垫)通过标准的醋解方法进行处理。
获得的样品用10%KOH溶液处理防止沉积物中的花粉和孢子凝结,然后用40%HF溶解硅质物。
之后,传统的醋解过程是使用醋解混合物(9:1脱水乙酸和浓缩硫酸)。
最后,样品保存在滴有一滴苯酚的50%的甘油溶液中。
每个样品中共有550-700个花粉和孢子被计数用来做成花粉谱。
花粉类群分为树栖的(树木、灌木和附生植物)、非树栖的(陆生草本和沼泽地)、高原类群、蕨类植物和真菌依然存在。
对于准确鉴定沉积物中的化石孢粉型,可查阅参考比巴尔萨尼古植物学研究所(BSIP)花粉幻灯片,同时也可查阅已发表文献的花粉照片,孢粉型的图片可以利用Olympus BX-61显微镜和DP-25数码照相机在放大40倍获得(如图2)。
花粉谱可用Microsoft Excel和Corel Draw12软件修订而得到。
恢复的花粉型比例根据总孢粉型数计算得到。
图2.巴尔帕克莱姆峡谷表土沉积物中恢复的孢粉组合,孢粉型解释:1. 杜英属, 2. 铁力木属, 3. 木荷属, 4. 厚皮树属, 5. 油柑子, 6. 蒲桃属,7. 杜滨木属属, 8. 榄仁树属, 9. 山榄科, 10. 第伦桃属, 11. 合欢属, 12. 肉托果属, 13. 榴玉蕊, 14. 猪笼草, 15. 五蕊寄生属, 16. 松属, 17. 桦属, 18. 桤木属, 19. 栎属, 20. 杨梅属, 21.凤仙花属, 22. 管状花亚科, 23. 舌状花亚科,24. 蒿属, 23. 藜科, 25. 旋花科, 26. 竹, 27. 莎草科, 28. 蓼科, 29. 苍耳属, 30. 单缝孢, 31.石松属, 32.凤尾蕨属, 33. 小煤炱属, 34. 血管球菌, 35. Gelanosporium.4.植被巴尔帕克莱姆峡谷因其自然地理,强降雨,和其他的生态特征的巨大变化,具有丰富的生物多样性。
该峡谷森林隶属于印度梅加拉亚邦,主要分为热带常绿林,半常绿林,潮湿落叶林,热带草原,竹林等。
各森林类花粉雨的行为模式描述如下图3所示。
图3.梅加拉亚邦,巴尔帕克莱姆峡谷现代花粉谱图4. A.表示热带常绿林 B.表示猪笼草生长在巴尔帕克莱姆峡谷C.表示落叶林孟加拉平原D.热带草原4.1热带潮湿常绿林这种森林一般会占据山坡,河流和溪流,常常不易接近和人为改造(图4A)。
但是,这种类型的森林仅仅出现在平均降雨量250cm的地方,同时有一个较为寒冷的冬季,全年保持常青,密度大的和多样化的类群。
峡谷森林土壤类型是红壤混有石灰岩和少量粘土。
森林的特点是树木树冠繁茂生长和多样化的植物。
主要成分有倒卵叶黄肉楠属(樟科),山楝属,羊蹄甲属,栲属,钝叶桂,毛果杜英,云树,粗糠柴,铁力木,四角蒲桃。
猪笼草只沿着小溪和森林外围繁茂生长(图4B)。
森林地面上覆盖着一层腐殖质供给许多罕见的草本植物,陆生兰花,蕨类植物的幼苗生长。
蕨类植物群中,观音座莲,大叶黑桫椤,金冠鳞毛蕨和铁芒萁是优势类群。
花粉雨(带1,栲属-杜英属-木兰科-杜滨木属属-木荷属-猪笼草):30个表土样品(B1-30)从常绿林不同位置随机获取用于花粉分析。
主要的常绿树栖类栲属,杜滨木属属,杜英属,铁力木属,木荷属和木兰科的记录值在1.0%-7.0%。
其他相关的落叶类合欢属,第伦桃属和榄仁树属用跟踪值恢复。
灌木类木犀科、芸香科和猪笼草记录的平均值为1%。
草原记录高达12%。
其他的陆生草本即菊科、大戟科、胡椒科、凤仙花约占0.5-3.5%。
沼泽类莎草科、蓼科在1-4%。
然而,高原类群桤木属、桦属和松属占0.5-2.5%。
在蕨类植物类群中,单缝孢和三缝孢的平均值分别为6.6%和6.5%。
真菌类中小盾壳科、色二孢属、小煤炱属在孢粉组合中占4-9.5%。
4.2半常绿林这种森林平均海拔在500-600m,一个比常绿林相对欠发育的常年流水系统,年均降雨量在200-250cm。
这种森林发育红壤且混有少量砂。
主要的植物组分有榴玉蕊,白橼,钝叶桂,闭鞘姜,杜滨木属,铁力木,木荷,悦目真枝藻和四数木。
含密集的腐殖质的森林地面常被草覆盖。
药用草本与显现的蕨类植物类群同属于铁线蕨科,乌毛蕨,大叶黑桫椤和垂穗石松科。
花粉雨(带2,栲属-樟科-铁力木属-蒲桃属-木荷属-杜滨木属):30个表土样品(B31-60)从半常绿林不同位置随机获取。
半常绿林树栖类即铁力木,樟科,木荷属,蒲桃属,合欢属记录在0.5-5.0%。
灌木元素鸭嘴花属和芸香科平均值分别为1.3%和1.0%。
草记录的最大值为15%。
然而,其他的陆生草本如管状花亚科,旋花科和凤仙花属占0.5-8.9%。
高原类群松属,桦属和桤木属占0.5-3.0%。
蕨类植物类群中单缝孢和三缝孢分别占6.4%和6.1%。
主要的真菌类是链格孢属,弯孢属和四绺孢属达到最大值9%。
4.3混合落叶林这种森林一般在峡谷的南部最常见,山坡朝向孟加拉山,海拔高度在40-300m(图4C)。
这种森林常出现在年均降水量在200cm以下的地方。