数字逻辑实验
数字逻辑实验报告实验
![数字逻辑实验报告实验](https://img.taocdn.com/s3/m/828310b24bfe04a1b0717fd5360cba1aa9118c7f.png)
一、实验目的1. 理解数字逻辑的基本概念和基本原理。
2. 掌握数字逻辑电路的基本分析方法,如真值表、逻辑表达式等。
3. 熟悉常用数字逻辑门电路的功能和应用。
4. 提高数字电路实验技能,培养动手能力和团队协作精神。
二、实验原理数字逻辑电路是现代电子技术的基础,它主要研究如何用数字逻辑门电路实现各种逻辑功能。
数字逻辑电路的基本元件包括与门、或门、非门、异或门等,这些元件可以通过组合和连接实现复杂的逻辑功能。
1. 与门:当所有输入端都为高电平时,输出端才为高电平。
2. 或门:当至少有一个输入端为高电平时,输出端为高电平。
3. 非门:将输入端的高电平变为低电平,低电平变为高电平。
4. 异或门:当输入端两个高电平或两个低电平时,输出端为低电平,否则输出端为高电平。
三、实验内容1. 实验一:基本逻辑门电路的识别与测试(1)认识实验仪器:数字电路实验箱、逻辑笔、示波器等。
(2)识别与测试与门、或门、非门、异或门。
(3)观察并记录实验现象,分析实验结果。
2. 实验二:组合逻辑电路的设计与分析(1)设计一个简单的组合逻辑电路,如加法器、减法器等。
(2)根据真值表列出输入输出关系,画出逻辑电路图。
(3)利用逻辑门电路搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
3. 实验三:时序逻辑电路的设计与分析(1)设计一个简单的时序逻辑电路,如触发器、计数器等。
(2)根据电路功能,列出状态表和状态方程。
(3)利用触发器搭建电路,进行实验验证。
(4)观察并记录实验现象,分析实验结果。
四、实验步骤1. 实验一:(1)打开实验箱,检查各电路元件是否完好。
(2)根据电路图连接实验电路,包括与门、或门、非门、异或门等。
(3)使用逻辑笔和示波器测试各逻辑门电路的输出,观察并记录实验现象。
2. 实验二:(1)根据实验要求,设计组合逻辑电路。
(2)列出真值表,画出逻辑电路图。
(3)根据逻辑电路图连接实验电路,包括所需逻辑门电路等。
数字逻辑实验报告金科
![数字逻辑实验报告金科](https://img.taocdn.com/s3/m/745f36ad4793daef5ef7ba0d4a7302768f996f05.png)
一、实验目的1. 理解数字逻辑的基本概念和基本原理。
2. 掌握常用数字逻辑门的功能和特性。
3. 学会使用数字逻辑电路设计简单功能电路。
4. 提高实验操作能力和分析问题、解决问题的能力。
二、实验器材1. 数字逻辑实验箱2. 逻辑门电路芯片3. 逻辑测试笔4. 连接线5. 逻辑分析仪6. 示波器三、实验原理数字逻辑是研究数字信号和数字系统的一门学科。
它主要研究数字电路的设计、分析和实现。
数字逻辑的基本元件包括逻辑门、触发器、寄存器等。
本实验主要涉及以下几种逻辑门:1. 与门(AND):只有当所有输入端都为高电平时,输出才为高电平。
2. 或门(OR):只要有一个输入端为高电平,输出就为高电平。
3. 非门(NOT):输入为高电平时,输出为低电平;输入为低电平时,输出为高电平。
4. 异或门(XOR):只有当两个输入端电平不同时,输出才为高电平。
四、实验内容1. 逻辑门功能测试(1)测试与门、或门、非门、异或门的功能。
(2)使用逻辑测试笔和逻辑门电路芯片,观察输入和输出之间的关系。
2. 组合逻辑电路设计(1)设计一个简单的组合逻辑电路,实现二进制加法功能。
(2)使用逻辑门电路芯片和连线,搭建电路。
(3)测试电路功能,验证其正确性。
3. 时序逻辑电路设计(1)设计一个简单的时序逻辑电路,实现计数功能。
(2)使用触发器、寄存器等时序逻辑元件,搭建电路。
(3)测试电路功能,验证其正确性。
五、实验步骤1. 准备工作(1)检查实验器材是否齐全,确保实验顺利进行。
(2)阅读实验指导书,了解实验原理和步骤。
2. 逻辑门功能测试(1)将逻辑门电路芯片插入实验箱。
(2)根据实验指导书,连接输入和输出端口。
(3)使用逻辑测试笔,观察输入和输出之间的关系。
3. 组合逻辑电路设计(1)根据设计要求,选择合适的逻辑门。
(2)使用连线,搭建组合逻辑电路。
(3)测试电路功能,验证其正确性。
4. 时序逻辑电路设计(1)根据设计要求,选择合适的时序逻辑元件。
数字逻辑实验报告解析
![数字逻辑实验报告解析](https://img.taocdn.com/s3/m/305d4454f68a6529647d27284b73f242326c3154.png)
一、实验背景数字逻辑是电子技术与计算机科学的基础课程,它研究数字电路的设计与实现。
为了加深对数字逻辑电路的理解,我们进行了本次实验,通过实际操作和仿真,验证数字逻辑电路的理论知识,并掌握数字逻辑电路的设计与实现方法。
二、实验目的1. 理解数字逻辑电路的基本原理和组成。
2. 掌握逻辑门电路、组合逻辑电路和时序逻辑电路的设计方法。
3. 通过实验验证数字逻辑电路的功能,提高动手能力和分析问题能力。
三、实验内容1. 逻辑门电路实验(1)实验目的:学习分析基本的逻辑门电路的工作原理,掌握与门、或门、非门等基本逻辑门电路的逻辑功能。
(2)实验步骤:①按照实验指导书的要求,连接实验电路;②根据输入信号,观察输出信号,验证逻辑门电路的逻辑功能;③记录实验结果,分析实验现象。
(3)实验结果与分析:实验结果显示,与门、或门、非门等基本逻辑门电路的逻辑功能符合预期。
通过实验,我们加深了对逻辑门电路工作原理的理解。
2. 组合逻辑电路实验(1)实验目的:掌握组合逻辑电路的设计方法,验证组合逻辑电路的功能。
(2)实验步骤:①根据实验要求,设计组合逻辑电路;②按照实验指导书的要求,连接实验电路;③根据输入信号,观察输出信号,验证组合逻辑电路的功能;④记录实验结果,分析实验现象。
(3)实验结果与分析:实验结果显示,设计的组合逻辑电路功能符合预期。
通过实验,我们掌握了组合逻辑电路的设计方法,提高了逻辑思维能力。
3. 时序逻辑电路实验(1)实验目的:掌握时序逻辑电路的设计方法,验证时序逻辑电路的功能。
(2)实验步骤:①根据实验要求,设计时序逻辑电路;②按照实验指导书的要求,连接实验电路;③根据输入信号,观察输出信号,验证时序逻辑电路的功能;④记录实验结果,分析实验现象。
(3)实验结果与分析:实验结果显示,设计的时序逻辑电路功能符合预期。
通过实验,我们掌握了时序逻辑电路的设计方法,提高了逻辑思维能力。
四、实验总结通过本次实验,我们完成了以下任务:1. 理解了数字逻辑电路的基本原理和组成;2. 掌握了逻辑门电路、组合逻辑电路和时序逻辑电路的设计方法;3. 通过实验验证了数字逻辑电路的功能,提高了动手能力和分析问题能力。
数字逻辑上机实验报告
![数字逻辑上机实验报告](https://img.taocdn.com/s3/m/a571b32e842458fb770bf78a6529647d26283454.png)
一、实验目的1. 理解数字逻辑的基本概念和基本门电路的功能。
2. 掌握组合逻辑电路和时序逻辑电路的设计方法。
3. 学会使用逻辑仿真软件进行电路设计和验证。
4. 培养动手能力和逻辑思维。
二、实验环境1. 实验软件:Multisim 14.02. 实验设备:个人计算机3. 实验工具:万用表、示波器、数字逻辑实验箱三、实验内容1. 组合逻辑电路设计(1)实验一:全加器设计实验目的:设计并验证一个全加器电路。
实验步骤:1. 打开Multisim软件,创建一个新的项目。
2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门等,搭建全加器电路。
3. 使用示波器观察输入和输出波形,验证电路功能。
实验结果:成功搭建全加器电路,输出波形符合预期。
(2)实验二:译码器设计实验目的:设计并验证一个3-8译码器电路。
实验步骤:1. 打开Multisim软件,创建一个新的项目。
2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门等,搭建3-8译码器电路。
3. 使用示波器观察输入和输出波形,验证电路功能。
实验结果:成功搭建3-8译码器电路,输出波形符合预期。
2. 时序逻辑电路设计(1)实验一:D触发器设计实验目的:设计并验证一个D触发器电路。
实验步骤:1. 打开Multisim软件,创建一个新的项目。
2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门等,搭建D触发器电路。
3. 使用示波器观察输入和输出波形,验证电路功能。
实验结果:成功搭建D触发器电路,输出波形符合预期。
(2)实验二:计数器设计实验目的:设计并验证一个4位同步加法计数器电路。
实验步骤:1. 打开Multisim软件,创建一个新的项目。
2. 从库中选择所需的逻辑门,如AND门、OR门、NOT门、触发器等,搭建4位同步加法计数器电路。
3. 使用示波器观察输入和输出波形,验证电路功能。
实验结果:成功搭建4位同步加法计数器电路,输出波形符合预期。
四、实验结果分析1. 通过实验,掌握了组合逻辑电路和时序逻辑电路的设计方法。
数字逻辑实验报告代码
![数字逻辑实验报告代码](https://img.taocdn.com/s3/m/2af645137ed5360cba1aa8114431b90d6c8589eb.png)
实验名称:数字逻辑基础实验实验目的:1. 理解并掌握基本的数字逻辑门电路及其功能。
2. 学习使用数字逻辑门电路设计简单的组合逻辑电路。
3. 掌握数字逻辑电路的仿真方法。
实验器材:1. 数字逻辑实验箱2. 仿真软件(如Multisim)实验内容:一、实验一:基本逻辑门电路测试1. 实验原理基本逻辑门电路是数字逻辑电路的基础,包括与门(AND)、或门(OR)、非门(NOT)、异或门(XOR)等。
本实验通过测试这些基本逻辑门电路,验证其功能。
2. 实验步骤(1)按照实验箱说明书连接电路。
(2)使用开关模拟输入信号,观察输出结果。
(3)分别测试与门、或门、非门、异或门的功能。
3. 实验结果与门:输入均为高电平时,输出为高电平;否则,输出为低电平。
或门:输入至少有一个高电平时,输出为高电平;否则,输出为低电平。
非门:输入为高电平时,输出为低电平;输入为低电平时,输出为高电平。
异或门:输入不同时,输出为高电平;输入相同时,输出为低电平。
二、实验二:组合逻辑电路设计1. 实验原理组合逻辑电路是由基本逻辑门电路组合而成的电路,其输出仅与当前的输入有关,而与电路历史状态无关。
2. 实验步骤(1)设计一个4位二进制加法器。
(2)使用基本逻辑门电路搭建电路。
(3)测试电路功能。
3. 实验结果设计了一个4位二进制加法器,其功能正常。
三、实验三:数字逻辑电路仿真1. 实验原理数字逻辑电路仿真是一种利用计算机软件模拟实际电路的方法,可以直观地观察电路的输入输出关系。
2. 实验步骤(1)打开仿真软件,创建一个新的项目。
(2)根据实验要求,使用基本逻辑门电路搭建电路。
(3)设置输入信号,观察输出结果。
(4)调整电路参数,观察输出变化。
3. 实验结果使用仿真软件成功搭建了实验二中的4位二进制加法器电路,并验证了其功能。
实验总结:通过本次数字逻辑实验,我们对基本逻辑门电路及其功能有了更深入的了解。
同时,我们学会了使用基本逻辑门电路设计简单的组合逻辑电路,并掌握了数字逻辑电路的仿真方法。
数字逻辑实验报告至诚
![数字逻辑实验报告至诚](https://img.taocdn.com/s3/m/96070ea2c9d376eeaeaad1f34693daef5ef713c3.png)
一、实验名称数字逻辑实验二、实验目的1. 理解和掌握数字逻辑的基本概念和基本电路。
2. 学会使用逻辑门进行逻辑运算。
3. 掌握组合逻辑电路的设计方法。
4. 通过实验加深对数字逻辑理论知识的理解。
三、实验原理数字逻辑是研究数字信号及其处理的理论,主要内容包括逻辑门、组合逻辑电路、时序逻辑电路等。
本实验主要围绕组合逻辑电路展开,通过实验加深对组合逻辑电路的理解。
四、实验仪器及材料1. 数字逻辑实验箱2. 逻辑门芯片(如74LS00、74LS04等)3. 逻辑开关4. 逻辑灯5. 逻辑测试笔6. 连接线7. 实验指导书五、实验内容及步骤1. 组合逻辑电路的设计与验证(1)设计一个简单的组合逻辑电路,如异或门、与门、或门等。
(2)根据设计要求,选择合适的逻辑门芯片。
(3)将逻辑门芯片插入实验箱,连接输入端和输出端。
(4)使用逻辑开关设置输入信号,观察逻辑灯的输出情况,验证电路的正确性。
2. 译码器和数据选择器的设计与验证(1)设计一个译码器,将输入的二进制信号转换为输出信号。
(2)设计一个数据选择器,根据输入信号选择相应的输出信号。
(3)根据设计要求,选择合适的译码器和数据选择器芯片。
(4)将芯片插入实验箱,连接输入端和输出端。
(5)使用逻辑开关设置输入信号,观察逻辑灯的输出情况,验证电路的正确性。
3. 组合逻辑电路的应用(1)设计一个交通灯控制器,控制红、黄、绿三个信号灯的亮灭。
(2)设计一个密码锁,输入正确的密码后,输出信号使门锁打开。
(3)根据设计要求,选择合适的逻辑门芯片。
(4)将芯片插入实验箱,连接输入端和输出端。
(5)使用逻辑开关设置输入信号,观察逻辑灯的输出情况,验证电路的正确性。
六、实验结果与分析1. 组合逻辑电路的设计与验证通过实验,成功设计并验证了异或门、与门、或门等基本组合逻辑电路。
在实验过程中,了解了逻辑门的工作原理,掌握了组合逻辑电路的设计方法。
2. 译码器和数据选择器的设计与验证成功设计并验证了译码器和数据选择器电路。
数字逻辑实验报告综合版
![数字逻辑实验报告综合版](https://img.taocdn.com/s3/m/be2add6c591b6bd97f192279168884868662b877.png)
基于Libero的数字逻辑仿真实验1.基本门电路一、实验目的1.了解基于Verilog的基本门电路的设计及其验证。
2.熟悉利用EDA工具进行设计及仿真的流程。
二、实验环境Libero仿真软件。
三、实验内容1.参考4.1基本门电路实验掌握Libero软件的使用方法。
2.参考74HC00的实验, 完成74HC00、74HC02.74HC04.74HC08、74HC32.74HC86相应的设计、综合及仿真3、提交针对74HC00、74HC02、74HC04、74HC08、74HC32、74HC86(任选一个)的综合结果, 以及相应的功能仿真结果。
4.自选一个器件演示其布线后仿真过程。
四、实验结果和数据处理1.模块及测试平台代码清单(a) 74HC32:(b)模块代码// main.vmodule HC32(a,b,y);input [4:1]a,b;output[4:1]y;assign y=a|b;endmodule(c)测试平台代码// testbench.v`timescale 1ns/1nsmodule testbench;reg [4:1]a,b;wire [4:1]y;HC32 ul(a,b,y);initialbegina=4'b0000;b=4'b0001;#10 b=b<<1;#10 b=b<<1;#10 b=b<<1;#10 b=b<<1;endendmodule2.第三次仿真结果(布局布线后)2.组合逻辑电路一、实验目的1.了解基于Verilog的组合逻辑电路的设计及其验证。
2.熟悉利用EDA工具进行设计及仿真的流程。
二、实验环境Libero仿真软件。
三、实验内容1.参考74HC00的实验, 完成74HC283.74HC85.74HC138、74HC148、74HC15.相应的设计、综合及仿真。
2、记录74HC85的综合结果, 以及相应的功能仿真结果。
数字逻辑实践实验报告(3篇)
![数字逻辑实践实验报告(3篇)](https://img.taocdn.com/s3/m/43f263f06aec0975f46527d3240c844768eaa047.png)
第1篇一、实验目的1. 掌握数字逻辑电路的基本原理和设计方法。
2. 熟悉数字电路实验设备的使用。
3. 提高数字电路的仿真和调试能力。
4. 培养学生分析问题和解决问题的能力。
二、实验内容1. 组合逻辑电路设计(1)2选1多路选择器设计:根据教材5.1节的流程,利用Quartus II完成2选1多路选择器的文本编辑输入(MUX21.v)和仿真测试等步骤,给出仿真波形。
在实验系统上硬件测试,验证此设计的功能。
(2)三人表决电路设计:根据教材5.1节的流程,利用Quartus II完成三人表决电路的文本编辑输入(图5-36)和仿真测试等步骤,给出仿真波形。
在实验系统上硬件测试,验证此设计的功能。
2. 时序逻辑电路设计(1)数字显示电子钟设计:根据任务要求,设计一个数字显示电子钟,时钟的时、分、秒要求各用两位显示,上、下午用发光管作为标志。
整个系统要有校时部分和闹钟部分,声音要响5秒。
(2)脉冲波形的变换与产生:设计单稳态触发器,555定时器及其应用电路,实现脉冲波形的变换与产生。
3. 数字逻辑电路仿真与调试(1)使用Logisim软件进行无符号数的乘法器设计,实现两个无符号的4位二进制数的乘法运算。
(2)使用Logisim软件进行无符号数的除法器设计,实现两个无符号的4位二进制数的除法运算。
三、实验过程1. 组合逻辑电路设计(1)2选1多路选择器设计:首先,分析2选1多路选择器的逻辑功能,确定输入输出关系。
然后,利用Quartus II软件编写Verilog HDL代码,完成2选1多路选择器的文本编辑输入。
接着,进行仿真测试,观察仿真波形,验证设计功能。
最后,在实验系统上硬件测试,验证设计功能。
(2)三人表决电路设计:首先,分析三人表决电路的逻辑功能,确定输入输出关系。
然后,利用Quartus II软件编写Verilog HDL代码,完成三人表决电路的文本编辑输入。
接着,进行仿真测试,观察仿真波形,验证设计功能。
数字逻辑综合实验报告
![数字逻辑综合实验报告](https://img.taocdn.com/s3/m/c2b63e5ea7c30c22590102020740be1e640ecc58.png)
一、实验目的本次实验旨在通过实际操作,加深对数字逻辑基本原理和设计方法的理解,提高学生在数字电路设计、仿真和调试方面的实践能力。
通过完成以下实验任务,使学生掌握以下技能:1. 理解数字逻辑电路的基本概念和原理。
2. 掌握数字逻辑电路的设计方法和步骤。
3. 学会使用仿真软件进行电路设计和仿真测试。
4. 掌握数字逻辑电路的调试和优化方法。
二、实验内容本次实验主要包含以下三个部分:1. 组合逻辑电路设计:设计一个四位加法器,并使用Logisim软件进行仿真测试。
2. 时序逻辑电路设计:设计一个简单的计数器,并使用Verilog语言进行描述和仿真。
3. 数字逻辑电路综合应用:设计一个简单的数字信号处理器,实现基本的算术运算。
三、实验步骤1. 组合逻辑电路设计(1)分析题目要求,确定设计目标和输入输出关系。
(2)根据输入输出关系,设计四位加法器的逻辑电路。
(3)使用Logisim软件搭建电路,并设置输入信号。
(4)观察仿真结果,验证电路功能是否正确。
2. 时序逻辑电路设计(1)分析题目要求,确定设计目标和状态转移图。
(2)使用Verilog语言描述计数器电路,包括模块定义、输入输出定义、状态定义和状态转移逻辑。
(3)使用仿真软件进行测试,观察电路在不同状态下的输出波形。
3. 数字逻辑电路综合应用(1)分析题目要求,确定设计目标和功能模块。
(2)设计数字信号处理器电路,包括算术运算单元、控制单元和存储单元等。
(3)使用仿真软件进行测试,验证电路能否实现基本算术运算。
四、实验结果与分析1. 组合逻辑电路设计实验结果:通过仿真测试,四位加法器电路功能正常,能够实现两个四位二进制数的加法运算。
分析:在设计过程中,遵循了组合逻辑电路设计的基本原则,确保了电路的正确性。
2. 时序逻辑电路设计实验结果:通过仿真测试,计数器电路功能正常,能够实现从0到9的计数功能。
分析:在设计过程中,正确描述了状态转移图,并使用Verilog语言实现了电路的功能。
数字逻辑实验报告武大(3篇)
![数字逻辑实验报告武大(3篇)](https://img.taocdn.com/s3/m/f34a6cdac67da26925c52cc58bd63186bceb92a3.png)
第1篇一、实验目的1. 理解数字逻辑的基本概念和原理;2. 掌握数字逻辑电路的基本分析方法;3. 熟悉数字电路仿真软件的使用;4. 培养实验操作能力和问题解决能力。
二、实验内容及步骤1. 实验一:组合逻辑电路设计(1)设计2选1多路选择器(MUX21)1)根据教材5.1节流程,利用Quartus II完成MUX21的文本编辑输入(MUX21.v);2)进行仿真测试,给出仿真波形;3)在实验系统上硬件测试,验证设计功能;4)引脚锁定及硬件下载测试,a和b分别接来自不同的时钟,输出信号接蜂鸣器;5)编译、下载和硬件测试实验,通过选择键1,控制s,可使蜂鸣器输出不同音调。
(2)设计三人表决电路1)根据教材5.1节流程,利用Quartus II完成三人表决电路的文本编辑输入(图5-36);2)进行仿真测试,给出仿真波形;3)在实验系统上硬件测试,验证设计功能;4)引脚锁定及硬件下载测试,ABC[2..0]分别接自键3、键2、键1;CLK接自时钟CLOCK0(256Hz),输出信号X接D1,输出信号Y接蜂鸣器;5)编译、下载和硬件测试实验,通过按下键3、键2、键1,控制D1的亮灭。
2. 实验二:时序逻辑电路设计(1)设计‘101’序列检测器1)验证RS/D/JK/T触发器的功能;2)熟悉逻辑分析仪、字发生器的使用;3)形成原始的状态图和状态表;4)采用Mealy型同步时序逻辑电路实现序列检测器的功能;5)初始状态:A,状态1:B,状态2:C;6)状态化简(用隐含表);7)状态编码(优先级1>2>3的顺序编码);8)确定激励函数和输出函数,并画出逻辑电路图;9)在Ni Multisim上实现电路的仿真;10)记录实验现象,采用截屏波形的方法。
(2)设计RISC-V五级流水线CPU1)了解数字逻辑与组成原理实践教程;2)设计32位RISC-V五级流水线CPU代码;3)使用Modelsim进行仿真;4)提供项目源代码、测试数据、设计图和指令集;5)编写实验报告,包括实验目的、环境介绍、系统设计、实验步骤和结果分析。
《数字逻辑》实验指导书
![《数字逻辑》实验指导书](https://img.taocdn.com/s3/m/25d2fe1da9956bec0975f46527d3240c8447a1da.png)
目录实验1: 基本逻辑门电路 (2)EDA设计实验的基本步骤和注意事项 (4)实验2: 译码器及其应用 (10)实验3 触发器、移位寄存器的设计和应用 (15)实验4: 计数器 (18)实验5: 数字系统的设计 (19)实验报告格式和内容 (20)实验1: 基本逻辑门电路一、实验目的1: 掌握各种门电路的逻辑功能及测试方法。
2: 学习用与非门组成其它逻辑门电路。
二、实验用的仪器、仪表TEC —5实验箱 74LS00二输入四与非门 三态门74LS125三、实验原理与非门的逻辑功能是: 当输入端中有一个或一个以上低电平时, 输出端为高电平。
只有当输入端全为高电平时, 输出端才为低电平(即有“0”得“1”, 全“1”出“0”)。
三态输出门是一种特殊的门电路。
它与普通的逻辑门电路不同, 它的输出状态除了高、低电平两种状态(均为低阻状态)外, 还有第三种状态,即高阻态。
处于高阻态时, 电路与负载之间相当于开路。
三态门主要用途之一是实现总线传输。
三态输出门符号与功能表如下(此例以低有效的使能器件为例)。
四、实验内容 1: 测试二输入与非门的逻辑功能与非门的输入端接逻辑开关电平, 输出端接发光二极管。
按表1-2所示测试与非门, 并将测试结果填入表中。
B A F •= 表1-1AB2: 学习用二输入与非门构成其他逻辑电路的方法, 并测试。
与门逻辑功能实现:根据布尔代数的理论, ,所以用2个与非门即可实现与门逻辑功能。
输入A 、B 接逻辑开关, 输出端接发光二极管。
参考表1-1, 设计表格, 并将测试结果填入表中。
或门逻辑功能实现:根据布尔代数的理论, ,所以用3个与非门即可实现或门逻辑功能。
输入A 、B 接逻辑开关, 输出端接发光二极管。
参考表1-1, 设计表格, 并将测试结果填入表中。
异或门逻辑功能实现:根据布尔代数的理论, ,根跟据此异或逻辑表达式经过变换, 逻辑图如下, 请自行验证此逻辑图的正确性, 同时思考如果直接据逻辑表达式画逻辑图, 效果如何, 近而体会变换的作用。
数字逻辑组合逻辑电路实验
![数字逻辑组合逻辑电路实验](https://img.taocdn.com/s3/m/d48a8895db38376baf1ffc4ffe4733687f21fc15.png)
Qn+1
0
1
x
x
0
1
1
1
1
0
x
x
0
0
1
0
1
1
0
0
0
1
0
1
1
1
0
1
1
1
高电平时 次态=D的状态
D触发器功能测试
负边沿J_K触发器功能测试
CP J
K
Qn Qn+1
0
1
xxx x 1
1
0
xxx x 0
1
1
01 0 0
1
1
10 0 1
1
1
00 1 1
1
1
11 1 0
负边沿J_K触发器功能测试
实验报告要求
一.实验报告格式 1.实验目的 2.实验器材 3.实验内容 4.实验步骤 5.实验体会
二.使用A4纸打印,封面包括实验名称、实验者姓 名、指导老师姓名、实验时间等
下次实验内容
• 同步时序逻辑电路设计: 1. 设计一个同步模4可逆计数器 2. 按Mealy型设计一个“1001”序列检测器0源自111000
0
0
d
1
01
0
1
d
1
11
0
1
d
d
10
0
1
d BC d
逻辑表达式: F1=
F2(1为奇数)的卡诺图和逻辑表达式
卡诺图
AB CD
00
00
0
01 1
11 d
10 1
01
1
0
d
0
11
0
数字逻辑实验报告
![数字逻辑实验报告](https://img.taocdn.com/s3/m/c2b1f78d48649b6648d7c1c708a1284ac85005c0.png)
一、实验目的1. 理解数字逻辑的基本概念和原理。
2. 掌握逻辑门电路的基本功能和应用。
3. 学会使用逻辑门电路设计简单的组合逻辑电路。
4. 培养实际动手能力和分析问题、解决问题的能力。
二、实验原理数字逻辑是研究数字电路的基本原理和设计方法的一门学科。
数字电路是由逻辑门电路组成的,逻辑门电路是实现逻辑运算的基本单元。
常见的逻辑门电路有与门、或门、非门、异或门等。
组合逻辑电路是由逻辑门电路组成的,其输出仅与当前的输入有关,而与电路的历史状态无关。
组合逻辑电路的设计方法主要有真值表法、逻辑函数法、卡诺图法等。
三、实验仪器与设备1. 数字逻辑实验箱2. 移动电源3. 连接线4. 逻辑门电路模块5. 计算器四、实验内容1. 逻辑门电路测试(1)测试与门、或门、非门、异或门的功能。
(2)测试逻辑门电路的输出波形。
2. 组合逻辑电路设计(1)设计一个4位二进制加法器。
(2)设计一个4位二进制减法器。
(3)设计一个4位二进制乘法器。
(4)设计一个4位二进制除法器。
五、实验步骤1. 逻辑门电路测试(1)将实验箱上相应的逻辑门电路模块插入实验板。
(2)根据实验要求,连接输入端和输出端。
(3)打开移动电源,将输入端接入逻辑信号发生器。
(4)观察输出波形,记录实验结果。
2. 组合逻辑电路设计(1)根据实验要求,设计组合逻辑电路的原理图。
(2)根据原理图,将逻辑门电路模块插入实验板。
(3)连接输入端和输出端。
(4)打开移动电源,将输入端接入逻辑信号发生器。
(5)观察输出波形,记录实验结果。
六、实验结果与分析1. 逻辑门电路测试实验结果如下:(1)与门:当两个输入端都为高电平时,输出为高电平。
(2)或门:当两个输入端至少有一个为高电平时,输出为高电平。
(3)非门:输入端为高电平时,输出为低电平;输入端为低电平时,输出为高电平。
(4)异或门:当两个输入端不同时,输出为高电平。
2. 组合逻辑电路设计实验结果如下:(1)4位二进制加法器:能够实现两个4位二进制数的加法运算。
数字逻辑电路实验报告
![数字逻辑电路实验报告](https://img.taocdn.com/s3/m/9e2a82754a73f242336c1eb91a37f111f1850de4.png)
一、实验目的1. 熟悉数字逻辑电路的基本原理和基本分析方法。
2. 掌握常用逻辑门电路的原理、功能及实现方法。
3. 学会使用数字逻辑电路实验箱进行实验操作,提高动手能力。
二、实验原理数字逻辑电路是现代电子技术的基础,它由逻辑门电路、触发器、计数器等基本单元组成。
本实验主要涉及以下内容:1. 逻辑门电路:与门、或门、非门、异或门等。
2. 组合逻辑电路:半加器、全加器、译码器、编码器等。
3. 时序逻辑电路:触发器、计数器、寄存器等。
三、实验仪器与设备1. 数字逻辑电路实验箱2. 示波器3. 信号发生器4. 万用表5. 逻辑笔四、实验内容及步骤1. 逻辑门电路实验(1)与门、或门、非门、异或门原理实验步骤:1)按实验箱上的逻辑门电路原理图连接电路;2)使用信号发生器产生输入信号,用逻辑笔观察输出信号;3)分析实验结果,验证逻辑门电路的原理。
(2)组合逻辑电路实验步骤:1)按实验箱上的组合逻辑电路原理图连接电路;2)使用信号发生器产生输入信号,用逻辑笔观察输出信号;3)分析实验结果,验证组合逻辑电路的原理。
2. 时序逻辑电路实验(1)触发器实验步骤:1)按实验箱上的触发器原理图连接电路;2)使用信号发生器产生输入信号,用示波器观察输出信号;3)分析实验结果,验证触发器的原理。
(2)计数器实验步骤:1)按实验箱上的计数器原理图连接电路;2)使用信号发生器产生输入信号,用示波器观察输出信号;3)分析实验结果,验证计数器的原理。
五、实验结果与分析1. 逻辑门电路实验实验结果:通过实验,我们验证了与门、或门、非门、异或门的原理,观察到了输入信号与输出信号之间的逻辑关系。
2. 组合逻辑电路实验实验结果:通过实验,我们验证了半加器、全加器、译码器、编码器的原理,观察到了输入信号与输出信号之间的逻辑关系。
3. 时序逻辑电路实验实验结果:通过实验,我们验证了触发器、计数器的原理,观察到了输入信号与输出信号之间的时序关系。
数字逻辑实验报告结论
![数字逻辑实验报告结论](https://img.taocdn.com/s3/m/992c21b518e8b8f67c1cfad6195f312b3069eb58.png)
本次数字逻辑实验旨在通过实际操作,加深对数字逻辑基本原理和电路设计的理解,掌握数字逻辑电路的基本分析方法,提高动手能力和创新意识。
二、实验内容本次实验主要包括以下内容:1. 逻辑门电路实验:观察逻辑门电路的逻辑功能,验证其真值表。
2. 组合逻辑电路实验:设计并搭建组合逻辑电路,验证其逻辑功能。
3. 时序逻辑电路实验:设计并搭建时序逻辑电路,验证其逻辑功能。
4. 数值电路实验:设计并搭建数值电路,验证其逻辑功能。
三、实验结果与分析1. 逻辑门电路实验实验结果表明,逻辑门电路具有确定的逻辑功能,其输出信号与输入信号之间具有明确的逻辑关系。
在实验过程中,我们观察到了各种逻辑门电路(如与门、或门、非门、异或门等)的输出波形,验证了其真值表。
2. 组合逻辑电路实验实验结果表明,组合逻辑电路的输出信号仅与当前输入信号有关,与电路的历史状态无关。
在实验过程中,我们设计并搭建了各种组合逻辑电路(如全加器、译码器、编码器等),验证了其逻辑功能。
3. 时序逻辑电路实验实验结果表明,时序逻辑电路的输出信号不仅与当前输入信号有关,还与电路的历史状态有关。
在实验过程中,我们设计并搭建了各种时序逻辑电路(如触发器、计数器、寄存器等),验证了其逻辑功能。
4. 数值电路实验实验结果表明,数值电路在完成数值运算时,能够保证运算结果的正确性。
在实验过程中,我们设计并搭建了各种数值电路(如加减法器、乘法器、除法器等),验证了其逻辑功能。
1. 数字逻辑电路的基本原理是清晰的,通过实验操作可以加深对基本原理的理解。
2. 数字逻辑电路的设计方法具有实用性,可以应用于实际电路的设计。
3. 实验过程中,我们掌握了数字逻辑电路的基本分析方法,提高了动手能力和创新意识。
4. 本次实验为我们提供了宝贵的实践机会,有助于我们更好地理解数字逻辑课程内容,为后续课程的学习打下坚实基础。
五、实验建议1. 在实验过程中,应注重实验步骤的规范性,确保实验结果的准确性。
数字逻辑大实验报告
![数字逻辑大实验报告](https://img.taocdn.com/s3/m/f833df72ec630b1c59eef8c75fbfc77da3699769.png)
一、实验背景数字逻辑是计算机科学和电子工程领域的基础学科,研究数字系统的设计和分析。
本次大实验旨在通过实际操作,加深对数字逻辑电路原理的理解,掌握逻辑门电路、组合逻辑电路和时序逻辑电路的设计与实现方法。
二、实验目的1. 理解并掌握数字逻辑电路的基本原理和设计方法。
2. 掌握常用逻辑门电路的功能和应用。
3. 熟悉组合逻辑电路和时序逻辑电路的设计与实现。
4. 提高实验操作能力和问题解决能力。
三、实验内容本次实验共分为三个部分:1. 逻辑门电路实验(1)实验目的:验证常用逻辑门电路的逻辑功能,熟悉各种门电路的逻辑符号。
(2)实验内容:- 测试与非门、或门、与门、异或门、同或门、非门等逻辑门电路的逻辑功能。
- 利用Multisim软件绘制逻辑门电路仿真图,验证逻辑功能。
2. 组合逻辑电路实验(1)实验目的:掌握组合逻辑电路的设计与实现方法。
(2)实验内容:- 设计并实现一个4位二进制加法器。
- 设计并实现一个4位二进制乘法器。
- 利用Multisim软件对设计结果进行仿真验证。
3. 时序逻辑电路实验(1)实验目的:掌握时序逻辑电路的设计与实现方法。
(2)实验内容:- 设计并实现一个异步复位计数器。
- 设计并实现一个同步复位计数器。
- 利用Multisim软件对设计结果进行仿真验证。
四、实验步骤1. 熟悉实验设备,了解实验原理。
2. 根据实验要求,设计电路图。
3. 利用Multisim软件绘制电路图,并进行仿真验证。
4. 将设计好的电路图下载到实验板上,进行实际操作。
5. 观察实验结果,分析实验数据。
五、实验结果与分析1. 逻辑门电路实验:实验结果显示,所有逻辑门电路的逻辑功能均符合预期,验证了实验原理的正确性。
2. 组合逻辑电路实验:- 4位二进制加法器实验:实验结果显示,加法器能够正确实现两个4位二进制数的加法运算。
- 4位二进制乘法器实验:实验结果显示,乘法器能够正确实现两个4位二进制数的乘法运算。
数字逻辑入门实验报告
![数字逻辑入门实验报告](https://img.taocdn.com/s3/m/e06c5c93db38376baf1ffc4ffe4733687e21fc3d.png)
一、实验目的1. 理解数字逻辑的基本概念和原理。
2. 掌握基本的数字逻辑电路及其功能。
3. 培养动手能力和实际操作技能。
4. 学会使用实验设备进行数字逻辑电路的搭建和测试。
二、实验环境1. 实验设备:数字逻辑实验箱、数字万用表、示波器、逻辑分析仪等。
2. 实验软件:Multisim、Logisim等数字电路仿真软件。
三、实验内容1. 基本逻辑门电路实验a. 与门、或门、非门、与非门、或非门、异或门、同或门的搭建与测试。
b. 逻辑门电路组合实验,如半加器、全加器、译码器、编码器等。
2. 时序逻辑电路实验a. 基本触发器(D触发器、JK触发器、SR触发器)的搭建与测试。
b. 时序逻辑电路组合实验,如计数器、寄存器、顺序控制器等。
3. 组合逻辑电路实验a. 逻辑函数的化简与实现。
b. 逻辑电路的优化设计。
4. 时序逻辑电路实验a. 计数器的设计与实现。
b. 寄存器的应用与实现。
四、实验步骤1. 实验一:基本逻辑门电路实验a. 搭建与门、或门、非门、与非门、或非门、异或门、同或门电路。
b. 使用示波器观察输入、输出波形,验证电路功能。
c. 使用逻辑分析仪分析电路逻辑关系。
2. 实验二:时序逻辑电路实验a. 搭建D触发器、JK触发器、SR触发器电路。
b. 使用示波器观察触发器的输入、输出波形,验证电路功能。
c. 搭建计数器、寄存器、顺序控制器电路,观察电路功能。
3. 实验三:组合逻辑电路实验a. 使用真值表化简逻辑函数。
b. 设计逻辑电路,实现化简后的逻辑函数。
c. 使用示波器观察电路输入、输出波形,验证电路功能。
4. 实验四:时序逻辑电路实验a. 设计计数器电路,实现特定计数功能。
b. 设计寄存器电路,实现数据存储功能。
c. 使用示波器观察电路输入、输出波形,验证电路功能。
五、实验结果与分析1. 实验一:成功搭建了基本逻辑门电路,验证了电路功能。
2. 实验二:成功搭建了时序逻辑电路,验证了电路功能。
3. 实验三:成功实现了逻辑函数的化简与电路设计,验证了电路功能。
数逻辑实验报告完整版
![数逻辑实验报告完整版](https://img.taocdn.com/s3/m/706a6cbe3086bceb19e8b8f67c1cfad6185fe949.png)
数逻辑实验报告完整版一、实验目的本次数逻辑实验的主要目的是深入理解和掌握数字逻辑电路的基本原理、分析方法和设计技巧,通过实际操作和实验验证,提高我们对数字逻辑概念的认知和应用能力,培养我们的逻辑思维和解决实际问题的能力。
二、实验设备与器材1、数字逻辑实验箱2、集成电路芯片(如 74LS00、74LS04、74LS08 等)3、示波器4、万用表5、导线若干三、实验原理1、数字逻辑的基本概念数字逻辑是研究数字信号的处理和传输的一门学科,它基于二进制数系统,只有 0 和 1 两个状态。
在数字电路中,常用的逻辑运算包括与、或、非、异或等。
2、逻辑门电路逻辑门是实现基本逻辑运算的电子电路,常见的逻辑门有与门、或门、非门、与非门、或非门和异或门等。
这些逻辑门可以通过集成电路芯片实现。
3、组合逻辑电路组合逻辑电路是由逻辑门组成的,其输出仅取决于当前的输入信号,而与电路之前的状态无关。
常见的组合逻辑电路有加法器、编码器、译码器等。
4、时序逻辑电路时序逻辑电路的输出不仅取决于当前的输入信号,还与电路之前的状态有关。
常见的时序逻辑电路有触发器、计数器、寄存器等。
四、实验内容与步骤1、与门、或门、非门逻辑功能测试(1)按照实验电路图,在数字逻辑实验箱上连接好电路,使用集成电路芯片 74LS08(与门)、74LS32(或门)和 74LS04(非门)。
(2)将输入信号分别设置为 0 和 1 的不同组合,使用万用表测量输出信号的电平,记录并分析结果,验证逻辑门的功能是否正确。
2、组合逻辑电路设计与实现(1)设计一个 2 位加法器,使用与门、或门和非门实现。
(2)根据设计的电路图,在实验箱上连接电路,输入不同的 2 位二进制数,使用示波器观察输出结果,验证加法器的功能。
3、时序逻辑电路设计与实现(1)设计一个 4 位同步计数器,使用 JK 触发器实现。
(2)按照设计的电路图连接电路,观察计数器的计数过程,使用示波器测量输出信号的波形,验证计数器的功能是否正确。
数字逻辑种实验报告(3篇)
![数字逻辑种实验报告(3篇)](https://img.taocdn.com/s3/m/d4ef4c07cbaedd3383c4bb4cf7ec4afe04a1b19e.png)
第1篇一、实验目的1. 理解数字逻辑的基本概念和基本电路;2. 掌握逻辑门电路的设计和实现方法;3. 熟悉组合逻辑电路和时序逻辑电路的设计和仿真;4. 提高动手实践能力和问题解决能力。
二、实验环境1. 实验仪器:数字逻辑实验箱、示波器、逻辑分析仪等;2. 实验软件:Logisim、Proteus等。
三、实验内容1. 逻辑门电路设计(1)实验目的:学习逻辑门电路的基本原理,掌握逻辑门电路的设计方法。
(2)实验内容:1)设计一个与门电路,实现两个输入信号A和B的与运算;2)设计一个或门电路,实现两个输入信号A和B的或运算;3)设计一个非门电路,实现输入信号A的反运算。
(3)实验步骤:1)根据实验要求,利用实验箱上的逻辑门模块搭建相应的逻辑门电路;2)通过示波器观察输入信号和输出信号的变化,验证电路功能;3)利用Logisim软件对电路进行仿真,分析电路的输出波形。
2. 组合逻辑电路设计(1)实验目的:学习组合逻辑电路的设计方法,掌握组合逻辑电路的仿真和测试。
(2)实验内容:1)设计一个2-4线译码器,实现输入信号A、B、C、D到输出信号Y0、Y1、Y2、Y3的译码功能;2)设计一个奇偶校验电路,实现输入信号A、B、C、D的奇偶校验功能。
(3)实验步骤:1)根据实验要求,利用实验箱上的逻辑门模块搭建相应的组合逻辑电路;2)通过示波器观察输入信号和输出信号的变化,验证电路功能;3)利用Logisim软件对电路进行仿真,分析电路的输出波形。
3. 时序逻辑电路设计(1)实验目的:学习时序逻辑电路的设计方法,掌握时序逻辑电路的仿真和测试。
(2)实验内容:1)设计一个异步计数器,实现输入信号CLK的计数功能;2)设计一个同步计数器,实现输入信号CLK的计数功能。
(3)实验步骤:1)根据实验要求,利用实验箱上的触发器模块搭建相应的时序逻辑电路;2)通过示波器观察输入信号和输出信号的变化,验证电路功能;3)利用Logisim软件对电路进行仿真,分析电路的输出波形。
数字逻辑实验报告
![数字逻辑实验报告](https://img.taocdn.com/s3/m/ff7f7f9bba4cf7ec4afe04a1b0717fd5360cb2fd.png)
数字逻辑实验报告实验一 3-8译码器设计一、实验目的1.通过一个简单的 3-8 译码器的设计, 让学生掌握用原理图描述组合逻辑电路的设计方法。
2.掌握组合逻辑电路的软件仿真方法。
二.填写表格(亮或暗)(2)三. EDA平台下用原理图输入法设计组合电路的步骤。
(3)(1)在QuartusⅡ主界面下选择File->New命令, 然后选择Other File选项卡, 从中选择Vector Waveform File,建立一个空的波形编辑器窗口, 将此波形文件保存, 并勾选add file current project。
(4)在Name区域的对话框中单击Node Finder按钮。
(5)进行选择和设置, 完成节点添加。
(6)选择Edit->End Time命令, 将其设置为1.0us。
使用波形编辑器工具条编辑输入节点A,B,C的波形。
为节点A,B,C分别赋予周期为200ns,400ns,800ns的时钟波形, 初始电平为“0”。
然后通过View->Fit in Window显示输入波形全貌。
执行Tools->Simulator Tool命令, 进行设置, 单击Start进行仿真。
观察仿真结果, 检查是否与设计相符合。
四. 在仿真过程中, 为何设置A, B,C分别为周期为200ns,400ns,800ns的时钟信号?答: 将其周期设置成一定比例, 在仿真结果中便于观察与比较波形。
五.时序仿真波形中, 输出波形与输入波形是否同步变化?如何解释输出波形中存在的毛刺?答: 不是同步变化的。
输出波形中存在的毛刺是组合逻辑电路中的冒险现象, 主要是由于门电路的延迟时间产生的。
请总结实验中出现的问题, 你是如何解决的?答: (1)问题: 在为译码器的元件的管脚上添加连线时, 由于连接的线较多, 出现了线连接出错, 导致电路编译出错。
解决: 根据编译的提示找出了连接出错的地方, 然后重新连接再编译。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淮北师范大学计算机学院School of Computer Science & Technology,HuaiBei Normal University计算机学院编写实验注意事项1、电源的打开顺序是:先开交流开关(实验箱中的船形开关),再开直流开关,最后打开各个模块的控制开关。
电源关掉的顺序刚好与此相反。
2、切忌在实验中带电连接线路,正确的方法是断电后再连线,进行实验。
3、实验箱主电路板上所有的芯片出厂时已全部经过严格检验,因此在做实验时切忌随意插拔芯片。
4、实验箱中的叠插连接线的使用方法为:连线插入时要垂直,插入后稍做旋转,切忌用力,拔出时用手捏住连线靠近插孔的一端,然后左右旋转几下,连线自然会从插孔中松开、弹出,切忌用力向上拉线,这样很容易造成连线和插孔的损坏。
5、实验中应该严格按照老师的要求和实验指导书来操作,不要随意乱动开关,芯片及其它元器件,以免造成实验箱的损坏。
6、如果在实验中由于操作不当或其它原因而出现异常情况,如数码管显示不稳定、闪烁,芯片发烫等,首先立即断电,然后报告老师,切忌无视现象,继续实验,以免造成严重后果。
7、实验中所用的元件都需要自行配置,元件名称都在实验设备与器件中写出,在实验中不同公司和国家的同种功能的元件可替换,比如CD系列的与CC系的同各功能的集成芯片可替换。
8、注意保持卫生,下课后将桌面附近的垃圾全部带走,并有打扫实验室的义务。
目录实验一数字电路仪器的使用及门电路 (1)实验二加法器实验 (2)实验三数据选择器及其应用 (3)实验四组合电路的设计与测试 (5)实验五触发器及其应用 (7)实验六移位寄存器及其应用 (10)实验七异步时序电路实验 (13)实验八综合设计实验 (14)数字逻辑与数字电路实验项目实验一数字电路仪器的使用及门电路一、实验目的1、数字电路仪器的各功能模块见实验箱使用说明。
2、测试TTL集成芯片中的与门、或门、非门、与非门、或非门与异或门的逻辑功能。
3、了解测试的方法与测试的原理。
二、实验原理实验中用到的基本门电路的符号为:图1-1 与门图1-2 或门图1-3 非门图1-4 与非门图1-5 或非门图1-6 异或门在测试芯片逻辑功能时输入端用逻辑电平输出单元输入高低电平,然后使用逻辑电平显示单元显示输出的逻辑功能。
三、实验设备与器件1、数字逻辑电路实验箱2、芯片与门74LS08、或门74LS32、非门74LS04、与非门74LS00、或非门74LS02、异或门74LS86各一片四、实验预习及内容1、掌握集成芯片74LS08、74LS32、74LS04、74LS00、74LS02、74LS86的管脚分布图。
2、分别列出芯片74LS08、74LS32、74LS04、74LS00、74LS02、74LS86的真值表。
五、实验步骤1、了解实验仪器,阅读实验注意事项。
首先将电源调到+5V左右,检查设备是否正常。
2、依次选用芯片74LS08、74LS32、74LS04、74LS00、74LS02、74LS86做实验,在实验箱IC插座模块找到相应管脚数目的IC插座,插上并保持连接正常。
3、对照附录的相应芯片引脚图,按照芯片的管脚分布图接线,注意确保电源VCC(+5V)输入脚和地输入脚的连接,芯片输入端连接到逻辑电平输出单元,通过逻辑电平输出单元控制输入电平,当逻辑输出高电平时对应的发光二极管亮,否则不亮。
芯片输出端连接到逻辑电平显示单元,输出高电平时对应的发光二极管亮,否则不亮。
按照芯片各逻辑门的真值表检验芯片的逻辑功能芯。
六、实验报告要求1、画好实验中各门电路的真值表表格,将实验结果填写到表中。
2、根据实验结果,写出各逻辑门的逻辑表达式,并判断逻辑门的好坏。
实验二 加法器实验一、实验名称:加法器实验 二、仪器、设备:数字逻辑实验仪:一台74LS86:一片 74LS00:一片 74LS10:两片 或根据其他设计方案选择不同的芯片。
三、实验(设计)目的:1. 熟悉数字逻辑实验仪的用法2. 设计并实现一个全加器 四、实验步骤:1. 熟悉数字逻辑实验仪的各组成部分及其功能;2. 熟悉芯片的用法;3. 分析实验原理,确定实验方案;4. 按照实验方案对所使用的芯片进行连线;5. 检查线路连接;6. 接通电源,验证实验结果,填写实验数据;7. 若实验结果出现错误,则切断电源,重新检查线路和芯片,查找并纠正错误; 8. 实验结果完全正确,则完成实验,关闭电源,整理实验操作台。
五、实验原理、数据(程序)记录: 1. 实验原理 ①全加器真值表S=Ci B A ⊕⊕; Co=AB +BCi+ACi ③实验电路图和芯片引脚图2. 实验数据记录:请同学们观察实验数据并填入下表:1、按照电路图及引脚图连接电路;2、分别输入A,B,Ci的8种组合状态,填写输出S和Co的结果,并和真值表进行核对;3、思考:若实验室仅有与非门(二输入或三输入),电路怎么搭建?实验三数据选择器及其应用一、实验目的1、掌握数据选择器的逻辑功能和使用方法。
2、学习用数据选择器构成组合逻辑电路的方法。
二、实验原理数据选择是指经过选择,把多个通道的数据传送到唯一的公共数据通道上去。
实现数据选择功能的逻辑电路称为数据选择器。
它的功能相当于一个多个输入的单刀多掷开关,其示意图如下:图3-1 4选1数据选择器示意图图中有四路数据D 0~D 3,通过选择控制信号A 1、A 0(地址码)从四路数据中选中一路数据送至输出端Q 。
1、双四选一数据选择器74LS153图3-2 74LS153引脚逻辑图及真值表2、数据选择器的应用用74LS153实现逻辑函数ABC C AB C B A BC A Y +++=图3-3 用74LS153实现逻辑函数函数Y有三个输入变量A、B、C,而数据选择器有两个地址输入端S1、S0,少于3个。
可考虑把数据输入端作为变量之一,如图11-5实现了函数Y的功能。
即将A、B分别接选择器的地址端S1、S0,并令I0=0,I1=I2=C。
三、实验设备与器材1、数字逻辑电路实验箱。
2、数字万用表。
3、芯片74LS151、74LS153、74LS04、74LS08、74LS32。
四、实验内容及实验步骤1、测试74LS153的逻辑功能2、用74LS153实现逻辑函数参考图3-3,分析该图的实现方法,并验证其逻辑功能。
现要求实现F+=,自己写出设计过程,画出接线图,并验证其逻辑功能。
ABBA实验四组合电路的设计与测试一、实验目的1、掌握组合逻辑电路的分析与设计方法。
2、加深对基本门电路使用的理解。
二、实验原理1、组合电路是最常用的逻辑电路,可以用一些常用的门电路来组合完成具有其他功能A+得知,可以用两个非门和一个或的门电路。
例如,根据与门的逻辑表达式Z= AB =B非门组合成一个与门,还可以组合成更复杂的逻辑关系。
2、分析组合逻辑电路的一般步骤是:(1)由逻辑图写出各输出端的逻辑表达式;(2)化简和变换各逻辑表达式;(3)列出真值表;(4)根据真值表和逻辑表达式对逻辑电路进行分析,最后确定其功能。
3、设计组合逻辑电路的一般步骤与上面相反,是:(1)根据任务的要求,列出真值表;(2)用卡诺图或代数化简法求出最简的逻辑表达式;(3)根据表达式,画出逻辑电路图,用标准器件构成电路;(4)最后,用实验来验证设计的正确性。
4、组合逻辑电路的设计举例用“与非门”设计一个表决电路。
当四个输入端中有三个或四个“1”时,输出端才为“1”。
设计步骤:根据题意,列出真值表如表4-1所示,再填入卡诺图表4-2中。
表4-2 表决电路的卡诺图然后,由卡诺图得出逻辑表达式,并演化成“与非”的形式:++=Z+ABCABDCDABCD⋅=ABD⋅⋅ABCACDBCD最后,画出用“与非门”构成的逻辑电路如图4-1所示:图4-1 表决电路原理图输入端接至逻辑开关(拨位开关)输出插口,输出端接逻辑电平显示端口,自拟真值表,逐次改变输入变量,验证逻辑功能。
三、实验设备与器材1、数字逻辑电路实验箱。
2、数字万用表。
3、芯片74LS00、74LS02、74LS04、74LS10、74LS20、74LS86。
四、实验内容1、完成组合逻辑电路的设计中的两个例子。
2、设计一个四人无弃权表决电路(多数赞成则提议通过即三人以上包括三人),要求用四2输入与非门来实现。
五、实验预习要求1、复习各种基本门电路的使用方法。
2、实验前,画好实验用的电路图和表格。
3、自己参考有关资料画出实验内容2中的原理图,找出实验将要使用的芯片,以备实验时用。
六、实验报告要求1、将实验结果填入自制的表格中,验证设计是否正确。
2、总结组合逻辑电路的分析与设计方法。
3、思考:如果实验室仅有二输入与非门,将如何搭建电路?实验五触发器及其应用一、实验名称:触发器及其应用二、仪器、设备:1.数字逻辑实验仪:一台2.芯片74LS00、74LS04、74LS10、74LS74(或CC4013)、74LS112(或CC4027)、74LS02。
三、实验目的1、掌握基本RS、JK、T和D触发器的逻辑功能。
2、掌握集成触发器的功能和使用方法。
3、熟悉触发器之间相互转换的方法。
四、实验原理触发器是能够存储1位二进制码的逻辑电路,它有两个互补输出端,其输出状态不仅与输入有关,而且还与原先的输出状态有关。
触发器有两个稳定状态,用以表示逻辑状态“1”和“0”,在一定的外界信号作用下,可以从一个稳定状态翻转到另一个稳定状态,它是一个具有记忆功能的二进制信息存储器件,是构成各种时序电路的最基本逻辑单元。
1、基本RS触发器图5-1为由两个与非门交叉耦合构成的基本RS触发器,它是无时钟控制低电平直接触发的触发器。
基本RS触发器具有置“0”、置“1”和保持三种功能。
通常称S为置“1”端,因为S=0时触发器被置“1”;R为置“0”端,因为R=0时触发器被置“0”。
当S=R=1时状态保持,当S=R=0时为不定状态,应当避免这种状态。
基本RS触发器也可以用两个“或非门”组成,此时为高电平有效。
图5-1 二与非门组成的基本RS触发器(a)逻辑图(b) 逻辑符号基本RS触发器的逻辑符号见图5-1(b),二输入端的边框外侧都画有小圆圈,这是因为置1与置0都是低电平有效。
2、JK 触发器在输入信号为双端的情况下,JK 触发器是功能完善、使用灵活和通用性较强的一种 触发器。
本实验采用74LS112双JK 触发器,是下降边沿触发的边沿触发器。
引脚逻辑图如图14-2所示;JK 触发器的状态方程为:nn n Q K Q J Q +=+1图5-2 JK 触发器的引脚逻辑图其中,J 和K 是数据输入端,是触发器状态更新的依据,若J 、K 有两个或两个以上输入端时,组成“与”的关系。
Q 和Q 为两个互补输入端。