恒功率变量泵原理

合集下载

变量泵的工作原理

变量泵的工作原理

变量泵的工作原理
变量泵是一种能够将压缩空气转换为液体高压流体的装置。

其工作原理如下:
1. 变量泵一般由一个活塞和一个液压马达组成。

活塞通过压缩空气的力量往复运动,将压缩空气转化为机械能。

2. 活塞的运动通过连杆传递给液压马达,液压马达通过内部的齿轮或柱塞等结构将机械能转化为液体流体的动能。

3. 液体流体经过液体泵的增压作用,使其压力大幅增加。

变量泵可以根据需要调整液体流体的输出压力,使其适应不同的工作场景。

4. 输出的高压液体流体可以用于润滑、传动、动力传递、材料加工等工业领域。

同时,变量泵还可以与液压缸等液力装置配合使用,实现力的放大、转换等功能。

总之,变量泵通过将压缩空气转化为液体高压流体,使其在各种工业应用中发挥重要作用。

恒功率变量泵原理

恒功率变量泵原理

恒功率变量泵原理恒功率变量泵系统主要由水泵、变频器、传感器、PLC控制器以及其他配套设备组成。

在恒功率变量泵系统中,水泵的速度和功率通常是由变频器控制的,在不同的运行条件下,变频器可以自动调节电机转速,以实现所需的水流量和压力。

首先,根据需要,用户设定所需的水流量和压力。

这些参数可以通过PLC控制器进行设置,也可以通过传感器实时测量来自动调节。

然后,传感器测量系统中的水流量和压力,并将这些数据传输给PLC 控制器。

接着,PLC控制器根据测量结果以及预设的设定参数,通过与变频器通信,调节变频器的输出电信号。

变频器通过改变电机的频率,来调整水泵的转速。

这样,水泵可以在实现所需的水流量和压力的同时保持恒定的功率输出。

在变频器调节水泵的转速时,它会根据实际负载情况实时调整输出频率和电压,以适应变化的工作条件。

这样可以在不同的水流量和压力要求下,保持水泵的效率和性能。

首先,它可以根据实际需求实现水流量和压力的自动调节,使得水泵的工作更加稳定和高效。

其次,恒功率变量泵系统采用了变频器控制水泵的转速,可以实现能耗的降低。

在实际运行中,如果水需求降低,系统可以自动减小水泵的转速,以降低能耗。

而在水需求增加时,系统可以自动提高水泵的转速,以满足水需求,从而提高了能源利用效率。

再次,恒功率变量泵系统具有很高的可靠性和安全性。

通过PLC控制器和传感器的配合,系统可以实时监测和控制水泵的工作状态,避免了过载和其他异常情况的发生。

最后,恒功率变量泵系统的运行成本相对较低。

由于系统可以根据实际需求自动调节水泵的转速和功率,不仅节约了能源,还减少了维护和运行成本。

总之,恒功率变量泵系统通过变频器控制水泵的转速和功率,实现了水流量和压力的自动调节。

它具有节能、高效、可靠和安全等优点,广泛应用于供水系统、工业生产和建筑领域。

随着科技的进步和应用的不断完善,恒功率变量泵系统将在未来发挥更大的作用。

恒功率恒压泵变量机构的调节原理

恒功率恒压泵变量机构的调节原理
如图 1 所示 , 当负载压力 pc 低于恒功率阀 VC 开 启压力时 ,VC 处于关闭状态 ,无流量通过 (即 Qf = 0) ,
图 1 恒功率恒压泵的调节机
图 2 恒功率恒压泵典型特性曲线
因此流量阀的阀芯两侧压力 po = pc ,流量阀 VL 处于 右位 ,差动缸中的压力 pd = 0 ,此时差动机构推动泵的 斜盘处 于 最 大 角 度 ( 角 度 极 限 可 通 过 调 节 AD 来 获 得) ,即变量机构处于排量最大位置 。此时泵处于定量 工作段 。流量阀控制原理见图 3 所示 。 212 恒功率段 ( b~ c~ d)
如图 1 所示 ,当负载压力升高到 pc 能克服恒功率 阀 VC 的弹簧预紧力时 ,VC 阀芯打开 , 由于有流量 Qf 通过 , 于是 po < pc ; 当 VC 阀芯开启达到一定值 (通过
收稿日期 :2001211212 作者简介 :莫波 (1965 —) ,男 ,湖南省桃源人 ,副教授 ,博士 ,主 要从事控制元件与系统的教学和科研工作 。
(5)
由上式可见 ,流量输出要超前压力建立 ,同时也表
明 ,泵的输出压力是由流量建立起来的 。式 (5) 的试验
验证见文献[ 2 ] 。
参考文献 : [1 ] H1E1 梅 里 特. 液 压 控 制 系 统 [ M ] 1 北 京 : 科 学 出 版 社 ,
19761 [2 ] 莫波. 变量泵源阀控系统若干理论与应用技术的研究
2002 年第 6 期
液压与气动
5
恒功率恒压泵变量机构的调节原理
莫 波1 ,雷 明1 ,曹 泛2
A Principle to Adjust the Volume Control of Constant
Power and Constant Pressure Pump

恒压与恒功率变量泵

恒压与恒功率变量泵

、恒压阀晋梁由封 配抽盘缸体| 柱塞/刻度盘 变量活塞娈童竟作 下法兰传刼轴 法兰盘 泵体 泵壳 回程盘-变童先PCT恒压变量动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。

这样,柱塞 随着缸体的旋转而作往复运动,完成吸油和压油动作。

这种变量型式的泵, 输出压力小于调定恒压力时,全排量输出压力油, 即定量输出,在输出油液的压力达到调定压力时,就自动地调节泵流量,以保证恒压力,满足系统的要求。

泵的输出恒压值,根据需要,在调压范围内可以无级调定,泵的结构见图6,该结构将输出的压力油同时通至变量活塞下腔和和恒压阀的控制油入口,当输出压力小于调定恒压力时, 作用在恒压阀芯上的油压推力小于调定弹簧力,恒压阀处于开启状态, 压力油进入变量活塞上腔,变量活塞压在最低位置, 泵全排量输出压力油;当泵在调定恒压力工作时, 作用在恒 压阀芯上的油压推力等于调定弹簧力,恒压阀的进排油口同时处于开启状态,使变量活塞上下腔的油压推力相等,变量活塞平衡在某一位置工作,若液压阻尼(负载)加大,油压瞬时 升高,恒压阀排油口开大、进油口关小,变量活塞上腔比较下腔压力降低、变量活塞向上移动,泵的流量减小,直至压力下降到调定恒压力,这时变量活塞在新的平衡位置工作。

反之,若液压阻尼(负载)减小,油压瞬时下降,恒压阀进油口开大,排油口关小,变量活塞上腔 比较下腔油压升高,变量活塞向下移动,泵的流量增大,直至压力上升至调定恒压力。

液压原理符号10Q5010调压范围P (MP 弟 3175~云$主体部分(参见结构剖)由传动轴带动缸体旋转, 使均匀分布在缸体上的七个柱塞绕传YCY14-1B :斜盘式压力补偿变量(恒功率)柱塞泵 /马达结构剖视YCY14-1B :斜盘式压力补偿变量柱塞泵 /马达法兰盘传动轴 n儆艮活塞h1〜刻度盘 变量活塞h下法兰d.弹簧套 内弹賛卯弹賓g上4兰卜、封师V 限位s 钉回程盘喪量头就翩母II 1\口工作原理变量倚性曲线 櫃压原理符号5 812主体部分(参见结构剖)由传动轴带动缸体旋转, 使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。

力士乐A10VSO-DFLR变量泵的控制原理档

力士乐A10VSO-DFLR变量泵的控制原理档

力士乐A10VSO-DFLR(恒压/流量/功率控制)变量泵的控制原理
我的问题已经提出好几天了.无人回帖.可能是我对问题的叙述不很清楚.最近几天我琢磨了一下,对于功率阀的调节原理,我先试着分析如下.是我个人的理解,请诸位指正.
功率阀相当于一个压力无级可调的(比例)溢流阀,它可无级地改变着进入流量调节器弹簧腔的压力P H.压力的无级可调是通过泵斜盘改变功率阀调压弹簧的压缩量X来实现的(泵斜盘带动拨杆改变功率阀套的位置,进而改变功率阀调压弹簧的压缩量X), 压缩量X与泵斜盘倾角β成反比.
在泵进入恒功率控制期间,流量调节器控制阀芯的位置也有3个.
压力P H作用在控制阀芯的右端(见图1),以形成一个对抗反力,与作用在控制阀芯左端的泵出口压力P P相平衡,使控制阀芯保持在中位(平衡位置),在此状态下,泵的斜盘倾角不变.
功率阀所决定的压力P H与泵压力P P应该是同比例变化(升降)的.并且P H的变化要比P P 的变化滞后一点时间.
当泵压升高时,P P先将控制阀芯向右推离中位(平衡被破坏),并进入泵变量缸的无杆腔使泵的斜盘倾角β变小(流量减小), 随着倾角β的变小,功率阀调压弹簧的压缩量X则变大,阀的开启压力P H随之升高,升高了的P H又将控制阀芯推回中位恢复平衡状态.如此循环下去,
控制阀芯连续的经历由平衡→不平衡→新的平衡的过程(用一位网友的话讲,就是控制阀芯在“中位振荡”),便实现了恒功率控制.
当泵压降低时,则会出现相反的过程.
恒功率控制始于起点的调整压力,终于切断点的限位柱(即死档铁).
不知我分析的对不对,请各位点拨.。

变量泵系统的工作原理A课堂PPT

变量泵系统的工作原理A课堂PPT

阀上的三通流量阀。工作原
三通流 量阀
理是:三通流量阀上的弹簧力 是9bar。当油泵起动后,没 有操作比例换向阀时,由于
没有反馈的LS信号,这时,
油泵的压力要大于弹簧的压
弹簧力 力,所以三通流量阀将向下
是9bar 推动,高压油将通过三通流5
变量泵系统的工作原理
量阀反回油箱。当某一回路工作后,负载就要反馈一个LS 信号(也就是负载量),这两个量加到一起(LS与弹簧力 的和),要是超过油泵高压油的压力, 三通流量阀将向上 推,使得通过三通流量阀的流量减少。给负载的流量增加。 多余的流量经过三通流量阀流回油箱。通过三通流量阀保 持节流口两端的压差恒定。节流阀的压差只决定于弹簧力 的大小,不受负载的影响。在相同的压差下,节流口的面 积越大,流量就越大。
22
变量泵系统的工作原理
23
变量泵系统的工作原理
连接块中的限压阀开启 了或是阀座漏油 解决方法: 1、对比限压阀的设定压 力和订货代号的规格 2、拆下限压阀,清洗阀座 3、更换连接块
24
变量泵系统的工作原理
限压阀
三通流量 调节阀
打闸油路
减压阀
25
变量泵系统的工作原理
连接块中的减
压阀或螺堵(仅
Dp
负载感应 压力切断 功率调节
32
变量泵系统的工作原理
这由厂家提供给泵的
生产厂家,进行设计。这 个力是可调的,但调的压 力只能比压力切断的值低。
恒功率控制
功率控制根据工作压力调节 泵的排量,使功率在恒定驱动转 速下不超过泵的规定驱动功率。 即:PB×Vg=常数 其中:PB=工作压力;Vg=排量
通过准确控制功率特性双曲 线,得到最佳的功率利用。
工作压力通过活塞作用在摇臂 上,而外部可调节弹簧力抵消此 力,从而确定功率设定值。

(完整版)恒压与恒功率变量泵

(完整版)恒压与恒功率变量泵

主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。

这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。

这种变量型式的泵,输出压力小于调定恒压力时,全排量输出压力油,即定量输出,在输出油液的压力达到调定压力时,就自动地调节泵流量,以保证恒压力,满足系统的要求。

泵的输出恒压值,根据需要,在调压范围内可以无级调定,泵的结构见图6,该结构将输出的压力油同时通至变量活塞下腔和和恒压阀的控制油入口,当输出压力小于调定恒压力时,作用在恒压阀芯上的油压推力小于调定弹簧力,恒压阀处于开启状态,压力油进入变量活塞上腔,变量活塞压在最低位置,泵全排量输出压力油;当泵在调定恒压力工作时,作用在恒压阀芯上的油压推力等于调定弹簧力,恒压阀的进排油口同时处于开启状态,使变量活塞上下腔的油压推力相等,变量活塞平衡在某一位置工作,若液压阻尼(负载)加大,油压瞬时升高,恒压阀排油口开大、进油口关小,变量活塞上腔比较下腔压力降低、变量活塞向上移动,泵的流量减小,直至压力下降到调定恒压力,这时变量活塞在新的平衡位置工作。

反之,若液压阻尼(负载)减小,油压瞬时下降,恒压阀进油口开大,排油口关小,变量活塞上腔比较下腔油压升高,变量活塞向下移动,泵的流量增大,直至压力上升至调定恒压力。

YCY14-1B:斜盘式压力补偿变量(恒功率)柱塞泵/马达-----结构剖视YCY14-1B:斜盘式压力补偿变量柱塞泵/马达-----工作原理主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。

这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。

压力补偿变量泵的出口流量随出口压力的大小近似地在一定范围内按恒功率曲线变化。

当来自主体部分的高压油通过通道(a)、(b)、(c)进入变量壳体下腔(d)后,油液经通道(e)分别进入通道(f)和(h),当弹簧的作用力大于由油道(f)进入伺服活塞下端环形面积上的液压推力时,则油液经(h)到上腔(g),推动变量活塞向下运动,使泵的流量增加。

变量泵工作原理

变量泵工作原理

变量泵工作原理
变量泵工作原理是指利用可调节的机械结构和能量储存元件来实现流体输送的自动化装置。

它的基本工作原理包括以下几个步骤:
1. 储能阶段:在泵的工作开始之前,储能元件会被注入或者压入储能区,通常采用弹簧、膨胀性物质或压缩空气等作为储能介质。

2. 输送阶段:当外部激励作用于储能元件时,储能元件释放储存的能量,推动可调节结构实现流体的输送。

调节结构可以是特殊形状的齿轮、活塞、螺杆等,通过旋转或者移动来改变泵的容积或者几何形状。

3. 回收阶段:当泵的输出达到预定压力或者被外部控制终止时,泵会进入回收阶段。

在这个阶段,可调节结构反向工作,将流体推回储能区,同时恢复储能元件的初始状态。

变量泵的工作原理可以通过调节储能元件的强度或者压缩程度来改变泵的输送能力。

这种泵具有结构简单、可靠性高、响应速度快以及对介质适用性广等优点,并且可以根据需要进行实时调整和控制。

因此,在工业自动化、流程控制以及某些特殊实验场合中,变量泵具有重要的应用价值。

几种常用轴向柱塞变量泵的工作原理

几种常用轴向柱塞变量泵的工作原理

几种常用轴向柱塞变量泵的工作原理1 恒压控制采用恒压控制的变量泵称之为恒压变量泵,其控制原理如图1所示,其中1为控制滑阀、2为调压弹簧、3是控制油缸,1和2合称为恒压阀。

当系统压力较低时,控制油缸右端没有压力油,控制油缸在弹簧的作用下向右运行,推动泵的变量机构,使泵处于最大排量状态。

当系统压力增大到恒压阀的调定压力时,控制滑阀端部液压力大于调压弹簧的弹簧力而使阀芯右移,压力油进入控制油缸右端,推动控制油缸向左运行,再推动泵的变量机构,使泵的排量减小,因而输出流量减小,泵的工作压力也随之降低。

当控制滑阀左端的液压力等于弹簧力时,滑阀关闭,控制油缸停止运动,变量过程结束,泵的工作压力重新稳定在弹簧调定值附近。

同理,当系统压力降低时,变量机构使泵的输出流量增加,工作压力回升到调定值。

2 远程压力控制远程压力控制原理如图2所示,它与恒压控制原理基本相同,唯一的区别就是压力调节阀可根据需要安装在任意位置,从而对泵的压力起到远程调节的作用。

图中1即为远程压力控制阀,一般为直动式溢流阀,也可采用比例溢流阀。

采用比例溢流阀时,变量泵压力可由电信号进行调整。

3 并联压力控制图2 远程压力控制原理至系统11 2 图3 并联控制原理至系统123图1 恒压变量泵控制原理图3所示为力士乐DP 型并联压力控制原理图,其中1为DP 阀,2为控制滑阀。

当液压泵出现压力波动(如压力减小)时,控制滑阀切换到右侧,控制油缸右行,油泵排量加大,同时控制油缸的活塞杆推动DP 阀上行,DP 阀前后的压差减小,从而控制滑阀右端控制压力减小,使液压泵排量减小。

从而使液压泵稳定在一个合适的位置。

4 流量控制流量控制变量泵的控制原理如图4所示,其中1为控制滑阀、2为压差弹簧、3是控制油缸,4为节流阀(一般为比例阀),1和2合称为恒流阀,恒流阀的压差弹簧一般提前调好,不再变化。

液压泵的压力油一路作用在恒流阀的左侧,另一路通过节流阀和X 口作用在恒流阀的右侧。

恒功率变量泵与恒压变量泵[整理]

恒功率变量泵与恒压变量泵[整理]

恒功率变量泵与恒压变量泵[整理] 恒功率泵所实现的功能就时保证电机不会超功率,低压时大流量,高压时小流量;恒压泵能够实现零流量保压。

1)恒压泵一般用于这样的液压系统:开始阶段要求低压快速前进,而后转为慢速靠近,最后停止不动并保压,像油压机就是这样。

这里,恒压泵设定的压力就是系统保压所需要的压力。

这里,对“液压系统压力由负载决定,而由溢流阀加于限定”的基本原则应该讲是符合的。

为了更好理解泵控系统,可以考虑修改为“系统压力由负载决定,而由恒压泵加于限定”。

像压机的例子,压制件的反力可以很大,具体施加多少由恒压泵调节。

2)恒流泵主要用于工程机械这种设备上就一台发动机,要充分利用其功率。

对液压系统就可以在低压时大流量,高压时小流量。

这表面上与恒压泵相似,其实不然。

恒功率泵在压力流量变化时,遵循恒功率,而恒压泵在未达到调定值之前,是最大排量的定量泵,不存在开始恒功率的拐点。

而进入恒压工况后,原则上可以根据系统的需要提供流量而保持压力不变。

3)恒压变量泵是在达到泵平身的设定压力后才开始变量,此时流量下降成陡线下降.恒功率变量泵是几乎全压力阶段都在变量,基本保证输出的功率恒定在一定范围内,但是在泵设定的功率范围内,压力上升,流量是全流量输出,当超过这个压力,流量开始下降,以保证输出功率恒定(这也就是说在低于额定功率时,实际使用功率不是恒定的).还有电控变量泵,它的变量曲线由电控部份决定,与实际压力无关.不管如何,电机与油泵的功率匹配,是必须考虑的. )恒压泵更重要的一点是:在压力不变的情况下更节约能源。

恒功率泵是能根4据负载变化改变运动速度,也主要用于这种负载变化要求速度能变化的情况。

5)1)一般情况下,固定工业液压选用恒功率的案例较少,多数是行走机械(工程机械)动力是发动机的,为了充分利用功率,选用恒功率泵的情况较多。

当然天下之大,不能一概而论。

6)对于一个在反复循环过程中,或者随机操作过程中,压力与流量两个参数都有比较大差异的系统,人们往往采用“一把钥匙开一把锁”的模式灵活处理。

变量泵工作原理

变量泵工作原理

变量泵工作原理
变量泵是指一种能够根据外部控制信号改变其输出量的泵,通常用于调节液体的流量或压力。

其工作原理主要包括以下几个方面:
1. 控制信号输入:变量泵一般通过控制信号来调节输出量,控制信号可以是电流、电压或数字信号等。

通过改变控制信号的大小或频率,可以改变泵的输出量。

2. 变量泵构造:变量泵通常由一个偏心轴、液压缸、可变宽度液压隙等组成。

其中,偏心轴的偏心度可以影响液压缸的容积,从而影响泵的输出量。

3. 输出量调节:控制信号输入后,变量泵的偏心轴会在控制下进行旋转。

通过旋转偏心轴,液压缸的容积可以改变。

当液压缸容积增大时,泵的输出流量或压力也会增加;当液压缸容积减小时,泵的输出量也会减小。

4. 反馈机制:为了使变量泵能够更准确地调节输出量,常常需要加入一个反馈机制。

这可以通过传感器来实现,传感器可以测量液体的流量、压力或其它相关参数,将实际值与期望值进行比较,并通过反馈信号调节控制信号的大小,从而实现输出量的精确控制。

总体而言,变量泵的工作原理是通过控制信号来调节泵的输出量,其中关键的组件是偏心轴和液压缸。

通过改变偏心轴的旋
转角度,液压缸的容积可以相应地改变,从而实现泵的流量或压力的调节。

反馈机制可以进一步提高控制精度和稳定性。

恒功率变量泵工作原理

恒功率变量泵工作原理

恒功率变量泵工作原理
恒功率变量泵工作原理:
1. 变量调速器调整转速
恒功率电机的输出功率由恒流部分控制,而恒流部分的电压与电流均可调整,从而改变电机输出的功率。

变量调速器通过改变电机的输入电压,控制电机的转速,实现对输出轴转速的调整。

当变量调速器降低电机的输入电压时,电机转速降低,从而降低输出轴的转速;反之,当变量调速器提高电机输入电压时,电机转速升高,从而提高输出轴的转速。

2. 恒流控制输出功率
恒流装置对电机的输出电流进行控制,使得电机输出的功率保持恒定。

当负载变化时,恒流装置保持输出电流恒定,从而保证输出功率不变。

这保证了泵体在实际工作中输出的流量稳定、精确。

3. 输出轴带动泵体
恒功率变量泵的输出轴通过联轴器带动泵体工作。

泵体里的转子在输出轴的带动下旋转,从而形成吸、排水多个步骤,实现水的输送。

恒功率及恒压泵控制原理及其应用

恒功率及恒压泵控制原理及其应用

恒功率及恒压泵控制原理及其应用恒功率泵所实现的功能就是保证电机不会超功率,低压时大流量,高压时小流量;恒压泵能够实现零流量保压。

1)恒压泵一般用于这样的液压系统:开始阶段要求低压快速前进,而后转为慢速靠近,最后停止不动并保压,像油压机就是这样。

这里,恒压泵设定的压力就是系统保压所需要的压力。

这里,对“液压系统压力由负载决定,而由溢流阀加于限定”的基本原则应该讲是符合的。

为了更好理解泵控系统,可以考虑修改为“系统压力由负载决定,而由恒压泵加于限定”。

像压机的例子,压制件的反力可以很大,具体施加多少由恒压泵调节。

2)恒流泵主要用于工程机械这种设备上就一台发动机,要充分利用其功率。

对液压系统就可以在低压时大流量,高压时小流量。

这表面上与恒压泵相似,其实不然。

恒功率泵在压力流量变化时,遵循恒功率,而恒压泵在未达到调定值之前,是最大排量的定量泵,不存在开始恒功率的拐点。

而进入恒压工况后,原则上可以根据系统的需要提供流量而保持压力不变。

3)恒压变量泵是在达到泵本身的设定压力后才开始变量,此时流量下降成陡线下降.恒功率变量泵是几乎全压力阶段都在变量,基本保证输出的功率恒定在一定范围内,但是在泵设定的功率范围内,压力上升,流量是全流量输出,当超过这个压力,流量开始下降,以保证输出功率恒定(这也就是说在低于额定功率时,实际使用功率不是恒定的).还有电控变量泵,它的变量曲线由电控部份决定,与实际压力无关.不管如何,电机与油泵的功率匹配,是必须考虑的.4)恒压泵更重要的一点是:在压力不变的情况下更节约能源。

恒功率泵是能根据负载变化改变运动速度,也主要用于这种负载变化要求速度能变化的情况。

5)1)一般情况下,固定工业液压选用恒功率的案例较少,多数是行走机械(工程机械)动力是发动机的,为了充分利用功率,选用恒功率泵的情况较多。

当然天下之大,不能一概而论。

6)对于一个在反复循环过程中,或者随机操作过程中,压力与流量两个参数都有比较大差异的系统,人们往往采用“一把钥匙开一把锁”的模式灵活处理。

恒功率

恒功率

由于钻机施工地层情况复杂,负载多变,要求钻机能随负载的变化自动调节转速和转矩,而恒功率变量系统能适应负载工况的要求,即随负载的增加,系统能够自动降低转速,增大转矩。

并能最大限度地利用源动机的功率,达到最佳的钻进效果。

A7V160LV1R恒功率变量泵的工作特点正在于它的排量能随负载压力的变化自动调节,以保证输入功率接近恒定值。

若不计效率,则马达输出的功率N基本上等于泵输入的功率,亦为恒值,由马达的功率公式N=Mn/974可知,N恒定时,M与n呈双曲线关系,即在恒功率变量泵的控制下,随着负载的变化,马达输出的转矩M与转速n之间按双曲线关系自动调节,可满足工况要求,其调速特性曲线如图1所示。

图1 恒功率变量泵-定量马达回路调速特性挖掘机中的各种节能控制,归根到底都是通过调节液压泵排量实现的。

现有的挖掘机最常用的是恒功率控制系统(如液压挖掘机的左右行走操作),此控制系统两泵的排量永远一致,能够使两个需要同步的作业保持一致。

而当做单一操作时,这就意味着部分多余油液要泄掉,使系统出现发热等一系列的问题,造成液压功率的损失。

普通的双泵双回路系统,柴油机带动两个完全相同的变量柱塞泵,供给两条液压回路:一条回路控制斗杆、回转和左侧行走,另一条回路控制动臂、铲斗、右侧行走和辅件。

这种泵控制特性的优点是:能够在一定条件下,充分利用柴油机功率;两个泵都能够吸收100%的柴油机功率,提高了工作装置的作业能力;能够使两个需要同步的装置保持速度一致而不受负载不一致的影响,如液压挖掘机的左右行走装置。

主要缺点是:挖掘机工作时,两泵的斜盘摆角调节是一致的,当两个泵分别驱动的装置需要不一样的流量时,造成液压功率的损失;当挖掘机工作时,可能一个泵为高压、小流量,而另一泵则处于低压、大流量状态,结果是处于高压的泵其流量大于系统需要的流量,一部分油液要从溢流阀流走,使系统发热造成功率损失,而另一个低压泵又达不到最大流量,使挖掘机的工作机构达不到最高速度;负荷压力小于活塞D和B的弹簧压力时,活塞B回到中位,油道关闭,旋转盘的倾角变到最大流量位置,全部油液流入油箱。

变量泵变量调节与控制技术恒功率310-3

变量泵变量调节与控制技术恒功率310-3
24学时 燕山大学机械工程学院
主讲 Prof. 吴晓明 吴晓明
3.4 液压泵的恒功率控制
为了充分利用原动机功率,使原动机在高效率区域运转,使 用功率调节应是最简单的手段。无论是流量适应或压力适应系 统,都只能做到单参数适应,因而都是不够理想的能耗控制系 统。功率适应系统,即压力与流量两参数同时正好满足负载要 求的系统,才是理想的能耗控制系统,它能把能耗限制在最低 的限度内。 因此,恒功率泵主要用在工程车辆中,用发动机作为原动力 驱动泵。现今的功率调节泵,由于控制系统结构的改进,使之 很容易复合压力、流量(多为排量)控制等功能,具有液压遥 控、压力控制、流量控制、液压行程限制、机械行程限制、液 压两点控制和电气先导压力控制等辅助功能,所以其应用越来 越广泛,并已超出传统工程车辆的范围。
3.4.3全功率控制,分功率控制,交叉功率控制
3.4.3全功率控制,分功率控制,交叉功率控制 交叉功率控制 由于分功率变量系统只是两个液压泵的简单组合,每一个液 压泵最多吸收柴油机50%的功率,当一个液压泵工作于起调压力之 下时,另外一个液压泵却不能吸收柴油机空余出来的功率。针对 此缺点,在分功率系统基础上,出现了交叉功率控制。交叉功率 控制从原理上讲是一种全功率调节,与上述全功率控制不同的是 两个液压泵的排量可以不同。通过交叉连接配置,两个液压泵的 工作压力互相作用在对方的调节器上,每个液压泵的输出流量不 仅与自身的出口压力有关,还与另一液压泵的出口压力有关。如 果一台液压泵不工作或者以小于50%的总驱动功率工作,则第二台 液压泵自动地利用剩余的功率,在极端情况下可达到100%总驱动 功率。交叉功率控制既具有根据每一液压泵的负载大小调整液压 泵输出的能力,又能充分利用柴油机的功率。
3.4.2 LR型恒功率控制

(完整版)恒压与恒功率变量泵

(完整版)恒压与恒功率变量泵

动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。

这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。

这种变量型式的泵,输出压力小于调定恒压力时,全排量输出压力油,即定量输出,在输出油液的压力达到调定压力时,就自动地调节泵流量,以保证恒压力,满足系统的要求。

泵的输出恒压值,根据需要,在调压范围内可以无级调定,泵的结构见图 6 ,该结构将输出的压力油同时通至变量活塞下腔和和恒压阀的控制油入口,当输出压力小于调定恒压力时,作用在恒压阀芯上的油压推力小于调定弹簧力,恒压阀处于开启状态,压力油进入变量活塞上腔,变量活塞压在最低位置,泵全排量输出压力油;当泵在调定恒压力工作时,作用在恒压阀芯上的油压推力等于调定弹簧力,恒压阀的进排油口同时处于开启状态,使变量活塞上下腔的油压推力相等,变量活塞平衡在某一位置工作,若液压阻尼(负载)加大,油压瞬时升高,恒压阀排油口开大、进油口关小,变量活塞上腔比较下腔压力降低、变量活塞向上移动,泵的流量减小,直至压力下降到调定恒压力,这时变量活塞在新的平衡位置工作。

反之,若液压阻尼(负载)减小,油压瞬时下降,恒压阀进油口开大,排油口关小,变量活塞上腔比较下腔油压升高,变量活塞向下移动,泵的流量增大,直至压力上升至调定恒压力。

主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传YCY14-1B :斜盘式压力补偿变量(恒功率)柱塞泵/ 马达结构剖视YCY14-1B :斜盘式压力补偿变量柱塞泵/ 马达工作原理主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。

这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。

压力补偿变量泵的出口流量随出口压力的大小近似地在一定范围内按恒功率曲线变化。

当来自主体部分的高压油通过通道(a)、(b)、(c)进入变量壳体下腔(d)后,油液经通道(e)分别进入通道(f)和(h),当弹簧的作用力大于由油道(f )进入伺服活塞下端环形面积上的液压推力时,则油液经(h)到上腔(g),推动变量活塞向下运动,使泵的流量增加。

恒压变量泵基础知识(适合新手)

恒压变量泵基础知识(适合新手)

恒压变量泵基础知识(适合新手)一、工作原理恒压变量泵:拿泵的出口压力值和输入信号的值进行比较,然后通过变量机构的位置变化来确定泵的排量。

恒压变量控制:是指当流量做适应性的调节时,压力变动十分微小,可以向系统提供一个恒压源。

由于推动恒压阀动作的控制油,来自变量泵本身的出油口,所以属于自控式变量泵。

二、恒压变量泵的压力自动恒定过程:如图所示:CP为恒压阀,它的作用就是控制变量活塞缸的进油和回油,而控制活塞的伸出与回缩动作直接控制斜盘的倾角,从而使泵的排量发生变化。

恒压阀右侧调压弹簧的预紧力设定值为Pt(恒压阀的阀芯动作时行程非常小,可以认为弹簧的预紧力始终为其设定值Pt);泵的出口压力为Pp;泵的出口流量为qp;泵能输出的最大流量qpmax;负载所需流量qL。

1、排量增大的过程:当Pp<>2、压力上升的过程:若随后负载所需要流量qL<>3、排量减小的过程:当Pp>Pt时(泵出口的压力Pp上升到超过弹簧预紧力Pt时),恒压阀的阀芯右移,控制活塞无杆腔引入泵出口的高压油,斜盘倾角逐渐减小,最终在qp=qL时停止。

4、压力下降的过程:由于泵输出的流量已完全用于推动负载,因此没有多余的流量支撑原先的高压了,所以泵出口的压力Pp开始减小,直至减小到Pp=Pt为止。

此时,恒压阀关闭,变量活塞停止运动,变量过程结束,泵的工作压力稳定在恒压阀弹簧预紧力的设定值。

5、保压的过程:此后,如果负载不发生变化,那么系统就一直工作在恒压工况。

此时,泵的输出流量可以为0,但并不是说斜盘的倾角完全为0,此时倾角应该是处在一个很小的位置,使得泵内部的流量与泵内部的泄漏相一致,并且还要维持支撑负载的压力。

6、但是,如果负载对流量需求减少,那么泵出口压力升高,则重复步骤2~4。

7、同样,如果负载对流量需求增大,那么当泵出口压力小于弹簧预紧力时,则重复步骤1~4。

三、恒压变量泵在什么情况下应用能更好地发挥其节能的作用呢?•低压保持全流量输出,实现快速移动(该过程中该泵相当于一个定量泵)。

恒功率变量泵原理

恒功率变量泵原理

恒功率变量泵原理
我也做这个型号的油泵,看了好多高手的见解,启发也很大,但有一些观点我不完全认同,我从油泵变量的设定和动作讲一下我的理解。

以楼主的原理图为准,1阀是LR阀(恒功率阀)设定的是恒功率曲线的启始变量点,一般是几个Mpa,2阀是恒压阀(DR阀),设定的是系统所需要的最高压力,3阀是流量阀(FR阀),不能拧死,松开就行,如4阀状态不变,那在DFLR阀中没有很大的作用,对起始变量点只有一些很小的影响,这一点和LGWX理解得不一样。

当油泵开始启动,压力还没有达到启始变量压力时,(4阀状态不变),1阀、2阀在弹簧力作用下处于原始工作位,不动作,3阀的二端同时通压力油,虽然有阻尼5的存在,但因1阀没找开,油液没有流动,不起阻尼作用,3阀二端压力一样,面积也一样,所以3阀也在原始工作位,这时油泵就是一个定量泵,
当系统压力达到1阀的设定压力,1阀打开,开始溢流,因阻尼5的作用,3阀二端产生压差,阀芯向右移动,油液经过2阀进入变量活塞右腔,开始变量,同时压缩弹簧。

这时就是位移---力反馈的恒功率原理,
当系统压力达到2阀设定的压力时,2阀的阀芯左移,压力油经2阀直接进入控制活塞右腔,进入恒压变量状态,其他阀就不起作用了。

所有的阀在起作用时,应该都不是固定在某一工作腔的,都不高频振颤,维持动态平衡,例如:恒压阀工作时,控制活塞右腔进油,流量一直在变小,直至流量小到不能维持系统压力,弹簧力大于阀芯左端的液压力,变量活塞右腔关闭,压力再升高,阀芯再打开。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

恒功率变量泵原理
我也做这个型号的油泵,看了好多高手的见解,启发也很大,但有一些观点我不完全认同,我从油泵变量的设定和动作讲一下我的理解。

以楼主的原理图为准,1阀是LR阀(恒功率阀)设定的是恒功率曲线的启始变量点,一般是几个Mpa,2阀是恒压阀(DR阀),设定的是系统所需要的最高压力,3阀是流量阀(FR阀),不能拧死,松开就行,如4阀状态不变,那在DFLR阀中没有很大的作用,对起始变量点只有一些很小的影响,这一点和LGWX理解得不一样。

当油泵开始启动,压力还没有达到启始变量压力时,(4阀状态不变),1阀、2阀在弹簧力作用下处于原始工作位,不动作,3阀的二端同时通压力油,虽然有阻尼5的存在,但因1阀没找开,油液没有流动,不起阻尼作用,3阀二端压力一样,面积也一样,所以3阀也在原始工作位,这时油泵就是一个定量泵,
当系统压力达到1阀的设定压力,1阀打开,开始溢流,因阻尼5的作用,3阀二端产生压差,阀芯向右移动,油液经过2阀进入变量活塞右腔,开始变量,同时压缩弹簧。

这时就是位移---力反馈的恒功率原理,
当系统压力达到2阀设定的压力时,2阀的阀芯左移,压力油经2阀直接进入控制活塞右腔,进入恒压变量状态,其他阀就不起作用了。

所有的阀在起作用时,应该都不是固定在某一工作腔的,都不高频振颤,维持动态平衡,例如:恒压阀工作时,控制活塞右腔进油,流量一直在变小,直至流量小到不能维持系统压力,弹簧力大于阀芯左端的液压力,变量活塞右腔关闭,压力再升高,阀芯再打开。

相关文档
最新文档