驱动桥壳设计

合集下载

驱动桥的设计实训总结报告

驱动桥的设计实训总结报告

一、实训背景驱动桥作为汽车传动系统的重要组成部分,承担着将发动机输出的动力传递到车轮,并实现车轮差速和转向等功能的重任。

为了深入了解驱动桥的结构、原理和设计方法,提高自身的实践能力,我们进行了为期两周的驱动桥设计实训。

二、实训目的1. 掌握驱动桥的基本结构和工作原理;2. 熟悉驱动桥各部件的设计方法和计算过程;3. 培养团队协作能力和解决实际问题的能力;4. 提高动手操作能力和工程实践能力。

三、实训内容1. 驱动桥基本结构及工作原理- 驱动桥主要由主减速器、差速器、半轴、驱动桥壳等组成;- 主减速器用于降低转速、增大扭矩,实现动力传递;- 差速器用于实现左右车轮的差速,满足汽车转向需求;- 半轴连接主减速器和车轮,传递扭矩;- 驱动桥壳用于固定各部件,承受车辆载荷。

2. 驱动桥各部件设计- 主减速器设计- 确定主减速器类型(锥齿轮、圆柱齿轮等);- 计算主减速器齿轮参数(模数、齿数、齿宽等);- 进行主减速器齿轮强度校核;- 选择合适的轴承和润滑方式。

- 差速器设计- 确定差速器类型(齿轮差速器、链条差速器等);- 计算差速器齿轮参数(模数、齿数、齿宽等);- 进行差速器齿轮强度校核;- 选择合适的轴承和润滑方式。

- 半轴设计- 确定半轴类型(全浮式、半浮式等);- 计算半轴直径和强度;- 进行半轴花键强度校核。

- 驱动桥壳设计- 进行驱动桥壳的三维建模;- 进行驱动桥壳的有限元分析,优化结构设计。

3. 实训过程- 小组成员根据设计要求,进行驱动桥各部件的设计计算;- 小组成员讨论并解决设计过程中遇到的问题;- 小组成员完成驱动桥的三维建模和有限元分析;- 小组成员撰写实训报告。

四、实训成果1. 成功设计了一款满足要求的驱动桥;2. 学会了驱动桥各部件的设计方法和计算过程;3. 培养了团队协作能力和解决实际问题的能力;4. 提高了动手操作能力和工程实践能力。

五、实训体会1. 驱动桥设计是一个复杂的过程,需要综合考虑多种因素;2. 在设计过程中,要注重理论与实践相结合,不断提高自己的实践能力;3. 团队协作是完成设计任务的关键,要学会与他人沟通和协作;4. 实训过程让我们深刻体会到工程师的责任和担当,要不断提高自己的专业素养。

汽车驱动桥壳壳盖优化设计二次开发研究

汽车驱动桥壳壳盖优化设计二次开发研究

3 基 于 P to 的 A AQUS程 序 设 计 yh n B
31 A AQUS脚 本 接 口二次 开发 . B
P to yh n是一 种 面 向对象 的解 释 性 编程 语 言 . 功
能强 大 .能 在多 种平 台上进 行 快 速 开发 A A U B Q S 二 次 开发 环 境 提 供 的脚 本 接 口是 基 于 P to yh n语 言
脚 本 程 序 P to y n建 立 的 参 数 化 有 限 元模 型 对 壳 盖 的 毛 坯进 行 优 化 循 环 计 算 , 出 了 合理 的 毛坯 尺 寸 。 过 试 验 验 证 h 得 通
了优 化 设 计 的正 确 性
主 题词 : 动桥 壳 壳盖 驱
二 次开 发
仿真 分析
中图分 类 号 : 4 38 + 文献 标识 码 : 文章编 号 :0 0 3 0 (0 )0 0 2 — 2 U 6 .34 A 10 — 73 2 1 1— 08 0 1
1 前 言
某 汽 车驱 动桥 壳为 冲焊 式桥 壳 。 上 桥片 、 桥 其 下 片和桥 壳壳 盖 f 以下 称壳 盖 ) 均通 过 冲裁下 料模 具 和 成型模 具 2次 加工 完成 .由于壳 盖 的部 分 区域成 型 复杂 . 其毛 坯轮 廓很 难精 确设 计计 算 , 常为得 到 理 通 想 的壳 盖 毛坯 轮廓 .保 证成 型 后壳 盖边 缘形 状满 足
输入 . 同时建立初始坯料外形 , 选用各 向异性材料模 型 建立接触关 系 . 选取合适 的ห้องสมุดไป่ตู้料单元 类型 . 计算并分 析
试验结果 与设计 目标 的偏差 .如不满足条件则采用 优
化算法得 到新 的坯料外 形 .并 二次建立分析模型重 新 计算 . 如此循环 直至偏 差满足要求 , 化计算结束 。循 优 环 优化算法采用 A AQ S自带脚本程 序 P to 进 行 B U y n h 参 数化建模分析 . 整个循环优化计算 自动完成 。 使 二次

驱动桥壳设计

驱动桥壳设计

3.5 驱动桥壳设计驱动桥桥壳是汽车上的主要零件之一,非断开式驱动桥的桥壳起着支承汽车荷重的作用,并将载荷传给车轮.作用在驱动车轮上的牵引力,制动力、侧向力和垂向力也是经过桥壳传到悬挂及车架或车厢上。

因此桥壳既是承载件又是传力件,同时它又是主减速器、差速器及驱动车轮传动装置(如半轴)的外壳。

在汽车行驶过程中,桥壳承受繁重的载荷,设计时必须考虑在动载荷下桥壳有足够的强度和刚度。

为了减小汽车的簧下质量以利于降低动载荷、提高汽车的行驶平顺性,在保证强度和刚度的前提下应力求减小桥壳的质量.桥壳还应结构简单、制造方便以利于降低成本。

其结构还应保证主减速器的拆装、调整、维修和保养方便。

在选择桥壳的结构型式时,还应考虑汽车的类型、使用要求、制造条件、材料供应等。

3.5.1 桥壳的结构型式桥壳的结构型式大致分为可分式(1)可分式桥壳可分式桥壳的整个桥壳由一个垂直接合面分为左右两部分,每一部分均由一个铸件壳体和一个压入其外端的半轴套管组成。

半轴套管与壳体用铆钉联接。

在装配主减速器及差速器后左右两半桥壳是通过在中央接合面处的一圈螺栓联成一个整体。

其特点是桥壳制造工艺简单、主减速器轴承支承刚度好。

但对主减速器的装配、调整及维修都很不方便,桥壳的强度和刚度也比较低。

过去这种所谓两段可分式桥壳见于轻型汽车,由于上述缺点现已很少采用。

(2)整体式桥壳整体式桥壳的特点是将整个桥壳制成一个整体,桥壳犹如一整体的空心粱,其强度及刚度都比较好。

且桥壳与主减速器壳分作两体,主减速器齿轮及差速器均装在独立的主减速壳里,构成单独的总成,调整好以后再由桥壳中部前面装入桥壳内,并与桥壳用螺栓固定在一起。

使主减速器和差速器的拆装、调整、维修、保养等都十分方便。

整体式桥壳按其制造工艺的不同又可分为铸造整体式、钢板冲压焊接式和钢管扩张成形式三种。

3.5.2 桥壳的受力分析及强度计算我国通常推荐:计算时将桥壳复杂的受力状况简化成三种典型的计算工况(与前述半轴强度计算的三种载荷工况相同)。

汽车驱动桥壳壳盖优化设计二次开发研究

汽车驱动桥壳壳盖优化设计二次开发研究

汽车驱动桥壳壳盖优化设计二次开发研究随着汽车工业的快速发展,汽车驱动桥的优化设计已经成为了一个研究的热点。

作为汽车动力传输的重要组成部分,驱动桥的设计要求不仅要满足汽车的行驶要求,还要具备较高的安全性和可靠性。

其中,驱动桥壳壳盖的设计尤其重要,因为它负责保护驱动桥的内部零部件,同时也影响着驱动桥的散热性能。

在现有的驱动桥壳壳盖设计中,存在一些问题需要解决。

首先,在某些情况下,驱动桥的高负载状态下,壳壳盖的密封性能和结构强度容易出现问题,严重影响驾驶安全。

其次,在某些工况下,驱动桥内部的温度会升高,进而影响器件寿命和性能,因此壳壳盖的散热性能也需要得到优化。

针对以上问题,可以采取以下措施进行壳壳盖的优化设计。

首先,可以采用改进的材料进行壳壳盖的生产,以提升其密封性和结构强度。

此外,可以采用现代先进的加工工艺,比如激光切割、折弯等,以保证产品的精度和质量。

其次,可以在壳壳盖的设计中优化散热结构,以提升驱动桥的散热性能。

例如,在壳壳盖的外壳表面添加散热片,或在壳壳盖的进风口和出风口设计合理的结构,以最大程度地增强散热效果。

同时,还可以采用现代先进的散热材料,如石墨烯等,以提升壳壳盖的散热能力。

此外,还可以采用二次开发的方式进行壳壳盖的优化设计。

二次开发是指在原有设计基础上,通过修改、调整等方式,对产品性能进行进一步改进的过程。

在壳壳盖的优化设计中,可以采用三维建模软件等工具,进行模拟分析,进而确定最佳壳壳盖结构。

通过二次开发,可以最大程度地提升产品性能和质量,进而满足市场需求。

总之,汽车驱动桥壳壳盖的优化设计是一个复杂的过程,需要从材料、结构、散热等多个方面进行综合考虑。

通过现代先进的技术手段,结合二次开发等方式,可以最大程度地提升产品性能和质量,进而满足市场需求,为汽车工业的发展做出更多的贡献。

除了二次开发外,还可以采用仿真分析的方法对汽车驱动桥壳壳盖进行优化设计。

在不需要花费大量的物理实验和成本的情况下,通过仿真分析可以快速确定壳壳盖的最佳结构和材料,同时能够提高设计的可靠性和精度。

汽车驱动桥壳现代设计

汽车驱动桥壳现代设计

汽车驱动桥壳现代设计摘要在汽车设计教材和企业实际设计过程中, 汽车驱动桥壳的设计仍然采用传统的设计方法, 随着国内计算机应用水平大幅度的提高, 将CAD/ CAE 技术运用在汽车桥壳设计中是势在必行。

本文在以往汽车驱动桥壳CAD/ CAE 研究的基础上, 提出了一套桥壳的现代设计方法, 为改进传统设计方法提供了设计思路。

前言汽车驱动桥作为整车关键总成之一,直接影响着整车的安全性、承载性、平顺性和舒适性,其主要零件的设计至关重要。

但目前有关桥壳的设计方法却存在相对滞后的问题,在高校的汽车设计教材和车桥厂的实际设计过程中,仍然采用传统方法进行设计,这不可避免与现代设计方法发生脱节,造成产品更新换代慢、开发成本高等一系列问题。

因此非常有必要提出一套利用CAD/CAE技术进行驱动桥壳设计的现代方法。

本文以某车桥厂驱动桥壳设计为例提出了一套可行的现代设计方法,并进行了相关的试验,验证该计算的正确性,为改进传统设计方法提供了设计思路。

1研究汽车驱动桥壳现代设计方法的思路传统的汽车驱动桥壳设计方法是:将桥壳复杂的受力状况简化成三种典型的计算工况,即当车轮承受最大的铅垂力、承受最大切向力以及承受最大侧向力时。

只要在这三种载荷计算工况下桥壳的强度得到保证,就认为该桥壳在汽车各种行驶条件下是可靠的。

设计桥壳时将桥壳看成简支梁并校核某[1]在企业实际设计过程中,往往根据上述方法和经验,设计出驱动桥壳,然后进行试产,并对驱动桥壳进行台架试验。

在这个过程中,经常会有一些设计满足三种典型工况要求的桥壳,在台架试验中不符合标准。

因此设计过程是一个反复修改和调整的过程,费时费力。

由于按传统设计方法设计的桥壳最终应以台架试验为检验标准,并且经过大量的实践证明,当设计的驱动桥壳满足其台架试验标准时,桥壳在汽车各种工况下是可靠的。

因此汽车驱动桥壳现代设计方法的思路是:在计算机上根据经验建立汽车驱动桥壳的三维CAD初始模型,模拟其三种台架试验,以满足试验标准为设计要求,并对结构参数进行优化设计。

汽车驱动桥壳轻量化设计

汽车驱动桥壳轻量化设计

Technoeogy Reseaoch 汽车驱动桥壳轻量化设计□李志虎内蒙古自治区交通运输管理局呼和浩特0100201轻量化设计背景汽车驱动桥由主减速器、差速器、半轴、驱动桥壳等组成,具有增大发动机扭矩、改变动力方向、实现两个驱动轮间差速等作用。

驱动桥壳总成是汽车承重的关键部件,驱动桥壳过载,易产生裂纹,甚至导致断裂。

汽车驱动桥壳局部断裂如图1所示。

驱动桥壳设计时,应保证在足够的强度、刚度、疲劳寿命下,尽量减轻车身质量。

驱动桥壳结构应简单,降低加工生产制造难度,方便其它零部件的拆装和调整⑴。

图1汽车驱动桥壳局部断裂收稿日期:2020年3月作者简介:李志虎!1986—),男,硕士,工程师,主要从事汽车运行管理工作4420204Technology Research2驱动桥壳有限元分析中国重汽HW12单级减速驱动桥性能参数见表1:2*,这一驱动桥型式为中央单级减速,全浮式半轴,由钢板冲压焊接驱动桥壳。

车轮安装方式为轮辋中心孔定位。

利用SolidWorks软件建立HW12驱动桥的驱动桥壳三维整体模型,如图2所示。

[B]Force2:1.127e+005N冋Fixed Support0Fixed Support2[E]Force3:1.127e+005囚Force:1.127e+005N图4驱动桥壳约束及加载表1HW12单级减速驱动桥性能参数项目数值额定轴荷/ky11500最大总质量/ky49000速比 4.875,5.833板簧中心距/mm930-1010标准轮距/m m1850质量/ky685表2驱动桥壳载荷桥壳厚度/mm567满载轴荷/N112700113200115400 2.5倍满载轴荷/N2817502830002885005mm厚驱动桥壳应力、变形云图分别如图5、图6所示。

由图5、图6可知,5mm厚度驱动桥壳的最大应力为231.16MPa,最大变形出现在驱动桥壳中部位置,值为1.9742mm。

2.驱动桥的结构方案设计

2.驱动桥的结构方案设计

第二节驱动桥的结构方案分析
驱动桥的结构形式与驱动车轮的悬架形式密切相关。

当车轮采用非独立悬架时,驱动桥应为非断开式(或称为整体式),即驱动桥壳是一根连接左右驱动车轮的刚性空心梁(图5—1),而主减速器、差速器及车轮传动装置(由左、右半轴组成)都装在它里面。

当采用独立悬架时,为保证运动协调,驱动桥应为断开式。

这种驱动桥无刚性的整体外壳,主减速器及其壳体装在车架或车身上,两侧驱动车轮则与车架或车身作弹性联系,并可彼此独立地分别相对于车架或车身作上下摆动,车轮传动装置采用万向节传动(图5—2)。

为了防止运动干涉,应采用滑动花键轴或一种允许两轴能有适量轴向移动的万向传动机构。

具有桥壳的非断开式驱动桥结构简单、制造工艺性好、成本低、工作可靠、维修调整容易,广泛应用于各种载货汽车、客车及多数的越野汽车和部分小轿车上。

但整个驱动桥均属于簧下质量,对汽车平顺性和降低动载荷不利。

断开式驱动桥结构较复杂,成本较高,但它大大地增加了离地间隙;减小了簧下质量,从而改善了行驶平顺性,提高了汽车的平均车速;减小了汽车在行驶时作用于车轮和车桥上的动载荷,提高了零部件的使用寿命;由于驱动车轮与地面的接触情况及对各种地形的适应性较好,大大增强了车轮的抗侧滑能力;与之相配合的独立悬架导向机构设计得合理,可增加汽车的不足转向效应,提高汽车的操纵稳定性。

这种驱动桥在轿车和高通过性的越野汽车上应用相当广泛。

图5—1 非断开式驱动桥
1一土减速器2一套筒3一差速器4、7一半轴5一调整螺母6一调整垫片
8一桥壳
图5—2 断开式驱动桥。

基于ProE与ANSYS的小型电动汽车驱动桥壳设计

基于ProE与ANSYS的小型电动汽车驱动桥壳设计

基于ProE与ANSYS的小型电动汽车驱动桥壳设计
基于Pro/E与ANSYS的小型电动汽车驱动桥壳设计
根据驱动桥壳载荷计算方法,应用Pro/E软件建立小型电动汽车驱动桥壳的三维模型;利用ANSYS软件进行满载最大垂直载荷、最大制动力、最大牵引力和最大侧向力四种典型工况下的强度分析,以验证驱动桥壳在极限工况下的结构变形、应力分布规律,结果表明设计符合要求.
作者:刘凤波 LIU Feng-bo 作者单位:辽宁农业职业技术学院,辽宁,营口,115009 刊名:林业机械与木工设备英文刊名:FORESTRY MACHINERY & WOODWORKING EQUIPMENT 年,卷(期):2010 38(5) 分类号:U463.33 关键词:小型电动汽车驱动桥壳设计有限元分析。

驱动桥桥壳设计模板

驱动桥桥壳设计模板

目录摘要Abstract1 绪论 (1)2 桥壳设计 (2)2.1桥壳的设计要求 (2)2.2桥壳的结构型式 (2)2.3桥壳的三维参数化设计 (2)2.4桥壳强度计算 (3)2.4.1 桥壳的静弯曲应力计算 (3)2.4.2 在不平路面冲击载荷作用下桥壳的强度计算 (5)2.4.3 汽车以最大牵引力行驶时桥壳的强度计算 (5)2.4.4 汽车紧急制动时桥壳的强度计算 (7)2.4.5 汽车受最大侧向力时桥壳的强度计算 (9)3 半轴的设计 (14)3.1半轴形式 (14)3.2三维建模 (14)3.3实心半轴强度校核计算: (14)3.3.1 半轴材料的性能指标: (14)3.3.2 断面B-B处的强度计算: (14)3.3.3 断面B-B处的强度计算(四档时) (16)3.3.4 断面C-C处强度计算 (17)3.4空心半轴强度校核 (17)3.4.1断面B-B处的强度校核 (17)3.4.2 断面B-B处的强度计算(四档时) (18)3.4.3 断面C-C处的强度计算 (18)结论 (19)参考文献致谢微型汽车后驱动桥半轴和桥壳设计1 绪论驱动桥壳是汽车的主要部件之一,它既是传动系的主要组件,又是行驶系的主要组件。

在传动系中驱动桥壳主要作用是支承并保护主减速器,差速器和半轴等;在行驶系中,驱动桥壳的主要作用是使左右驱动车轮的轴向相对位置固定,与从动桥一起支承车架及其上的各总成质量,同时,在汽车行驶时,承受有车轮传来的路面反作用力和力矩,并经悬架传给车架。

因此,驱动桥壳应有足够的强度和刚度,质量小,以便主减速器的拆装和调整。

半轴是差速器与驱动轮之间传递动力的实心轴,其首要任务是传递扭矩。

本桥采用非断开式驱动桥,普通非断开式驱动桥由于其结构简单、造价低廉、工作可靠,最广泛地用在各种汽车上。

采用钢板冲压-焊接的整体式桥壳可显著地减轻驱动桥的质量。

采用半浮式半轴,它具有结构简单、质量小、尺寸紧凑、造价低廉等优点,质量较小、使用条件较好、承载负荷也不大。

驱动桥壳设计

驱动桥壳设计

第六节驱动桥壳设计驱动桥壳的主要功用是支承汽车质量,并承受由车轮传来的路面反力和反力矩,并经悬架传给车架(或车身);它又是主减速器、差速器、半轴的装配基体。

驱动桥壳应满足如下设计要求:1)应具有足够的强度和刚度,以保证主减速器齿轮啮合正常并不使半轴产生附加弯曲应力。

2)在保证强度和刚度的前提下,尽量减小质量以提高汽车行驶平顺性。

3)保证足够的离地间隙。

4)结构工艺性好,成本低。

5)保护装于其上的传动系部件和防止泥水浸入。

6)拆装、调整、维修方便。

一、驱动桥壳结构方案分析驱动桥壳大致可分为可分式、整体式和组合式三种形式。

1.可分式桥壳可分式桥壳(图5-29)由一个垂直接合面分为左右两部分,两部分通过螺栓联接成一体。

每一部分均由一铸造壳体和一个压入其外端的半轴套管组成,轴管与壳体用铆钉连接。

这种桥壳结构简单,制造工艺性好,主减速器支承刚度好。

但拆装、调整、维修很图5—29 可分式桥壳不方便,桥壳的强度和刚度受结构的限制,曾用于轻型汽车上,现已较少使用。

2.整体式桥壳整体式桥壳(图5-30)的特点是整个桥壳是一根空心梁,桥壳和主减速器壳为两体。

它具有强度和刚度较大,主减速器拆装、调整方便等优点。

按制造工艺不同,整体式桥壳可分为铸造式(图5-30a)、钢板冲压焊接式(图5-30b)和扩张成形式三种。

铸造式桥壳的强度和刚度较大,但质量大,加工面多,制造工艺复杂,主要用于中、重型货车上。

钢板冲压焊接式和扩张成形式桥壳质量小,材料利用率高,制造成本低,适于大量生产,广泛应用于轿车和中、小型货车图5—30 整体式桥壳及部分重型货车上。

a)铸造式b)钢板冲压焊接式3.组合式桥壳组合式桥壳(图5-3 1)是将主减速器壳与部分桥壳铸为一体,而后用无缝钢管分别压人壳体两端,两者间用塞焊或销钉固定。

它的优点是从动齿轮轴承的支承刚度较好,主减速器的装配、调整比可分式桥壳方便,然而要求有较高的加工精度,常用于轿车、轻型货车中。

某型汽车驱动桥壳可靠性优化设计

某型汽车驱动桥壳可靠性优化设计

中 图法 分类号
U 6 .2 433 ;
文献标志码
汽车 在 行 驶 过 程 中所 遇 到 的 道 路 情 况 是 千 变 万化 的。驱 动桥壳 承受 繁 重 的载 荷 , 其 是 当汽 车 尤 通 过不 平 路 面 时 , 于 车 轮 与 地 面 问 产 生 冲击 载 由 荷, 在设 计 不 当或 制 造 工 艺 有 问 题 时 , 引 起 桥 壳 会
究 了该 桥壳板簧座附近关键部位优 化的 目标 函数和设 计变量 , 静疲 劳、 载荷 、 在 静 侧倾 强度 、 紧急制动 等条件 的约束 下, 建立 了完整 的可靠性优化的数学模型 , 并通过 Ma a 化工具箱 实施 了优化 。根 据优 化结果 指导企 业对驱 动桥 壳开展 轻量 化的 tb优 l 减 重而没有影响桥 壳的可靠性 , 收到 了良好 的效果 , 体现 了优化过程 的科学性与可行性。 关键词 驱动桥 壳 可 靠性优 化 设计 A
1 机械 可靠性优 化 问题 中 , 般 包 含 三 一
方 面 的 内容 : 量 ( 质 重量 ) 成本 和可 靠 度 。据 此 , 、 确定优 化 的 目标 函 数 和 约束 条 件 。对 于 可 靠 性 最
这就需要对驱动桥壳展开可靠 性优化设计研究¨ 。 j
率作为约束条件 ; 也等 价于这样 的问题 : 在可靠性
意 义上 最优 的机 械零 部件 是 , 给定 的机 械 零 部 件 在
质量或成本之下 , 机械零部件 有最大可靠度或最小
1 6期
孙忠云 , : 等 某型汽 车驱 动桥壳 可靠性 优化 设计
3 5 81
失 效 概率 。故 把 上 述 机 械 零 部 件 的 可 靠 性 优 化 问 题 分 为 以下两 大类 :

重型货车驱动桥桥壳结构分析及其轻量化研究

重型货车驱动桥桥壳结构分析及其轻量化研究

重型货车驱动桥桥壳结构分析及其轻量化研究一、本文概述随着全球经济的不断发展和贸易活动的日益频繁,重型货车作为物流运输的重要工具,其性能和效率的提升成为了行业关注的焦点。

作为货车关键部件之一,驱动桥桥壳的结构设计和轻量化研究对于提高货车的承载能力和燃油经济性具有重要意义。

本文旨在深入分析重型货车驱动桥桥壳的结构特点,探讨其受力特性和优化设计方案,并在此基础上研究轻量化技术在桥壳结构中的应用,以期达到提高货车性能、降低能耗和减少环境污染的目的。

文章首先将对重型货车驱动桥桥壳的基本结构进行概述,介绍其常见的材料、制造工艺以及结构形式。

随后,通过有限元分析等数值计算方法,对桥壳在不同工况下的受力状态进行详细分析,揭示其应力分布规律和失效模式。

在此基础上,结合结构优化设计理论,提出改进桥壳结构的方案,以提高其承载能力和耐久性。

接下来,文章将重点探讨轻量化技术在重型货车驱动桥桥壳结构中的应用。

通过对比分析不同轻量化材料的性能特点,研究其在桥壳结构中的适用性。

结合先进的制造工艺和结构设计理念,探索实现桥壳结构轻量化的有效途径。

通过对比分析轻量化前后的桥壳性能变化,评估轻量化技术在实际应用中的效果和潜力。

文章将对重型货车驱动桥桥壳结构分析和轻量化研究的成果进行总结,并展望未来的研究方向和应用前景。

通过本文的研究,旨在为重型货车的设计和制造提供有益的参考和指导,推动物流运输行业的可持续发展。

二、重型货车驱动桥桥壳结构分析重型货车驱动桥桥壳作为车辆动力传递和承载的关键部件,其结构设计对于整车的性能和使用寿命具有至关重要的影响。

桥壳的主要功能是支撑车轮和差速器,并传递来自发动机和传动轴的扭矩,因此,其必须具备足够的强度和刚度,以承受复杂多变的工作环境和载荷条件。

桥壳的结构通常分为整体式和分段式两种类型。

整体式桥壳具有较高的结构刚性和强度,适用于承载要求较高的重型货车。

分段式桥壳则通过分段设计,实现了桥壳的轻量化,同时在一定程度上降低了制造成本。

越野车驱动桥壳的轻量化设计与开发

越野车驱动桥壳的轻量化设计与开发
( B e i j i n gA u t o mo t i v e T e c h n o l o g y C e n t e r L t d , B e i j i n g 1 0 1 3 0 0)
Ab s t r a c t : Th i s a r t i c l e ma i n l y i n t r o d u c e d t h e o f f - r o a d v e h i c l e s d r i v e a x l e h o u s i n g l i g h t — we i g h t d e s i g n , s t e e l p l a t e s e l e c t i o n a n d d r i v e a x l e h o u s i n g mo l d i n g d e v e l o p me n t p r o c e s s . Th r o u g h mu l t i — wh e e l t e s t c o mp a r i s o n ,t h e f e a s i b l e s c h e me i s d e t e r mi n e d t o p r o v i d e t h e p o s s i b l e ma r g i n a l c o n t r i b u t i o n t o t h e e n e r g y s a v i n g a n d c o n s u mp t i o n o f t h e ma s s — p r o d u c e d mo d e l s . Ke y wo r d s : Dr i v i n g a x l e h o u s i n g ;L i g h t — we i g h t ; Re s e a r c h a n d a p p l i c a t i o n

装载机驱动桥毕业设计精选全文完整版

装载机驱动桥毕业设计精选全文完整版

摘要本次毕业设计题目为ZL40装载机驱动桥及主传动器设计,大致上分为主传动器设计、差速器设计、半轴设计、终传动设计和桥壳设计五大部分。

本说明书将以“驱动桥设计”为内容,对驱动桥及其主要零部件的结构型式与设计计算作一一介绍。

本次设计中,ZL40装载机传动采用液力机械传动方案,选用双涡轮液力变矩器和行星动力换挡变速箱,并按以下原则分配传动比:在终传动能安装的前提下,将传动比尽可能地分配给终传动,使整机结构尺寸减小,结构紧凑。

主传动器采用单级锥齿轮传动式,锥齿轮采用35º螺旋锥齿轮并选用悬臂式支承。

将齿轮的基本参数确定以后,算得齿轮所有的几何尺寸,然后进行齿轮的受力分析和强度校核。

齿轮的基本参数和几何尺寸的计算是此部分设计的重点。

在掌握了差速器、半轴、终传动和桥壳的工作原理以后,结合设计要求,合理选择其类型及结构形式,然后进行零部件的参数设计与强度校核。

差速器设计采用普通对称式圆锥行星齿轮差速器,齿轮选用直齿锥齿轮。

半轴设计采用全浮式支承方式。

终传动设计采用单行星排减速形式。

关键词:装载机;驱动桥;主传动器AbstractThe content of my graduation design is The Design of ZL30Loader Axles(Main Transm ission),largely at five parts,included of the main transmission design,differential design,half -shaft design,the design of the final drive and design of axle case.The design specifications will introduce the structure type and design of the drive axle and the main components in the driving axle design one by one.In this design,ZL30loader is adopts hydromechanical transmission,select and uses doub le turbine hydraulic torque converter and planetary power shift transmission,and distribution of the transmission ratio according to the following principles:in the premise of final drive ca n be installed in the hub,assign the transmission ratio to final drive as much as possible to makes the whole structure size decreases and structure terse.Main drive is adopts a single-stage bevel gear with35o and spiral bevel gears use cantile ver support.After considered of the basic parameters of gear,calculate all the geometric para meters of the gear,and then analysis gear stress and check its strength.The calculation of gear s basic parameters and geometry parameters is the key point of this part.After mastered theworking principle of differential,axle,final drive and axle case,have a reasonable choice and the structure of its type by combining with the design requirements,and then design parts and check strength.The differential design adopts ordinary symmetric tapered planetary gear diffe rential,and the gear is straight bevel gears.The half-shaft design uses the full floating axle s-upporting.The final drive design uses a single planetary row.Keywords:loader,drive axle main transmission1.引言装载机是一种广泛用于公路、铁路、矿山、建筑、水电、港口等工程的土石方工程施工机械,它的作业对象是各种土壤,砂石料、灰料及其他建筑路用散装物料等。

矿用自卸车驱动桥壳结构分析与改进设计

矿用自卸车驱动桥壳结构分析与改进设计

2005・1 专用汽车 ZHUAN YON G Q ICH E21 矿用自卸车驱动桥壳结构分析与改进设计杨锁望 韩愈琪 杨 珏北京科技大学土木与环境工程学院 北京 100083 摘 要:建立了SGA3550型矿用汽车驱动桥壳及A 形架的有限元模型,选择极限工况对其进行了结构强度和刚度分析。

结果表明,驱动桥壳空心梁和半轴套管部分的应力远小于材料的许用应力,而悬架支座与桥壳连接处出现了局部应力过大的情况。

对该桥壳的相应结构提出了改进方案,改进后的桥壳质量更小,最大应力也得到了大幅减小,且应力分布更为合理。

关键词:自卸车 驱动桥壳 有限元 应力中图分类号:U46914103 文献标识码:A 文章编号:100420226(2005)0120021203Structural Analysis for Drive Axle H ousing of Dump T ruckYang Suo -w ang et alAbstract After the finite element models of the drive axle housing and A_f rame of SGA3550dump truck are established in this paper ,intensity and rigidity are analyzed under limit condition.The results show that the maximum stress of the drive axle housing is much less than the permissible stress ,however the local stress in the pontes of the suspension ’s brace and the drive axle housing is too large to the structure.A practical scheme to improve the housing ’s configuration is proposed in this paper.The mass and the max stress of the improved drive axle housing decrease largely ,and the stress distributes logical.K ey w ords dump truck ;drive axle housing ;finite element ;stress收稿日期:2004201213作者简介:杨锁望,男,1979年生,硕士研究生,计算机辅助设计在车辆工程中的应用研究。

湿式制动驱动桥壳冲压模具设计

湿式制动驱动桥壳冲压模具设计
wi t h t h e t r a di t i o n a l i n t e g r a l mo ul d, t he de s i g n h a s be t t e r i n t e r c h a n g e a b i l i t y a n d pr a c t i c a b i l i t y . Fo r d i f f e r e n t t y p e s o f h a l f
类模 具 的成 本 。
关键词 : 湿式制动
桥壳Leabharlann 冲压成型模 具 设 计 文章编号 : 1 0 0 2— 6 8 8 6 ( 2 0 1 5 ) 0 3— 0 0 4 6— 0 3
中 图分 类 号 : T G 3 8 2
文献标识码 : B
De s i g n o f t he s t a m pi ng di e o f dr i v e a x l e h o us i n g wi t h we t br a ke
观 弋 磁。 l M Ⅺ o d e r n M 胁 a c h i n e 珂
湿 式 制 动驱 动 桥 壳 冲压 模 具 设 计 术
唐 元超 , 胡 平
( 贵 州航 天红 光机械 制造 有 限公 司 , 贵州 遵义 5 6 3 0 0 0 )
摘 要: 湿式制动驱动桥 因具有制动冲击小 , 操作舒适 , 受工况、 路 况影响 小等优 点 , 被 国际先进重型 车辆制造 厂广
泛采用。桥 壳作 为车桥 的主要承 力件 , 其性 能直接 影响到车桥 的整体特性 。为提 高桥 壳的承载性能及疲 劳强度 , 在 制作冲焊式桥 壳时, 半壳体采用冷冲成形。通过对桥 壳半壳体 冲压 成型过程分析 , 设计制造 了一套组合 式模 具 , 成 功 的解决 了该半 壳体 的冲压 。采用该模 具冲压后 的半 壳体 完全能 满足设计要 求 。该模 具与传统 的整体 式模具 相 比, 增强 了模具互换性和 实用性。对于不同型号的桥 壳半壳体 , 只需要 更换模 具的工作部分 即可 , 大大降低 了桥 壳

驱动桥壳工艺设计

驱动桥壳工艺设计

驱动桥壳工艺设计目次1 前言 (1)2 驱动桥壳的加工工艺 (1)2.1 零件分析 (1)2.1.1桥壳的作用与结构特点 (3)3 毛坯的制作 (3)3.1 主要尺寸计算 (4)4 工艺规程设计 (6)4.1 制定工艺路线 (6)4.2 制定工艺方法 (7)总结 (12)致谢 (12)参考文献附件:工艺过程卡驱动桥壳工艺设计作者:xxx 指导老师:xxxxxxx大学工学院 11机制合肥230036下载须知:本文档是独立自主完成的毕业设计,只可用于学习交流,不可用于商业活动。

另外:有需要电子档的同学可以加我2353118036,我保留着毕设的全套资料,旨在互相帮助,共同进步,建设社会主义和谐社会。

摘要:桥壳,是安装主减速器、差速器、半轴、轮装配基体,其主要作用是支承并保护主减速器、差速器和半轴等。

一般来说,普通非断开式驱动桥桥壳是一根支承在左、右驱动车轮上的刚性空心梁,主减速器、差速器、半轴等传动件均装在其中,桥壳经纵置钢板弹簧与车架或车厢相联。

它是驱动桥的重要组成部分又是行驶系的主要组成件之一。

驱动桥壳应有足够的强度和刚度,质量小,并便于主减速器的拆装和调整。

驱动桥壳从结构上可分为整体式桥壳、可分式桥壳和组合式桥壳三类关键词:桥壳,工艺设计,加工工艺,车床1引言随着机械产业化的发展,机械设计机械加工及金属材料都有了重大的改进与突破!尤其在现在的机械类生产中驱动桥壳显得尤为重要,它通用性强在汽车行业尤为突出,它是承受载荷,并将作用在车轮上的制动力、牵引力、横向力等传递到车架上,它是安装主半轴、减速器、轮装配差速器基体,其主要作用是支承,是支承并保护主减速器、差速器和半轴等。

桥壳在车装系统中手里比较复杂,所以应该有必要的强度,另外由于桥壳的工作环境因素,应该具有便于拆卸便于维修的特点。

2 桥壳的加工工艺设计2.1、零件分析2.1.1、桥壳的作用与结构特点驱动桥壳是叉车的基础和主要承载件之一。

一方面用于支撑整个车架及其上的重量并保护主减速器、差速器及半轴等部件,另一方面固定左、右驱动车轮的轴向相对位置。

驱动桥设计ppt课件.ppt

驱动桥设计ppt课件.ppt
缺点: η<0.96 齿圈要求用高质量锡青铜制造,成本高。
(二)主减速器的形式
优点: 结构最简单、质量小、制造容易、拆装简便 缺点: 只能用于传递小扭矩的发动机 只能用于主传动比较小的车上,i0 < 7
1.单级主减速器
2.双级主减速器
特点: 尺寸大,质量大,成本高 与单级相比,同样传动比,可以增大离地间隙 用于中重型货车、越野车、大型客车
(一)减速传动方案 3.圆柱齿轮传动 4.蜗轮蜗杆传动
1.一对螺旋圆锥齿轮
优点: 同时啮合齿数多,寿命长,制造简单,质量小 缺点: 有轴向力、且方向不定;
缺点: 对啮合精度敏感,若锥顶不重合,使接触应力↑,弯曲应力↑,噪声↑,寿命↓; 要求制造、装配精度高。
2.双曲面齿轮啮合
5.在各种转速和载荷下的传动效率高 6.桥壳有足够的强度和刚度 7.结构简单,加工工艺性好,制造容易,调整、拆装方便 8.与悬架导向机构、转向运动机构协调
§5-2 驱动桥的结构方案分析
分类: 非断开式(整体式)—用于非独立悬架 断开式—用于独立悬架
一、断开式驱动桥特点:
当采用独立悬架时,为保证运动协调,驱动桥应为断开式。如图
二、主减速器基本参数选择与计算载荷的确定
(一)主减速器齿轮计算载荷的确定
2.按驱动轮打滑扭矩确定Tcs
3.按日常行驶平均转矩确定Tcf
1.齿数Z1、Z2 首选Z1: (1) Z1尽可能取小,货车Z1min≥6;轿车Z1min≥9; (2) Z1 、Z2不能有大于1的公约数,实现自动磨合,提高寿命; (3)希望Z1+Z2 ≥40,有足够的弯曲强度,提高重合系数;
(四)牙嵌式自由轮差速器 半轴转矩比kb可变,工作可靠,寿命长,锁紧性能稳定,制造加工也不复杂。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

驱动桥壳设计
驱动桥壳的主要功用是支撑汽车质量,并承受由车轮传来的路面的反力和反力矩,并经悬架传给车架(或车身);它又是主减速器、差速器、半轴的装配基体驱动桥壳应满足如下设计要求:
1)应具有足够的强度和刚度,以保证主减速器齿轮啮合正常并不使半轴产生
附加弯曲应力.
2)在保证强度和刚度的前提下,尽量减小质量以提高汽车行驶平顺性.
3 )保证足够的离地间隙.
4)结构工艺性好,成本低.
5 )保护装于其上的传动部件和防止泥水浸入.
6)拆装,调整,维修方便.
一•驱动桥壳结构方案分析
驱动桥壳大致可分为可分式、整体式
和组合式三种形式。

1.可分式桥壳
可分式桥壳(图5—29)由一个垂直接
合面分为左右两部分,两部分通过螺栓联
接成一体。

每一部分均由一铸造壳体和一
个压入其外端的半轴套管组成,轴管与壳
体用铆钉连接。

这种桥壳结构简单,制造工艺性好,主减速器支承刚度好。

但拆装、调整、维
修很不方便,桥壳的强度和刚度受结构的限制,曾用于轻型汽车上,现已较少使用。

2.整体式桥壳
整体式桥壳(图5 — 30) 的
特点是整个桥壳是一根空 心梁,桥壳
和主减速器壳为两 体。

它具有强度和
刚度较大, 主减速器拆装、调整方便
等优
按制造工艺不同,整体式
桥壳可分为铸造式(图5 —
30a )、钢板冲压焊接式(图5
造式桥壳的强度和刚度较大,
但质量大口:上面多,制造
啟5 M 建仏式侨壳 心鯨蓟比 巫应冲匹聲摧賞 工艺复杂,主要用于中、 •重型货车上。

钢板冲压焊接式和扩张成形式桥壳质量小, 材料利用率高,
制造成本低,适于大量生产,广泛应用于轿车和中、小型货车及部 分重型货车上。

3)组合式桥壳
组合式桥壳(图5 — 31)是将主 减速器壳与部分桥壳铸为一体,而 后用无缝钢管分别压入壳体两
端, 两者间用塞焊或销钉固定。

它的优 点是
从动齿轮轴承的支承刚度较 好,主减速器的装
配、调整比可分 式桥壳方便,然而要求有较高
的加 工精度,常用于轿车、轻型货车中。

二.驱动桥壳强度计算
对于具有全浮式半轴的驱动桥,强度计算的载荷工况与半轴强度计算的:三种
—30b )和扩张成形式二种。

铸 点。

' - 31室合迸林壹
载荷工况相同。

图5—32为驱动桥壳受力图,桥壳危险断面通常在钢板弹簧座内侧附近,桥儿端郎的轮毂轴承座根部也应列为危险断面进行强度验算。

1 )牵引力或制动力最大时,桥壳钢板弹簧座处危险断面的弯曲应力S 和扭转切应力T分别为
T- 60)
式中,Mv为地面对车轮垂直反力在危险断面引起的垂直平面内的弯矩,
Mv=m 2Qb/2b为轮胎中心平面到板簧座之间的横向距离,如图 5 —32所示;M h为一侧车轮上的牵引力或制动力芦Fx 2在水平面内引起的弯矩, M h =F x2b; T T为牵引或
制动时,上述危险断面所受转矩, T T=F X25 ; WW W、W T、分别为危险断面垂直平
面和水平面弯曲的抗弯截面系数及抗扭截面系数。

2) 当侧向力最大时,桥壳内、外板簧座处断面的弯曲应力s i, s o分别为
L F zi2(b+%r)
码= ----------------
* W v
L F z2o(b—④山)
——
W V
(5
-61)
3) 当汽车通过
不平路面时,动载系数
为是,危险断面的弯曲
应力口为
kG2B
2W V
(5 - 62)
桥壳的许用弯曲应力为300〜500MPa,许用扭转切应力为150 〜400MPa。

图5 32桥壳受力简用
可锻铸铁桥壳取较小值,钢板冲压焊接桥壳取较大值。

相关文档
最新文档