第四节(解析函数)

合集下载

解析函数的高阶导数 ppt课件

解析函数的高阶导数 ppt课件

1)2
dz
C 1 (z2e z1)2dzC 2 (z2e z1)2dz
ez
ez
C1 (z2 1)2 dz
C1
( (
z z
i i
)2 )2
dz
y
• •
(221i)!(zezi)2
(1 i)ei 2
,
zi
C1 i
o
C 2 i
C
x
同理可 C2 (得 z2ez1)2dz
(1i)ei 2
,
于是 C
z00在 z1内 , n1,
ez cosz
z 1 z2 dz
2i(ezcozs)
1!
z0
2 i[ e zcz o e s zsiz]n2i. z 0
例3 求积分 z1eznzdz. (n为整)数

(1)n0,
ez zn
在z
1上解,析
由柯西-古萨基本定理得
z
1
ez zn
dz
0;
(2)n1, 由柯西积分公式得
(51)!
z1
5i ; 12
(2)函(数 z2ez1)2在 C内z的 i处不, 解析 在C内以 i为中心作一个C 正 1, 向圆周
以i为中心作一个正 C2,向圆y 周
则函数ez (z21)2
在由 C,C1,C2
围成的区域, 内解析
• •
C1 i
o
C 2 i
C
x
根据复合闭路定理
C
ez (z2
二、主要定理
定理3.9
设函数 f (z)在简单闭曲 C所线围成的区 D内域
解析在 ,DDC连续,则函数 f (z)的各阶导函数
在区域 D内解析对, D内任意一z,有 点

调和函数、解析函数与调和函数的关系

调和函数、解析函数与调和函数的关系

2
y 2
=
0,
则称 (x, y) 为区域������内的调和函数.
定理1:区域������内的解析函数的实部与虚部,都是������内的调和函数.
证明:设 w = f (z) = u(x, y) + iv(x, y) 是区域������内的解析函数,
那么在区域������内满足柯西-黎曼方程:u = v , u = − v x y y x
由 f (0) = i ,得 C = 1,从而 f (z) = x3 − 3xy2 + i(3x2 y − y3 +1).
另外,还可以通过不定积分的方法,由已知调和函数直接求 得解析函数. 解析函数 f (z) = u(x, y) + iv(x, y) 的导数仍为解析函数,
f ' (z) = ux + ivx = ux − iuy = vy + ivx
=
6x;u y
=
−6xy,2u y2
=
−6x
从而
2u x2
+
2u y 2
= 0,所以:u(x, y) =
x3
− 3xy2 是调和函数.
( ) 由 v = u = 3x2 − 3y2 ,得 v(x, y) = 3x2 − 3y2 dy = 3x2 y − y3 + c(x) y x
定义2:设 u(x, y) 为区域������内的调和函数,称满足柯西-黎曼方程
u = v , u = − v x y y x
的调和函数 v(x, y) 为 u(x, y) 的共轭调和函数.
说明:(1)区域������内的解析函数的实部与虚部为共轭调和函数;
(2)如果已知一个调和函数u(x, y),则可利用柯西-黎曼方 程求得它的共轭调和函数 v(x, y),从而构成一个解析函数

复变函数3.4解析函数与调和函数的关系

复变函数3.4解析函数与调和函数的关系
z
由 f (0) 0,
得 c 0,
z
所求解析函数为 f ( z ) ze (1 i )z.
15
例3.18 求 k 值, 使 u x 2 ky2 为调和函数. 再求v , 使
f ( z ) u iv 为解析函数, 并求 f ( i ) 1 的 f ( z ).
(3x2 3 y 2 )dy C 3x 2 y y 3 C
故: f ( z ) u iv x3 3xy 2 i 3x 2 y y 3 C
x iy iC z 3 iC
3


再由 f(0)=i,得出 C=1,故 f(z)=z3+i 方法二:两次积分法:首先由C-R条件得: vy=ux=3x2-3y2
( x iy )e
x iy
1 i
e z ze z 1 i ,
f ( z ) V ( z )dz (e z ze z 1 i )dz
ze z (1 i )z c. (c 为任意实常数)
20
例3.22 已知 u v ( x y )( x 2 4 xy y 2 ) 2( x y ),
第四节 解析函数与调和函数 的关系
3.4.1 调和函数的定义 3.4.2 解析函数与调和函数的关系 3.4.3由调和函数构造解析函数
3.4.4 小结与思考
3.4.1 调和函数的概念
定义3.5 如果二元实函数H(x,y)在区域D内有 二阶连续偏导数,且满足拉普拉斯方程:即:
2 H 2 H 2 0 2 x y
10
若已知 v,可用类似的方法求 u
v v u( x , y ) dx dy C ( x0 , y0 ) y x 例3.16 验证v(x,y)=arctan(y/x)(x>0)再由半平面内 是调和函数,并求以此为虚部的解析函数f(z)

第3章 第4节 函数f(x)=Asin(ωx+φ)的图像及应用

第3章 第4节 函数f(x)=Asin(ωx+φ)的图像及应用
教材·知识·四基 考点·考法·探究 创新·应用·提能 限时规范训练
大一轮复习·数学·BSD(理)
(3)对称性:利用 y=sin x 的对称中心为(kπ,0)(k∈Z)求解, 令 ωx利0+用φy==ksπi(nk∈x 的Z)对,称求轴得为对_称_x=_中_k_心π_+_为_2π_(_x_0,_0)(.k∈Z)求解,令 ωx+φ =kπ+2π(k∈Z),求得其对称轴为 x=x0.
解析:由函数f(x)=2sin
2x+π6
得周期T=
2π 2
=π,将函数f(x)
=2sin2x+6π的图像向右平移14个周期,即为函数f(x)=2sin2x+π6
的图像向右平移
π 4
个单位,得y=f
x-4π
=2sin
2x-4π+6π

2sin2x-3π.
教材·知识·四基 考点·考法·探究 创新·应用·提能 限时规范训练
即f(3)=sin32π+π6=-cos
π6=-
3 2.
答案:-
3 2
教材·知识·四基 考点·考法·探究 创新·应用·提能 限时规范训练
大一轮复习·数学·BSD(理)
3 . (2018·贵 州 贵 阳 检 测 ) 函 数 f(x) = sin(ωx + φ)(x ∈ R)ω>0,|φ|<π2的部分图像如图所示,如果 x1,x2∈-π6,π3,且 f(x1) =f(x2),则 f(x1+x2)=( B )
教材·知识·四基 考点·考法·探究 创新·应用·提能 限时规范训练
大一轮复习·数学·BSD(理)
2.(2018·西安八校联考)已知函数f(x)=sin(ωx+ φ) ω>0,-2π≤φ≤π2 的图像上的一个最高点和它相邻的一个最 低点的距离为2 2 ,且过点 2,-12 ,则函数f(3)的值为 ________.

《复变函数论》第四章

《复变函数论》第四章

第四章 解析函数的幂级数表示方法第一节 级数和序列的基本性质 1、复数项级数和复数序列: 复数序列就是:111222,,...,,...n n n z a ib z a ib z a ib =+=+=+在这里,n z 是复数,,Im ,Re n n n n b z a z ==一般简单记为}{n z 。

按照|}{|n z 是有界或无界序列,我们也称}{n z 为有界或无界序列。

设0z 是一个复常数。

如果任给0ε>,可以找到一个正数N ,使得当n>N 时ε<-||0z z n ,那么我们说{}n z 收敛或有极限0z ,或者说{}n z 是收敛序列,并且收敛于0z ,记作0lim z z n n =+∞→。

如果序列{}n z 不收敛,则称{}n z 发散,或者说它是发散序列。

令0z a ib =+,其中a 和b 是实数。

由不等式0||||||||||n n n n n a a b b z z a a b b --≤-≤-+-及容易看出,0lim z z n n =+∞→等价于下列两极限式: ,lim ,lim b b a a n n n n ==+∞→+∞→因此,有下面的注解:注1、序列{}n z 收敛(于0z )的必要与充分条件是:序列{}n a 收敛(于a )以及序列{}n b 收敛(于b )。

注2、复数序列也可以解释为复平面上的点列,于是点列{}n z 收敛于0z ,或者说有极限点0z 的定义用几何语言可以叙述为:任给0z 的一个邻域,相应地可以找到一个正整数N ,使得当n N >时,n z在这个邻域内。

注3、利用两个实数序列的相应的结果,我们可以证明,两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差积、商。

定义4.1复数项级数就是12......n z z z ++++或记为1n n z +∞=∑,或n z ∑,其中n z 是复数。

定义其部分和序列为:12...n n z z z σ=+++如果序列{}n σ收敛,那么我们说级数n z ∑收敛;如果{}n σ的极限是σ,那么说n z ∑的和是σ,或者说n z ∑收敛于σ,记作1nn zσ+∞==∑,如果序列{}n σ发散,那么我们说级数n z ∑发散。

复变函数

复变函数

z为w的 宗量 (自变量)
定义域
11
区域的概念
1. 全由内点组成 2. 具有连通性 圆形区域
Imz y
z0 r
RezOຫໍສະໝຸດ x圆形域闭圆域
12
P9. 2(1)

解:
的值.
13
Sinz 和 cosz具有实周期 2π,即:
在实数领域中 但在复数领域中将定义按照指数函数展为实部和虚部,就可求得模:
这样

可以大于 1
由C-R条件
39
求 v 的方法有:
• 曲线几分法 • 凑全微分法 • 不定积分法
40
求 v 的方法有:
• 曲线几分法 • 凑全微分法 • 不定积分法
41
求 v 的方法有:
• 曲线几分法 • 凑全微分法 • 不定积分法
42
Imz y
(x,y)
Rez
O
(x,0)
43
44
45
46
47
48
由欧拉公式
得到
6
(复数的表达) 例题: 求下列函数的有限表达式
由欧拉公式
得到
7
所以得
8
求下列函数的有限表达式
9
第一篇 复变函数论
第一章 复变函数
第一节 复数与复数运算
第二节 复变函数 重点:
第三节 导数
复变函数定义、复变函数的表示.
第四节
解析函数
区域的概念、构成区域的两个条件、区域 的表示. 复变初等函数.
热流线族
v(x,y) 热流量函数 AB间穿过的热流量
55
平面无旋液流
v(x,y) 流量函数
速度势分布 正交曲线族
流线族

复变函数教案

复变函数教案

复变函数教案 4.4(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章教学课题:第四节 解析函数零点的孤立性及唯一性定理教学目的:1、了解解析函数零点的概念及其有零点的解析函数的表达式2、充分理解解析函数零点的孤立性及其内部唯一性定理;3、充分掌握解析函数的最大模原理。

教学重点:解析函数零点的孤立性及其内部唯一性定理教学难点:最大模原理教学方法:启发式、讨论式教学手段:多媒体与板书相结合教材分析:解析函数零点的概念、解析函数零点的孤立性及其内部唯一性定理以及解析函数的最大模原理是本节的主要内容。

教学过程:1、解析函数零点的孤立性:定义设函数f (z )在0z 的邻域U 内解析,并且0)(0=z f ,那么称0z 为f (z )的零点。

设f (z )在U 内的泰勒展式是:...)(...)()()(020201+-++-+-=n n z z z z z z z f ααα现在可能有下列两种情形:(1)如果当n =1,2,3,…时,0=n α,那么f (z )在U 内恒等于零。

(2)如果,...,...,,21n ααα不全为零,并且对于正整数m ,0≠m α,而对于n<m ,0=n α,那么我们说0z 是f (z )的m 阶零点。

按照m=1,或m >1,我们说0z 是f (z )的单零点或m 阶零点。

如果0z 是解析函数f (z )的一个m 阶零点,那么显然在0z 的一个邻域U 内,0)(),()()(00=-=z z z z z f m ϕϕ其中)(z ϕ在U 内解析。

因此存在一个正数0>ε,使得当ε<-<||00z z 时,0)(≠z ϕ。

于是0)(≠z f 。

换而言之,存在着0z 的一个邻域,其中0z 是f (z )的唯一零点。

定理 设函数f (z )在0z 解析,并且0z 是它的一个零点,那么或者f (z )在0z 的一个邻域内恒等于零,或者存在着0z 的一个邻域,在其中0z 是f (z )的唯一零点。

第三章第四节 解析函数与调和函数

第三章第四节  解析函数与调和函数
1 u( z0 Re )d , v( z0 ) 2
②刻划解析函数又一等价条件
f ( z) u iv在区域D内解析
定理3.18

定理 3.19
在区域D内,v是u 的共轭调和函数.
注7 由于任一二元调和函数都可作解析函数的实 部(或虚部),由解析函数的任意阶导数仍解析知,任 一二元调和函数的任意阶偏导数也是调和函数.
虽然在直线x 0上满足Laplace方程, 但直线不是区域,
即在z平面的任一区域, xy 2不能作为解析函数的实部.
y 例2 证明 : u( x, y) x y , v( x, y) 2 都是 2 x y
2 2
调和函数, 但f ( z ) u( x, y) iv( x, y)不是解析函数.
使u iv在D内解析.
u u 2 0, 方法一: 应用曲线积分 由于 2 x y u u 即 - 与 在D内具有连续的一阶偏导数, y x
2 2
u u u u 且 , 记 P , Q , 则Py Qx , y y x x y x
( x, y )
注4
对(3.22)分别对x, y求偏导数, 得
u v u v , x y y x
由定理3.15知, u iv在D内解析.
注5 (3.21)可由下式简便记忆
v v dv( x, y ) dx dy x y
C R方程

u u dx dy y x
第三章 复变函数的积分
第十二讲
第四节 解析函数与调和函数
1. Laplace算子与共轭调和函数 2. 解析函数的等价刻画 3. 调和函数的平均值定理与极值原理

2023年大学_《高等数学》第四册(数学物理方法)课后习题答案下载

2023年大学_《高等数学》第四册(数学物理方法)课后习题答案下载

2023年《高等数学》第四册(数学物理方法)课后习题答案下载《高等数学》第四册内容简介第一篇复变函数论第一章复数与复变函数第一节复数1.1.1. 复数域1.1.2. 复平面1.1.3. 复数的模与幅角1.1.4. 复数的乘幂与方根第二节复变函数的基本概念1.2.1. 区域与约当曲线1.2.2. 复变函数的概念1.2.3. 复变函数的极限与连续性第三节复球面与无穷远点1.3.1. 复球面1.3.2. 闭平面上的几个概念习题第二章解析函数第一节解析函数的概念及哥西一黎曼条件 2.1.1. 导数的定义2.1.2. 哥西一黎曼条件2.1.3. 解析函数的定义第二节解析函数与调和函数的关系2.2.1. 共轭调和函数的求法2.2.2. 共轭调和函数的几何意义第三节初等解析函数2.3.1. 初等单值函数2.3.2. 初等多值函数习题第三章哥西定理哥西积分第一节复变积分的概念及其简单性质3.1.1. 复变积分的定义及其计算方法3.1.2. 复变积分的简单性质第二节哥西积分定理及其推广3.2.1. 哥西积分定理3.2.2. 不定积分3.2.3. 哥西积分定理推广到复围线的情形第三节哥西积分公式及其推广3.3.1. 哥西积分公式3.3.2. 解析函数的无限次可微性3.3.3. 模的最大值原理哥西不等式刘维尔定理摩勒纳定理第四节解析函数在平面场中的应用3.4.1. 什么叫平面场3.4.2. 复位势3.4.3. 举例习题第四章解析函数的幂级数表示第一节函数项级数的基本性质4.1.1. 数项级数4.1.2. 一致收敛的函数项级数第二节幂级数与解析函数4.2.1. 幂级数的敛散性4.2.2. 解析函数的幂级数表示第三节罗朗级数4.3.1. 双边幂级数的收敛圆环4.3.2. 解析函数的罗朗展式4.3.3. 罗朗展式举例第四节单值函数的孤立奇点4.4.1. 孤立奇点的`三种类型4.4.2. 可去奇点……习题第五章残数及其应用第六章保角变换第二篇数学物理方程第七章一维波动方程的付氏解第八章热传导方程的付氏解第九章拉普拉斯方程的圆的狄利克雷问题的付氏解第十章波动方程的达朗贝尔解第十一章数学物理方程的解的积分方式第十二章定解问题的适定性第十三章付里叶变换第十四章拉普拉斯变换第三篇特殊函数第十五章勒让德多项式球函数第十六章贝塞耳函数柱函数第十七章厄密多项式和拉盖尔多项式附录《高等数学》第四册目录本书内容为数学物理方法,包括复变函数论、数学物理方程、积分变换和特殊函数等部分,可供综合大学和师范学院物理类专业作为教材。

第四节,全微分及其应用解析

第四节,全微分及其应用解析
定理2(充分条件) 如果函数z=f(x,y)的偏导数在点 (x,y)连续,则函数在该点处可微.
多元函数连续、可导、可微的关系
函数连续
偏导数
函数可微 偏导数连续
三、全微分的计算
例2 求函数z 2xy3-x2 y6 的全微分.
解 z 2y 3 2x y 6, z 6x y 2 12x 2y 5,
(1) f ( x, y)在点( x0 , y0 )处连续;
(2)
f
x
(
x
,
y
)

f
y
(
x
,
y
)在点(
x0
,
y0
)

某邻域存在;
(3)z
f
x
(
x,
y)x
f
y
(
x,
y)y

当 (x)2 (y)2 0时是无穷小量;
z
(4)
f
x
(
x,
y)x
f
y
(
x,
(x)2 (y)2
y)y
,
当 (x)2 (y)2 0时是无穷小量.
z dz fx ( x, y)x fy ( x, y)y. 也可写成
f ( x x, y y) f ( x, y) fx ( x, y)x fy ( x, y)y.
例 5 计算(1.04)2.02的近似值.
解 设函数 f ( x, y) x y. 取 x 1, y 2, x 0.04, y 0.02.
x
y
故 dz 2y3(1-xy3)dx 6xy2 (1-xy3)dy.
例3 计算函数z exy 在点(1,2)处的全微分.

高考数学:全套教案第3章第4节函数y=asin(ωx+φ)的图象

高考数学:全套教案第3章第4节函数y=asin(ωx+φ)的图象

第四节 函数y =Asin(ωx +φ)的图象及三角函数模型的简单应用[考纲传真] 1.了解函数y =Asin(ωx +φ)的物理意义;能画出函数的图象,了解参数A ,ω,φ对函数图象变化的影响.2.会用三角函数解决一些简单实际问题,体会三角函数是描述周期变化现象的重要函数模型.1.函数y =Asin (ωx +φ)中各量的物理意义2.五点法作图!3.三角函数图象变换的两种方法(ω>0) 先平移后伸缩 先伸缩后平移 ⇓ ⇓[常用结论]1.由y =sin ωx 到y =sin(ωx +φ)(ω>0,φ>0)的变换中,应向左平移φω个单位长度,而非φ个单位长度.2.函数y =Asin(ωx +φ)的对称轴由ωx +φ=k π+π2,k ∈Z 确定;对称中心由ωx +φ=k π,k ∈Z 确定其横坐标.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)y =sin ⎝ ⎛⎭⎪⎫x -π4的图象是由y =sin ⎝ ⎛⎭⎪⎫x +π4的图象向右平移π2个单位长度得到的.( )(2)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移的长度一致.( )(3)函数y =Acos(ωx +φ)的最小正周期为T ,那么函数图象的两个相邻对称中心之间的距离为T2.( )(4)把y =sin x 的图象上各点纵坐标不变,横坐标缩短为原来的12,所得图象对应的函数解析式为y =sin 12x.( )[答案] (1)√ (2)× (3)√ (4)×2.(教材改编)y =2sin ⎝ ⎛⎭⎪⎫2x -π4,x ∈[0,+∞)的振幅、频率和初相分别为( )A .2,1π,-π4B .2,12π,-π4C .2,1π,-π8D .2,12π,-π8A [振幅为2,频率为1T =1π,初相为-π4,故选A.]3.为了得到函数y =2sin ⎝ ⎛⎭⎪⎫2x -π3的图象,可以将函数y =2sin 2x 的图象( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度A [y =2sin ⎝ ⎛⎭⎪⎫2x -π3=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6,故选A.] 4.函数y =sin ⎝ ⎛⎭⎪⎫2x -π3在区间⎣⎢⎡⎦⎥⎤-π2,π上的简图是( )。

解析函数

解析函数

y=0
y
u = x 2 − x v = 0
v
5
− 5 4
f(z)=z2-z
x
1 2 − 5
u
第三节 解析函数的变换性质
在解析变换下调和方程式不变的
设 =f(z)是某区域B内的解析函数,它将z平面上 的区域B变为 平面上的一个区域D,而将B上的 函数u(x,y)将为u(, ),则有
∂ 2u ∂ 2u + 2 =| f ′( z) |2 ∂x 2 ∂y ∂ 2 u ∂ 2u 2 + 2 ∂η ∂ξ
y
u(x,y)
u(,
x
)
B
O
D =f(z)
O

第四节 平面场
用复变函数表示平面场
在物理及工程中常常要研究各种各样的场,如电磁 场、声场等,这些场均依赖于时间和空间变量。若 场与时间无关,则称为恒定场,如静电场、流体中 的定常流速等。若所研究的场在空间的某方向上是 均匀的,从而只需要研究垂直于该方向的平面上的 场,这样的场称为平面场。 取定垂直于某方向的平面为OXY平面,其上的点用 z=x+iy来表示,于是场中每一个具有分量Ax,Ay的向 量可表为 A = A( z ) = Ax ( x, y ) + iAy ( x, y )
第一节 导数
导数的计算公式
设 f(z)=u(x,y)+iv(x,y)在点z=x+iy可导,那么
df ( z ) ∂u ∂v ∂v ∂u = +i = −i dz ∂x ∂x ∂y ∂y ∂u ∂v − iθ 1 ∂v ∂u − iθ = +i −i e e = ∂ρ ρ ∂θ ∂θ ∂ρ
极坐标下的Cauchy-Riemann条件

《数学物理方法》教学大纲

《数学物理方法》教学大纲

山东教育学院物理科学与技术系《数学物理方法》教学大纲一、课程概述1、《数学物理方法》是物理学专业本科的一门重要的基础课,它是前导课程《高等数学》的延伸,为后继开设的《电动力学》、《量子力学》以及《电子技术》等课程提供必需的数学理论知识和计算工具。

本课程在本科物理学专业中占有重要的地位,本专业学生必须掌握它们的基本内容,否则对后继课的学习将会带来很大困难。

在物理学专业的所有课程中,本课程是相对难学的一门课,学生应以认真的态度来学好本课程。

2、本课程的主要内容包括复变函数、傅立叶变换、数学物理方程、特殊函数等。

理论力学中常用的变分法,量子力学中用到的群论以及现代物理中用到的非线性微分方程理论等,虽然也属于《数学物理方法》的内容,但在本大纲中不作要求。

可以在后续的选修课中加以介绍。

3、本课程的内容为数学课程,注重逻辑推理和具有一定的系统性和严谨性。

但是,它与其它的数学课有所不同。

本课程内容有深广的物理背景,实用性强。

因此,在这门课的教学过程中,不能单纯地追求理论上的完美、严谨,而忽视其应用。

学生在学习时,不必过分地追求一些定理的严格证明、复杂公式的精确推导,更不能死记硬背,而应重视其应用技巧和处理方法。

4、本课程的内容是几代数学家与物理学家进行长期创造性研究的成果,几乎处处都闪耀创新精神的光芒。

教师应当提示学生注意在概念建立、定理提出的过程中所用的创新思维方法,在课堂教学中应尽可能地体现历史上的创造过程,提高学生的创造性思维能力。

二、目的要求1、为了使学生能学好物理学专业的理论物理课程, 胜任中学物理教学及适应社会主义现代化建设的需要, 在本门课程中系统讲授复变函数和数学物理方程的基本理论和基本方法,并介绍数学物理中常用的几种特殊函数。

要求学生对规定的内容有一个总体了解。

掌握其中的基本概念,熟悉一些重要的理论及公式,并使所学到的知识在头脑中形成合理的结构。

2、大纲贯彻少而精的原则,着重让学生掌握最基本的理论知识和计算方法.在讲授过程中紧密联系物理实际, 但也注意保证数学概念的严格性和理论的系统性。

02_解析函数

02_解析函数

导数的计算公式
设 f(z)=u(x,y)+iv(x,y)在点z=x+iy可导,那么
df ( z ) u v v u i i dz x x y y
极坐标下的Cauchy-Riemann条件
u 1 v v 1 du , d
举例
dez z e dz
u u v v Ey , Ex Ex , Ey x y x y u v u v , C-R条件 x y y x 静电场的复势 f ( z ) u( x, y) iv( x, y) v v E Ex iE y gradv i i F ( z ) x y
d 1 12 12 2 dz 2 2
d dz 1 d dz
dF ( ) dF d dz d dz
说明
反之则 不成立
如果函数 f(z)在区域 D内的每一点可导,则称f(z)在区域 D内可导
可导
连续

C-R条件
设 f(z)=u(x,y)+iv(x,y)在区域D内有定
根式函数
wn z
i arg z 2 k n
由于z的n次方根为wn n z n | z |e
(k 0,1,2,, n 1)
n
且辐角具有多值性,因此根值函数wn
z为n值函数
第四节 解析函数的应用——平 面场的复势

用复变函数刻画平面向量场
我们说某一个向量场是一个平面场,并不是指这个场中所有的向量都定 义在某一平面内,而是指所有的向量都平行于某一固定的平面,而且在 垂直于的任一条直线上所有的点处,向量的大小和方向都相同。这样, 向量场就可以用平面上的向量场来表示 。 如果我们用复数表示平面上的向量,那么场就惟一地确定了一个复变函 数

第四节 函数的极值与最值(知识梳理)

第四节 函数的极值与最值(知识梳理)

第四节函数的极值与最值复习目标学法指导了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间;理解极大值、极小值的概念,能利用单调性探究极值与导数间的关系.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);掌握求函数在闭区间上的最大值、最小值的一般方法(其中多项式函数不超过三次). 1.熟练掌握极值、最值的概念是求极值、最值的基础.2.求函数极值时,尽可能列出自变量x变化时,导数f′(x)与函数f(x)的变化情况表,这样求解直观、不易出错.一、函数的极值与导数1.函数极小值的概念(1)函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值都小;(2)f′(a)=0;(3)在点x=a附近的左侧f′(x)<0,右侧f′(x)>0;则点x=a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.2.函数极大值的概念(1)函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值都大;(2)f′(b)=0;(3)在点x=b附近的左侧f′(x)>0,右侧f′(x)<0;则点x=b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值;极小值点与极大值点统称为极值点,极小值与极大值统称为极值.二、函数的最值与导数求函数y=f(x)在闭区间[a,b]上的最大值与最小值的步骤:(1)求y=f(x)在(a,b)内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.1.概念理解(1)极值是一个局部性概念,反映的是函数在某个点附近的大小情况,并不意味它在函数的整个定义域内最大或最小;最值是一个整体性的概念,函数的最值是比较某个区间内的所有函数值得出的.(2)函数的极值点一定出现在区间内部,区间的端点不能成为极值点;连续函数在某一个闭区间上的最值必在极值点或区间端点处取得.(3)函数的极值个数不确定,而函数在某一闭区间上,最大值和最小值是唯一的.2.与极值、最值有关的结论(1)可导函数极值点处的导数值为0(变号零点),而导数值为0的点不一定是极值点;(2)若函数f(x)有多个极值点,则极大值点和极小值点是交替出现的; (3)函数的极大值与极小值无确定大小关系; (4)极值点是函数单调增区间与单调减区间的分界点;(5)若函数f(x)在定义域内只有一个极值点,则极值点是函数的最值点;(6)三次函数有两个极值点的充要条件是其导函数有两个零点; (7)奇(偶)函数在x=x 0处取得极大值或最大值f(x 0),则在x=-x 0处取得极小值或最小值-f(x 0)(相同的极大值或最大值).1.函数y=2x-21x 的极大值为( A )(A)-1 (B)-2 (C)-3 (D)1 2.设函数f(x)=xe x ,则( D ) (A)x=1为f(x)的极大值点 (B)x=1为f(x)的极小值点 (C)x=-1为f(x)的极大值点 (D)x=-1为f(x)的极小值点解析:f ′(x)=e x +xe x =(1+x)e x ,令f ′(x)=0,解得x=-1,且当x<-1时,f ′(x)<0;当x>-1时,f ′(x)>0;函数f(x)=xe x 在x=-1处取得极小值,即x=-1是f(x)的极小值点.故选D.3.(2018·安徽六安月考)已知函数f(x)=-13x 3+bx 2+cx+bc 在x=1处有极值-43,则b 等于( A )(A)-1 (B)1 (C)1或-1 (D)-1或3解析:f ′(x)=-x 2+2bx+c,若f(x)在x=1处有极值-43,故()()1120,141,33'⎧=-++=⎪⎨=-+++=-⎪⎩f b c f b c bc 解得b=-1且c=3,符合题意;或b=1且c=-1, 此时f ′(x)=-x 2+2bx+c=-(x-1)2≤0,f(x)=-13x 3+bx 2+cx+bc 单调递减,f(x)在x=1处不存在极值,故b=1且c=-1,不合题意,所以b=-1.故选A.4.如果函数y=f(x)的导函数的图象如图所示,给出下列判断:①函数y=f(x)在区间(-3,-12)内单调递增; ②函数y=f(x)在区间(-12,3)内单调递减; ③函数y=f(x)在区间(4,5)内单调递增; ④当x=2时,函数y=f(x)有极小值; ⑤当x=-12时,函数y=f(x)有极大值. 则上述判断中正确的是( D ) (A)①② (B)②③ (C)③④⑤ (D)③解析:对于①,函数y=f(x)在区间(-3,-12)内有增有减,故①不正确; 对于②,函数y=f(x)在区间(-12,3)有增有减,故②不正确;对于③,函数y=f(x)当x∈(4,5)时,恒有f′(x)>0,故③正确;对于④,当x=2时,函数y=f(x)有极大值,故④不正确;时,f′(x)≠0,故⑤不正确.故选D.对于⑤,当x=-125.(2019·镇海中学高三模拟考试)已知函数f(x)=xln x-x+2a,若函数y=f(x)与y=f(f(x))有相同的值域,则a的取值范围是( A ) ,1] (B) (-∞,1](A)(12(C) [1,3) (D) [1,+∞)2解析:令g(x)=xln x-x,则g′(x)=ln x,g(1)=-1,由g(x)的单调性可知,g(x)≥-1,所以f(x)≥2a-1,所以要使f(x)与f(f(x))的值域相同,则只需0<2a-1≤1,<a≤1,故选A.解得12考点一利用导数求函数的极值x2-(a+1)x+a(1+ln x).[例1] 设a>0,函数f(x)=12(1)求曲线y=f(x)在(2,f(2))处与直线y=-x+1垂直的切线方程;(2)求函数f(x)的极值.,解:(1)由已知,得x>0,f′(x)=x-(a+1)+axy=f(x)在(2,f(2))处切线的斜率为1,a=1,所以f′(2)=1,即2-(a+1)+2所以a=0,此时f(2)=2-2=0,故所求的切线方程为y=x-2.(2)f ′(x)=x-(a+1)+a x=()21x a x ax-++=()()1x x a x--. ①当0<a<1时,若x ∈(0,a),f ′(x)>0,函数f(x)单调递增; 若x ∈(a,1),f ′(x)<0,函数f(x)单调递减; 若x ∈(1,+∞),f ′(x)>0,函数f(x)单调递增. 此时x=a 是f(x)的极大值点,x=1是f(x)的极小值点,函数f(x)的极大值是f(a)=-12a 2+aln a, 极小值是f(1)=- 12. ②当a=1时,f ′(x)=()21x x->0,所以函数f(x)在定义域(0,+∞)内单调递增, 此时f(x)没有极值点,故无极值.③当a>1时,若x ∈(0,1),f ′(x)>0,函数f(x)单调递增; 若x ∈(1,a),f ′(x)<0,函数f(x)单调递减; 若x ∈(a,+∞),f ′(x)>0,函数f(x)单调递增. 此时x=1是f(x)的极大值点,x=a 是f(x)的极小值点, 函数f(x)的极大值是f(1)=-12, 极小值是f(a)=-12a 2+aln a. 综上,当0<a<1时,f(x)的极大值是-12a 2+aln a, 极小值是-12; 当a=1时,f(x)没有极值;当a>1时,f(x)的极大值是-12,极小值是-12a 2+aln a.运用导数求可导函数y=f(x)的极值的步骤(1)先求函数的定义域,再求函数y=f(x)的导数f′(x);(2)求方程f′(x)=0的根;(3)检查f′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.如果左右符号相同,则此根处不是极值点.提醒:若函数y=f(x)在区间(a,b)内有极值,那么y=f(x)在(a,b)内不是单调函数,即在某区间上单调函数没有极值.1.设函数f(x)=(x3-1)2,下列结论中正确的是( C )(A)x=1是函数f(x)的极小值点,x=0是极大值点(B)x=1及x=0均是f(x)的极大值点(C)x=1是函数f(x)的极小值点,函数f(x)无极大值(D)函数f(x)无极值解析:f′(x)=2(x3-1)·3x2=6x2(x-1)(x2+x+1);x2+x+1=(x+12)2+34>0,令f′(x)=0得x1=0,x2=1;即f′(0)=0,f′(1)=0,x<0时,f′(x)<0;0<x<1时,f′(x)<0;x>1时,f′(x)>0.故x=1是函数f(x)的极小值点,函数f(x)无极大值.故选C.2.已知函数f(x)=1ln xx.(1)若函数f(x)在区间(a,a+12)上存在极值,求正实数a的取值范围;(2)若当x ≥1时,不等式f(x)≥1+k x 恒成立,求实数k 的取值范围. 解:(1)函数f(x)的定义域为(0,+∞),f ′(x)=211ln --x x =-2ln x x. 令f ′(x)=0,得x=1.当x ∈(0,1)时,f ′(x)>0,f(x)在(0,1)上单调递增; 当x ∈(1,+∞)时,f ′(x)<0,f(x)在(1,+∞)上单调递减. 所以x=1为f(x)的极大值点,无极小值点, 所以a<1<a+12, 故12<a<1,即正实数a 的取值范围为(12,1). (2)当x ≥1时,k ≤()()11ln ++x x x 恒成立, 令g(x)=()()11ln ++x x x则g ′(x)=()()211+ln 111ln ⎛⎫++-++ ⎪⎝⎭x x x x x x=2ln -x x x .令h(x)=x-ln x,则h ′(x)=1-1x ≥0, 所以h(x)≥h(1)=1,所以g ′(x)>0, 所以g(x)为[1,+∞)上的增函数, 所以g(x)≥g(1)=2,故k ≤2. 故实数k 的取值范围为(-∞,2]. 考点二 利用导数求函数的最值[例2] 设函数f(x)=ae x (x+1)(其中e=2.718 28…),g(x)=x 2+bx+2,已知它们图象在x=0处有相同的切线. (1)求函数f(x),g(x)的解析式;(2)求函数f(x)在[t,t+1](t>-3)上的最小值. 解:(1)f′(x)=ae x(x+2),g′(x)=2x+b,由题意,两函数图象在x=0处有相同的切线, 又因为f′(0)=2a,g′(0)=b,所以2a=b,f(0)=a=g(0)=2,所以a=2,b=4,所以f(x)=2e x(x+1),g(x)=x2+4x+2.(2)由(1)得f′(x)=2e x(x+2).当x>-2时,则f′(x)>0,所以f(x)在(-2,+∞)上单调递增,当x<-2时,则f′(x)<0,所以f(x)在(-∞,-2)上单调递减,因为t>-3,所以t+1>-2,①当-3<t<-2时,f(x)在[t,-2]上单调递减, 在[-2,t+1]上单调递增,所以f(x)min=f(-2)=-2e-2.②当t≥-2时,f(x)在[t,t+1]上单调递增,所以f(x)min=f(t)=2e t(t+1).综上,当-3<t<-2时,f(x)min=-2e-2;当t≥-2时,f(x)min=2e t(t+1).求函数f(x)在闭区间[a,b]上的最值时,可判断函数在[a,b]上的单调性,若函数在[a,b]上单调递增或单调递减,则f(a),f(b)一个为最大值,一个为最小值.若函数在[a,b]上不单调,一般先求[a,b]上f(x)的极值,再与f(a),f(b)比较,最大的即为最大值,最小的即为最小值.函数y=2x3-12x在区间[-1,3]上的最大值和最小值分别为( A ) 2(B)54,-12222解析:y′=6x222令y′=0,则22)当x=-1时22当x=3时,y=18,故选A.考点三由函数的极值或最值求参数(范围)[例3] (1)函数f(x)=ln x-12ax2+x有极值且极值大于0,则a的取值范围是( )(A)(0,1) (B)(1,2) (C)(0,2) (D)(3,4)(2)已知函数f(x)=e2x-e-2x-cx(c∈R),若f(x)有极值,求c的取值范围.(1)解析:f′(x)= 1x -ax+1=21ax xx-++(x>0),当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增,无极值. 当a>0时,对于t=-ax2+x+1.因为Δ=1+4a>0,x1·x2=-1a<0,所以f ′(x)=0有且仅有一正根x 0=1142a a++,且f(x)在x 0处取极大值.要使极大值大于0,即f(x 0)>0. 因为-a 20x +x 0+1=0,所以a 20x =x 0+1,f(x 0)=ln x 0-12a 20x +x 0=ln x 0+02x -12,令g(x)=ln x+2x -12,(x>0)g(x)在(0,+∞)上单调递增且g(1)=0, 所以x>1.所以x 0>1, 所以1142a a++>1,解得0<a<2.故选C.(2)解:f ′(x)=2e 2x +2e -2x -c, 而2e 2x +2e -2x ≥2222e 2e x x-⋅=4,当x=0时等号成立.下面分三种情况进行讨论.当c<4时,对任意x ∈R,f ′(x)=2e 2x +2e -2x -c>0,此时f(x)无极值; 当c=4时,对任意x ≠0,f ′(x)=2e 2x +2e -2x -4>0,此时f(x)无极值; 当c>4时,令e 2x=t,注意到方程2t+2t-c=0有两根t 1,2=2164c c ±->0,即f ′(x)=0有两个根x 1=12ln t 1,x 2=12ln t 2. 当x 1<x<x 2时,f ′(x)<0,f(x)单调递减; 又当x>x 2时,f ′(x)>0,f(x)单调递增, 从而f(x)在x=x 2处取得极小值.综上,若f(x)有极值,则c 的取值范围为(4,+∞).(1)可导函数的极值点与其导函数的零点之间的关系是导函数的变号零点是函数的极值点,而不变号零点不是函数的极值点.(2)已知函数的极值、最值求参数,利用待定系数法列方程(组)求解.已知函数f(x)=x 2-2ax+1在区间[2,3]上最小值为1.函数g(x)=()33x xf -k ·3x .(1)求a 的值;(2)若存在x 0使得g(x)在x ∈[-1,1]上为负数,求实数k 的取值范围. 解:(1)f(x)=(x-a)2+1-a 2,当a<2时,f(x)min =f(2)=5-4a=1,解得a=1; 当2≤a ≤3时,f(x)min =f(a)=1-a 2=1, 解得a=0,不符合题意;当a>3时,f(x)min =f(3)=10-6a=1, 解得a=32,不符合题意. 综上,a=1.(2)由已知可得g(x)=(1-k)3x +13x-2,根据题意,存在x 0使得g(x)<0, 所以不等式(1-k)3x +13x-2<0,可化为1+(13x)2-2·13x<k,令t=13x,则 k>t 2-2t+1.因 x ∈[-1,1],故 t ∈[13,3]. 故k>t 2-2t+1在t ∈[13,3]上有解. 记h(t)=t 2-2t+1=(t-1)2,t ∈[13,3], 故h(t)min =h(1)=0,所以k 的取值范围是(0,+∞).利用导数研究函数的极值(点)问题[例题] (2019·天津卷)设函数f(x)=ln x-a(x-1)e x ,其中a ∈R. (1)若a ≤0,讨论f(x)的单调性; (2)若0<a<1e,①证明f(x)恰有两个零点;②设x 0为f(x)的极值点,x 1为f(x)的零点,且x 1>x 0,证明3x 0-x 1>2. (1)解:由已知,f(x)的定义域为(0,+∞), 且f ′(x)=1x-[ae x+a(x-1)ex]=21e -xax x.因此当a ≤0时,1-ax 2e x >0,从而f ′(x)>0, 所以f(x)在(0,+∞)内单调递增.(2)证明:①由(1)知,f ′(x)=21e -xax x.令g(x)=1-ax 2e x ,由0<a<1e ,可知g(x)在(0,+∞)内单调递减. 又g(1)=1-ae>0,且g(ln 1a )=1-a(ln 1a )2·1a =1-(ln 1a)2<0, 故g(x)=0在(0,+∞)内有唯一解, 从而f ′(x)=0在(0,+∞)内有唯一解, 不妨设为x 0,则1<x 0<ln 1a, 当x ∈(0,x 0)时,f ′(x)=()g x x >()0g x x =0,所以f(x)在(0,x 0)内单调递增;当x ∈(x 0,+∞)时,f ′(x)=()g x x <()0g x x =0,所以f(x)在(x 0,+∞)内单调递减, 因此x 0是f(x)的唯一极值点. 令h(x)=ln x-x+1, 则当x>1时,h ′(x)=1x-1<0,故h(x)在(1,+∞)内单调递减, 从而当x>1时,h(x)<h(1)=0, 所以ln x<x-1,从而f(ln 1a )=ln(ln 1a )-a(ln 1a-1)1ln e a=ln(ln 1a )-ln 1a +1=h(ln 1a)<0. 又因为f(x 0)>f(1)=0,所以f(x)在(x 0,+∞)内有唯一零点. 又f(x)在(0,x 0)内有唯一零点1, 从而f(x)在(0,+∞)内恰有两个零点.②由题意,()()010,0,'⎧=⎪⎨=⎪⎩f x f x 即()012011e 1,ln 1e⎧=⎪⎨=-⎪⎩x x ax x a x从而ln x 1=10121e--x x x x ,即10e-x x =2011ln 1-x x x .因为当x>1时,ln x<x-1, 又x 1>x 0>1, 故10e-x x <()201111--x x x =20x ,两边取对数,得ln 10e-x x <ln 20x ,于是x 1-x 0<2ln x 0<2(x 0-1), 整理得3x 0-x 1>2.[规范训练] (2018·全国Ⅲ卷)已知函数f(x)=(2+x+ax 2)ln(1+x)-2x. (1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0; (2)若x=0是f(x)的极大值点,求a. (1)证明:当a=0时,f(x)=(2+x)ln(1+x)-2x,f ′(x)=ln(1+x)-1x x+. 设函数g(x)=f ′(x)=ln(1+x)-1x x+, 则g ′(x)=()21xx +.当-1<x<0时,g ′(x)<0;当x>0时,g ′(x)>0, 故当x>-1时,g(x)≥g(0)=0, 当且仅当x=0时,g(x)=0,从而f ′(x)≥0,当且仅当x=0时,f ′(x)=0. 所以f(x)在(-1,+∞)上单调递增. 又f(0)=0,故当-1<x<0时,f(x)<0; 当x>0时,f(x)>0. (2)解:①若a ≥0,由(1)知,当x>0时,f(x)≥(2+x)ln(1+x)-2x>0=f(0), 这与x=0是f(x)的极大值点矛盾. ②若a<0,设函数h(x)=()22f x x ax ++=ln(1+x)-222x x ax++.由于当|x|<min{1,1||a }时,2+x+ax 2>0,故h(x)与f(x)符号相同.又h(0)=f(0)=0,故x=0是f(x)的极大值点, 当且仅当x=0是h(x)的极大值点.h ′(x)=11x +-()()()222222122x ax x ax x ax ++-+++=()()()2222246112x a x ax a x axx ++++++.若6a+1>0,则当0<x<-614a a+,且|x|<min{1,1||a }时,h ′(x)>0,故x=0不是h(x)的极大值点.若6a+1<0,则a 2x 2+4ax+6a+1=0存在根x 1<0, 故当x ∈(x 1,0),且|x|<min{1,1||a }时,h ′(x)<0,所以x=0不是h(x)的极大值点. 若6a+1=0,则h ′(x)=()()()322241612x x x x x -+--,则当x ∈(-1,0)时,h ′(x)>0;当x ∈(0,1)时,h ′(x)<0. 所以x=0是h(x)的极大值点,从而x=0是f(x)的极大值点. 综上,a=-16.类型一 极值或极值点的应用1.若函数f(x)=x 3-2cx 2+x 有极值点,则实数c 的取值范围为( C ) 3∞) 3∞)(C)(-∞,-32]∪[32,+∞)(D)(-∞,-32)∪(32,+∞)解析:若函数f(x)=x3-2cx2+x有极值点,则f′(x)=3x2-4cx+1=0有根,故Δ=(-4c)2-12≥0,从而c≥32或c≤-32.故选C.2.已知函数f(x)=x3+bx2+cx的图象如图所示,则21x+22x等于( C )(A)23(B)43(C)83(D)163解析:由图象可知f(x)的图象过点(1,0)与(2,0),x1,x2是函数f(x)的极值点,因此1+b+c=0,8+4b+2c=0,解得b=-3,c=2,所以f(x)=x3-3x2+2x,所以f′(x)=3x2-6x+2,x1,x2是方程f′(x)=3x2-6x+2=0的两根,因此x1+x2=2,x1·x2=23,所以21x+22x=(x1+x2)2-2x1·x2=4-43=83,故选C.3.已知函数f(x)=13x3+ax2-2x在区间(1,+∞)上有极小值无极大值,则实数a的取值范围为( A )(A)a<12(B)a>12(C)a≤12(D)a≥12解析:因为函数f(x)=13x3+ax2-2x,所以f ′(x)=x 2+2ax-2,因为函数f(x)=13x 3+ax 2-2x 在区间(1,+∞)上有极小值无极大值,所以f ′(x)=x 2+2ax-2=0在区间(1,+∞)上有1个实根,(-∞,1]上有1个根.2480,(1)210,⎧∆=+>⎪⎨'=-<⎪⎩a f a 解得a<12.故选A.类型二 求最值或范围 4.已知奇函数f(x)=()e 1,0,,0,xx xh x x ⎧->⎪⎨⎪<⎩则函数h(x)的最大值为 .解析:先求出x>0时,f(x)= e xx-1的最小值.当x>0时,f ′(x)=()2e 1x x x -,所以x ∈(0,1)时,f ′(x)<0,函数单调递减,x ∈(1,+∞)时,f ′(x)>0,函数单调递增,所以x=1时,函数取得极小值即最小值,为e-1,所以由已知条件得h(x)的最大值为1-e. 答案:1-e5.函数f(x)=xln x+ax 2(a ≠0)存在唯一极值点. (1)求a 的取值范围;(2)证明:函数y=f[f(x)]与y=f(x)的值域相同. (1)解:f ′(x)=ln x+1+2ax,f ″(x)=1x +2a, 当a>0时,f ″(x)>0,故f ′(x)在(0,+∞)上单调递增, 又x →0时,f ′(x)<0,f ′(1)=2a+1>0, 故f ′(x)=0在(0,+∞)内有唯一实根, 即f(x)在(0,+∞)内有唯一极值点;当a<0时,由f″(x)>0得0<x<-12a,故f′(x)在(0,-12a )上单增,在(-12a,+∞)上单减,若f′(-12a)≤0,则f′(x)≤0恒成立,此时f(x)无极值点,若f′(-12a)>0,又x→0时f′(x)<0,x→+∞时,f′(x)<0,此时f(x)有两个极值点;综上,a>0.(2)证明:由(1)知,a>0,设f′(x0)=0即ln x0+1+2ax0=0, 则f(x)在(0,x0)上单减,在(x0,+∞)上单增,所以f(x)的值域为[f(x0),+∞),要使y=f[f(x)]与y=f(x)的值域相同,只需f(x0)≤x0,即x0ln x0+a2x≤x0,即ln x0+ax0≤1,又ax0=-12(ln x0+1),故12ln x0-12≤1即x0≤e3,故只需证x0≤e3,又f′(x)单增, 所以要证x0≤e3,即证f′(e3)≥0, 而f′(e3)=3+1+2ae3>0,故得证.。

04_解析函数的幂级数展开

04_解析函数的幂级数展开

可交换性: 绝对收敛级数经改变项的位 置后构成的级数仍绝对收敛,而且与原 级数有相同的和. 若复数项级数 p 与 q 都绝对收敛,其 和分别为S 和 ,则它们的Cauchy乘 积 p q (p q p q ) (p q p q p q ) 也是绝对收敛的,且为S 。
孤立奇点的分类
孤立奇点分类:可去奇点、极点和本性 奇点
极点与零点的关系
第六节 解析函数在无穷远点的性态
定义
若 函 数 f ( z ) 在 无 穷 远 点 z 的 某 邻 域 R | z | 内 解 析 则 称 为 f ( z )的 孤 立 奇 点 .
从 函 数 的 极 值 看 , z 是 f ( z )的 可 去 奇 点 , 极 点 或 本性奇点的充分必要条件分别是:
2内 收 敛
于 f 2 ( z ). D 1与 D 2 有 一 公 共 区 域 , 如 图 所 示 阴 影 区 域 , 且 在 这 个 公 共 区 域 重 两 级 数 相 等 , 所 以 f 2 ( z ) 为 f 1 ( z )的 解 析 延 拓 函 数 .事 实 上 , 它 们 不 过 是 同 一 解 析 函 数 域 中 的 T a ylo r 级 数 而 已 . 1 1 z 在不同
第四章 解析函数的幂级数展开


第一节 第二节 第三节 第四节 第五节 第六节 第七节
复数项级数与复变项级数 幂级数 解析函数的Taylor级数展开 解析函数的Laurent级数展开 孤立奇点 解析函数在无穷远点的性态 解析延拓
第一节 复数项级数与复变项级数
复数项级数概念
设有复数列 z ( k

k
k

k
k 1

数学课高一年级第四节优质课解析三角函数的应用

数学课高一年级第四节优质课解析三角函数的应用

数学课高一年级第四节优质课解析三角函数的应用一、简介在高中数学的课程中,三角函数是一个非常重要的概念。

它是数学中一个十分广泛且实用的概念,被广泛应用于工程、物理、地理等各个领域。

在高一年级的数学课程中,第四节课讲解了三角函数的应用,下面将对这节优质课进行解析。

二、三角函数的基本概念在开始讲解三角函数的应用之前,首先需要明确三角函数的基本概念。

三角函数是指正弦、余弦和正切等函数,它们与三角函数中的角度之间存在一定的关系。

通过了解这些基本概念,我们才能更好地理解三角函数在实际问题中的应用。

三、三角函数的应用3.1 测量高度三角函数在测量高度方面有着广泛的应用。

当我们想要测量一个物体的高度时,可以利用三角函数的性质,通过测量角度和距离的方法得出高度的近似值。

3.2 导航定位在导航定位方面,三角函数也扮演着重要的角色。

通过使用三角函数,我们可以在不知道具体位置的情况下,利用已知的数据来确定我们所处的位置。

这在航海、GPS导航等领域都是非常常见的应用。

3.3 工程建设在工程建设方面,三角函数的应用也是不可或缺的。

工程中常常需要测量角度、距离和高度等数据,而这些数据的计算和测量都需要依靠三角函数的求解方法。

四、解析三角函数的应用在本节课中,我们将着重解析三角函数在工程建设中的应用。

以一座大桥的斜塔为例,我们需要测量斜塔顶点的高度。

首先,我们测量斜塔顶点与地面水平线之间的距离,记为a;然后,我们测量斜塔顶点与地面的夹角,记为θ。

利用三角函数的知识,我们可以得出斜塔顶点的高度h=a*tan(θ)。

通过上述实例,我们可以看出,三角函数的应用是非常具体和实用的。

它在实际问题中能够提供很好的解决方案,为各个领域的发展做出了重要贡献。

总结三角函数的应用是高中数学中的重要内容,它在测量、导航定位和工程建设等领域都有着广泛的应用。

本节的优质课授课内容深入浅出,通过实际问题的解析,让同学们更好地理解了三角函数的应用。

同时,通过举例说明,激发了同学们对数学知识的兴趣和学习的热情。

第4节 解析函数零点孤立性及唯一性定理

第4节 解析函数零点孤立性及唯一性定理
在其上f1(z)和f2 (z)等值; 则f1(z)和f2(z)在D内恒等.
证明: 令f (z) f1(z) f2 (z), 若D恰为以a为心的圆或平面, 由假设f (z)在D内解析,
且在圆D内有一列零点{zn}收敛于a;
由推论4.19, 在D内f (z) 0. 考虑一般情形:对b D, 用一条含于D的折线连接a及b,
记d dim(L, D), 取正数R d, 在L上取一串点: a a0 , a1,L , an b; 使相邻两点的距离小于R,
以R为半径, 分别以a0 , a1,L , an为心作圆 K0 , K1,L , Kn;
Ki : z ai R,(i 1, 2,L , n); 则这些圆含于D内.
2. f (z)的Taylor系数的情形
(1)对一切n, an 0,则f (z)在 z a R内恒等于零.
(2) 存在正整数m, am 0,而n m时, an 0,即 f (a) f ' (a) L f (m1) (a) 0,而f (m) (a) 0
即 f (z) am (z a)m ... an (z a)n L
故由Taylor定理得
(z) (a) '(a)(z a) "(a) (z a)2 L
2!
从而 f (z) (z a)m(z)
(z a)m[(a) '(a)(z a) "(a) (z a)2 L ]
2!
(a)(z a)m ' (a)(z a)m1 L 由于(a) 0, 故a为f (z)的m阶零点.
此时称a为f (z)的m阶零点. 特别m 1时, a为f (z)的单零点.
3.定理4.17 不恒为零的解析函数f (z)以a为m阶
零点的充要条件是:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解 析 函 数
如果函数f z 在z0 及z0的邻域内处处可导, 则称 f z 在z0 解析.
如果函数 z 在区域D内每一点解析则称 f z 在D内解析. f ,
如果f z 在z0 不解析, 则称z0 是f z 的奇点.
全纯函数或正则函数 或称f z 是D内的一个解析函数
2 2 2
因此可得



u 2 cos C x x 2 y 2 C 2 f ( z ) 2 cos C i 2 sin 2 2 • 2 cos i sin C 2 2


2z C
13
1 w 例3 研究函数 的解析性. z
2 求u(x,y)的方法和例1一样,可以用三种方法,这里只介绍全微
分显式法,先计算v的偏导数 v 1 v sin , • 2 2
v cos (1 cos ) 2 sin


2
cos

2
由柯西-黎曼方程可得 u 1 u cos , • sin 2 2 2 2 则可得
解 1 x iy
u v u v 1, 1 x y x y 函数在复平面内处处不 可导,处处不解析. v u u v x x x e x cos y e sin y , 2 e cos y , e sin y , y y x x u v u v 导 , 函数在复平面内处处可 ,处处解析. x y y x
2
充分必要条件
设 f(z)=u(x,y)+iv(x,y)在区域B内一点z=x+iy可 导的充分必要条件是
1. u ( x, y ), v ( x, y )在( x, y )点处可微; 2. 在(z)=u(x,y)+iv(x,y)在点z=x+iy可导(微)
梯度 u (直角分量
u, v 分别是曲线u=常数和v=常数的法向矢量, 因此
U=常数和v=常数是互相正交的两曲线族
6
(2)若函数f(z)=u+iv在区域B上解析,则u,v均为B上的调和函数 2u 2u 2u 2 v 2 v 2 v , , 2, 2, , 2 后边我们将证明,二阶偏导数 2 x xy y x xy y 存在且连续,对柯西-黎曼方程 u v u v , x y y x
f z 在D内是常数.
16
v v 2 x, • 2y y x
v 2 xdy ( x) 2 xy ( x) 其中 (x)为x的任意函数,再 v 对x求导 2 y ( x) 由柯西-黎曼条件知道 ( x) 0 x 从而有 ( x) C 可得v=2xy+C
f z u x x , y iv x x , y
v y x , y iu y x , y
0
u x x, y u y x, y v y x, y v x x, y 0
u 常数,v 常数
z , 解 w在复平面内除 0外处处可导
dw 1 且 2, dz z
1 在除z 0外的复平面内 函数w 处处解析 , , z
而z 0是它的奇点 .
14
例4
判定下列函数在何处可导,在何处解析: 1 z ; 2 f z e x cos y i sin y ; 3 z Re z .
前一式子对x求导,后一式子对y求导,相加可以消除v,得到
2u 2u 2 0 2 x y
同理可得
2v 2v 2 0 2 x y
如果某函数H(x,y)在区域B上有二阶连续偏导数 且满足拉普拉斯方程 2 H 0, 则称H(x,y)为 区域B上的调和函数.
7
以上说明u(x,y)和v(x,y)都满足二维的拉普拉斯方程,即都是 调和函数,又由于是同一个复变函数的实部和虚部,所以又特别 称之为共轭调和函数
8
u 2u 2u u ( ) 2 2 ( ) y y y x x x
可以用下列方法计算出 v( x, y ) (1)曲线积分法

dv
满足拉普拉斯方程
全微分的积分与路径无关,可选取特殊积分路径
使积分路径容易算出.
(2)凑全微分法 (3)不定积分法 以上方法同样适用于从虚部v求实部u的情况 微分的右端凑成全微分显式,v(x,y)自然求出
复 §1.1 复数与复数运算
复数的代数表示式: 复数的三角表示式: 复数的指数表示式: 扩充复平面: §1.2 复变函数

z x iy,
z r cos i sin
z re
i
复数的运算
复变函数的定义 常见复变函数
区域的概念
单连通域与多连通域
1
§1.3
导数
必要条件
Cauchy-Riemann条件
解析函数为 f ( z ) x 2 y 2 i(2 xy C ) z 2 iC
11
例2 已知解析函数f(z)的虚部 v( x, y) x x2 y 2
求实部u(x,y)和解析函数f(z) v v 解 直角坐标系下, , 的计算比较烦琐,改用极坐标系 x y
3 x iy x x 2 ixy u u v v 2 x, 0, y, x. x y x y 当且仅当x y 0时, 柯西黎曼方程成立 . 函数仅在z 0可导, 在复平面内任何地方都 不解析.
15
例5 如果f z 0在区域D处处为零,那末f z 在D内为常数. 证
例1 已知解析函数f(z)的实部u(x,y)=x2-y2,求虚部和解析函数 解: 验证u是调和函数,
2u 2u 2, • 2 2 满足拉普拉斯方程,确实是某解析函数 2 x y
的实部.
9
(1)曲线积分法
先计算u的偏导数
u u 2 x, • 2 y x y v v 2 y, • 2x 根据柯西-黎曼条件有 x y
三. 求解析函数的实部或虚部
若给定一个二元的调和函数,可以看做某个解析函数的实部 (虚部),利用柯西-黎曼条件求出相应的虚部(实部),也就确定了 这个解析函数. 给定的二元函数u(x,y)是解析函数的实部,求相应的虚部v(x,y) 二元函数v(x,y)的微分式是 v v dv dx dy 由柯西-黎曼条件可得 x y u u 原因如下 dv dx dy 是全微分, y x
u ( x, y ), v ( x, y )在( x, y )点处可微;
3
充分条件 设 f(z)=u(x,y)+iv(x,y),若u(x,y)和v(x,y)
在(x,y)处满足
u u v v 1. , , , 在( x, y )点处存在且连续; x y x y 2. 在( x, y )点处满足Cauchy Riemann 条件
1 f z 在区域D内解析 f z 在区域D内可导 2 f z 在一点解析 f z 在一点可导
实事上, 函数在一点可导 不一定在该点处解析 , .
函数在一点解 , 则在该点及该点的某个 析 邻域一定可导 .
5
二. 解析函数的性质
(1)若函数f(z)=u+iv,在区域B上解析,则 u(x,y)=C1, v(x,y)=C2 (C1C2为常数)是B上的两组正交曲线族
C为积分常数
( 0, 0 )

( x, y )
o (x,0)
x
( x,0)
10
(2)凑全微分法
dv=2ydx+2xdy dv=d(2xy)
由上已知 很容易凑成全微分形式d(2xy),则
此时显然有v=2xy+C
实质上也是曲线积分法,在容易凑微分的时候很方便. (3)不定积分法 上边算出 第一式对y积分,x看做参数,可得
设 f(z)=u(x,y)+iv(x,y)在区域B内一点 z=x+iy可导,那么有 u u v v 1. , , , 在( x, y )点处存在; x y x y
2. 在( x, y )点处满足Cauchy Riemann 条件
u v u v , x y y x
u v x y v u x y
u v u v 两边分别相乘,得 x x y y u v u v 0 即 x x y y
u u v v 和 )梯度v(直角分量 和 ) 正交 x y x y
u 1 v 1 u v
12
u u du d d
1 cos d sin d 2 2 2 2
• 2 cos d 2 d (cos ) d ( 2 cos )
dv=2ydx+2xdy
( x, y )
由此可得
右边是全微分,积分值
v
2 ydx 2 xdy C
( x, y ) ( x,0)
与路径无关,为便于计算,取如图路径:
y (x,y)
v
( x ,0)
2 ydx 2 xdy 2 ydx 2 xdy C 2 xdy C 2 xy C
那么f(z)在z=x+iy处可导。
u v x y u v y x
Cauchy-Riemann方程 在极坐标系下的形式为
1 v u 1 u v
4
§1.4
一. 解析定义
相关文档
最新文档