人工智能-人工智能46 精品

合集下载

人工智能ppt课件下载

人工智能ppt课件下载
辑推理和证明。
A
B
C
D
深度学习阶段
21世纪初,深度学习算法的突破性进展, 使得人工智能在语音、图像、自然语言处 理等领域取得了巨大进展。
机器学习阶段
20世纪90年代,随着计算机技术和大数据 的快速发展,机器学习算法开始广泛应用 于各种领域。
人工智能的应用领域
01
02
03
04
自动驾驶
通过机器学习和计算机视觉技 术,实现车辆自主驾驶和智能
在线课程平台
Coursera、Udacity、edX等在线课程平台提供了大量的人工智能相关课程,从入门到进 阶都有覆盖。
学术研究论文
在Google Scholar、IEEE Xplore等学术搜索引擎上可以找到最新的AI研究论文,有助于 深入了解AI领域的前沿动态。
AI学习路径规划
基础知识阶段
学习数学基础(如概率统计 、线性代数、微积分等)和 编程基础(如Python、R等 )。
AI对人类社会的潜在威胁
就业问题
AI技术的广泛应用可能导致部分传统 岗位消失或减少,对劳动力市场造成 冲击。
数据隐私
AI技术需要大量数据支持,如何保护 个人隐私和数据安全成为亟待解决的 问题。
安全风险
AI技术可能被用于制造智能武器、网 络攻击等恶意行为,对人类安全构成 威胁。
伦理道德
AI技术的发展引发了许多伦理道德问 题,如机器人权利、道德责任等,需 要引起关注和思考。
算法与理论阶段
学习机器学习、深度学习的 基本算法和理论,如监督学 习、无监督学习、强化学习 等。
应用实践阶段
通过参与实际项目或比赛, 将所学知识应用到实际问题 中,提高解决实际问题的能 力。

人工智能(全套课件)

人工智能(全套课件)
复苏期
21世纪初至今,随着计算机技术的飞速发展和大数据 时代的到来,人工智能再次焕发出勃勃生机。
4
技术原理及核心思想
2024/1/26
技术原理
人工智能的技术原理主要包括机器学习、深度学习、自然语 言处理、计算机视觉等。这些技术通过对大量数据进行学习 、分析和处理,使计算机能够模拟人类的智能行为。
核心思想
介绍蒙特卡洛方法的基本 原理,及其在强化学习中 的应用。
2024/1/26
蒙特卡洛树搜索
详细阐述蒙特卡洛树搜索 算法的原理、流程和实现 细节,包括选择、扩展、 模拟和回溯四个步骤。
算法优化
探讨针对蒙特卡洛树搜索 算法的改进和优化方法, 如UCT算法、RAVE算法等 。
21
遗传算法和蚁群优化算法
遗传算法
2024/1/26
22
06
知识图谱与推理技术
2024/1/26
23
知识表示和存储方式
2024/1/26
知识表示方法
包括基于逻辑、基于框架、基于 语义网等表示方法,用于描述现 实世界中的各种概念和关系。
知识存储方式
采用图数据库、关系数据库、 NoSQL数据库等存储方式,实现 知识的持久化和高效访问。
2024/1/26
16
目标检测与跟踪技术
2024/1/26
目标检测方法
介绍基于滑动窗口、区域提议网络(RPN)等目标检测方法。
目标跟踪方法
探讨基于相关滤波、深度学习等目标跟踪技术的原理和实现。
目标检测与跟踪应用
展示目标检测与跟踪在视频监控、自动驾驶等领域的应用案例。
17
三维重建与虚拟现实应用
三维重建技术
智能技术的健康发展。

2024版《人工智能》PPT课件

2024版《人工智能》PPT课件

《人工智能》PPT课件•人工智能概述•机器学习原理及算法•自然语言处理技术•计算机视觉技术•语音识别与合成技术•智能推荐系统与数据挖掘•人工智能伦理、法律与社会影响目录定义与发展历程定义人工智能是一门研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的新技术科学。

发展历程从早期的符号学习到现代的深度学习,人工智能经历了多个发展阶段,包括专家系统、知识工程、机器学习等。

重要事件人工智能领域的重要事件包括图灵测试、达特茅斯会议、AlphaGo战胜围棋世界冠军等。

人工智能的技术原理包括感知、思考、学习和行动四个方面,通过模拟人类的思维和行为方式来实现智能化。

技术原理人工智能的核心思想是让机器能够像人类一样具有智能,包括理解、推理、决策、学习等能力。

核心思想人工智能的实现方式包括符号主义、连接主义和行为主义等多种方法,其中深度学习是当前最热门的技术之一。

实现方式技术原理及核心思想前景展望未来人工智能的发展前景非常广阔,将会在更多领域得到应用,同时也会出现更多的技术创新和突破。

应用领域人工智能已经广泛应用于各个领域,包括智能家居、自动驾驶、医疗诊断、金融风控等。

挑战与机遇人工智能的发展也面临着一些挑战,如数据安全、隐私保护等问题,但同时也带来了巨大的机遇和发展空间。

应用领域与前景展望原理通过最小化预测值与真实值之间的均方误差,学习得到最优的线性模型参数。

应用预测连续型数值,如房价、销售额等。

原理在特征空间中寻找最大间隔超平面,使得不同类别的样本能够被正确分类。

应用分类问题,如图像识别、文本分类等。

原理通过递归地选择最优特征进行划分,构建一棵树状结构,用于分类或回归。

应用分类、回归问题,如信用评分、医学诊断等。

原理将数据划分为K个簇,使得同一簇内的数据尽可能相似,不同簇间的数据尽可能不同。

应用数据挖掘、图像压缩等。

原理通过计算数据点间的相似度,将数据逐层进行聚合或分裂,形成树状结构。

应用社交网络分析、生物信息学等。

人工智能介绍ppt课件

人工智能介绍ppt课件

能的发展。
➢ 1956年,塞缪尔在IBM计算机上研制成功了具有自学习、自组织和自适
应能力的西洋跳棋程序。
➢ 1957年,纽厄尔、肖(Shaw)和西蒙等研制了一个称为逻辑理论机(LT)的
数学定理证明程序。
➢ 1958年,麦卡锡建立行动规划咨询系统 ➢ 1960年纽厄尔等研制通用问题求解(GPS)程序。麦卡锡研制了人工智能
人工智能简介
2024/9/9
1
➢目录
1 人工智能是什么?
What is Artificial Intelligence?
2 人工智能的发展与应用
Application of Artificial Intelligence
3 人工智能面临的考验
The facing problems of AI
4 人工智能的未来
(John McCarthy)
➢萨缪尔发明“机器学习”这个词,将其定义
为“不显式编程地赋予计算机能力的研究
领域”。而能够进行机器学习的便是人工智
能。
2024/9/9
4
1 人工智能是什么?
➢ 计算机学家们对人工智能的定义:
2024/9/9
5
1
人工智能是什么?
➢ 定义小结
➢是研究、开发用于模拟、延伸和扩
4.语音助手
通过智能对话与即时问答的智能交互,实现帮忙用 户解决问题,其主要是帮忙用户解决生活类问题。
2024/9/9
10
Part 3 人工智能面临的问题
2024/9/9
11
3
人工智能面临的问题
➢ 人工智能的伦理问题
机器人的日益活跃肯定会引发全社会关于伦理、 道德的大讨论,这有可能会在一定时间内阻碍机 器人的发展,但总的来说,科技是第一生产力, 左右着人类的进程,至于伦理、道德体系只是科 技的衍生物,大不了推倒重建,更何况,我们已 有了如此成熟的法律监管制度,估计不会把自己 搞瘫痪。如此看来,对人工智能技术伦理问题的 研究也就成为重中之重,机器人伦理问题近年来 也引起许多学者和社会大众的关注 [1]

(完整版)人工智能介绍PPT课件全

(完整版)人工智能介绍PPT课件全
人的智能的理论、方法、技术及应用 系统的一门新的技术科学。
• 人工智能是计算机科学的一个分支,
它企图了解智能的实质,并生产出一 种新的能以人类智能相似的方式做出 反应的智能机器,该领域的研究包括 机器人、语言识别、图像识别、自然 语言处理和专家系统等。
Machine learning
Computer vision
1956年,塞缪尔在IBM计算机上研制成功了具有自学习、自组织和自适应 能力的西洋跳棋程序。
1957年,纽厄尔、肖(Shaw)和西蒙等研制了一个称为逻辑理论机(LT)的 数学定理证明程序。
1958年,麦卡锡建立了行动规划咨询系统 1960年纽厄尔等研制了通用问题求解(GPS)程序。麦卡锡研制了人工智
人工智能简介
Brief introduction of
Artificial Intelligence
2024/9/24 Made by Bob
•Contents
1 人工智能是什么?
What is Artificial Intelligence?
2 人工智能的发展与应用
Application of Artificial Intelligence
2024/9/24
Part 4 人工智能的未来
2024/9/24
4
人工智能的未来
健全人工智能发展标准和监管制度
任何一门新技术的诞生、发展和使用都离不开一套完整 的发展标准和科学的管理制度,这是保证科学技术“以 人为本”的根本,面对人类日益强大的科研能力,人工 智能的发展必将会在未来出现突破性的进展,强人工智 能技术也将完整的出现在人类面前。鉴于人工智能技术 的特殊性,我们不难发现,它给人类生存带来的威胁不 亚于核武器,这就要求我们必须有严格的标准来要求人 工智能的发展,并且要科学谨慎的监管其生产和使用过 程的每个细节。

(2024年)(完整版)人工智能介绍课件

(2024年)(完整版)人工智能介绍课件

多层感知器(MLP)
由多个神经元组成的多层网络,具有 强大的分类和回归能力。
2024/3/26
12
卷积神经网络(CNN)
01
02
03
卷积层
通过卷积核提取输入数据 的局部特征,实现参数共 享和稀疏连接。
2024/3/26
池化层
降低数据维度,提高模型 泛化能力,如最大池化、 平均池化等。
全连接层
将卷积层和池化层提取的 特征进行整合,输出最终 结果。
13
循环神经网络(RNN)
01
循环神经单元
具有记忆功能,能够处理序列数 据,如LSTM、GRU等。
02
时间步
将序列数据按照时间顺序输入到 循环神经单元中,实现信息的传 递和积累。
03
序列到序列( Seq2Seq)
由编码器和解码器组成的模型结 构,实现输入序列到输出序列的 映射。
2024/3/26
14
深度确定性策略梯度( Deep Deterministic Policy Gradient, DDPG )
10
2024/3/26
03
CATALOGUE
深度学习技术与应用
11
神经网络模型
神经元模型
模拟生物神经元结构和功能,实现输 入到输出的非线性映射。
激活函数
引入非线性因素,提高神经网络的表 达能力,如ReLU、Sigmoid等。
第二次浪潮
20世纪90年代至21世纪初,随着计算机技术的飞速发展 和大数据时代的到来,机器学习、深度学习等算法取得重 大突破,人工智能开始进入快速发展阶段。
第三次浪潮
21世纪初至今,人工智能技术在语音识别、图像识别、 自然语言处理等领域取得显著成果,并开始渗透到金融、 医疗、教育等各行各业。

人工智能ArtificialIntelligence精品课件完整版

人工智能ArtificialIntelligence精品课件完整版
80年代以来旳实用化和工程化
• 主要特点是开始走向实用化和工程化。其主要标志之一是 有一批商品化旳自然语言人机接口系统和机器翻译系统推 向了市场。
• 另一方面,人们已经开始对大规模真实文本进行了解 • 句法-语义分析为主旳思想来自于规则旳措施,而规则不
可能把全部旳知识表达出来 –自然语言在数量上浩瀚无际 –在性质上具有不拟定性和模糊性。
Artificial Intelligence
NLP: 15
© Graduate University , Chinese academy of Sciences.
自然语言了解旳一般问题(13)
• 自然语言了解旳研究大致上经历了三个 时期
– 萌芽时期 – 发展时期
• 早期: 60年代以关键词匹配为主流 • 中期: 70年代以句法-语义分析为主流 • 近期: 80年代以来开始走向实用化和工程化
了解自然语言,首先要让计算机能从库存旳大规模语料中 自动或半自动地获取语言了解所需旳多种知识,对语言现 象作出客观旳、细致旳描述。
• 目前采用旳主要手段是建立多种统计模型,可用于词类旳 自动标注,以及句法语义旳更高层次旳分析。该措施能够 和规则措施相互补充。
Artificial Intelligence
自然语言了解旳一般问题(14)
• 60年代以关键词匹配为主流
特点:
– 没有真正意义上旳语法分析,主要依托关键词匹配技术来辨认输入 句子旳意义
– 在系统中事先存储了大量包括某些关键词旳模式,每个模式与一种 或多种解释(响应式)相相应。
– 每当输入一种句子,系统便查找与之匹配旳模式,一旦匹配成功, 系统就输出相应旳解释,不考虑其他成份对句子意义旳影响
– 语法分析:将单词之间旳线性顺序变换成一种显示单词 怎样与其他单词有关联旳构造。拟定语句是否合乎语法

《人工智能课件》.pptx

《人工智能课件》.pptx
策略梯度方法
一种基于策略迭代的方法,直接优化策略参数以最大化期望回报。通过计算梯度并更新策 略参数来实现策略改进。
Actor-Critic 方法
结合了值迭代和策略迭代的方法。Actor 负责根据当前策略选择动作,Critic负责评估当前 策略的性能并指导Actor进行改进。两者相互促进,共同优化智能体的行为。
03 深度学习技术与应用
神经网络基本原理
01
神经元模型
神经网络的基本单元,模 拟生物神经元的结构和功
能。
前向传播
输入信号经过神经元处理 后向前传递的过程。
反向传播
根据误差信号调整神经元 权重的过程。
卷积神经网络 (CNN)
卷积层
通过卷积操作提取输入数 据的特征。
池化层
降低数据维度,减少计算
量。
06
人工智能伦理、法律和社会影

数据隐私和安全问题
数据隐私泄露
人工智能系统通常需要大量数据进行训练和学习,其中可能包含用户的个人隐 私信息。如果这些数据没有得到妥善保护,就可能导致隐私泄露事件。
网络安全问题
人工智能系统可能成为网络攻击的目标,例如黑客利用漏洞攻击人工智能系统, 获取敏感信息或者破坏系统的正常运行。
将数据划分为K个簇,每个簇的中心由簇内所有样本的均值表示。通过
迭代更新簇中心和重新划分样本,使得每个样本与其所属簇中心的距离
之和最小。
层次聚类
通过计算样本之间的距离,将距离近的样本合并为一个簇,然后不断重 复该过程,直到达到预设的簇数量或满足其他停止条件。
03
主成分分析 (PCA)
通过正交变换将原始特征空间中的线性相关变量转换为线性无关的新变
深度学习在图像识别与分类中的应用 通过训练深度神经网络模型,学习从原始图像数据中提取有用 的特征,进而实现图像的高效识别和分类。

《人工智能》PPT课件

《人工智能》PPT课件
应用
预测连续型数值,如房价、销售 额等。
监督学习算法
原理
在特征空间中寻找最大间隔超平面, 使得不同类别的样本能够被正确分类 。
应用
分类问题,如图像识别、文本分类等 。
监督学习算法
原理
通过递归地选择最优特征进行划分,构建一棵树状结构,用于分类或回归。
应用
分类、回归问题,如信用评分、医学诊断等。
非监督学习算法
07
人工智能伦理、法律 与社会影响
人工智能伦理问题探讨
自主性与责任性
AI系统是否具有自主性,以及如何界定其责任边界。
数据隐私与保护
AI在处理个人数据时如何确保隐私保护,防止数据泄露和 滥用。
歧视与偏见
AI算法可能存在的歧视和偏见问题,以及如何消除这些问 题。
法律法规对AI的监管和约束
AI相关法规
数据挖掘技术在推荐系统中的应用
关联规则挖掘
发现物品之间的关联规则,推荐与用户已购买物品相关联的其他物 品。
聚类分析
将用户或物品按照相似度进行聚类,针对不同的簇提供个性化的推 荐服务。
分类与预测
利用历史数据训练分类器或预测模型,预测用户对物品的喜好程度, 并据此进行推荐。
典型案例分析:电商、音乐等平台的智能推荐
《人工智能》PPT课件
目 录
• 人工智能概述 • 机器学习原理及算法 • 自然语言处理技术 • 计算机视觉技术 • 语音识别与合成技术 • 智能推荐系统与数据挖掘 • 人工智能伦理、法律与社会影响
01
人工智能概述
定义与发展历程
定义
人工智能是一门研究、开发用于模拟 、延伸和扩展人的智能的理论、方法 、技术及应用系统的新技术科学。
医疗诊断、金融风控等。

人工智能PPT课件

人工智能PPT课件

人工智能的发展将改变就业结构,部分传统岗位可能消失或被
替代,同时将催生新的就业机会。
数据隐私和安全
02
随着人工智能应用的普及,数据隐私和安全问题将更加突出,
需要加强数据保护和安全措施。
技术伦理和法律责任
03
人工智能的发展将带来技术伦理和法律责任问题,需要建立健
全相关法规和规范。
06
结论
人工智能的潜力和价值
商业价值
人工智能技术能够提高企业的生 产效率,降低成本,提升产品和 服务的质量,从而为企业创造更
大的商业价值。
社会价值
人工智能在医疗、教育、交通等 领域的应用,能够提高社会服务 水平,改善人们的生活质量,为
社会创造巨大的价值。
创新价值
人工智能的发展推动了科技创新 ,促进了各行业的数字化转型, 为人类社会带来了前所未有的变
03
人工智能的实际应用
智能家居
智能家居利用人工智能技术,通 过智能设备、传感器和自动化系 统,实现家庭环境的智能化控制
和管理。
智能家居能够提供便利的生活体 验,如语音助手控制家电、自动 调节室内温度和湿度、智能照明
和安全监控等。
智能家居还可以通过数据分析, 为用户提供更个性化的服务,如
定制化的音乐、电影推荐等。
人工智能 PPT 课件
汇报人:可编辑 2023-12-25
• 人工智能简介 • 人工智能技术 • 人工智能的实际应用 • 人工智能的挑战与伦理问题 • 未来的人工智能发展 • 结论
01 人工智能简介
人工智能的定义
人工智能
指通过计算机程序和算法,使机器能够模拟人类的智能行为 ,实现人机交互、自主策、学习和推理等功能的技术。
驶。

人工智能PPT课件专用版高清版

人工智能PPT课件专用版高清版
常用算法
如SIFT、SURF、HOG等,这些算法在图像识别、 目标跟踪等领域有广泛应用。
目标检测和识别技术原理
目标检测
在图像或视频中定位出感兴趣的目标,并给出其位置信息。
识别技术
对检测到的目标进行分类和识别,确定其所属类别。
深度学习应用
卷积神经网络(CNN)在目标检测和识别领域取得了显著 成果,提高了识别准确率和速度。
将人类语音转换为机器可读的文本信息。
语音识别流程
包括信号预处理、特征提取、声学模型、语言模型、解码搜索等步 骤。
语音识别应用场景
如智能家居、车载系统、智能客服等。
声学模型和语言模型构建方法
声学模型构建
基于大量语音数据,通过训练得到声学模型,用于识别语音信号 中的音素或单词。
语言模型构建
基于文本数据,通过统计语言模型或神经网络语言模型等方法,得 到单词之间的概率关系,用于指导语音识别过பைடு நூலகம்。
发展历程
从早期的符号学习到现代的深度学习,人工智 能经历了多个发展阶段,包括专家系统、知识 工程、机器学习等。
重要里程碑
包括图灵测试、达特茅斯会议、深度学习的提 出等,这些事件对人工智能的发展产生了深远 影响。
人工智能技术领域及应用场景
01
02
03
技术领域
包括机器学习、计算机视 觉、自然语言处理等,这 些技术是人工智能的核心。
3 循环神经网络(RNN)
适用于处理序列数据,如文本、语音等。通过记忆单元捕 捉序列中的时序信息,实现序列建模和预测。
4 生成对抗网络(GAN)
由生成器和判别器组成,通过对抗训练生成逼真的样本数 据,广泛应用于图像生成、风格迁移等领域。
模型评估与优化策略

《人工智能》课件

《人工智能》课件
人工智能伦理与法规
数据隐私与安全
数据隐私
确保个人数据在收集、存储和使 用过程中的保密性和安全性,防 止数据泄露和滥用。
数据安全
采取措施保护数据免受未经授权 的访问、修改或破坏,确保数据 的完整性和可用性。
人工智能的就业影响
就业机会
人工智能的发展将创造新的就业机会 ,包括人工智能专业人才、技术研发 人员等。

人工智能对人类社会的影响
提高生产效率
人工智能技术能够提高 生产效率,降低成本,
促进经济发展。
改善生活质量
人工智能在医疗、教育 、交通等领域的应用能 够改善人们的生活质量

改变就业结构
人工智能的发展将改变 就业结构,需要人们不 断更新技能以适应变化

推动创新发展
人工智能技术能够激发 创新,推动科技发展, 改变人类社会的面貌。
跨界融合
促进人工智能与其他产业 的融合发展,推动经济转 型升级。
可持续发展
引导人工智能技术在环境 保护、能源利用等领域的 运用,推动可持续发展。
THANKS
感谢观看
《人工智能》ppt课件
目录
• 人工智能概述 • 人工智能技术 • 人工智能伦理与法规 • 人工智能未来展望 • 人工智能的实际应用案例 • 总结与思考
01
人工智能概述
人工智能的定义
人工智能定义
人工智能是研究、开发用于模拟、延 伸和扩展人的智能的理论、方法、技 术及应用系统的一门新的技术科学。
人工智能的学科性质
深度学习在计算机视觉中取得了 重大突破,如YOLO、SSD和 Faster R-CNN等目标检测算法 。
语音识别
语音识别是使计算机能够理解和识别 人类语音的能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Machine Intelligence ▪ IEEE Intelligent Systems ▪ ……
国内
• 计算机学报 • 软件学报 • 自动化学报 • 中国科学 E辑 信息科学 • 模式识别与人工智能
▪ ……
什么是人工智能
什么是人工智能
英文表示:“Artificial Intelligence”, for short AI。 字面解释(一般解释):“人工智能”一词目前是指用计算机模 拟或实现的智能, 因此人工智能又称机器智能。 科学定义, 还没有统一的认识。 部分学者对AI概念的描述, 可以看做是他们各自对人工智能的 理解。
中文屋子 ?中文
不懂
约翰·西尔勒
模仿
人工智能的发展概况 孕育期(1956年以前)
• 我国古代先人对智能机器的遐想 和创造
1969年获图灵奖, 1991年获IJCAI终身成就奖。他在人工 智能、认知心理学、数学、计算语言学、机器人学等领 域都做出了杰出贡献。他创建了MIT的AI实验室、还是 MIT的Media实验室奠基人。
智能的特征?
• 智能有哪些具体特征?
✓具有感知能力(系统输入): 机器视觉,机器听觉, 图像语音识别……
– 掌握人工智能的基本理论、技术及其应用方法
– 讨论一些新的和正在研究中的人工智能方法与技 术
– 能够应用相应的人工智能技术解决实际应用问题
主要参考书
▪ 人工智能-一种现代的方法 (第2版)
Stuart J. RUSSELL,Peter Novig 清华大学出版社, 2006
▪ 人工智能——复杂问题求解的结构和 策略 (原书第5版)
✓ 具有记忆与思维能力:思维是智能的根本原因,思 维是一个动态的过程。思维分为:逻辑思维,形象 思维和顿悟思维。
✓ 具有学习能力及自适应能力:适应环境的变换、积 累经验的能力
✓ 具有行为能力(系统输出):对外界的智能化反应
两个界定:图灵测试和中文屋子
图灵测试 Turing Test
英国数学家阿兰·图灵(Alan Turing) 提出了现称为“图灵测 试”(Turing Test)的方法。简单来讲, 图灵测试的做法是: 让一位测试者分别与一台计算机和一个人进行交谈(当时是用 电传打字机), 而测试者事先并不知道哪一个是人, 哪一个是 计算机。 如果交谈后测试者分不出哪一个被测者是人, 哪一 个是计算机, 则可以认为这台被测的计算机具有智能。
中文屋子
约翰·西尔勒的中文屋子假设是说: 有一台计算机阅读了一 段故事并且能正确回答相关问题, 这样这台计算就通过了图灵 测试。而西尔勒设想将这段故事和问题改用中文描述(因为他本 人不懂中文), 然后将自己封闭在一个屋子里, 代替计算机阅读 这段故事并且回答相关问题。描述这段故事和问题的一连串中 文符号只能通过一个很小的缝隙被送到屋子里。 西尔勒则完全 按照原先计算机程序的处理方式和过程(如符号匹配、查找、照 抄等)对这些符号串进行操作, 然后把得到的结果即问题答案通 过小缝隙送出去。西尔勒也得到了问题的正确答案。西尔勒认 为尽管计算机用这种符号处理方式也能正确回答问题, 并且也 可通过图灵测试, 但仍然不能说计算机就有了智能。
——广义地讲, 人工智能是关于人造物的智能行为, 而智 能行为包括知觉、推理、学习、交流和在复杂环境中的行为 (Nilsson, 1998年)。
——Stuart Russell和Peter Norvig把已有的一些人工智 能定义分为4类: 像人一样思考的系统、 像人一样行动的系统、 理性地思考的系统、 理性地行动的系统(2003年)。
George F. Luger著, 史忠植 等译 机械工业出版社, 2006
主要参考文献
▪ IJCAI,世界人工智能大会,两年一次 ▪ AAAI,美国一年一次的年会 ▪ Artificial Intelligence ▪ Computational Intelligence ▪ IEEE Transactions on Pattern analysis and
怎么定义人工智能?
马文明斯基(Marvin Minsky):
“人工智能就是让机器来完成那些如果由人来做 则需要智能的事情的科学”
“AI问题是科学曾经经历的最困难的问题之一” (1982)
马文明斯基(Marvin Minsky)
• “人工智能之父” • 1927 ~ • 1969年获图灵奖, • 获此殊荣的第一位人工智能学者
图灵测试 Turing Test
“快速的、按规矩行事的傻子机器。”
小于50%?
被测机器
测试主持人
被测人
※如果测试主持人能分辨出人和机器的概率小于50%,则认为机器具有了智能
阿伦•图灵(Alan Turing)
✓ 计算机科学理论的创始人
✓ 1912年出生于英国伦敦,1954年去世, 享年42岁
✓ 1936年发表论文“论可计算数及其在 判定问题中的应用”,提出图灵机理 论
✓ 1950年发表论文“计算机与智能”,
图灵
阐述了计算机可以具有智能的想法, (Alan Turing)
提出图灵测试
✓ 1966年为纪念图灵的杰出贡献, ACM设立图灵奖
✓ Association for Computinபைடு நூலகம் Machinery
Turing测试存在的问题
被测机器
– “图灵测试”没有规定问题 的范围和提问的标准
– 仅反映了结果的比较,无 涉及思维过程
– 没指出是什么人 – 争论:通过了图灵检验的
电脑就具备思维能力了么 ? – 约翰·西尔勒
被测人
测试主持人
美国哲学家约翰·西尔勒(John Searle, 1980年)对于“图 灵测试”提出了异议。他用一个现在称为“中文屋子”的假设, 试图说明即便是一台计算机通过了图灵测试, 也不能说它就真 的具有智能。
人工智能
Artificial Intelligence
人工智能是一门交叉学科
脑科学 认知科学
计算机 科学
人工智能 心理学
哲学 逻辑学 语言学
学习目标
• 领略人工智能思想的精髓,对人工智能的思 想和方法有较深刻的认识,从人工智能的角 度出发去思考问题,解决问题
– 了解人工智能的发展历史,国内外人工智能相关 领域的发展动态
相关文档
最新文档