电磁场与电磁波理论基础 第二章 课后答案
电磁场与电磁波 第2章习题解答
![电磁场与电磁波 第2章习题解答](https://img.taocdn.com/s3/m/d177a820dd36a32d737581cc.png)
第二章习题解答【习题2.1】101929=.=101.6102.0810e qR R mq e Cp m Ce e 解:电偶极矩p 其中 1.3可得电偶极矩p 的大小其方向为从负电荷指向正电荷,即从氯离子指向氢离子。
---´== =醋【习题2.2】解1解:由例2.2得,电偶极子所产生的电场为533()1[]4e e P R RP E RRπε=-0()R R << ……………………①其中 0e P qR = ,0R方向从负电荷指向正电荷,R是从电偶极子指向电场中任一点的矢量,起点在正负电荷连线的中点。
(如图)本题 100 1.310R m -=⨯ 1010010R m -=⨯满足 0R R << .将①式整理:32013[()]4e e E P R R P RRπε=-令 ()e m k P R R P =-(23k R=)则 304m E Rπε=…………………………②欲求E的最大值,求出m最大值即可.222222[()]()2()()e e e e e e m k P R R P k P R R P k P R P R =-=+- 2222(2)()e e k R k P R P =-+2224296()()e e R P R P R R=-+ 2223()e e P R P R=+其中 00cos e P R qR R qR R θ== , (θ是0R 和R之间的夹角)易见,当cos 1θ=,即0θ=时,2m可取最大值22222m ax 234e e e m R P P P R=+=则 m=2e P 代入②式得 m a x33m ax042e P mERRπεπε==将习题2.1中的结论 e P=2.082910c m -⨯⋅ 代入得29112103max2.08102 3.148.910(10010)EV m ----⨯=⋅⨯⨯⨯⨯⨯513.710V m-≈⨯⋅距离自由电子处的电场 191712121020 1.6101.41044 3.148.910(10010)e E V mV mRπε-----⨯==⋅≈⨯⋅⨯⨯⨯⨯⨯故 距离电偶极子处的电场最大值为 513.710V m -⨯⋅ 距离自由电子处的电场为 711.410V m -⨯⋅【习题2.2】解2解:设矢量0R e的方向从电荷C L -指向电荷H +R n 是从由C L - H +构成的电偶极子指向电场中的任一点的矢量,起点在正负电荷连线的中点,且0R 〈〈R. ( e , n 为单位矢量,θ是e , n的夹角)(1)003303cos 1[]4qR qR E n e R R θπε=- (41P )由向量减法的三角形法则及余弦定理得:=03024qR R πε⎛⎫⎪⎝⎭E =由上题得290( 2.110)e p qR cm -==⨯因此,当0θ=或θπ=时E有最大值, 03024qR E R πε==50302 3.7104qR V M R πε=⨯ (2)7201() 1.4104q R VE M R R πε==⨯【习题2.3】证明: 电偶极距qRe p =其方向为从负电荷指向正电荷。
电磁场与电磁波第二版课后答案 (2)
![电磁场与电磁波第二版课后答案 (2)](https://img.taocdn.com/s3/m/7a2b46a318e8b8f67c1cfad6195f312b3169eba7.png)
电磁场与电磁波第二版课后答案第一章:电荷和电场1.1 选择题1.电场可以向量形式来表示。
2.使得电体带有不同种类电荷的原子或分子是离子化。
3.在法拉弹规定空气是电介质。
4.电荷量的基本单位是库仑。
5.元电荷是正负电荷的最小电荷量。
6.在电场中电荷所受力的方向完全取决于电荷性质和场的性质和方向。
7.电势能是标量。
8.空间中一点产生的电场是该点电荷所受电场的矢量和。
9.电场E的国际单位是NC−1。
10.电场强度受逼迫电荷的正负种类影响,但与电荷的量无关。
1.2 填空题1.空间中一点产生的电场是该点电荷所受电场的矢量和。
2.计算质点电荷q在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{q}{r^2}\\vec{r}$。
3.计算正半球壳在某点产生的电场的公式是$\\vec{E}=\\frac{1}{4\\pi\\epsilon_0}\\frac{Q}{r^2}\\vec{r}$。
4.位置在球心,能量源是正半球壳带点,正半球在转轴一侧电势能是0。
5.半径为R的均匀带点球壳,带电量为Q,求通过球心的电束强度的公式是$\\frac{Q}{4\\pi\\epsilon_0R^2}$。
1.3 计算题1.两个带电量分别为q1和q2的点电荷之间的相互干扰力公式是$\\vec{F}=\\frac{q_1q_2}{4\\pi\\epsilon_0r^2}\\vec{r}$。
2.一个电荷为q的质点,和一个均匀带有电量Q的半球壳之间的相互干扰力公式是$\\vec{F}=\\frac{1}{4\\pi\\epsilon_0}\\frac{qQ}{r^2}\\vec{r}$。
第二章:电磁感应和电磁波2.1 选择题1.电磁感应是由磁通变化产生的。
2.电磁感应一定要在导电体内才能产生电流是错误的。
√3.在电磁感应现象中,即使磁通量不变时导体电流也会产生改变。
4.电磁感应现象是反过来实现的。
《电磁场与电磁波》课后习题解答(全)
![《电磁场与电磁波》课后习题解答(全)](https://img.taocdn.com/s3/m/aa46ce777fd5360cba1adbeb.png)
(3)
【习题3.4】
解:(1)在区域中,传导电流密度为0,即J=0
将 表示为复数形式,有
由复数形式的麦克斯韦方程,可得电场的复数形式
所以,电场的瞬时值形式为
(2) 处的表面电流密度
(3) 处的表面电荷密度
(4) 处的位移电流密度
【习题3.5】
解:传导电流密度 (A/ )
位移电流密度
【习题3.6】
(2)内导体表面的电流密度
(3)
所以,在 中的位移电流
【习题2.13】
解:(1)将 表示为复数形式:
则由时谐形式的麦克斯韦方程可得:
而磁场的瞬时表达式为
(2)z=0处导体表面的电流密度为
z=d处导体表面的电流密度为
【习题2.14】
已知正弦电磁场的电场瞬时值为
式中
试求:(1)电场的复矢量;
(2)磁场的复矢量和瞬时值。
由安培环路定律: ,按照上图所示线路积分有
等式左边
等号右边为闭合回路穿过的总电流
所以
写成矢量式为
将 代入得
【习题3.18】
解:当 时, ,
当 时, ,
这表明 和 是理想导电壁得表面,不存在电场的切向分量 和磁场的法向分量 。
在 表面,法线
所以
在 表面,法线
所以
【习题3.19】
证明:考虑极化后的麦克斯韦第一方程
(1)
和 (2)
若采用库仑规范,即 (3)
对(1)式两边取散度,有
将(2)、(3)式代入,得
故电流连续性也是满足的。
【习题4.3】解:
【习题4.4】
证明:因为 即
故 满足连续性方程。
另外, 满足洛仑兹条件。
电磁场与电磁波[第四版]课后答案谢处方第二章习题
![电磁场与电磁波[第四版]课后答案谢处方第二章习题](https://img.taocdn.com/s3/m/af16e016f11dc281e53a580216fc700aba685247.png)
描述电场中某点电荷所具有的势 能,其值等于单位正电荷从该点 移动到参考点时所做的功。
电介质与电位移矢量
电介质
指能够被电场极化的物质,其内部存 在大量的束缚电荷。
电位移矢量
描述电场中某点的电场强度和电介质 极化效应的矢量,其值等于电场强度 和极化强度矢量的矢量和。
高斯定理与泊松方程
高斯定理
在静电场中,穿过任意闭合曲面的电 场强度通量等于该闭合曲面内所包围 的电荷量。
填空题答案及解析
答案
麦克斯韦方程组
解析
麦克斯韦方程组是描述电磁场的基本方程,其中包括了 变化的磁场产生电场和变化的电场产生磁场两个重要的 结论。因此,填空题2的答案是麦克斯韦方程组。
计算题答案及解析
答案:见解析
解析:根据电磁场理论,电场和磁场是相互依存的,变化的电场产生磁场,变化的磁场产生电场。在 计算题1中,需要利用法拉第电磁感应定律和麦克斯韦方程组进行计算和分析。具体计算过程和结果 见解析部分。
泊松方程
描述静电场中某点的电位与电荷分布 的关系,其解为该点的电位分布。
03
恒定磁场
磁场强度与磁感应强度
磁场强度
描述磁场强弱的物理量,与电流、导线的环绕方向相关。
磁感应强度
描述磁场对放入其中的导体的作用力的物理量,与磁场强度和导体在磁场中的放置方式 相关。
Hale Waihona Puke 安培环路定律与磁通连续性原理
安培环路定律
偏振是指电磁波的振动方向与传播方向之间的关系,可以分为横波和纵波两种类 型。在时变电磁场中,电磁波通常是横波,其电场矢量和磁场矢量都与传播方向 垂直。
05
习题答案及解析
选择题答案及解析
选择题1答案及解析
电磁场与电磁波》(第四版 )答案二章习题解答
![电磁场与电磁波》(第四版 )答案二章习题解答](https://img.taocdn.com/s3/m/5db2a7c29f3143323968011ca300a6c30c22f1a9.png)
电磁场与电磁波》(第四版 )答案二章习题解答2.1 一个平行板真空二极管内的电荷体密度为$\rho=-\frac{4\epsilon U}{d}-4\times 10^{-3}x-2\times 10^{-3}$,式中阴极板位于$x=9$,阳极板位于$x=d$,极间电压为$U$。
如果$U=40V$,$d=1cm$,横截面$S=10cm^2$,求:(1)$x$和$x=d$区域内的总电荷量$Q$;(2)$x=d/2$和$x=d$区域内的总电荷量$Q'$。
解(1)$Q=\int\limits_{0}^{9}\rhoSdx+\int\limits_{d}^{9}\rho Sdx=-4.72\times 10^{-11}C(3d)$2)$Q'=\int\limits_{d/2}^{d}\rho Sdx=-0.97\times 10^{-11}C$2.2 一个体密度为$\rho=2.32\times 10^{-7}Cm^3$的质子束,通过$1000V$的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为$2mm$,束外没有电荷分布,试求电流密度和电流。
解:质子的质量$m=1.7\times 10^{-27}kg$,电量$q=1.6\times 10^{-19}C$。
由$1/2mv^2=qU$得$v=2mqU=1.37\times 10^6ms^{-1}$,故$J=\rho v=0.318Am^2$,$I=J\pi (d/2)^2=10^{-6}A$2.3 一个半径为$a$的球体内均匀分布总电荷量为$Q$的电荷,球体以匀角速度$\omega$绕一个直径旋转,求球内的电流密度。
解:以球心为坐标原点,转轴(一直径)为$z$轴。
设球内任一点$P$的位置矢量为$r$,且$r$与$z$轴的夹角为$\theta$,则$P$点的线速度为$v=\omega\times r=e_\phi \omegar\sin\theta$。
电磁场与电磁波理论基础 第二章 课后答案
![电磁场与电磁波理论基础 第二章 课后答案](https://img.taocdn.com/s3/m/6343eac3bb4cf7ec4afed07d.png)
1 q1 q2 u (r ) = + 4πε 0 R1 R2
式中
+q
Z
P ( x, y,z )
R1
r
r2
o
R2
R1 = r - r1 = ( x + a ) e x + ye y + e z R1 = ( x + a ) + y 2 + z 2 R 2 = r - r2 = ( x - a ) e x + ye y + e z R2 = ( x - a ) + y 2 + z 2
②当 a <
ρ < b ,此时 Q = 2π al ρ S1 ,由高斯定理可得
D ⋅ dS = 2π l ρ Dρ = Q = 2π al ρ
(S )
S1
Dρ =
a ρS1
ρ
D =
a ρS1
ρ
eρ
E =
a ρS1
ε0ρ
eρ
③当 ρ > b ,此时高斯面内的 Q = 2π al ρ S 1 + 2π bl ρ S 2 ,由高斯定理可得
代入得到
2 2
2
2
é ù 1 ê 8 (4e x - 4e z ) 4 (4e x - 4e y ) ú ê ú E (r ) = 3 3 ú 4pe 0 ê 4 2 4 2 êë úû 1 ée x + e y - 2e z ù = ê ûú 32 2pe 0 ë
(
)
(
)
2-7.一个点电荷+q 位于(-a, 0, 0)处,另一点电荷-2q 位于(a, 0, 0)处,求电位等于零的 面;空间有电场强度等于零的点吗? 解 根据点电荷电位叠加原理,有
电磁场与电磁波(第四版)课后答案_谢处方_第二章习题 2
![电磁场与电磁波(第四版)课后答案_谢处方_第二章习题 2](https://img.taocdn.com/s3/m/153f10904b73f242336c5fff.png)
2.10 一个半圆环上均匀分布线电荷 ,求垂直于圆 平面的轴线z=a处的电场强度,设半圆环的半径也为a。
解:
dq ldl ', dl ' a d ',
dE
R eza era a(ez ex cos ' ey sin '),
E r
l 4 0
c
R R3
dl
'
a
l
40
(ez ex cos ' ey sin ')a2 d '
的磁感应强度,并证明空腔内的磁场是均匀的。
解:将题中问题看做两个对称电流的叠加:
一个是密度为 J 均匀分布在半径为 b
的圆柱内,另一个是密度为 J 均匀
b
分布在半径为 a 的圆柱内。 a
由安培环路定律在 b 和 a 中分布的
d
磁场分别为
0 2
J
b
b b
Bb
0b2 J b 2 b2
b b
0
q(ex x ey y (x a)2
ez z exa)
y2
z2
3/ 2
2q(ex x ey y ez z exa)
(x
a)2
y2
z2
3/ 2
0
由此可得个分量为零的方程组:
q(x
a)
(x
a)2
y2
z2
3/ 2
2q(x
a)
(x
a)2
y2
z2
3/ 2
0
qy
(
x
2
a)2
y2
z2
3/ 2
2qy
解:(1)
d
q (r ) d 0 (r ) s dx
电磁场与电磁波 课后答案(冯恩信 著)
![电磁场与电磁波 课后答案(冯恩信 著)](https://img.taocdn.com/s3/m/97aed039f18583d0496459c4.png)
第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。
解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。
电磁场与电磁波理论第二版徐立勤,曹伟第2章习题解答
![电磁场与电磁波理论第二版徐立勤,曹伟第2章习题解答](https://img.taocdn.com/s3/m/dde49f21fbd6195f312b3169a45177232f60e401.png)
电磁场与电磁波理论第二版徐立勤,曹伟第2章习题解答第2章习题解答2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0Va ρρρρ=,()0a ρ≤≤。
试求总电量Q 。
解:2π200002d d d d π3laV VQ V z la aρρρρρ?ρ===?2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。
当球以角速度ω绕某一直径(z 轴)旋转时,试求其表面上的面电流密度。
解:面电荷密度为 204πS QR ρ=面电流密度为 00200sin sin sin 4π4πS S S Q Q J v R R R R ωθρρωθωθ=?=== 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。
已知导线的直径为d ,导线中的电流为0I ,试求0S J 。
解:每根导线的体电流密度为 00224π(/2)πI I J d d== 由于导线是均匀密绕,则根据定义面电流密度为04πS IJ Jd d ==因此,等效面电流密度为04πS IJ e d=2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。
为使中间的点电荷处于平衡状态,试求其位置。
当中间的点电荷带电量为-0q 时,结果又如何?解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。
由库仑定律,实验电荷受02q 的排斥力为实验电荷受0q 的排斥力为要使实验电荷保持平衡,即21F F =,那么由00222114π4π()q q x d x εε=-,可以解得如果实验电荷为0q -,那么平衡位置仍然为d d x 585.0122=+=。
只是这时实验电荷与0q 和02q 不是排斥力,而是吸引力。
2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。
解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电场为2.9半径为0R 的半球面上均匀分布着面电荷,电荷密度为0S ρ,试求球心处的电场强度;若同样的电荷均匀分布在半径为0R 的半球内,再求球心处的电场强度。
《电磁场与电磁波》习题参考答案
![《电磁场与电磁波》习题参考答案](https://img.taocdn.com/s3/m/87d924035727a5e9856a61d4.png)
《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题1.12, 1.16。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
电磁场与电磁波第二章课后答案
![电磁场与电磁波第二章课后答案](https://img.taocdn.com/s3/m/54fce3d8b52acfc788ebc911.png)
电磁场与电磁波第二章课后答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。
电磁场与电磁波(西安交大第三版)第2章课后答案
![电磁场与电磁波(西安交大第三版)第2章课后答案](https://img.taocdn.com/s3/m/18961f0780eb6294dc886c5d.png)
第2章习题2-1.已知真空中有四个点电荷q C11=,q C22=,q C34=,q C48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。
解:zyrzxrzyrzxrˆˆ;ˆˆ;ˆˆ;ˆˆ4321+=+=+-=+-=84ˆ15ˆ6ˆ3)ˆˆˆˆ(412444233322222111πεπεzyxrrqrrqrrqrrqE++=+++=2-2.已知线电荷密度为ρl的均匀线电荷围成如图所示的几种形状,求P点的电场强度。
题2-2图解:(a) 由对称性04321=+++=EEEEE(b) 由对称性0321=++=EEEE(c) 两条半无限长线电荷产生的电场为yayxyxaEEE llaˆ2)}ˆˆ()ˆˆ{(421περπερ-=+--=+=半径为a的半圆环线电荷产生的电场为yaE lbˆ2περ=总电场为0=+=baEEE2-3.真空中无限长的半径为a的半边圆筒上电荷密度为ρs,求轴线上的电场强度。
解:在无限长的半边圆筒上取宽度为ϕad的窄条,,电荷线密度为ϕρρadsl=,对ϕ积分,可得真空中无限长的半径为a的半边圆筒在轴线上的电场强度为ydxyad r aE sssˆ)ˆcosˆsin(22ˆ0000⎰⎰-=--==πππερϕϕϕπερπεϕρ题2-3图题2-4图2-4.真空中无限长的宽度为a的平板上电荷密度为ρs,求空间任一点上的电场强度。
解:在平板上'x处取宽度为'dx的无限长窄条,可看成无限长的线电荷,电荷线密度为'dxslρρ=,在点),(yx处产生的电场为ρρρπε'ˆ21),(dxyxEd s=其中22)'(y x x +-=ρ;22)'(ˆˆ)'(ˆyx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为 )}2/2/(2ˆ)2/()2/(ln ˆ{4),(22220y a x arctg y a x arctg y ya x y a x x y x E s --+++-++=περr 为场点到坐标原点的距离,a ,b 为常数。
《电磁场与电磁波》习题参考答案
![《电磁场与电磁波》习题参考答案](https://img.taocdn.com/s3/m/a9f33b587e21af45b307a8e1.png)
况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
电磁场与电磁波第2章课后答案
![电磁场与电磁波第2章课后答案](https://img.taocdn.com/s3/m/7c2f57d90342a8956bec0975f46527d3240ca672.png)
电磁场与电磁波第2章课后答案2-1.已知真空中有四个点电荷q C 11=,q C 22=,q C 34=,q C 48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。
解:z y r z x r z y r z xr ??;??;??;??4321+=+=+-=+-=ρρρρ 84?15?6?3)(41024442333222221110πεπεz y xr r q r r q r r q r r q E ++=+++=ρ2-2.已知线电荷密度为ρl 的均匀线电荷围成如图所示的几种形状,求P 点的电场强度。
题2-2图解:(a) 由对称性04321=+++=E E E E E ρρρρρ(b) 由对称性0321=++=E E E E ρρρρ(c) 两条半无限长线电荷产生的电场为yay x y x a E E E ll a ?2)}??()??{(40021περπερ-=+--=+=ρρρ 半径为a 的半圆环线电荷产生的电场为y aE lb ?20περ=ρ总电场为0=+=b a E E E ρρρ2-3.真空中无限长的半径为a 的半边圆筒上电荷密度为ρs ,求轴线上的电场强度。
解:在无限长的半边圆筒上取宽度为?ad 的窄条,此窄条可看作无限长的线电荷,电荷线密度为?ρρad s l =,对?积分,可得真空中无限长的半径为a 的半边圆筒在轴线上的电场强度为y d x y a d r a E ss s ?)?cos ?sin (22?00000??-=--==πππερπερπε?ρρ 题2-3图题2-4图2-4.真空中无限长的宽度为a 的平板上电荷密度为ρs ,求空间任一点上的电场强度。
解: 在平板上'x 处取宽度为'dx 的无限长窄条,可看成无限长的线电荷,电荷线密度为'dx s l ρρ=,在点),(y x 处产生的电场为ρρρπε'?21),(0dx y x E d s =ρ其中 22)'(y x x +-=ρ;22)'(??)'(?yx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为)}2/2/(2?)2/()2/(ln ?{4),(2222y a x arctg y a x arctg y y a x y a x x y x E s --+++-++=περρ2-5.已知真空中电荷分布为ρ=≤>r a r ar a220;;ρs b r a ==;r 为场点到坐标原点的距离,a ,b 为常数。
电磁场与电磁波_章二习题答案
![电磁场与电磁波_章二习题答案](https://img.taocdn.com/s3/m/9901e54be45c3b3567ec8b6a.png)
静电场 恒定电场习题解答主要问题: 1) 矢量标量书写不加区分(忘记在矢量顶部加箭头) 2) 机械抄袭标准答案,不理解其含义3)不理解极化电荷面密度和极化电荷体密度含义:极化电荷面密度仅仅存在于介质表面,静电场情形下导体表面没有极化电荷面密度(题2-15) 4)所谓验证边界条件对静电场而言有两种方法(题2-13),一是从电位着手判断电位是否连续(12?Φ=Φ)法向电位条件如何?(1212s n nεερ∂Φ∂Φ-+=∂∂,这里格外需要注意说明边界上有没有电荷?s ρ=)二是判断切向电场是不是连续,法向电通密度是不是相等,要是不等,面电荷密度是多少 这两种方法等价。
5)2-2题很多人和标准答案中的坐标图不一致,答案却一样,明显错误2-1、半径为a 的球内充满介电常数为1ε的均匀介质,球外是介电常数为2ε的均匀介质。
若已知球内和球外的电位分别为:122(,) ()(,) ()r Ar r a Aa r r a rθθθθΦ=≤⎧⎪⎨Φ=≥⎪⎩ 式中A 为常数。
求1) 两种介质中的E 和D ;2) 两种介质中的自由电荷密度。
解:1) 在r < a 区域内:111111111A Ar r A A θθεεθε∂Φ∂Φ=-∇Φ=--=--∂∂==--rθr θ1r θE e e e e D E e e , 在r > a 区域内:()()2222222121Aa r r rAarθθεεθ∂Φ∂Φ=-∇Φ=--=-∂∂==-2r θr θ22r θE e e e e D E e e 2) 在r < a 区域内:。
()()()21112111sin sin 2cot r r D D r r r Arθρθθθεθθ∂∂=∇⋅=+∂∂=-+1D在r > a 区域内:()()2222222311sin sin cot r r D D r r r Aa rθρθθθεθ∂∂=∇⋅=+∂∂=-2D 在球面r = a 上,电荷面密度()()()12s r a r a A ρεεθ===⋅-=⋅-=+21r 21n D D e D D2-2一个半径为a 的半圆环上均匀分布线电荷ρl ,求垂直于半圆环平面的轴线z =a 处的电场强度。
电磁场与电磁波第三版 郭辉萍 第2章习题答案
![电磁场与电磁波第三版 郭辉萍 第2章习题答案](https://img.taocdn.com/s3/m/51bcd171168884868762d6ab.png)
(2-1-5)
第2章 静电场分析
2. 分布电荷的电场强度
上述的分析, 我们假设电荷是集中在一个点上, 从宏观的角度讲, 电荷是连续的分布在一段线上、 一 个面上或一个体积内的, 因此, 我们先定义电荷分布。 线电荷密度(Charge Line Density): 当电荷分布 在一细线(其横向尺寸与长度的比值很小)上时, 定 义线电荷密度为单位长度上的电荷
第2章 静电场分析
第2章 静电场和恒定电场
2.1 电场强度与电位函数
2.2 真空中静电场的基本方程 2.3 电介质的极化与介质中的场方程 2.4 导体间的电容与电耦合 2.5 静电场的边界条件
2.6 恒定电场
习 题
第2章 静电场分析
2.1 电场强度与电位函数
2.1.1 库仑定律 库仑定律(Coulom's Law)是静电现象的基本实验定 律, 它表明固定在真空中相距为R的两点电荷q1与q2之间 的作用力:正比于它们的电荷量的乘积; 反比于它们之 两点电 间距离的平方;作用力的方向沿两者间的连线;
(2-1-7)
第2章 静电场分析
P(r) R
dV
V
r
r
O
图2 - 3 体电荷产生的场
第2章 静电场分析
体电荷密度(Charge Volume Density): 如果电 荷分布在一个体积空间内, 定义体电荷密度为单位体 积内的电荷
q V lim V 0 V
式中, Δq是体积元ΔV内所包含的电荷。
荷同性为斥力, 异性为吸力(如图2-1所示), 表达式为
第2章 静电场分析
q1q2 q1q2 F12 a R R 2 3 4 0 R 4 0 R
F12 q2 R
电磁场与电磁波第二章课后答案
![电磁场与电磁波第二章课后答案](https://img.taocdn.com/s3/m/83fac0c3de80d4d8d05a4f6e.png)
第二章静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:E d S q积分形式: E d l 0S l微分形式:E E 0已知电荷分布求解电场强度:1,E(r)( r ) ;1( r) ( r ) d V4 0V | r r|(r)( r r)2,E(r) d VV 4 0| r r|33,E d S q高斯定律S介质中静电场方程:积分形式:D d S q E d l0S l微分形式:D E0线性均匀各向同性介质中静电场方程:积分形式:E d S qE d l 0S l微分形式:E E0静电场边界条件:1,E1 t E 2 t。
对于两种各向同性的线性介质,则D1t D2 t122,D2 n D 1n s 。
在两种介质形成的边界上,则D1 n D2 n对于两种各向同性的线性介质,则1 E1 n 2E2 n3,介质与导体的边界条件:e n E0 ;e n D S若导体周围是各向同性的线性介质,则E n S;Sn 静电场的能量:1 Q21孤立带电体的能量: W e Q2 C2离散带电体的能量: W e n1i Q i i 12分布电荷的能量:W e11S d S1V 2d V l d lS 2l 21静电场的能量密度:w e D E212对于各向同性的线性介质,则w e E2电场力:库仑定律: Fq q2err4常电荷系统: Fd W eq 常数d ldW e常电位系统: F常数d l题解2-1 若真空中相距为d的两个电荷q1及q2的电量分别为q点电荷q 位于q1及q2的连线上时,系统处于平衡状态,试求及 4 q ,当q的大小及位置。
电磁场与电磁波(第三版)课后答案第2章
![电磁场与电磁波(第三版)课后答案第2章](https://img.taocdn.com/s3/m/3a0b6a948662caaedd3383c4bb4cf7ec4afeb6c7.png)
电磁场与电磁波(第三版)课后答案第2章第⼆章习题解答⼀个平⾏板真空⼆极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。
如果040V U =、1cm d =、横截⾯210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。
解(1) 43230004d ()d 9dQ U d x S x τρτε--==-=??110044.7210C 3U S dε--=-? (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=?11004(10.9710C 3U S d ε--=-? ⼀个体密度为732.3210C m ρ-=?的质⼦束,通过1000V 的电压加速后形成等速的质⼦束,质⼦束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。
解质⼦的质量271.710kg m -=?、电量191.610C q -=?。
由21mv qU = 得 61.3710v ==? m s故 0.318J v ρ== 2A m26(2)10I J d π-== A⼀个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀⾓速度ω绕⼀个直径旋转,求球内的电流密度。
解以球⼼为坐标原点,转轴(⼀直径)为z 轴。
设球内任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin r φωθ=?=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a a φφωρωθθππ===J v e e ⼀个半径为a 的导体球带总电荷量为Q ,同样以匀⾓速度ω绕⼀个直径旋转,求球表⾯的⾯电流密度。
解以球⼼为坐标原点,转轴(⼀直径)为z 轴。
设球⾯上任⼀点P 的位置⽮量为r ,且r 与z 轴的夹⾓为θ,则P 点的线速度为sin a φωθ=?=v r e ω球⾯的上电荷⾯密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。
2 电磁场与电磁波第二章习题答案
![2 电磁场与电磁波第二章习题答案](https://img.taocdn.com/s3/m/102e5df7ba0d4a7302763ac4.png)
第二章 习题解答2.5试求半径为a ,带电量为Q 的均匀带电球体的电场。
解:以带电球体的球心为球心,以r 为半径,作一高斯面,由高斯定理S D dS ∙⎰ =Q ,及D E ε= 得,错误!未找到引用源。
r ≤a 时, 由S D dS ∙⎰ =224433Qr a ππ⨯,得34Qr D a π= 304Qr E a πε= 错误!未找到引用源。
r>a 时,由S D dS ∙⎰ =Q ,得34Qr D r π= 304Qr E rπε= 2.5 两无限长的同轴圆柱体,半径分别为a 和b (a<b ),内外导体间为空气。
设同轴圆柱导体内、外导体上的电荷均匀分布,其电荷密度分别为1S ρ和2S ρ,求: 错误!未找到引用源。
空间各处的电场强度;错误!未找到引用源。
两导体间的电压;错误!未找到引用源。
要使ρ>b 区域内的电场强度等于零,则1S ρ和2S ρ应满足什么关系?解:错误!未找到引用源。
以圆柱的轴为轴做一个半径为r 的圆柱高斯面,由高斯定理S D dS ∙⎰ =q及D E ε= 得,当0<r<a 时,由S D dS ∙⎰ =q=0,得D =0,E =0当a ≤r ≤b 时,由S D dS ∙⎰ =q,得D r l π⨯2⨯= 1S ρa l π⨯2⨯D =1S r e r ρ ,10S r aE e rρε= 当b<r 时,由S D dS ∙⎰ =q,得D r l π⨯2⨯= 1S ρa l π⨯2⨯+2S ρb l π⨯2⨯D =12s s r a b e r ρρ+ ,E =120s s r a b e rρρε+ Equation.DSMT4 11ab 00ln b b s s a a a a a E dr dr r b ρρεε∅===⎰⎰ Equation.DSMT4 ρ>0的区域外电场强度为0,即:E =120s s r a b e rρρε+ =0,得1S ρ=2s b a ρ- 2.9 一个半径为a 的薄导体球壳,在其内表面覆盖了一层薄的绝缘膜,球内充满总电量为Q的电荷,球壳上又另充了电量为Q 的电荷,已知内部的电场为4()r r E a a= ,计算: = 2 \* GB2 ⑵球的外表面的电荷分布;布;= 4 \* GB2 ⑷球心的电位。
电磁场与电磁波第二章课后答案
![电磁场与电磁波第二章课后答案](https://img.taocdn.com/s3/m/74a099df336c1eb91b375d75.png)
第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:积分形式:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式:q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式:ρ=⋅∇D0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式:εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式:ερ=⋅∇E0=⨯∇E静电场边界条件:1,t t E E 21=。
对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。
在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ; S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ== 离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W l l S S Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w 对于各向同性的线性介质,则2 21E w e ε=电场力:库仑定律:rrq q e F 2 4πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u=0
∂u 1 ∂u ∂u E = −∇u = − e ρ + eϕ + e z ρ ∂ϕ ∂z ∂ρ
得到 题 2-9 图
E = −∇u = 0, ρ ≤ a
a2 a2 E = − A 1 + 2 cos ϕ e ρ + A 1 − 2 sin ϕ eϕ , ρ ≥ a ρ ρ
代入得到
2 2
r1
-2 q
Y
S1 (-a, 0 , 0)
X
S 2 (a, 0, 0)
题 2-7 图
u (r ) =
q 4πε 0
1
( x + a)
2
+ y2 + z2
−
2 2 2 ( x − a) + y + z 2
电位为零,即令
q u (r ) = 4πε 0
∂u2 =0 ∂x
代入,得到
ρ S下 = −ε 0
∂u1 ∂x
=
x =0
ρd ρd ε U ε U x2 − 0 0 + 0 = − 0 0 + 0 2d 6 x =0 6 d d
ρ0
对于上极板,导体中的电位为常数
u1 = U 0
有
∂u1 =0 ∂x
上极板下表面电荷密度为
l
场分布具有柱对称性,电通密度矢量 D 仅有 e ρ 分量,由 高斯定理 题 2-15 图
D ⋅ dS = ρ
(S ) (V )
V
dV
取圆柱面为高斯面,有
2π
Dρ ρ ldϕ = 20 ρ e
0 0 0
2π ρ
−ρ
ρ ld ϕ d ρ
2πρ lDρ =
2π ρ
20 ρ e
b b
U = ò E ⋅ dl = ò
a a
arS 1 ar ar b 1 eρ ⋅ eρ d r = S 1 ò d r = S 1 ln a e0r e0 a r e0
b
(3)要使 ρ > b 区域内的电场强度为零,由上述情况③的结果可知,必须满足
a ρ S 1 + bρ S 2 = 0
2-9.电场中有一半径为 a 的圆柱体,已知圆柱内、外 的电位为
D ⋅ dS = 2π l ρ Dρ = Q = 2π al ρ
(S )
S1
+ 2π bl ρ S 2
Dρ =
a ρ S1 + bρ S 2
ρ
D =
a ρ S1 + bρ S 2
ρ
eρ
E =
a ρ S1 + bρ S 2
ε0ρ
eρ
(2)求两导体间的电压,由电位与电场强度之间的关系(此时电场强度须使用情况②时电 场强度的值) ,可以得到
2-11.两无限大平行板电极,距离为 d,电位分别为 0 和 U0,两板间充满电荷密度为 ρ 0 x / d 的介质,如 图所示。求两极板间的电位分布和极板上的电荷密 度。 解 由于两无限大平板间存在电荷密度分布, 电 位函数满足泊松方程。又平板沿 Y 和 Z 方向无穷大, 电位分布与 x 和 z 无关,因此,有
第二章 静电场 2-1. 已知半径为 r = a 的导体球面上分布着面电荷密度为
ρ S = ρ S 0 cos ϑ 的电荷,式中的 ρ S 0 为常数,试计算球面
上的总电荷量。 解 取球坐标系,球心位于原点中心,如图所示。由 球面积分,得到
2p p
r 2 sin qd qd j
q
j
r=a
Q = òò r S dS = ò
3 3 − − 2 2 + − y ( x + a ) + y 2 + z 2 2 + 2 y ( x − a ) + y 2 + z 2 2 e y 3 3 − − 2 2 + − z ( x + a ) + y 2 + z 2 2 + 2 z ( x − a ) + y 2 + z 2 2 e z
D ⋅ dS =
(S )
l
0 0
2π
Dρ eρ ⋅ eρ ρ dϕ dz = 2π l ρ Dρ = Q
其中 Q 为高斯面 S 内包围的总自由电荷。 (1)求空间各处的电场强度,分为三种情况 ①当 0 < ρ < a ,即内导体内部,此时 Q = 0 ,故有 Dρ = 0 D = 0 E = 0
=0 − 2 2 2 2 2 2 ( x + a) + y + z ( x − a) + y + z 1 2
简化可得零电位面方程为
( 3x + a )( x + 3a ) + 3 y 2 + 3z 2 = 0
根据电位与电场强度的关系,有
∂u ∂u ∂u E(r ) = −∇u (r ) = − e x + e y + e z ∂y ∂z ∂x 3 3 − − q 2 2 2 2 2 2 2 2 e =− − x + a) ( x + a) + y + z + 2( x − a) ( x − a) + y + z ( x 4πε 0
+r s
E2
E1
电,面密度为 -r S 。 对于单一均匀带电无限大平面,根据书上例 2.2 得到的推论,无限大带电平面的电场表达式为
-r s
E3
E=
rS 2e 0 rS , E3 = 0 e0
题 2-2 图
对于两个相距为的 d 无限大均匀带电平面,根据叠加原理
E1 = 0, E2 =
Z
S1 (0 ,0, 4)
②当 a <
ρ < b ,此时 Q = 2π al ρ S1 ,由高斯定理可得
D ⋅ dS = 2π l ρ Dρ = Q = 2π al ρ
(S )
S1
Dρ =
a ρS1
ρ
D =
a ρS1
ρ
eρ
E =
a ρS1ε0ρ来自eρ③当 ρ > b ,此时高斯面内的 Q = 2π al ρ S 1 + 2π bl ρ S 2 ,由高斯定理可得
U0
ρ0 x
d
题 2-11 图
ρ ρ d 2u =− V =− 0 x 2 ε0 ε 0d dx
且满足边界条件
u x =0 = 0 u x = d = U 0
求解二阶常微分方程,得到
u =应用边界条件,有
1 r0 3 x + c1 x + c2 6 e0 d
ì u = 0, c2 = 0 ï ï ï x =0 rd U í u x=d = U 0 , c1 = 0 + 0 ï ï 6e 0 d ï ï î
此方程组无解,因此,空间没有电场强度为零的点。 2-8. 两无限长同轴圆柱导体,半径分别为 a 和 b (a < b) ,内外导体间为空气,如题 2-8 所 示。设同轴圆柱导体的电荷均匀分布,其电荷面密度分别为 ρ S 1 和 ρ S 2 ,求: (1)空间各处 的电场强度; (2)两导体间的电压; (3)要使 ρ > b 区域内的电场强度等于零,则 ρ S 1 和 ρ S 2 应满足什么关系? 解 根据内外导体表面的电荷分布, 可判断出空间电场分布具有柱对称性。 在柱坐标中, 作一长度为 l , 半径为 ρ 的同轴圆柱形闭合高斯面 S , 则在 S 侧面上 D 的大小处处相等,D 的方向均沿 eρ 方向。而在 S 的两端面上,由于 D 与端面方向垂直,故 D 对两端面的通量贡 献为零。根据高斯定理,我们可以得到
要是电场强度为零,必有
Ex = 0 , E y = 0 , Ez = 0
即
3 3 − − 2 2 2 2 2 2 2 2 − ( x + a ) ( x + a ) + y + z + 2 ( x − a ) ( x − a ) + y + z = 0 3 3 − − 2 2 2 2 2 2 2 2 x a y z x a y z y y 2 − + + + =0 + + + − ) ) ( ( 3 3 − − 2 2 2 2 2 2 2 2 − z ( x + a ) + y + z + 2 z ( x − a ) + y + z = 0
1 q1 q2 u (r ) = + 4πε 0 R1 R2
式中
+q
Z
P ( x, y,z )
R1
r
r2
o
R2
R1 = r - r1 = ( x + a ) e x + ye y + e z R1 = ( x + a ) + y 2 + z 2 R 2 = r - r2 = ( x - a ) e x + ye y + e z R2 = ( x - a ) + y 2 + z 2
ρ S上 = ε 0
∂u2 ∂x
= ε0
x=d
∂u ∂x
=
x =d
ε 0U 0
d
−
ρ0 d
3
r
ρV = 20 ρ e− ρ dr