车载逆变电源的设计
《大功率车载逆变电源的设计开题报告1700字》
开题报告
二、国内外研究现状
目前市场上常用的车载逆变器按功率等级大致可以分为75W、100W、150W、30W、500W、800W、1000W、1500W、2000W、2500W等规格。
车载逆变器的输入为汽车点烟器或者蓄电池,一般汽车点烟器10A左右的电流,故点烟器输出的功率约为150W。
对于功率等级小于150W的车载逆变器可以直接由点烟器供电,大于150W功率等级时需要直接从车载蓄电池供电,否则会因为过流烧毁汽车配件及保险丝。
随着车上使用电器种类的增多,对车载逆变器的容量提出了更高的要求,小功率150W及以下规格的车载逆变器已经不能满足人们的需求,中大功率的车载逆变器是今后的发展趋势[1]。
目前市场上所使用的车载逆变器一般是先升压再逆变
三、研究内容及拟解决的关键问题
1、设计内容:设计宽输入、高增益、大功率车载逆变电源。
(1)分析当前可行的主电路拓扑和控制方案,选择电路拓扑和控制方案。
(2)计算主电路主要元器件参数。
(3)完成控制电路的硬件电路设计和软件设计。
(4)通过仿真实验对理论分析进行验证。
2、设计要求:
(1)输入电压为:DC18V-36V
(2)输出电压:AC220V
(3)额定输出功率:3kW
(4)谐波畸变率:<3%
3、关键问题:
(1)前级DC/DC变换器需满足宽输入电压范围内的稳定输出;
(2)DC/DC变换器需要有髙升压比,可以满足逆变所需360V-380。
基于TL494车载逆变电源
1
选题的目的、意义和要完成的任务
• •
由于在国外汽车人均占有率很高,所以车载逆变器在国 外几乎是每辆车必须具备的。 但在国内由于人均汽车拥有率不高,所以这种转换器的 普及率还很低。但是目前国内汽车的销售量正在逐 年增 加,因此车载逆变电源在国内有很大的市场前景。但是 随着车用电器产品的增多,对电能质量以 及功率也有更 高的要求,而一般的车载用逆变器多为方波逆变器,这 就限制了一些电器产品的使用。 所以一种正弦波逆变器 具有不可替代的优势,是车载用逆变器的发展方向。
基于TL494车载逆变电源
于王浩,余强,梁凡,赵文婷,卑 娇娇
目的和意义
产品的优点
产品电路的设计
取得的成果
1
选题的目的、意义和要完成的任务
• 选题的目的和意义
随着社会的发展,汽车越来越普及,成为我们生活不可 或缺的组成部分。同时汽车也正在从单纯的 实用型交通 工具向实用与享受于一体的交通工具演变,很多甚至以车 为家,如各类房车已经并不罕见。 因此,车用电子产品 如车载冰箱、车载电视、车载音响设备等,还有手机、笔 记本电脑等也就随之日益 增多。但是现在目前常用的电 器产品,除了有一部分可以直接使用蓄电池供给的低压直 流电外,更普 遍的还是需要使用 220V 的交流电,而汽 车上只有蓄电池供给的直流电,这就需要将这种直流电逆 变为 一般电器所需的工频交流电
大 功 率 LED 照 明 优 点
1.高效节能 2.超长寿命
3.光线健康
4.绿色环保
5.光 1.功率LED灯的伏安特性
•
由上图其正向电流随正向电压按指数规律变化,很小的电压波动就会引起很大的电流变化,因此常以电流为采样信号来控制 LED的亮度。
• 2.功率LED灯的光特性
车载逆变电源设计文献综述
《车载逆变电源设计》文献综述车载逆变电源是将汽车发动机或汽车电瓶上的直流电转换为交流电,供一般电器产品使用,是一种较方便的车用电源转换设备。
它是常用的车用汽车电子用品,通过它可以在汽车上使用平时我们用市电才能工作的电器。
比如电视机、笔记本电脑、电钻、医疗急救仪器、军用车载设备等,可应用于各个行业领域。
以正弦波输出的车载逆变电源可提供不间断的高质量交流电,可适应任何领域,但其技术要求高,电路结构比较复杂。
一、研究意义笔者认为,研究车载逆变电源有以下意义:第一,研究车载逆变电源可以广泛用于日常生活、计算机、邮电通信、电力系统和航空航天等领域,它的开发和应用在我们的生活中起着至关重要的作用。
第二,中国进入WTO之后,国内市场私人交通工具越来越多,所以车载逆变器电源作为在移动中使用的直流变交流的转换器,给人们的生活带来很多的方便,是一种常备的车用汽车电子装备用品。
第三,车载逆变器是一种能够将12V直流电转换为市电相同的220V交流电,供一般电器使用,是一种很方便的车用电源转换器,它在国内外很受欢迎。
第四,正弦波车载逆变电源的发展和应用在节约能源及环境保护方面都具有深远的意义。
二、资料来源和范围(一)图书馆馆藏图书在图书馆馆藏图书M类中搜索到以下相关资料:王兆安,黄俊主编《电力电子技术》;金海明主编《电力电子技术》;邓嘉主编《机电工程》;曹保国主编《电气自动化》等书籍。
(二)期刊数据库检索主要利用CNKI数据库(china national knowledge infrastructure)。
数据库访问地址为:。
在使用上述数据库搜索的过程中,笔者选择中国学术期刊数据库,在“摘要”字段中,以“车载逆变电源”为关键词进行检索,文章结果显示有71篇相关论文,对笔者有直接参考价值的有:袁义生著《一种高效逆变电源及绿色工作模式的研究》、曹保国著《小功率车载逆变电源的设计》、朱保华著《对车载逆变电源技术的研究》、陆原著《基于工频变压器的独立逆变电源设计》、康冰著《高性能全数字化车载逆变电源》、丁成伟著《一种实用的车载逆变器的设计》、邓嘉著《基于PIC单片机车载逆变电源逆变器的研究》、黄靖著《基于PIC单片机的纯正弦车载逆变电源设计》、李政著《一种低成本的车载逆变电源》、孟庆云著《一种简单实用的车载正弦波逆变电源》。
车载逆变电源毕业设计
车载逆变电源毕业设计车载逆变电源毕业设计近年来,随着汽车行业的快速发展,车载电子设备的应用也越来越广泛。
而车载逆变电源作为车载电子设备的核心部件之一,其重要性不言而喻。
本文将探讨车载逆变电源的毕业设计,以期为相关领域的研究者提供一些参考和启发。
首先,我们需要明确车载逆变电源的作用和需求。
车载逆变电源主要用于将汽车电池的直流电转换为交流电,以供车载电子设备使用。
在设计车载逆变电源时,我们需要考虑以下几个方面的需求:1. 输出功率和电压范围:不同的车载电子设备对功率和电压的需求是不同的。
因此,车载逆变电源的设计应该能够满足不同设备的需求,并具备一定的输出功率和电压范围。
2. 效率和稳定性:车载逆变电源的效率和稳定性对于车载电子设备的正常运行至关重要。
高效率的设计可以减少能源浪费,提高车辆的燃油经济性。
而稳定的输出电压可以保证设备的正常工作,避免因电压波动而引起的故障。
3. 尺寸和重量:由于车载空间有限,车载逆变电源的尺寸和重量也是需要考虑的因素。
设计师需要在保证性能的前提下,尽量减小尺寸和重量,以便更好地适应车辆的空间限制。
基于以上需求,我们可以开始设计车载逆变电源。
在设计过程中,我们可以采用以下几个步骤:1. 选择逆变拓扑结构:逆变拓扑结构是车载逆变电源设计的基础,不同的拓扑结构具有不同的特点和适用范围。
常见的逆变拓扑结构包括全桥逆变器、半桥逆变器和单相逆变器等。
根据需求和实际情况,选择合适的逆变拓扑结构是设计的第一步。
2. 选择电子元器件:在设计车载逆变电源时,我们需要选择合适的电子元器件,包括功率开关器件、滤波电感、电容等。
这些元器件的选择应考虑到功率、效率、可靠性和成本等因素。
3. 控制策略设计:车载逆变电源的控制策略直接影响其性能和稳定性。
在设计过程中,我们需要选择合适的控制策略,如PWM调制、电流控制等,以实现稳定的输出和高效率的转换。
4. 效率和稳定性优化:在设计完成后,我们可以通过一些优化措施来提高车载逆变电源的效率和稳定性。
车载逆变电源的设计及仿真毕业设计
目前市场上常见的车载逆变器按功率等级大致可以分为75W、100W、150W、300W、500W、800W、1000W、1500W、2000W、2500W等规格。车载逆变器的输入为汽车点烟器或蓄电池,一般汽车点烟器10A左右的电流,故点烟器输出的功率约为150W。对于功率等级小于150W的车载逆变器可以直接由点烟器供电,大于150W功率等级时需直接从车载蓄电池供电,否则会因过流烧毁汽车配件及保险丝。随着车上使用的电器种类增多,对车载逆变器的容量提出了更高的要求,小功率150W及以下规格的车载逆变器已经不能满足人们需求,中大功率的车载逆变器是今后的发展趋势。车载逆变器所带的负载通常为以下几类:第一类:整流性负载,如笔记本电脑、各种充电器、组合式音响、数码相机、打印机、游戏机、影碟机、移动DVD;第二类:电阻性负载,如小型电热器具,电热杯等;第三类:感性负载,车载冰箱、照明灯、电转等电动机型的电器。车载逆变器按输出电压波形主要可以分为两种:方波和正弦波。方波逆变结构简单,控制方便,但方波逆变输出电压谐波含量高,同时带负载能力较差且对使用电器寿命影响较大。随着负载增大,方波中包含的三次谐波分量使负载电流容性分量增加,严重时会损耗逆变器输出滤波电容。最初采用简易的多谐振荡器制作的车载方波逆变器,输出功率小,带负载能力差,已逐步被市场淘汰。近年来提出了准正弦波逆变(即修正正弦波),可以带电阻和整流桥负载,满足了日常大部分电子产品的要求,效率较高,最高效率约为90%,价格适中,是当前市场的主流产品。但是准正弦波其本质是带死区时间的方波,仍然不能满足车载冰箱、日光灯、电风等感性负载的要求。一些精密的设备和感性负载类的电器必须要正弦波供电才能工作,否则,轻则电器设备不能正常工作,重则造成损坏用电设备或大大缩短车载逆变器的寿命。正弦波逆变,弥补了方波逆变的不足,适合任何类型的负载,但是控制相对复杂,效率较低,因此高效率正弦波车载逆变器日益成为一种需求。[2]综上所述,作为车载电源转换器,针对其特定的应用场合,必须具有满足以下几个方面的要求:
车载电源逆变器电路原理图
车载电源逆变器电路原理图一市场上常见款式车载逆变器产品的主要指标输入电压:DC 10V~14.5V;输出电压:AC 200V~220V±10%;输出频率:50Hz±5%;输出功率:70W ~150W;转换效率:大于85%;逆变工作频率:30kHz~50kHz。
二常见车载逆变器产品的电路图及工作原理目前市场上销售量最大、最常见的车载逆变器的输出功率为70W-150W,逆变器电路中主要采用TL494或KA7500芯片为主的脉宽调制电路。
一款最常见的车载逆变器电路原理图见图1。
车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。
图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。
由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。
图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。
TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。
基于PIC单片机的纯正弦车载逆变电源设计
基于PIC单片机的纯正弦车载逆变电源设计作者:黄靖来源:《海峡科学》2008年第08期[摘要] 设计一款以PIC单片机为控制核心的车载逆变电源,单片机作为正弦脉冲宽度调制(SPWM)的控制器,提供稳压、欠压保护等功能,把汽车蓄电池的12V直流电转变成220V 纯正弦交流电。
[关键词] 车载逆变电源正弦脉宽调制单片机1 引言随着社会的发展,人民生活水品的不断提高,汽车逐渐进入了大众的家庭中,有车族们已经不仅仅将汽车作为一种代步工具了,而开始将其作为一种享受生活的工具。
有车族在户外需要使用的电子设备越来越多,例如汽车音响、车用DVD、车用冰箱、手提电脑、手机充电器和各种电源适配器等等,而这些电子设备一般都需要用市电220V供电,汽车所能提供的电源是蓄电池,一般小车是12V,因此要使用这些设备必须配备电源转换器,即车载逆变电源。
车载逆变电源一般使用汽车电瓶或者点烟器供电,将汽车蓄电池的 12V直流电转变成一般电器所需要的220V交流电。
在发达国家车载逆变电源是每辆车必须具备的。
据统计,国内配备这种转换器的车辆还不足20%,加之每年汽车销售量居高不下,因而电源转换器在国内有很大的市场前景。
传统车载逆变电源都是准正弦波的逆变电源,也就是输出的交流电是方波220V,多采用PWM集成控制芯片控制逆变电路输出,如SG3525或TL494,存在着输出谐波大,效率低等问题,适用的负载较窄。
本文介绍了一种输出为稳定、平滑的纯正弦波的车载逆变电源,以PIC单片机作为主控制器,产生逆变器的SPWM信号,经输出滤波后可等到标准的正弦波,同时具有稳压、过流保护、欠压保护等功能,使逆变电源的适用负载更广。
2 纯正弦车载逆变电源系统原理纯正弦车载逆变电源系统原理如图1所示,主电路部分:蓄电池的12V直流电通过DC/DC升压电路升压为350V的高压直流电,DC/AC逆变电路将高压直流电转变为交流SPWM波,通过LC滤波后得到纯正弦的220V/50HZ交流电。
车载12v转220v逆变器原理
车载12v转220v逆变器原理宝子们,今天咱们来唠唠车载12V转220V逆变器这个超酷的小玩意儿的原理呀。
咱先说说这个12V是啥。
在咱的汽车里呀,有个12V的电源系统,这个就像是汽车的小能量库。
这个12V的电呢,能让咱车上的好多小电器工作,像收音机啦,小灯啦之类的。
但是呢,咱们生活里好多电器是用220V的电的呀,比如说笔记本电脑的充电器,要是直接插在12V上,那可不行,就像给小仓鼠喂大象的食物量,完全不匹配嘛。
这时候,逆变器就闪亮登场啦。
逆变器就像是一个超级翻译官,把12V这种汽车能给的“语言”,翻译成220V那种家里电器能听懂的“语言”。
那它到底是怎么做到的呢?这里面有好多奇妙的电学小魔法呢。
逆变器里面有个很重要的部分叫振荡器。
这个振荡器呀,就像一个小鼓手,不停地打着节奏。
它能把12V的直流电变成一种有规律变化的电,这种电就有点像交流电啦,不过还不是真正的220V交流电哦。
这个振荡器就像是在给12V的电做一个大变身的前奏。
然后呢,还有一个叫变压器的家伙。
这个变压器可太有趣啦,它就像一个魔法变压盒子。
它能把经过振荡器初步处理的电,进行电压的升高。
就好比把一个小矮人,一下子变成一个大巨人的高度。
不过这个过程可不是随随便便的,是按照一定的比例来变的。
通过变压器的精心操作,电压就开始朝着220V的目标靠近啦。
在这个过程中呀,还有一些其他的小零件在帮忙呢。
比如说滤波电路。
这个滤波电路就像是一个超级清洁工,把那些在变身过程中产生的杂波、乱码一样的东西都清理掉。
如果没有它呀,变出来的220V电就像一碗有沙子的粥,不纯净,会影响电器的使用呢。
它把电变得干干净净、规规矩矩的,这样就更接近咱们家里那种标准的220V 交流电啦。
等经过这一系列的操作之后呀,原本汽车里12V的电,就成功地变成了220V的电啦。
这样咱们就可以在车里使用那些需要220V电压的电器啦。
就像在汽车里创造了一个小小的家庭用电环境。
咱可以在长途旅行的时候,在车里给笔记本电脑充电,让它陪着我们一起看电影、工作;或者用个小的电热水壶,在寒冷的天气里喝上一杯暖暖的茶,是不是超级棒呢?不过呀,宝子们也要注意哦。
车载电源设计报告
车载电源设计报告介绍车载电源是指在车辆中为电子设备提供稳定电力的装置。
在现代汽车中,各种电子设备的使用越来越普遍,如车载导航系统、车载音响、行车记录仪等。
因此,设计一个高效可靠的车载电源对于车辆的正常运行和乘客的舒适体验至关重要。
本报告将详细介绍车载电源的设计步骤和考虑因素,以及一些常见的电源设计技术。
设计步骤1. 确定电源需求首先,我们需要确定车辆中各个电子设备的电源需求。
对于每个设备,需要确定其工作电压、工作电流以及最大功率消耗。
2. 选择电源类型根据车辆电子设备的电源需求,我们可以选择合适的电源类型。
常见的车载电源类型包括直流-直流(DC-DC)转换器和直流-交流(DC-AC)逆变器。
3. 确定电源容量根据各个电子设备的功率需求,我们可以计算出整个车载电源的总功率需求。
根据总功率需求,我们可以确定所需的电源容量,以确保电源能够满足所有设备的电力需求。
4. 选择电源元件在选择电源元件时,需要考虑其工作效率、温度特性和可靠性。
常见的电源元件包括稳压器、开关元件和滤波器等。
5. 进行电路设计和布局根据所选的电源类型和电源元件,进行电路设计和布局。
确保电路的稳定性、可靠性和安全性。
6. 进行电源效果测试设计完成后,进行电源效果测试。
测试包括输出电压稳定性、负载能力和短路保护等方面。
7. 优化设计根据测试结果进行设计优化。
优化包括提高效率、减少功耗和减小体积等方面。
考虑因素1. 温度车载环境温度会有较大变化,因此车载电源的设计需要考虑温度对电源元件的影响。
选择耐高温的元件和进行散热设计可以提高电源的稳定性和寿命。
2. 抗干扰能力车辆中存在各种电磁干扰源,如发动机、点火系统和车载音响等。
因此,车载电源的设计需要考虑抗干扰能力,以保证电源的正常工作和输出稳定。
3. 安全性车载电源设计需要符合相应的安全标准,以确保乘客和车辆的安全。
安全性考虑包括过流保护、过压保护和短路保护等。
4. 效率车载电源的效率直接影响电池寿命和燃油消耗。
一种车载逆变器的SPWM电路设计
高电路的信号传输速度 ,又减小了产品的体积,使 得功率管的驱动电路更趋简单。I R 2 1 1 0可输出两路 P WM信号驱动桥式逆变电路高低压侧的功率管 , 其
但此类 电路 的 S P WM 信 号 的产 生 ,多采 用正 弦
波震 荡 电路 、三角 波发 生 电路 以及 比较器 电路等组 合而成 ,使得 电路 更趋复 杂 ,性 价 比低 。为 了进一
步使电路简单化 ,使性能更加优化 ,提高电路的自 我保护能力 ,本文提出了另外一种基于 S T C 单片 机产生 S P WM信号控制逆变器的 D C / A C变换 的电 路。该 电路简单可靠 , 抗干扰能力强 ,成本低 , 可
用 P WM 集成芯片如 S G 3 5 2 5 、U C 1 5 2 5 、T I M9 4等 进行控制 ,其最大的缺点是输 出谐波大 , 效率低 , 适用 的负载较窄 。随着 数字信号处理技术 的发 展 ,以 S P WM 控制方式设计的逆变电源便可以做 到以正弦波方式输 出,它可以降低谐波 , 提高效率
内部 为 自举 电路 设 计 了悬 浮 电源 ,确 保 可 以驱 动
块, 我们可j 亩 过控制和没置 P C A模块的相关寄存器,
编程产生两路互补的 S P WM 脉冲。 由于 S T C 1 2 C 5 6 2 0 A D单 片机引脚产 生的 S P WM 脉 冲为 T T L 电平 ,无法 直接 驱动 全桥逆 变 电路 , 常用 的解决方 式是采用 电磁 隔离 或者光 电隔离方式
( 1 .南亚 新 能源技 术 开发有 限公 司 ,广 东 汕 头 5 1 5 9 0 0 ; 2 . 汕 头职 业技 术 学院 机 电工程 系 ,广东 汕 头 5 1 5 0 7 8 )
基于EGS002的车载逆变器设计
基于 EGS002的车载逆变器设计[摘要] 本文用EGS002作为核心器件,设计出了一款以直流电压为12V的电源的车载逆变模块。
主要包含BOOST升压模块、单极控制逆变模块、辅助电源模块、滤波模块组成,分别介绍了车用逆变电源各模块的原理及其拓扑结构。
根据实验测试结果显示,这款车载逆变器,可以将输入的低压直流电转换为电气设备需要的工频交流电输出,一般是220V、50Hz的交流电压。
本模块设计的转化的效率高达95%甚至更高,输出电压的波形比较稳定,总谐波失真较小,工作性能牢靠。
此外,本次设计的车载逆变模块还能够防止过压、防止过流、防止过热等问题。
关键词:单相逆变 EGS002 车载逆变器高效率目录引言 3一、系统结构与原理介绍 41.1系统结构 41.2升压电路原理 41.3 SPWM调制原理 5二、硬件电路设计 62.1逆变电路 62.2控制电路 62.2.1BOOST控制电路 62.2.2逆变控制电路 72.3辅助电源 7三、实验结果 7四、结论 8参考文献 8引言由于社会在不断进步,科技在不断发展,我们现如今所进入的“移动互联网”时代,与我们的生活休戚相关。
作为原始的步行工具,汽车通过不断的发展和完善,已经能够取代原来的“家”的概念。
目前,许多车主的“车与家的融合”概念越来越明显,即“车上装有许多电子产品,常用的有电视、车载冰箱、音箱系统等”。
到目前为止,生活中经常用的电器产品,其供电除了用电池、电池供电的低压DC外,还可以用到经转换后得到的220V交流电源。
而这款车载逆变器[1],就是将你输入的12V直流电压转换为家里的电气设备可以使用的工频交流电,电压、频率的参数分别为220V和50Hz,是一款安全可靠且使用方便的车用电源转换器。
作为一种用于汽车或家用的电源转换器,其性能非常重要。
它可能不仅会影响到电器和车辆电路的安全和它的使用寿命,与使用者的人生安全也有着紧密的联系。
因此,研制出一款高性能、安全、方便的汽车逆变器,不仅实用价值高而且未来前景广阔。
单相正弦波逆变电源设计原理
单相正弦波逆变电源设计原理+电路+程序目录1.系统设计 (4)1.1设计要求 (4)1.2总体设计方案 (4)1.2.1设计思路 (4)1.2.2方案论证与比较 (5)1.2.3系统组成 (8)2.主要单元硬件电路设计 (9)2.1DC-DC变换器控制电路的设计 (9)2.2DC-AC电路的设计 (10)2.3 SPWM波的实现 (10)2.4 真有效值转换电路的设计 (11)2.5 保护电路的设计 (12)2.5.1 过流保护电路的设计 (12)2.5.2 空载保护电路的设计 (13)2.5.3 浪涌短路保护电路的设计 (14)2.5.4 电流检测电路的设计 (15)2.6 死区时间控制电路的设计 (15)2.7 辅助电源一的设计 (15)2.8 辅助电源二的设计 (15)2.9 高频变压器的绕制 (17)2.10 低通滤波器的设计 (18)3.软件设计 (18)3.1 AD转换电路的设计 (18)3.2液晶显示电路的设计 (19)4.系统测试 (20)14.1测试使用的仪器 (20)4.2指标测试和测试结果 (21)4.3结果分析 (24)5.结论 (25)参考文献 (25)附录1 使用说明 (25)附录2 主要元器件清单 (25)附录3 电路原理图及印制板图 (28)附录4 程序清单 (39)21.系统设计1.1设计要求制作车载通信设备用单相正弦波逆变电源,输入单路12V直流,输出220V/50Hz。
满载时输出功率大于100W,效率不小于80%,具备过流保护和负载短路保护等功能。
1.2总体设计方案1.2.1设计思路题目要求设计一个车载通信设备用单相正弦波逆变电源,输出电压波形为正弦波。
设计中主电路采用电气隔离、DC-DC-AC的技术,控制部分采用SPWM(正弦脉宽调制)技术,利用对逆变原件电力MOSFET的驱动脉冲控制,使输出获得交流正弦波的稳压电源。
1.2.2方案论证与比较⑴ DC-DC变换器的方案论证与选择方案一:推挽式DC-DC变换器。
小功率车载逆变电源的设计
心, 实现 P WM 控制 , 利用其内部 的两 只运放构成 P 调节器实现输 I
出 电压 、 电流 的 双 闭环 控制 。 T 4 4是 一 种性 能优 良的 脉 宽 调 制 控制 器 ,内含 以 下 电路 :+ L9
摘
要: 介绍了一个小功率车载逆 变电源 。主电路采 用 D / C变换器和 D / C逆 变器两级结构, 变器部分选择移相控制方式, C D CA 逆 移相 控制信号用单片机软件产生, 样机的驱动 和输 出电压波形表明完全实现 了移相控制, 具有电路简单 、 体积小 、 重量轻 、 使用方便 等优点 。
3 D D 变 换 电路 C/ C
() C D 1D / C变 换 主 电路 D / C变 换 采 用 推 挽式 电路 , 图 2所示 。原 边 中心 抽 头 接 CD 如
5 V基准 电源 、 误差放大器 , 频率可变锯齿波振荡器 、WM 比较器 、 P
触发器 、 出控制 电路 、 输 输出晶体 管及死 区时间控制电路等, 其内
Ke wo d : n e e o e u p y P M p a es i e o t l y r s i v r rp w rs p l W t h s h f d c n r t o
[ 中图分号 】M44 [ T 6 文献标识码 】 [ B 文章编号 】0 03 8 (0 7 0 —0 60 10 .8 6 2 0 )60 3 —3
部 框 图 见 图 4 。 T 4 4的 工 作 频 率 由其 6脚 电阻 R L9 3和 5脚 电容 C 3决 定 为 5k z 由 1 输 出的基 准 电压 经 电阻 R 0H 。 4脚 8和 R 9分 压 后 得 到
车载逆变电源的设计
车载逆变电源的设计
车载逆变电源是一种能够将汽车直流电源转换成交流电源的电子设备。
下面是车载逆变电源的设计要点:
1. 车载逆变电源的输入电压范围通常为12V-24V,因此设计时要确保电路在这个范围内工作稳定。
2. 使用高效的开关电源设计,以确保能够在尽可能小的体积中输出足够大的功率。
3. 适当选择逆变电路拓扑结构,常用的有全桥式逆变、半桥式逆变和谐振式逆变等。
4. 选用高速开关和大功率低电阻MOSFET管,以提高转换效率和减小损耗。
5. 对输出电压进行稳压控制,以满足不同负载的需求。
6. 考虑安全性,加入过温、过电流、过压、短路等保护电路,确保车载逆变电源具有可靠性和稳定性。
7. 对辐射干扰问题应该加以评估,确保符合电磁兼容性规范。
8. 做好散热设计,使得整体温升不过高,保证设备长期稳定工作。
9. 设计时需要结合实际需要,如输出电压、输出电流、输出功率等等因素进行分析,并对部分元器件进行优化,以提高设计的性价比。
以上是车载逆变电源的设计要点,需要根据实际情况进行针对性的设计。
12v220v车载逆变电源制作技术
2.1ห้องสมุดไป่ตู้
车载逆变器(电源转换器、Power Inverter)是一种能够将DC12V直流电转换为和市电相同的AC220V交流电,供一般电器使用,是一种方便的车用电源转换器。
在一些交通运载,野外测控,可移动武器装备,工程修理等设备中都配有不同规格的电源。通常这些设备工作空间狭小,环境恶劣,干扰大。因此对电源的设计要求也很高,除了具有良好的电气性能外,还必须具备体积小,重量轻,成本低,可靠性高,抗干扰强等特点。针对某种移动设备的特定要求,研制了一种简单实用的车载正弦波逆变电源,采用工作模式,以最简单的硬件配置和醉通用的器件构成整个电路。
1964年,由A.SChonung和H.Stmmter提出的,把通信系统调制技术应用到逆变技术中的正弦波脉宽调制技术(sinusoida_PWM,简称SPWM)。由于当时开关器件的速度慢而未得到推广,直到1975年才由Bristol大学的S.R.Bowes等把SPWM技术正式应用到逆变给事中,使逆变器的性能大大的提高,并得到广泛应用和发展,也使得SPWM技术达到了一个新的高度,此后,各种不同PWM技术相继出现,例如空间向量调制(SVM),随机PWM,电流滞坏PWM等,成为高速器件的主导控制方式,至此,正弦波逆变技术的发展已经基本完善.
Car power inverter car battery can be 12V, 24V DC into 220V needed most AC electrical power switch to the input DC voltage into AC voltage pulse width modulation, and then use push-pull inverters and high-frequency transformer the AC voltage even higher. Then full-wave rectified AC voltage into a DC, and finally by the full bridge converter high voltage DC to AC inverter required. Power converter can be used as mobile AC power supply in vehicles, ships use, also suitable for use with solar cells and can easily provide AC power to these electrical equipment.
车载逆变器电源方案
车载逆变器电源方案1. 引言随着汽车的普及和发展,人们对汽车的功能要求也越来越高,不再满足于只是作为交通工具的基本功能。
面对现代汽车上越来越多的电子设备和需要供电的设备,车载电源方案变得至关重要。
车载逆变器作为一种常见的车载电源方案,可以将直流电源转换为交流电源,满足车辆上各种设备的供电需求。
2. 车载逆变器的工作原理车载逆变器的基本工作原理是将车辆的直流电源转换为交流电源。
它通常由直流输入电路、逆变电路和交流输出电路组成。
2.1 直流输入电路直流输入电路主要由电源输入端、输入滤波电路和直流输出端组成。
电源输入端连接车辆的直流电源,输入滤波电路用于滤除输入电压中的杂波和干扰。
直流输出端连接逆变电路,将滤波后的直流电源供给逆变电路。
2.2 逆变电路逆变电路是车载逆变器的核心部分,它将直流电源转换为交流电源。
常见的逆变电路有两种类型:单相逆变电路和三相逆变电路。
单相逆变电路适用于一些功率较小的设备,而三相逆变电路适用于功率较大的设备。
逆变电路通常由晶体管、继电器、电感、滤波电容和控制电路等器件组成。
逆变电路的工作原理是通过切换晶体管的导通和关断状态,来控制输出交流电压的幅值和频率。
2.3 交流输出电路交流输出电路主要由输出滤波电路和输出端口组成。
输出滤波电路用于滤除输出交流电压中的杂波和干扰。
输出端口则连接各种设备,将输出交流电压供给这些设备。
3. 车载逆变器的应用场景车载逆变器广泛应用于汽车、船舶、房车等场景中。
它可以为车辆上的各种设备提供电力支持,包括但不限于手机充电、电脑使用、DVD播放等。
车载逆变器的功率范围较大,一般从几十瓦到几千瓦不等,可以满足不同设备的功率需求。
4. 车载逆变器的选择与购买在选择和购买车载逆变器时,需要考虑以下几个方面:•功率需求:根据需要供电的设备功率确定逆变器的功率范围。
太小的逆变器可能无法满足设备的功率需求,太大的逆变器则会造成资源浪费。
•逆变效率:逆变效率是衡量逆变器性能的重要指标,它表示逆变器将输入直流电源转换为输出交流电源的效率。
基于SG3525A的新型车载逆变电源设计
基于SG3525A的新型车载逆变电源设计随着经济水平的提高,汽车正逐渐成为人们的日常交通工具然而,人们随身携带的电子产品,例如手机,却不能使用汽车上的电源因此,开发一款经济实用的车载逆变器就成为一种需求。
我们采用集成脉宽调制芯片SG3525A为主控芯片,以CD4020B计数器及与非门电路构成分频分相电路并配以保护电路,实现了逆变器的脉宽调制其在逆变电源工作时的持续输出功率为100W,并具有输出过流保护及输入欠压保护等功能,可实现电源逆变、电压稳定、欠压保护及过流保护等功能系统基本原理本逆变器输入端为汽车蓄电池(+12V,4.5Ah),输出端为工频方波电压(50Hz,220V)其系统主电路和控制电路框图如图1所示,采用了典型的二级变换,即DC/DC变换和DC/AC逆变12V直流电压通过推挽式变换逆变为高频方波,经高频升压变压器升压,再整流滤波得到一个稳定的约320V直流电压;然后再由桥式变换以方波逆变的方式,将稳定的直流电压逆变成有效值稍大于220V的方波电压,以驱动负载为保证系统的可靠运行,分别采集了DC高压侧电压信号、电流信号及蓄电池电压信号,送入SG3525A,通过调整驱动脉冲的占空比或关断脉冲来实现电压调节、过流保护及欠压保护等功能。
主要技术参数输入电压:DC 12V;输出电压:AC 220V±5%,50Hz±2%;额定功率:100W;保护功能:输入直流极性接反保护,输入欠压保护,输出过流保护电路设计1 主控芯片SG3525ASG3525A是ST公司生产的脉冲宽度调制器控制集成电路具有集成基准电压,振荡器同步,软启动时间控制,输入欠电压锁定等功能SG3525A的引脚如图2所示。
振荡频率的确定:振荡频率由三个外部元件RT、CT和RD设置,分别接在6、5、7引脚上振荡频率为fOSC=1/CT(0.7RT +3RD),其中,0.7RTCT为定时电容充电时间,3RDCT为定时电容放电时间为了使分频分相电路取得50Hz振荡频率,本设计设定振荡频率为51.2kHz,取CT=2000pF RT=10kΩ,RD=922Ω输出脉宽的调整:PWM脉冲宽度由引脚9和引脚8中电平较低的一端控制芯片内部的误差放大器U1将电压反馈信号与基准电压信号偏差放大后送入比较器U2的反向输入端,比较器正向输入端的输入则来自电容器CT上的锯齿波,两者做比较后输出方波脉冲来控制SG3525A内部输出功放管的占空比(见图3)本设计中将8引脚经电容接地,9引脚接DC/DC 高压直流电压的反馈电压,由此调整输出直流电压的稳定图3中,U1为SG3525A中的误差放大器,1、2、9分别为芯片管脚,R1~R7、C1、C2均为外接电阻电容SG3525A的16引脚输出5V参考电压电阻R3、R4及U1构成反比例运算器,R4/R3为其静态放大倍数,其值越大控制精度越高但放大倍数太大将引起振荡,因此引入C1和R5使误差放大器成为不完全比例积分控制器,此时静态误差放大倍数不变,动态误差放大倍数减小,既不影响控制精度,又避免过冲引起振荡。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
车载逆变电源的设计摘要本文设计了一款实用的车载逆变器。
该车载逆变器充分运用芯片TL494的固定频率脉冲宽度调制电路及场效应管(N沟道增强型MOSFET)的开关速度快、无二次击穿、热稳定性好的优点而组合设计电路。
该逆变电源的主要组成部分为:DC/DC电路、输入过压保护电路、输出过压保护电路、过热保护电路、DC/AC变换电路、振荡电路、全桥电路。
在工作时的持续输出功率为150W,具有工作正常指示灯、输出过压保护、输入过压保护以及过热保护等功能。
该车载逆变器的制造成本较为低廉,实用性强,可作为多种便携式电器通用的电源。
关键词:逆变电源;过热保护;过压保护;集成电路;振荡频率;脉宽调制车载逆变器(电源转换器、Power Inverter )是一种能够将DC12V 直流电转换为和市电相同的AC220V 交流电、供一般电器使用的车用电源转换器。
车载逆变电源就是将汽车发动机或汽车电瓶上的直流电转换为工频交流电。
它是常用的车用汽车电子用品。
通过它可以在汽车上使用平时我们用市电才能工作的电器,比如电视机、笔记本电脑、电钻、医疗急救仪器、军用车载设备等,可应用于各个行业领域。
按照输出波形来分,车载逆变电源可分为正弦波输出和方波输出两种。
前者可提供不间断的高质量交流电,可适应任何负载,但其技术要求及成本高,电路结构比较复杂。
后者提供的交流电的质量较差,且带载能力差,不能接“感性负载”,但其技术要求低,体积小,电路简单,价格低。
方波逆变器输出的是质量较差的方波交流电,其正向最大值到负向最大值几乎在同时产生,这样,对负载和逆变器本身造成剧烈的不稳定影响。
同时,其带负载能力差,仅为额定负载的40%-60%,不能带感性负载。
如所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容,方波逆变器的制作方法采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。
针对上述缺点,近年来出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。
总的来说,正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。
准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。
本文设计的逆变电源即为准正弦波逆变器。
2.1 概述2.1.1 该逆变电源的基本构成和原理(1)基本构成本次设计电路的方框图如图1所示。
该电路由12V直流输入、输入过压保护电路、过热保护电路、逆变电路I、220V/50KHz整流滤波、逆变电路II、输出过压保护电路等组成。
逆变电路I、逆变电路II的框图分别见图2、图3。
逆变电路又包括频率产生电路(50KHz和50Hz PWM脉冲宽度调制电路)、直流变换电路(DC/DC,将12V直流转换成220V直流)、交流变换电路(DC/AC,将220V直流变换为220V交流)。
图1整机原理方框图逆变电路I的原理如图2所示。
此电路的主要功能是将12V直流电转换为220V/50KHz的交流电。
图2逆变I电路原理方框图逆变电路II的原理如图3所示。
此电路的主要功能是将220V直流电转换为220V/50Hz的交流电。
全桥电路以50Hz的频率交替导通,产生50Hz交流电。
图3逆变II电路原理方框图(2)电路工作原理输入12V直流电源电压,经过逆变电路I得到220V/50KHz的交流电,此交流电再经过整流滤波电路得到220V高压直流电,然后经过逆变II得到220V/50Hz交流电。
其中输入过压保护电路、输出过压保护电路、过热保护电路构成整个电路的保护电路。
一旦输入电压出现过大或者过小时,保护电路立即启动,然后停止逆变电路I的工作。
过热保护电路是当电路工作温度过高时,启动保护使逆变电路I停止工作。
输出过压保护电路与逆变电路II构成反馈回路,一旦电路输出异常则停止逆变电路II的工作。
在逆变电路I中是用一块TL494芯片产生50KHz的脉冲频率,经过变压器推挽电路将12V 直流转换成220V/50KHz的交流电。
在逆变电路II中再用一块TL494芯片产生50Hz的脉冲波,全桥电路以50Hz的频率交替导通,从而将220V直流和50Hz脉冲电路整合,然后输出220V/50Hz的交流电。
在该电路中都是利用TL494的输出端作为逆变电路工作状态的控制端。
2.1.2 逆变电源的技术性能指标及主要特点车载逆变器要将12V直流电转换为和市电相同的220V交流电,供一般电器使用。
通常设备工作空间狭小,环境恶劣,干扰大。
因此对电源的设计要求也很高,除了具有良好的电气性能外,还必须具备体积小,重量轻,成本低,可靠性高,抗干扰强等特点。
逆变电源质量的好坏极大地影响着电子设备的可靠性,其转换效率的高低和带负载能力的强弱直接关系着它的应用范围,因而本设计要求输出电压波形为准正弦波,以克服方波逆变器不能带感性负载的特点。
本设计逆变电源的性能指标及主要特点为:(1)输入:12V直流(汽车蓄电池)。
(2)输出:220V交流(非正弦波)。
(3)输出功率:大于100W。
(4)具有输入过压保护和输出过压保护。
(5)有过热保护功能。
(6)可作为多种电器的通用电源。
(7)含有工作正常指示灯。
2.2 逆变电源的主要元器件及其特性2.2.1 TL494电流模式PWM控制器TL494是一种固定频率脉冲宽度调制电路[1],它包含了开关电源控制所需的全部功能,广泛用于单端正激双管式、半桥式以及全桥式开关电源。
TL494有SO—16和PDIP—16两种封装形式,以适应不同场合的要求。
(1)主要特征集成了全部的脉冲宽度调制电路。
TL494内置线性锯齿波振荡器,外置振荡元件仅两个(一个电阻和一个电容)。
TL494内置误差放大器。
TL494内置5V参考基准电压源。
可调整死区时间。
TL494内置功率晶体管,可提供500mA的驱动能力。
有推或拉两种输出方式。
(2)引脚设置及其功能TL494的内部电路由基准电压产生电路、振荡器、死区时间比较器、误差放大器(两个)、PWM比较器以及输出电路等组成,各引脚功能见表1。
表1TL494引脚功能表引脚号引脚功能1、2 误差放大器I的同相和反相输入端3 相位校正和增益控制端4 间歇期调整,其上加0-3.3V电压时,可使截止时间从2%线性变化到100%;死区时间控制,输入直流电压为0-4V,控制TL494输出脉冲的占空比为0.45-0。
在此基础上,占空比还受反馈信号控制,四脚还常用作软启动控制端,使输出脉冲宽度由零逐渐达到设计值。
5、6 分别用于外接振荡电容Ct和振荡电阻Rt,产生锯齿波电压并送至PWM比较器,振荡频率1,定时电阻取值在1KΩ以上FoscCtRt7接地端8、9、10、11分别为TL494内部两个末级输出三极管的集电极和发射极12 电源供电端13 输出控制端,当该端电压为零时,用于驱动单端电路。
该端接地时为并联单端14输出方式,接14脚时为推挽输出方式15、16 5V基准电压输出端,最大输出电流为10mA误差放大器II的反相和同相输入端(3)工作原理TL494是一个固定频率PWM控制电路,其内部结构如图4所示。
TL494适用于设计所有的单端或双端开关电源电路,其主要性能如下:图4TL494内部结构图·输入电源电压为7~40V,可用稳压电源作为输入电源,从而使辅助电源简化。
TL494 末级的两只三极管在7~40V范围工作时,最大输出电流可达250mA。
因此,其带负载能力较强,即可按推挽方式工作,也可将两路输出并联工作,小功率时可直接驱动。
·内部有5V参考电压,使用方便,当参考电压短路时,有保护功能,控制很方便。
·内部有一对误差放大器,可做反馈放大及保护功能,控制非常方便。
·在高频开关电源中,输出方波必须对称,在其他一些应用中又需要方波人为不对称,即需控制方波的占空比。
通过对TL494的4脚控制,即可调节占空比,还可作输出软启动保护用。
·可以选择单端、并联及交替三种输出方式。
TL494的1脚及2脚为误差放大器的输入端。
由TL494芯片构成电压反馈电路时,1、2脚上通过电阻从内部5V基准电压上取分压,作为1脚比较的基准。
3脚用于补偿校正,为PWM比较器的输入端,接入电阻和电容后可以抑制振荡,4脚为死区时间控制端,加在4脚上的电压越高,死区宽度越大。
当4脚接地时,死区宽度为零,即全输出;当其接5V电压时;死区宽度最大,无输出脉冲。
利用此特点,在4脚和14脚之间接一个电容,可达到输出软启动的目的,还可以供短路保护用。
5脚及6脚接振荡器的接地电容、电阻。
TL494内置线性锯齿波振荡器,振荡频率可通过外部的一个电阻和一个电容进行调节,其振荡频率如下:1Fosc(1)CtRt输出脉冲的宽度是通过电容Ct上的正极性锯齿波电压与另外两个控制信号进行比较而实现的。
三极管VT1和VT2受控于或非门。
当双稳态触发器的时钟信号为低电平时才会被选通,即只有在锯齿波电压大于控制信号时才会被选通。
当控制信号增大时,输出脉冲的宽度将减小。
控制信号由集成电路外部输入,其中一条送至死区时间比较器,另一路送往误差放大器的输入端。
死区时间比较器具有120mV的输入补偿电压,它限制了最小输出死区时间约等于锯齿波周期的4%。
当输出端接地时,最大输出占空比为96%,当输出端接参考电平时,占空比为48%。
在死区时间控制端上接固定电压(在0~3.3V之间)时,即能在输出脉冲上产生附加的死区时间。
PWM比较器为误差放大器调节输出脉冲宽度提供了一个手段:当反馈电压从0.5V 变为3.5V时,输出的脉冲宽度由被死区确定的最大导通百分比时间下降到零。
两个误差放大器具有从-0.3V到Ucc-2.0V的共模输入范围,这可从电源的输出电压和电流中察觉到。
误差放大器的输出端常处于高电平,它与PWM比较器反相输入端进行“或”运算。
正是由于这种电路结构,误差放大器只需最小的输出即可支配控制回路。
当Ct放电时,一个正脉冲将出现在死区时间比较器的输出端,受脉冲约束的双稳态触发器进行计时,同时停止VT1和VT2的工作。
若输出控制端连接到参考电压上,那么调制脉冲交替送至两个三极管,输出频率等于脉冲振荡器的一半。
如果工作于单端状态,且占空比小于50%时,则输出驱动信号可分别从VT1和VT2中取得。
输出变压器为一个反馈绕组及二极管提供反馈电压。
在单端工作模式下,当需要更大的驱动电流输出时,可将VT1和VT2并联使用,这时需将输出模式控制端接地,以关闭双稳态触发器。
在这种状态下,输出脉冲的频率将等于振荡器的频率。