石油化工仪表控制系统
石油化工仪表及自控系统管理规定
![石油化工仪表及自控系统管理规定](https://img.taocdn.com/s3/m/03276af0be1e650e52ea99d0.png)
石油化工仪表及自控系统管理规定第一章总则第一条为加强公司仪表及自控系统管理工作,保障仪表及自控系统安全、经济运行,依据国家相关法律、法规制定本规定。
第二条本规定所指的仪表是指在生产、运营过程中所使用的各类检测仪表、自动控制监视仪表、计量仪表、执行器、在线分析仪器仪表、可燃及有毒气体检测报警器、火灾报警监测系统、工业视频监视系统及其附属单元等,自控系统包括集散控制系统DCS,、过程控制可编程控制器,PLC,、安全仪表系统,SIS,、紧急停车系统,ESD,、,机组控制系统,ITCC,、先进过程控制系统及过程控制微机、小型机、附属网络设备等。
第三条本规定适用于公司相关部门、二级生产单位,以下简称二级单位,、信息技术中心和检测公司。
第四条本规定是公司仪表及自控系统管理的基本要求,二级单位和部门在仪表及自控系统规划、设计、制造、选型、购置、安装、组态、使用、维护、修理、改造、更新、报废等管理工作中,应严格执行国家的有关法规、标准和本规定。
第二章管理职责第五条公司和二级单位机动部门负责管理仪表及自控系统。
各二级单位在机动部门应设相应岗位和专职技术管理人员。
机动部门在主管设备管理的副厂长,副经理,领导下,负责本单位仪表及自控系统的管理。
第六条机动设备处负责计量仪表、安全仪表的维修管理工作,计划处、质量安全环保处负责计量仪表、安全仪表的检定管理工作。
第七条机动设备处负责组织安全环保项目、计量配备项目中仪表自控部分的设计、设计审查、选型、技术交流、签订技术协议、施工组织和竣工验收工作,质量安全环保处、计划处参加,机动设备处负责组织技改项目、技术性维修项目中仪表自控部分的设计审查、选型、技术交流、签订技术协议、施工组织和竣工验收工作,科技信息与规划发展处参加,机动设备处参与新建项目中仪表自控部分的设计审查、选型、技术交流、签订技术协议和竣工验收工作,机动设备处参与先进控制、优化、信息化项目中仪表自控部分的方案确定、设计审查和验收工作。
简述石油化工控制系统的定义
![简述石油化工控制系统的定义](https://img.taocdn.com/s3/m/74661749591b6bd97f192279168884868762b89c.png)
简述石油化工控制系统的定义
石油化工控制系统是指在石油化工生产过程中,为了实现自动化生产和优化控制而设计、安装和操作的一套系统。
它包括了各种传感器、执行器、控制器和通信设备等硬件设备,以及各种算法、模型和软件程序等软件系统。
石油化工控制系统的主要目标是确保生产过程的安全、稳定和高效运行。
它可以实时监测和控制液体、气体和固体的流动、温度、压力、浓度等参数,通过自动化调节和控制,实现稳定的生产操作和产品质量控制。
此外,石油化工控制系统还可以实现能源的节约、生产的优化和故障的诊断和排除等功能。
石油化工控制系统通常包括以下几个方面的内容:
1. 过程监测与控制:通过各种传感器和仪表,实时监测和记录生产过程中的各种物理参数,并根据预设的控制策略和算法,自动调节控制设备的操作,实现对生产过程的控制。
2. 信息传输与处理:将监测到的数据和控制命令通过通信网络传输到中央控制室或其他相关设备,同时对数据进行处理和分析,生成报告和决策依据。
3. 安全与防护系统:包括火灾报警、泄漏监测、紧急停车等安全措施,以保障生产过程中的安全和人员的健康。
4. 设备状态监测与维护:通过在线监测和分析设备状态,实现预测性维护和故障诊断,减少设备故障和停机时间,提高设备的可靠性和可用性。
总之,石油化工控制系统是一个复杂的工程系统,它涉及到多
个领域的知识和技术,旨在提高生产效率,降低生产成本,保障生产安全和环境保护。
石油化工仪表控制系统的应用分析
![石油化工仪表控制系统的应用分析](https://img.taocdn.com/s3/m/29af470beff9aef8941e06a0.png)
石油化工仪表控制系统的应用分析
1 . 新 疆同益投资有限公司 8 3 4 0 0 3
郑华’ 曾启明 2 . 中国石油克拉玛依石化公司 8 3 4 0 0 3
后, 回路 控制快 速平稳 , 兼顾 鲁棒性 和控制精 度的优 点, 全面 保证 了装 置的平稳ห้องสมุดไป่ตู้运行, 提 升装 置的控制 品质, 降低 了操作人 员的工作强度和 精
企业 不断进行现代化建 设的今 天, 我国科技 的迅猛发展 , 将仪表 系统逐 4 . 2 F C S 与D C S 共存 。 D C S 产生于上世纪七十年代 的系统 , 目 前, D C S 步带 向智 能化 、 数字化 及网络微 型化的轨 道, 均表 现出我国用信息化来 系统 的已经处 于成熟阶 段, 其使 用时具 备技 术性好、 可靠性高的优 点 , 带 动工业化 的发展 路子 是正 确的 , 也 取得了一定 的成效 。 但是在 石油化 因此 , 在 实际使用 中得到 广泛推广 和发展 。 F c s 则还处 在发 展阶段 , 其
神压 力。
【 摘要】随着我国科技的迅 猛发展 , 自 动化仪 表控制系统得到很 大的
发展 , 逐步向智能化 、 数字化 及网络微 型化的方向发展 。 现 在我国的石油 化 工仪表控制 系统需要得 到进一 步的完善, 从而多个方面得到发展 , 石油 化 工企业需加强应 用安 全控制 系统的力度 , 提 高其 自动化和 先控 制等先进 的水平, 从而为提 高企业的经济效益和运行的安全性打下 良好的基础 。
得 到较大 提升 。 尤 其是 自动检 测仪 表在适 应 了现 场总 线的控 制系统 的 的优 势这一 目的。 现场 总线被广泛推广 时, 就能 进一步实现一 体化的功 相应需 求 , 迅 速 出现 了现 场总线 型的 变压器。 此变 压器能做 到全数 字模 能 , 并可以进 一步对现场 设备实施优化控制及管理 。 4 . 4 先进 控制及 其优化应用 。 现 阶段 , 我 国可以 熟练 掌握和 应用部 式, 还具 备结 构 简单 、 稳定性 好、 分辨 力强等 优点 , 比常规 的智能 型变 将先进 的控制技 术应用于实际 , 使 系统 装置具备更好的稳 送器具 有更大 的市场优 势。 现阶 段, 现场总线 数字化仪器 已经得 到广泛 分控制 技术 , 的应 用, 其可 互操 作性及 稳定性较 强 , 技术 比较成 熟, 非 常适合用 于石 定 , 运 行中更安全 , 还能提高企 业的产品质量, 确保收率 , 并降低成本 , 油化 工过 程的控 制领域 中。 从而增 加企业 的收 益, 取得 更好的经济效 益 。 如我 公司在催化 、 蒸馏装 该系统是 嵌在D C S 中的, 只要 它 为了强化石油 化工产品的质量管 理, 将在 线分析仪表 直接用于石油 置上 运用的先进 的智能 内模控制技 术, 化工企业 , 石化企 业必须积极 开展相关 系统类 的应 用, 提高先 进的控 制 投入 运行, 该系统就 可以长 期运行 , 不会发生 由于 通信 问题而导 致的 系 应 用水平。 现阶段 , 为了保证 产品质量, 提高 仪表 的应 用水平, 主要采取 统中断, 因此它不会给系统维 护带 来新的问题 , 免维 护。 的仪器包括 : 在线 液相色谱 仪和 在线油品质量 分析仪等在线分析仪表 。 4 . 5 安全控 制系统应用 。 由于现代化 的石化企 业中装置规模 出现不 制作过 程更加 复杂、 运 用的材料 多为易燃 和易爆物质等特点 , 新 出现 的NI R 光谱 分析 仪在石化 企业炼 油调 合的系统 中已经得到广泛 断扩大 、 就 要求设备具备 更高 的安全性 , 从而为设备 的安全运 行提供更 多 应用。 而较 新的 、 成 本较低 的汽油质量指 标快 速测定仪 , 也在实 际的应 因此 , 用中获得较 好 的效果 。 在石油化 工企 业中, 维 护工作 , 特 别是预 测的维 的保障 。 石化企 业会加 大在仪表控制 系统 中安全控制 技术的应用力度 , 减 少工业的事故 损失等 方面 发挥重大作用 。 为 护 养护工作 , 是 比较 重要 的, 它直接影响到 系统 的正常运行。 目 前石油化 从而为避 免工业的灾难 , 。 工企 业采 取建 构 实时传感及 在线联 机的 系统 , 实现监 控加 热 炉效率和 企业的 经济发展提 供安全 保证 热 交换 器等。 同时应用 先进仪 表和 系统, 来 实现诊断、 预 测等 的维护保 比如我 公司 的智能多变 量协调控制技 术可以有效 协调C O T 温度 、 氧 含量、 支路温 度均衡 及负荷控制 系统之 间的关系, 消除系 养, 使 生产设 备达 到最优化 , 生 产潜力的 增幅提 高, 最 终减 少了维护 费 炉膛 负压、
化工公司仪表控制方案及主要仪表性能
![化工公司仪表控制方案及主要仪表性能](https://img.taocdn.com/s3/m/09b6bc88f021dd36a32d7375a417866fb84ac09b.png)
化工公司仪表控制方案及主要仪表性能1主要控制回路本单元的控制以常规的单回路控制为主,此外还有一些复杂控制,如:串级控制,分程控制、比较控制、选择控制及三取二联锁等。
主要复杂联锁控制回路如下:1)重整笫一反应器入口温度与重整进料加热炉燃料气管线压力构成串级控制。
2)重整第二反应器入口温度与第一中间加热炉燃料气管线压力构成串级控制。
3)重整第三反应器入口温度与第二中间加热炉燃料气管线压力构成串级控制。
4)重整第四反应器入口温度与第三中间加热炉燃料气管线压力构成串级控制。
5)稳定塔底部液位:与至E405的重整油流量构成串级控制。
6)稳定塔上部温度与出装置液化石油气流量构成串级控制。
7)稳定塔塔底返塔介质温度与稳定塔重沸器壳程蒸汽流量构成串级控制。
8)稳定塔回流罐液位与稳定塔回流流量构成串级控制。
9)R301焙烧段入口与R201顶部差压分程控制。
10)再生器二段烧焦区氧含量与自管净化风来的空气流量构成串级控制。
11)再生器下部料斗氮气入口与再生器提升器底部氢气入口差压三取二联锁。
12)再生器下部料斗氮气入口与再生器焙烧区差压三取二联锁。
13)再生器下部料斗氮气入口与再生器提升器底部氢气入口差压平均值与再生器下部料斗氮气入口与再生器焙烧区差压平均值组成比较控制回路(低选)。
14)再生器提升器底部氢气入口与还原罐上部差压与再生器提升器二段补气流量E1C30602构成串级控制。
15)还原罐料位、一反提升器底部氢气入口与二反上部料斗顶部出口差压PdIC30702及一反提升器二段补气流量构成三冲量控制。
16)二反上部料斗料位、二反提升器底部氢气入口与三反上部料斗顶部出口差压及二反提升器二段补气流量构成三冲量控制。
17)三反上部料斗料位、三反提升器底部氢气入口与四反上部料斗顶部出口差压及三反提升器二段补气流量构成三冲量控制。
18)四反上部料斗料位与四反提升器二段补气流量构成双冲量控制。
19)脱戊烷塔上部温度与戊烷油至调节汽油出装置线流量构成串级控制。
浅谈石油化工仪表控制系统的应用
![浅谈石油化工仪表控制系统的应用](https://img.taocdn.com/s3/m/82e68ad5d15abe23482f4d76.png)
2 0 1 3 年 第3 3 期f 科技创新与应用
浅谈 石 油化 工仪 表控 制 系统 的应 用
李 松
ห้องสมุดไป่ตู้
( 中国石油天然气股份有 限公 司管道丹 东输油气分公 司, 辽宁 丹 东 1 1 8 0 0 0 ) 摘 要: 科学技术的不断进步 , 计算机 水平也在不断提 高, 现在 自动化仪表控制 系统水平也在不断的提 高, 而且正在 向数字化和 智能化的方向发展 。在很 多项 目中自动化仪表控制系统 已经达到 - j - . g - 界先进 的水平 , 石 油化 工仪表控制 系统正在 不断的健全 自 身的系统 , 同时也正在向综合 自动化的方向发展 , 企业在发展 的过程中对完善和加强控制 系统的应用非常重视 , 自动化水平和控 制水平上也在不断的提 高, 这对于提 高企业 自身的竞争能力和综合 实力都是非常重要的。 关键词 : 石 油化工; 自动化仪表 ; 控制 系统 石油化工仪表控制 系统正在不断 的发展和更新 , 主要是仪表控 制 系统 在 不 断应 用 的 过程 中得 到 了更 好 的效 果 , 同 时计 算 机 水平 的 提高也在不断的促进仪表控制系统的发展 。 企业在发展的过程 中不 断 的提高仪表控制系统的应用水平 , 这样对仪表控制系统不断进行 进步发展非常有帮助 。 仪表控制系统在发展 的过程 中不断出现新的 发展要求和 目标 , 对石油化工仪表控制 系统 的发展非常有利 , 同时 也 能 更好 的促进 企 业 的 发展 。 1额型 自动检测与分析仪的应用 为了更好的适应企业发展的要求 , 现场总线控制系统在发展 的 过程中获得 了非常好 的成绩 , 而且现场总线控制系统逐渐形成了全 数字化 , 这样就使得变送器的结构非常简单 , 而且, 分辨力和稳定性 也是非常好的 ,在使用的过程中可靠性和操作性也是非常强的, 因 为这些优点 , 数字型的现场总线控制系统在石油化工控 制领域范围 内得到了更好的应用 。我国在加入世界贸易组织 以后 , 国外商业 贸 易量在不断增多 , 对商 品的计量精确度有了更高 的要求 , 石 油化 工 在 计 量 精确 度 方 面有 了更高 的要 求 , 这 样 就要 求 石 油化 工企 业 在 进 行生产的时候要不断提高生产水平 , 同时要不 断提高使 用设备的先 进性 , 这样才能更好的保证生产出来 的产品满 足更高的要求 。石油 化工 企 业在 进 行 生产 的时候 要 不 断提 高产 品 质 量管 理 , 这 样 就 需要 石油 化 工企 业 在 生产 的 时候 要 应 用 分 析仪 表 进 行控 制 , 仪表 进 行 控 制 可 以 比人 的控 制更 好 。 石油 化 工 工业 在仪 表 控 制 系统 方 面 的广 泛 应用, 可以更好的实现产 品质量管理 , 主要应用了在线 油品质量分 析仪 、 在线气相或液相色谱仪和其他物理特性分析仪 。石油化工企 业 在炼 油调 和系统方面采用现在最先进 的在线多路近红外 光谱分 析仪 , 在使用的过程 中效果是非常好的 。在生产过程中不断应用各 种先进 的仪器 , 就可以对产 品质量进行实时的监控 , 同时在生产完 成后使 用各种仪器对产品质量进行检测 ,这样可以通过不同的检 测, 更好 的保证产 品质量 , 同时也可以更好 的避免在生产过程中 , 出 现质量不合格 的产品。对产 品质量进行检测的仪器 , 在使用 的过程 中都 是 要不 断进 行维 护 的 ,这 样 才 能更 好 的保 证 仪器 的使 用效 果 。 日常的维护可以避免仪器出现大的故 障导致维修成 本过高的情况。 2石油化工仪表与控制系统的现状分析 2 . 1现 场 总线 控 制 系统 现场总线在工业控制技术领域中产生 了重要的影响 , 它是一个 开放性 的系统 , 在使用的时候可以和现场的网络 以及控制仪器相连 2 . 4先进控制及优化的应用 目前 , 我国已经能够掌握并熟悉应用一些控制技术了 , 比如鲁 棒P I D控制 和 多变 量 预测 控 制 技术 。先进 控 制 技术 的实施 , 让 系统 装置更稳定 , 运行更安全 , 同时也提高企业生产产品的质量 , 保证 了 收率 , 降低成本 , 增加了收益。使企业取得了显着经济效益。 2 . 5 安全 控 制 系统 的应 用 由于现代化石化企业 的装 置规模越来越大、 制作过程越来越复 杂、 运用材料易燃 、 易爆等特点 , 对设备的安全性提 出了更高 的要 求, 为 了使设备运行的可靠性有效提高。石化企业更加重视安全控 制技术在仪表控制 系统中应用 ,紧急停车系统在避免工业灾难 、 减 少工业事故损失方面起到了积极和重要 的作用 。 安全系统包括紧急 停车系统 、 生产装置健康监控技术、 安全仪表系统等方面。 3石 油 化工 仪 表 控制 系统 的发 展 仪表控制系统 的数字化 、 智能化的发展方向和系统十年的发展 历史经验 , 告诉我们 自动化仪表 的应用是仪表控制系统发展重中之 重 。仪 表用 户 发展 自动化 技 术 得 到 了越 来越 多 的 重视 , 同时 也 取得 了令 人 瞩 目的发展 。 仪表控制系统 的发展方向首先是先进控制系统 的应用 , 为了保 障装 置稳 定 的运 行 , 石 化 企 业在 装 置 上 应 用先 进 控 制 系 统 , 同 时 系 统的安全性得到提高 , 降低运行成本 , 为企业带来明显的经济效益。 模型的控制策略是基础 , 先进控制是 目前基于控制系统的一个重要 发展 方 向 , 如 智能 控制 和 模 糊控 制 。处 理 复 杂 的多 变 量过 程 控 制 问 题通 常 所 采用 的是 先 进 控制 系 统来 完 成 的 , 先进 控 制 是建 立 在 常规 单回路控制之上的动态协调约束控制 , 可使控制系统适应实际工业 生产过程动态特性和操作要求。 先进控制的建立需要有足够的计算 能力来支持 , 可 以通过 D C S / F C S 来实现 , 国内和国外都有成功的实 例。 石化系统与美国 H o n e y w e l l 公司合作 , 使催化裂化装置先进控制 得到 了成 功实 施 。 自动化 技 术 的发 展趋 势 : E R P / ME S / P C S 三 层 管 理 与控制系统, 石化企业生产与经营过程, 大致可分为三层 : 操作控制 层是 D C S / F C S的安 装 、 数据 库实 时 更新 ; 生 产 管理 层 是生 产 调度 、 油 品储 运 等 ; 经 营管 理层 E R P 。 近些年 , E R P / M E S / P C S 三 层 管理 与 控制 系统是 自动化技术是石化企业采用方式 , 也是其发展方向。ME S系 统, 通过对物流的综合跟踪管理 , 可有效降低油 品的损耗。 现代石化 企业 更 加重 视 安全 控 制 系统 的 应用 , 安 全 系 统融 人 仪 表控 制 系 统及 信息系统一体化管理的是仪表控制系统安全管理的发展方向。 安全 接, 在操作的时候可以实现相互操作 , 这样在使用的时候能够实现 仪表 控制 系统智能化管理将会在不久 的将来得到更广泛的推广 和 分散分布操作 , 同时也能更好 的提高控制性 , 在石油化工仪表控制 应用 。 系统中, 现场总线控制系统 已经慢慢成为了主要使用的系统 , 而且, 4结 束 语 在不断使用的过程中 , 它可 以更好 的提高仪表控制系统向着更好的 信息化能够带动工业化发展 , 同时工业化也能更好的促进信息 方 向发 展 。 化发展 , 石油化 工仪表控制系统的发展过程就证 明了这句话 , 将 现 2 . 2 F C S与 D C S进 入共 存 时代 场总线技术和信息化技术进行综合 , 可以使石油和化工业共同的进 D C S是上 个 世 纪七 十 年 代产 生 的 一 种 系统 ,随 着时 间 的 推 移 , 步。 不断推广综合 自动化系统 , 可以提高和完善系统的应用 , 同时也 这 种 系统 已 经慢 慢 走 向 了成 熟 , 这 种 系统 在 使 用 的时 候 技术 性 和 可 是企 业 提 高控 制 系统 水平 的重 要手 段 。 靠性非常好 , 因而得到了广泛 的使用和推广 。F C S 现在正处于发展 参 考 文献 期, 目前 并不 是十分的成熟 , 它和 D C S相 比在功能上更加 的完善 , 【 l 】 世 界仪 表 与 自动 4 J C [ Z 1 . 2 0 0 5 . 但是也是存在着一些缺陷 的,随着科技水平 的提高 , F C S出现的缺 [ 2 】 李正军. 现 场 总线 与 工业 以太 网应 用 系统设 计 『 M】 . 北京: 人 民邮 电 陷 一定 会 慢 慢解 决 的 。在 未来 的 很 长一 段 时 间 内 , D C S和 F C S会 出 出 版 社 . 现共存 的情况 ,在 F C S系统不断完善以后 , D C S系统才会被慢慢取 [ 3 ] 阳宪惠. 工业数据通信与控制网络『 M 1 . 北京: 清华大学 出版社. 代, 进 而 消失 。 2 . 3现场总线与 D C S的结合运用 现场总线和 D C S相结合 ,是将现场总线智能仪表和 D C S进行 连接 , 这样可以更好的�
仪表控制系统在石油化工中的应用探讨
![仪表控制系统在石油化工中的应用探讨](https://img.taocdn.com/s3/m/ccf1e89edaef5ef7ba0d3c0a.png)
技术 的迅速成熟 , 石 油化 工 企 业 的 仪 表 控 制 系 统 逐 渐 朝 着 信 息
化、 智 能化 、 自动 化 和 数 字 化 方 向发 展 。在 仪 表 控 制 系 统 不 断 完 善健 全的 同时 . 企 业 必 须 加 强 对 系统 的 合 理 应 用 , 才 能 真 正 达 到 提 升 企 业 竞 争 力 和 综 合 实 力 的 目的 。 石 油 化 工 作 为 基 础 能 源 企 业 ,是 我 国 国 民 经 济 发 展 的 基
一
随 着 科 学 技 术 水 平 的不 断 发 展 , 仪 表 控 制 系统 迎 来 了智 能
化、 自动 化 时 代 , 现 场 控 制 总 线 概 念 逐 渐 引入 到 石 化 企 业 管 理
之 中 。全数 字化 的现 场 总 线 型 变 压 器 稳 定 性 和辨 识 度 都 优 于 传
统变送器 。 已 被 广 泛 应 用 于 石 化 企 业 的过 程 控 制 领 域 。 除 了 现 场 总线 的 引入 , 各 类 分 析 仪 也 得 到 了运 用 推 广 。现 在 企 业 使 用
正在朝着智 能化 、 自动化 、 数 字 化 和信 息 化 方 向发 展 , 并 推 动 着
石 油 化 工 企 业 的快 速 发 展 。 但是 , 与 国 外 先 进 的相 关 企 业 相 比 , 我 国对 仪 表 系 统 在 石 油 化 工 企 业 中 的应 用 并 不 够 全 面 , 存 在 不 合理现象 , 技 术 研 发 也 存 在 不 足 。 所 以 我 们 必 须 投 入 更 多 的精 力 研 究 如何 合 理 运 用 化 工 仪 表 控 制 系统 , 来 最 大 化 仪 表 系统 对 石油化工企业的推动作用 。
浅谈石油化工仪表控制系统的应用
![浅谈石油化工仪表控制系统的应用](https://img.taocdn.com/s3/m/7840fbb0960590c69ec3767f.png)
浅谈石油化工仪表控制系统的应用作者:汪敏来源:《城市建设理论研究》2014年第03期摘要:石油化工企业是我国经济发展的重要组成部分,强调先进控制技术的应用,以实现仪表系统朝着智能化、数字化和网络微型化方向发展。
所以,在不断的发展中,石油化工企业将广泛应用先进控制技术、DCS/FCS 等,以实现企业现代化建设。
本文主要概述了石油化工仪表的自动检测与分析仪的应用、先进控制、以及与控系统的现状分析和控制系统的发展。
关键词:石油化工仪表;控制系统;应用中图分类号:F407.22 文献标识码:A以信息化带动工业化是我国的国策,是促进我国工业化建设重要指导思想。
目前,我国石油化工企业正处于现代化建设阶段,特别是仪表系统正朝着智能化、数字化和网络微型化发展,体现了我国信息化带动工业化发展已见成效。
但与国外相比,我国在相关技术的研发上,仍存在诸多的不足,需要投入更多的人力和物力,以推动石油化工企业现代化建设。
1 新型自动检测与分析仪的应用随着科学技术的不断发展,仪表系统正朝着智能化、数字化和网络微型化方向发展,石油化工企业的自动检测仪表在应用水平上得到很大提高。
特别是在适应现场总线控制系统的需求上,迅速发展了现场总线型变压器。
该变压器实现了全数字模式,不仅结构简单,而且稳定性和分辨力均优于一般智能型变送器。
目前,现场总线数字化仪器的发展比较成熟,具备良好的可互操作性和稳定性,广泛应用于石油化工的过程控制领域。
石化企业积极推进相关系统的应用,特别是提高先进控制应用水平。
就目前来看,为确保产品质量、提高仪表应用水平,主要在线分析仪表有:在线液相色谱仪、在线油品质量分析仪等。
而最新的 NIR 光谱分析仪已成功应用于石化企业的炼油调合系统;新一代低成本汽油质量指标快速测定仪在实际应用中取得较好效果。
同时,软测量技术也发展迅速,在解决石油化工企业分析检测难题上,发挥了重要作用。
维护工作一直是石化企业的重要工作,尤其是对预测维护养护工作,关系到系统正常运行。
石油化工仪表控制系统选用手册 2010年版
![石油化工仪表控制系统选用手册 2010年版](https://img.taocdn.com/s3/m/277ca785ba4cf7ec4afe04a1b0717fd5360cb2c0.png)
石油化工仪表控制系统选用手册 2010年版石油化工仪表控制系统选用手册 2010年版1. 前言石油化工行业是世界上最重要的工业领域之一,它涉及到从化工产品的生产到交付的整个过程。
仪表控制系统在石油化工生产中起着至关重要的作用,它能够监测和控制各种物理参数,确保生产过程的安全性、稳定性和高效性。
选择合适的仪表控制系统是确保石油化工生产顺利进行的关键步骤。
2. 仪表控制系统的基本原理在深入探讨石油化工仪表控制系统选用手册之前,我们先来了解一下仪表控制系统的基本原理。
仪表控制系统主要由传感器、变送器、控制器和执行器等组成。
传感器负责将物理参数转化为电信号,然后通过变送器将信号传递给控制器,控制器根据预设的逻辑和算法对信号进行处理,并发出控制命令,最终由执行器执行,并反馈给系统。
3. 石油化工仪表控制系统选用手册的重要性石油化工行业的特殊性要求仪表控制系统具备高精度、高可靠性和高扩展性。
选用不合适的仪表控制系统可能导致生产过程中的事故和损失,因此选用合适的仪表控制系统至关重要。
而石油化工仪表控制系统选用手册提供了对各个方面的指导和建议,帮助工程师更好地选择合适的仪表控制系统。
4. 石油化工仪表控制系统选用手册的深度和广度石油化工仪表控制系统选用手册的深度和广度决定了它是否能满足实际需求。
深度是指手册对各种仪表控制系统的原理、特点和适用范围进行全面深入的介绍。
广度是指手册是否涵盖了各个环节的需求和问题,并给出相应的解决方案。
5. 个人观点和理解我个人认为,石油化工仪表控制系统选用手册应该是一个综合性的参考工具,它既需要提供详尽的理论知识和技术指导,又要结合实践案例和经验分享,使工程师能够更好地理解和应用。
手册还应该包含最新的技术发展和趋势分析,以便工程师能够跟上行业的发展脚步。
6. 总结和回顾石油化工仪表控制系统选用手册在石油化工行业中扮演着重要的角色。
选择合适的仪表控制系统对于生产过程的安全和效率至关重要。
石油化工仪表控制系统的应用分析
![石油化工仪表控制系统的应用分析](https://img.taocdn.com/s3/m/296475e25122aaea998fcc22bcd126fff6055d43.png)
石油化工仪表控制系统的应用分析
石油化工仪表控制系统是指应用于石油化工行业的仪器仪表,用于监测和控制生产过
程中的各项参数和操作。
石油化工是以石油和天然气为原料,通过化学反应和物理变换等工艺过程,生产出石
油产品、化工产品和新材料等的一类工业。
石油化工生产过程中,涉及到各种反应、蒸馏、分离、合成、贮存、输送等环节,涉及到温度、压力、流量、液位、浓度等多个参数的监
测和控制。
石油化工仪表控制系统的应用,提供了有效的手段和工具,保证了生产过程的
安全、稳定和高效运行。
在石油化工生产中,仪表控制系统的应用主要体现在以下几个方面:
1. 温度控制:石油化工生产过程中,涉及到高温反应和蒸馏过程,对温度的监测和
控制非常重要。
温度过高或者过低都会影响设备的安全和产品的质量。
仪表控制系统可以
通过温度传感器实时监测设备的温度,并通过控制器控制加热或降温设备,保持温度在合
适的范围内。
3. 流量控制:石油化工生产中,常常需要对物料的流量进行控制,以满足生产过程
中的需要。
仪表控制系统可以通过流量传感器实时监测物料的流量,并通过控制器控制阀
门或泵等设备,调节物料的流量。
DCS系统在石油化工中的应用
![DCS系统在石油化工中的应用](https://img.taocdn.com/s3/m/bce56420cbaedd3383c4bb4cf7ec4afe04a1b1f7.png)
DCS系统在石油化工中的应用在石油化工领域,自动化控制系统起到了至关重要的作用。
而DCS (Distributed Control System)系统作为一种高级的自动化控制系统,具备分布式、高可靠性和高灵活性等特点,被广泛应用于石油化工工程中。
一、DCS系统简介DCS系统,即分散控制系统,是一种用于实时过程控制的集中计算机控制系统。
它由多个分散的控制器组成,这些控制器通过网络进行通信,完成对整个工艺流程的控制与管理。
DCS系统一般包括人机界面(HMI)、过程控制器(PC)以及输入/输出(I/O)模块等组成部分。
二、DCS系统在石油化工中的应用1. 生产流程控制DCS系统可以实现对石油化工生产流程的全面控制和监测。
通过连接各个关键设备和传感器,DCS系统可以实时监测温度、压力、液位等重要参数,并根据设定的工艺要求进行自动控制。
这有助于提高生产效率、减少能源消耗、优化产品质量。
2. 故障诊断和报警DCS系统具备智能故障诊断和报警功能。
一旦感知到异常情况,DCS系统将快速反应并发出警报,通知操作人员及时采取措施,避免设备故障或生产事故发生。
这种自动化监测和报警功能可以保障工厂的安全运行。
3. 数据采集与处理DCS系统可以对石油化工生产中产生的大量数据进行采集和处理。
通过数据的历史存储和实时监测,DCS系统可以为运营和管理层提供有价值的信息,帮助制定更好的生产策略和决策,提高管理水平和生产效益。
4. 远程监控与操作DCS系统还支持远程监控与操作。
操作人员可以通过远程终端与DCS系统进行连接,随时随地实时监测生产数据、追踪工艺变化,并进行远程控制和调整。
这种功能可以提高工作灵活性和生产效率,减少操作人员的工作强度。
5. 系统集成与扩展DCS系统可以与其他相关软硬件进行集成,实现更高级别的自动化控制和管理。
例如,可以集成与ERP(Enterprise Resource Planning)系统,实现产销一体化的全面管理;可以集成与MES(Manufacturing Execution System)系统,实现生产过程的跟踪与优化。
浅谈石油化工仪表控制系统的应用分析
![浅谈石油化工仪表控制系统的应用分析](https://img.taocdn.com/s3/m/d6f5d8cf690203d8ce2f0066f5335a8102d26609.png)
浅谈石油化工仪表控制系统的应用分析石油化工是指以石油、天然气、煤炭和其他有机物质为原料,通过化学工艺加工而成的石油产品、化工产品和石油化工产品的制造业。
测量和控制是石油化工生产中的重要组成部分,而仪表控制系统则是控制石油化工生产过程中的关键技术之一。
本文将从仪表控制系统的基本原理、应用领域和发展趋势等方面进行分析和讨论。
一、仪表控制系统的基本原理仪表控制系统是通过对被控对象的各种参数进行检测和测量,将其转化为标准信号并传输给控制器,再由控制器进行逻辑运算和控制命令的输出,最终通过执行机构对被控对象进行控制的系统。
仪表控制系统的基本原理可以分为两个方面:测量和控制。
在测量方面,仪表控制系统需要对温度、压力、流量、液位等参数进行准确的检测和测量,从而获取准确的过程数据。
在控制方面,仪表控制系统需要根据获取的过程数据进行逻辑运算,并对被控对象进行控制,以实现对生产过程的稳定和精确控制。
1. 炼油行业石油化工是炼油行业的重要组成部分,而炼油过程中涉及到许多参数的测量和控制,如温度、压力、流量、液位等。
仪表控制系统在炼油行业中有着广泛的应用。
通过对裂解炉、蒸馏塔、分馏塔、加氢装置等关键设备的温度、压力、液位、流量等参数进行测量和控制,可以实现对炼油过程的精确控制,提高产品质量和生产效率。
2. 化工生产化工生产是石油化工的另一个重要领域,而仪表控制系统在化工生产过程中同样扮演着重要角色。
化工生产中的反应釜、蒸馏塔、反应器等设备需要对温度、压力、流量、液位等参数进行精确的测量和控制,以确保化工产品的质量和生产的安全稳定。
3. 天然气工业天然气是石油化工的重要原料和能源,而天然气的开采、输送和加工过程中同样需要对各种参数进行精确的测量和控制。
仪表控制系统可以对天然气的流量、压力、温度进行实时监测和控制,确保天然气的生产和输送过程的安全稳定。
4. 石化装备制造石化装备制造是指为石油化工生产过程提供各种加工设备、仪表仪器以及控制系统的制造和服务。
石油化工自动化及仪表概论2自动控制系统的性能指标及要求
![石油化工自动化及仪表概论2自动控制系统的性能指标及要求](https://img.taocdn.com/s3/m/d49a41f4a45177232e60a24a.png)
(2-8)
(4)时间乘以偏差绝对值的积分(ITAE)
f (e,t) e t, J 0 etdt
(2-9)
例2-1 某化学反应器工艺规定操作温度为900±7℃。考虑 安全因素,生产过程中温度偏离给定值最大不得超过 45℃。现在设计的温度控制系统在最大阶跃干扰作用下 的过渡过程曲线如图2-6所示。试求系统的过渡过程品质 指标:最大偏差,余差,衰减比和过渡时间。根据这些 指标确定该控制系统能否满足题中所给的工艺要求,请 说明理由。
动态指标。它是阶跃响应曲线上前后相邻的两个同向波的
幅值之比,用符号n表示,即
n B B'
式中 B——第一个波的幅值
(2-1)
B——第二个波的幅值
B和B的幅值均以新稳态值为准进行计算。
2. 最大偏差和超调量
最大偏差是指过渡过程中,被控变量偏离给定值的最 大值。在衰减振荡过程中,最大偏差就是第一个波的峰值 ,如图2-5中以A表示。
差系统。没有余差的控制过程称为无差调节,相应的系统
称为无差系统。
4.调节时间 调节时间是从过渡过程开始到结束所需的时间,又称为
过渡时间。 过渡过程要绝对地达到新的稳态,理论上需要无限长的
时间。但一般认为当被控变量进入新稳态值 5%或 2%范内, 并保持在该范围内时,过渡过程结束,此时所需要的时间称 为调节时间。调节时间是反映控制系统快速性的一个指标。
稳定性和快速性反映了系统在控制过程中的性能。系 统在跟踪过程中,被控量偏离给定值越小,偏离的时间越 短,说明系统的动态精度偏高,如图2-2中的曲线②所示 。
3. 准确性 是指系统在动态过程结束后,其被控变量(或反馈量
)对给定值的偏差而言,这一偏差即为稳态误差,它是衡 量系统稳态精度的指标,反映了动态过程后期的性能。
石油化工仪表控制系统应用及发展的分析
![石油化工仪表控制系统应用及发展的分析](https://img.taocdn.com/s3/m/766bdf432e3f5727a5e96268.png)
毕业(设计)论文石油化工仪表控制系统应用及发展的分析系名称:自动化工程专业名称:生产过程自动化学生姓名:高信指导老师姓名:熊凤指导老师职称:讲师2015年5月毕业设计(论文)任务书学生签字:指导教师签字:系主任签字:年月日石油化工仪表控制系统应用及发展的分析摘要仪表控制系统的应用和计算机水平的提高促进了石油化工仪表控制系统的发展和仪表系统的更新换代, 促进了企业自身仪表控制系统的发展和应用水平; 现代市场对使用化工仪表控制系统的大量需求, 刺激了仪表控制系统仪器的进步和发展。
同时, 这也对自动化仪表控制系统提出了新的目标和更高的要求, 为石油化工仪表控制系统分的发展也注入了新鲜活力。
现在的石油化工仪表控制系统在不断健全巩固自身系统的同时, 综合自动化系统也随之不断进步,我们应积极加强与完善控制系统的应用, 提高自动化水平和先控制水平,这对于提升企业的竞争力及综合实力起到至关重要的作用。
于是本文通过针对石油化工行业中的仪表控制系统应用的研究,对仪表控制系统应用领域、性能分析、发展现状等方面做出了合理阐述,并结合大量石油化工领域在仪表控制系统应用和需求的现状,对其发展方向做出了研究分析。
关键词:石油化工自动化仪表分析趋势目录第1章我国石油化工仪表的控制系统 (1)1.1 我国石油化工仪表控制系统 (1)1.2 DCS与FCS系统 (1)1.3 新型DCS系统 (1)1.4 总线控制系统 (2)第2章仪表控制系统的应用及分析 (3)2.1 新型自动检测与分析仪的应用 (3)2.2 自动检测与分析仪在石化企业的应用 (3)2.3 先进控制在生产装置上的应用 (4)2.4 制造执行系统(MES)在企业的应用 (5)2.5 石油化工仪表与控制系统现状分析 (7)第3章石油化工仪表控制系统的性能分析及发展 (8)3.1 控制系统的发展方向 (8)3.2 过程仪表的性能分析和发展方向 (11)3.2.1 电磁阀和气动元件的性能分析和发展 (11)3.2.2 旋转机械状态监测仪表的性能和发展要求 (13)3.2.3 智能定位器的性能分析和发展方向 (14)3.3 控制系统电源的性能分析和发展方向 (15)3.3.1 控制系统电源的性能分析 (15)3.3.2 控制系统电源的发展方向 (17)结论 (18)致谢 (20)参考文献 (21)第1章我国石油化工仪表的控制系统1.1我国石油化工仪表控制系统在科学技术不断发展过程中,仪表系统也发生了很大的变化,正在逐渐向数字化、智能化以及网络化方向发展,有其对石油化工行业的发展是有很大的影响的。
石油化工仪表与控制系统的应用
![石油化工仪表与控制系统的应用](https://img.taocdn.com/s3/m/f01e470ab52acfc789ebc9e1.png)
最新的在线多路近红外( I 光谱 N) B 分析仪已应用于石化企业炼油调合系统 并取得较好效果。新一代实验室低成本
汽油 质量指 标快速 测定 仪已成 功应用 于
一
新型自动检测与分析仪 的
应用
国 内 外仪 表 系统 向 数 字 化 、智 能
1 .新一代 D S系统 C
其 主要特 点如下 :
类变送器是全数字式 结构简单。分辨
力 和稳 定性 都高 于一 般智 能型 变送 器。
比. 存在一定差距.现在应用的大多2 j ,
进 口产 品 石化企业 对工厂 维护工 作越来越 重 视 特别是 对预 测维 护保养 问题更感 兴
由于现场总线数字仪表产品日 趋完善 . 并具有可靠性高、可互操作性( 即可将
奠主要特点是采用开放性系统、容错的
工业 以太网 和 O C等技 术 .从而 解决 了 P
谱仪及其他物理特 r 分 i
析 仪等
不同生产厂家 D S C 的互联
并可组成大
规模 的网络控 制系统 据 国外 A C公司 R 最新 调研 的结果 :近 年来 .全 球 D S C 市
场年 增长 率为 6 %
容锚以太网的特点是:在容错以 太 网节点间有 4 个通信路径 允许有 1 个 通信路径故障. 快速(s 检测和恢复时 1】
石化企 业 为加强产 品质量管 理 .也 促 进 了在 线分 析仪 的应用 由于 它会直
A VoI 1 o 3 0 N 3 ・2 006
术迅速发展 .国内外 出现 了新一代 D S C.
控系统也逐渐向数宇化 网络
化、 模型 化 . 智能 化方 向发展 。
水平 .因此 得 到 了石化 系统 的积 极 推广 .主要 包 括 在线 油 品 质曩 分析 仪 、在 线气 相 或液 相色
石油化工仪表控制系统合理应用论文
![石油化工仪表控制系统合理应用论文](https://img.taocdn.com/s3/m/5ccbb223bd64783e09122b76.png)
刍议石油化工仪表控制系统的合理应用摘要:本文主要针对石油化工仪表控制系统的合理应用进行了简单分析和探讨。
关键词:石油化工仪表控制系统合理应用仪表控制系统在石油化工企业的应用,实现了企业的自动化、智能化以及数字化发展,为企业生产水平和生产效率的提升提供了技术支撑。
因此,对石油化工仪表控制系统的合理应用的探讨有其必要性。
一、系统分析1.系统组成石油化工仪表控制系统一种有自动控制系统,大体上主要由物位计、液位计、料位计、变送类设备、流量仪表以及防雷接地、仪表接地、dcs控制系统、各种压力表等组成,主要是通过统一联通的接地装置来连接的,又可以称这是一捉厂区联合接地系统,变送类设备主要包括压力变送器、差压变送器、微差压变送器、液位变送器等;流量仪表主要有转子流量计、涡街流量计、电磁流量计偰式流量计、均速管流量计、质量流量计等。
石油化工用到的四大热工仪表有:温度,例如一体化温度变送器;流量仪表,例如楔式流量计;压力,例如压力变送器;液位,例如磁翻柱液位计等,另外与这些仪表对应的配套系统也比较多。
2.系统工作原理通常情况下,系统主要是以共网的方式接入电力系统中,设备接地要小于1欧姆,pid调节器加入微分作用主要是用来克服调节对象的惯性滞后和纯滞后以及容量滞后和纯滞后,并且通过对对象动态特性的分析,合理控制各项设备的比例度数值以及系统振荡程度在系统中,串级调节系统的参数整定步骤为先主环后副环,先积分微分后比例,过度过程品质指标中,余差通过新稳定值与给定值之差、测量值与给定值之差、调节参数与被调参数之差、超调量与给定值之差来进行表示,在不同的情况下,所参考的比例值也是不相同的。
在锅炉燃烧调节中的风量调节一般选用均匀调节系统、比值调节系统、前馈调节系统、三冲量调节系统来完成,在研究其动态特性时可以将测量仪表的信号看作系统对象环节的输入量,降低其他设备对分析结果的干扰作用和控制作用。
系统中的调节系统,通过各个设备在燃烧炉的燃料气进口的管线上,设置一个燃料气压力控制系统,通过气开阀正反作用控制器,实现对控制阀和控制器合理调控,其中,调节系统中的调节器正、反作用的确定依据是闭环回路正反馈、系统放大系数以及生产安全性等,从某种角度上讲,这也是一种单纯的前馈调节,是一种能对测量和给定之间的偏差、干扰量的变化、被调量的变化进行补偿的调节系统。
化工自动化仪表及控制系统智能化分析
![化工自动化仪表及控制系统智能化分析](https://img.taocdn.com/s3/m/6280b7e87e192279168884868762caaedd33ba9c.png)
化工自动化仪表及控制系统智能化分析摘要:近些年,随着社会经济快速发展,信息技术的发展促进了工业自动化水平的提高,在化工生产过程中应用了诸多仪表设备,这些仪表在生产过程各方面参数的计算与控制中发挥了重大作用,不仅能够提升化工生产效率,稳定生产过程,降低生产成本,还能最大化降低化工生产安全风险。
由此可见,将仪表设备和控制系统与网络技术结合起来,提升化工生产自动化、智能化水平尤为重要。
关键词:化工自动化仪表;控制系统;智能化引言在石油化工开采环节需要涉及到数量较多的仪表自动化设备,通过充分发挥出仪表自动化设备运行功能,能够切实提升石油开采全过程管控力度,增强实际开采环节的质量与效率。
在化工行业生产制造流程中往往会用到各种各样的化工仪表,为此便需要对化工仪表实行全方位的监测,结合科学合理的处理手段,避免形成风险隐患,降低安全事故发生的概率,为化工企业平稳、健康的发展打下扎实基础。
1石油化工仪表的自动化控制系统石化企业在发展过程中,通过不断对生产系统自动化过程控制技术的升级改造,从而带动相应的仪器设备系统的升级,有利于企业在生产过程中,控制其成本费用,提高生产系统安全稳定性。
采用计算机芯片技术,通过自动控制仪表,可以有效地防止人为操作造成的各种安全隐患。
以自动化仪表为基础的控制系统,其主要内容有3部分:首先,是集散控制体系。
由于石化企业生产过程中各单元分散布置比较多,所以其应用领域非常广泛。
随着科学技术水平的提高,集散控制系统在国内石油化工行业的应用也得到了持续的创新和提高。
比如在实际生产中,通过智能化的数字化控制可以极大地提高自动化程度。
同时,它还可以利用自己的设备,利用自己的优势,将各个独立的系统通过通讯协议高效地连接起来,而不会受到系统厂家和型号的限制。
通过这种连接可以使其各个系统的分散优点得到全面的发挥,从而大大地提升了它们的生产效率。
在连接后的分布式系统中,企业能够动态地对其整个生产过程进行动态控制,并能在生产中及时发现问题,做出相应的调整,从而极大地提高生产系统稳定性。
浅谈石油化工仪表控制系统的应用
![浅谈石油化工仪表控制系统的应用](https://img.taocdn.com/s3/m/829371c4da38376baf1faef9.png)
Fo o o公司 新 的I xb r /A系统 、 ABB公 司的 工 业I T过 程 控 制 系统 等 。 美 国Ho e n ywe l DCS l的 x e in p ro
控制 生成、 示生成 、 速 生成组态软件。 显 快 ()S r e X 作 站 。 是一 个OPC服 务器 , 4e e v r i 它 采 用e e v r 件 。 在 网络 远 方操 作 员站 上 S r e软 可 看到 所 有 应 用 和 实 时 数据 ; 有 趋 势 /组 / 所
系统 显 示 / 作 显示 ; 警 和 事 件 显 示 ; 操 报 历 史 数 据 ; 组 报 表 和 显示 等 。 5 应 用 工 作 分 () 站 。 用 工 作 站 可 配 置 不 同 的软 件 , 应 构成 不 同 的应 用 工 作 站 。 如先 进 控 制 、 产和 异 常 资
国 内 外 商 业 贸 易 的 发 展 , 求 提 高 商 PKS 过 程知 识 系统 , 术 先进 。 特 点 如 要 是 技 其 品交 割 计 量精 确 度 , 化 出 厂 计 量 应 用 的 下 : 有先 进 的 DCS功 能 和 开 放 式 体 系 结 石 具 质量 流 量 计精 确 度 为 ±0 1 . %或 更 高 。 构。 它允 许 多个Ex e i n p ro PKS系统 如 同 一 石 化 企 业 为 加 强 产 品 质 量 管 理 , 促 个 系统 一 样 运 行 ; 也 系统 包 含 了 异常 状 态 管 进 了 在 线 分 析 仪 表 的 应 用 。 会直 接 影 响 它 到石 化 企 业 产 品 质量 及 先进 控 制 应 用 的 水 平 , 此 得到 了石 化 系统 的 积 极 推 广 , 因 主要
理 ( M) 安 全管 理 和 信 息 管 理 。 影
石油化工仪表自控系统应用手册说明书
![石油化工仪表自控系统应用手册说明书](https://img.taocdn.com/s3/m/3542b75553d380eb6294dd88d0d233d4b14e3f21.png)
图书基本信息书名:《石油化工仪表自控系统应用手册》13位ISBN编号:9787122204731出版时间:2014-10-1作者:解怀仁,王成林,中国石油和石化工程研究会页数:471版权说明:本站所提供下载的PDF图书仅提供预览和简介以及在线试读,请支持正版图书。
更多资源请访问:内容概要本书介绍了石油化工行业自动控制最新的理念、技术和产品,代表着应用的很高水平;同时,对不同生产过程和装置(如催化裂化、乙烯裂解、聚乙烯、ITCC等)的自动控制分别进行介绍,丰富了相关从业人员的知识,有利用提高从业人员的总体水平。
本书亮点:一,包括了最新技术:最新仪表技术;最新DCS与FCS技术及应用;先进控制及ERP-MES新技术;油气长输管线控制新技术等。
二,介绍了安全仪表系统功能安全、SIL确定以及自控设备新型管理模式---仪表保护伞方式。
三,介绍了现代化大型炼油催化裂化、乙烯裂解、聚乙烯等装置的控制及油田、煤化工、海洋石油等装置的仪表控制与应用经验;书籍目录第1篇 仪表与控制系统001第1章 温度测量仪表0021.1 温度测量仪表原理0021.2 温度测量仪表选型原则0031.3 温度测量仪表的应用003第2章 压力测量仪表0062.1 压力测量仪表的分类0062.2 压力测量仪表的选用原则008第3章 物位测量仪表0103.1 物位测量仪表选型0103.1.1 物位仪表选型原则0103.1.2 物位仪表的分类及技术指标0103.2 伺服式液位计0123.2.1 工作原理0123.2.2 伺服式液位计特点0123.2.3 伺服液位计在原油储罐中的应用0133.2.4 如何使用好伺服液位计0143.3 磁致伸缩液位计0143.3.1 工作原理0153.3.2 技术参数0153.3.3 仪表的安装0153.4 雷达液位计0183.4.1 工作原理0183.4.2 雷达液位计组成0183.4.3 应用的介质0183.4.4 主要技术指标0183.5 矩阵式液位测量仪0193.5.1 工作原理0193.5.2 性能参数0193.5.3 应用范围0203.6 自动油罐切水器0203.6.1 工作原理0203.6.2 油罐自动切水器的使用022第4章 流量测量仪表0254.1 流量测量仪表特点0254.2 流量仪表的选用原则0264.2.1 流量仪表的选用0264.2.2 节流装置的选用0264.3 智能型一体化孔板流量计0284.3.1 工作原理0284.3.2 一体化孔板流量计特点0294.3.3 智能演算器的特点0294.3.4 应用范围0294.3.5 孔板计算应注意的问题0294.4 楔形流量计0314.4.1 工作原理0314.4.2 结构和基本特点0324.5 平衡流量计0334.5.1 工作原理0334.5.2 平衡流量计的计算公式0344.5.3 平衡流量计特点0354.6 锥形流量计0374.6.1 工作原理0374.6.2 锥形流量计特点0384.7 气体超声流量计0394.7.1 工作原理0394.7.2 影响测量准确度的因素0404.7.3 现场应用0414.7.4 在线检定与核查0424.8 涡街流量计0434.8.1 工作原理0434.8.2 防振措施0444.8.3 测量液体时压损及能耗计算0454.8.4 测量气体时压损及能耗分析计算0454.8.5 举例计算0464.9 质量流量仪表0464.9.1 工作原理与结构0464.9.2 技术特性和技术参数0474.9.3 安装要求0484.9.4 质量流量计用于腐蚀介质0484.10 双向体积管检定设备0494.10.1 工作原理0504.10.2 双向体积管的特点0504.10.3 双向体积管检定系统051第5章 在线分析仪表0535.1 在线质量分析仪0535.1.1 炼化在线质量分析仪表0535.1.2 在线近红外线分析仪0545.1.3 工业核磁共振仪0555.2 在线全馏程分析仪0565.2.1 工作原理和系统结构0565.2.2 主要技术指标和工作条件0585.3 在线倾点分析仪0595.3.1 工作原理0595.3.2 仪表特点0615.3.3 主要技术指标0615.4 在线闪点分析仪0615.4.1 工作原理0615.4.2 电路结构0625.4.3 有关防爆问题0625.4.4 分析仪主要特点0635.4.5 技术指标0635.5 氧化锆氧分析仪0635.5.1 工作原理0635.5.2 仪表结构及种类0645.5.3 直插检测式氧探头0645.6 在线气相色谱分析仪0655.6.1 色谱分析仪的定义0655.6.2 设计选型要点0655.6.3 全新在线气相色谱仪0665.7 石化在线水质分析仪0675.7.1 在线水质分析仪选型的原则0675.7.2 污水处理与监测0695.8 常规电化学分析仪0705.8.1 pH/ORP分析仪0705.8.2 电导率分析仪0775.8.3 钠离子分析仪0805.9 溶解氧分析仪0815.9.1 电化学式溶解氧测量原理0815.9.2 荧光淬灭式溶解氧测量原理0825.9.3 一些特殊样品的溶解氧检测0845.10 浊度分析仪0845.10.1 浊度测量原理与影响因素0845.10.2 浊度/悬浮物浓度单位0855.10.3 浊度/悬浮物浓度分析仪0865.10.4 污染密度指数SDI分析仪0885.11 在线总有机碳分析仪(TOC)0895.11.1 TOC的定义与测定原理0895.11.2 在线TOC的分析流程0915.11.3 主要的TOC分析方法0925.11.4 总有机碳(TOC)分析的应用0945.12 在线化学需氧量分析仪0955.12.1 COD的分析方法0955.12.2 在线COD分析仪的应用0975.12.3 其他在线COD检测方法0975.13 水中油分析仪0985.13.1 水中油存在的重要形式0985.13.2 水中油测量方法0995.13.3 在线水中油分析仪选择1015.13.4 水面油膜监测仪介绍1025.14 水中污染物分析仪1035.14.1 氨氮/硝氮/总氮分析仪1035.14.2 磷酸根/总磷分析仪1065.14.3 在线总氮/总磷/COD分析仪1085.15 水中消毒剂和联氨分析仪1105.15.1 在线水中余氯分析仪1105.15.2 在线水中臭氧分析仪1135.15.3 在线联氨分析仪115第6章 调节阀1176.1 调节阀的选用1176.2 调节阀的应用1226.2.1 直通单双座调节阀1226.2.2 角形和三通调节阀1226.2.3 隔膜调节阀和软管阀1236.2.4 蝶阀与球阀等调节阀1236.2.5 其他阀1256.3 各种调节阀及参数1256.3.1 直通阀1256.3.2 套筒阀1256.3.3 角形阀1266.3.4 高压阀1266.3.5 高压差阀1266.3.6 球阀1276.3.7 执行机构1276.4 智能电气阀门定位器1296.4.1 工作原理1296.4.2 通信和互操作性能1306.4.3 组态功能1306.4.4 诊断功能131第7章 安全仪表系统(SIS)1327.1 石化安全仪表系统设计1327.1.1 功能安全标准体系1327.1.2 安全仪表系统设计原则1337.1.3 安全仪表系统设备选用1347.1.4 工程实施时可参考的经验1357.2 成品油管道安全仪表系统1357.2.1 安全仪表系统的设计原则1357.2.2 系统整体介绍1367.2.3 安全仪表系统实现的功能1387.3 ICS安全系统在焦化的应用1397.3.1 ICS系统配置1397.3.2 主要控制回路1397.3.3 维护经验1417.3.4 关键仪表应用1417.4 DeltaV安全仪表系统应用1427.4.1 DeltaV安全仪表系统简介1427.4.2 SIS系统在苯乙烯装置的应用1427.5 乙烯压缩机油系统联锁控制1447.5.1 停车故障分析及解决措施1457.5.2 油系统联锁仪表三取二1457.6 石化工艺危险性分析1467.6.1 PHA概念及分析方法1467.6.2 多晶硅项目PHA工作描述1477.6.3 PHA仪表设计实施策略1487.7 可燃气检测仪1497.7.1 火灾报警系统组成1497.7.2 可燃气探头类型1507.7.3 可燃气探头选型152第8章 工业控制网络与无线网络1538.1 工业控制网络安全1538.1.1 工业控制系统1538.1.2 工业控制系统安全分析1548.1.3 工业控制系统安全防护策略1578.2 油田网络安全设计案例1608.2.1 油田网络系统1608.2.2 安全风险分析1618.2.3 解决方案1618.2.4 可行性评估1628.2.5 应用设备1628.3 PIMS隔离网关应用1628.3.1 应用背景1628.3.2 系统说明1638.3.3 解决方案1638.4 多协议网关的应用1648.4.1 应用软件的设计1648.4.2 软件工作流程1668.5 工业无线国际标准和应用1688.5.1 无线网技术介绍1688.5.2 应用介绍169第9章 集散控制系统1719.1 DCS的选用1719.1.1 DCS软硬件技术特点1719.1.2 DCS的选用1739.1.3 石化对DCS的要求1769.2 LN2000控制系统1769.2.1 LN2000 DCS特点1769.2.2 LN2000 DCS 技术指标1779.2.3 LN2000系统的应用1789.3 PKS过程知识系统1801819.3.2 Experion PKS组态工具1849.3.3 控制策略组态1859.3.4 用户画面组态1859.3.5 全局数据库1859.4 PKS在硝酸装置中的应用1869.4.1 PKS系统概述1869.4.2 系统组态1869.4.3 安装调试1899.5 PCS7系统在锅炉的应用1899.5.1 控制系统介绍1899.5.2 人机界面开发1929.5.3 主要控制功能1939.5.4 存在问题及解决方法1949.6 MACS在石化的应用1969.6.1 工艺装置简介1969.6.2 项目特点1969.6.3 项目的设计197第10章 可编程序控制器19810.1 PLC的选型原则19810.2 PLC在高压聚乙烯上的应用20010.2.1 LDPE装置简介20010.2.2 控制系统配置20110.3 站控系统PLC设计20410.3.1 站控系统PLC设计步骤10.3.2 PLC系统设计204第11章 现场总线控制系统20611.1 现场总线技术特点及产品20611.2 FCS体系结构20811.2.1 系统层20811.2.2 网络层20811.2.3 网关桥路控制器和I/O层20911.2.4 软件21011.3 FCS的设计21111.3.1 系统设计注意事项21111.3.2 现场总线网络的建立21311.3.3 现场总线拓扑结构21611.3.4 系统投运注意事项21611.4 System302控制系统设计实例21811.4.1 系统规划21811.4.2 H1总线设计和设备选型21811.4.3 安装施工设计22011.4.4 组态编程22011.4.5 对FFFCS的评价22111.4.6 FCS怎样将控制下放到现场221第12章 监督控制和数据采集系统22412.1 SCADA的选型22412.1.1 SCADA系统的主要功能22412.1.2 SCADA选型要点22422512.2.1 长输管道的特点22512.2.2 长输管道SCADA系统的构成22512.2.3 调度控制中心功能22512.2.4 站控制系统的功能22712.2.5 阀室控制系统功能22912.3 长输天然气管线SCADA系统22912.3.1 输气管线主要流程22912.3.2 输气管线自动化系统23012.3.3 SCADA系统的配置23212.3.4 仪表设备选型23512.4 原油管线SCADA系统23612.4.1 工艺简介23612.4.2 原油管线SCADA系统组成23712.4.3 SCADA系统结构23712.4.4 硬件配置239第13章 先进过程控制24013.1 催化裂化装置先进控制24013.1.1 系统构成24013.1.2 优化控制要求24113.1.3 目标函数与优化变量24113.1.4 优化方法和优化软件24213.1.5 优化协调先进控制系统24313.1.6 应用效果24413.2 常减压装置先进控制13.2.1 工艺装置简介24613.2.2 先进控制系统的设计24613.2.3 系统硬件、软件环境24713.2.4 关键技术24713.2.5 应用效果24813.3 汽油调和控制与优化24813.3.1 汽油调和自动控制24813.3.2 管道调和优化技术25013.3.3 优化系统总体设计25113.3.4 Invensys调和优化系统25413.4 丙烯腈装置先进控制25713.4.1 优化方案25713.4.2 先进控制与优化软件应用25813.4.3 DeltaV 系统组态26013.5 蜡系统的优化控制技术26113.5.1 相关积分方法简介26113.5.2 酮苯脱蜡优化控制263第14章 企业综合管理系统26514.1 企业资源计划系统26514.1.1 ERP基本概念26514.1.2 ERP系统的主要功能26614.1.3 石油化工ERP方案26714.2 MES技术及应用27014.2.1 MES简介27027014.2.3 系统功能27214.2.4 发展趋势——智能工厂27514.3 ERP和MES应用集成27614.3.1 炼化企业信息化总体架构27714.3.2 ERP和MES应用的集成27814.3.3 炼化信息化对自动化的要求27914.4 设备管理系统(HAMS)27914.4.1 HAMS简介27914.4.2 HAMS系统结构27914.4.3 系统功能28014.5 数字油田生产管理系统28214.5.1 基本概念28314.5.2 建设数字油田的目标28314.5.3 建设数字油田的原则28414.5.4 数字油田建设的系统方案28414.5.5 数字化生产管理系统开发284第15章 防爆电气设备的选用28815.1 防爆电气设备的概念28815.2 防爆电气设备种类29115.3 防爆电气设备正确的选用29215.4 防爆电气产品的鉴别29315.5 对供应商和产品资质的要求29415.6 电气设备正确安装和维修29415.7 电气设备正确检查和维护15.8 电气设备的合理检修29615.9 专业机构科学公正的鉴定296第16章 自控工程设计软件(INTOOLS)29816.1 自控工程设计软件29816.1.1 对INTOOLS的需求29816.1.2 INTOOLS种子文件29916.1.3 INTOOLS的DB文件29916.1.4 采用INTOOLS的要求30016.1.5 INTOOLS软件的功能与应用30016.1.6 创建网络数据共享的平台30316.2 简化INTOOLS(SPI)软件操作30416.2.1 开发外挂数据库导入软件30416.2.2 解决工程设计多次修改的问题30416.2.3 开发工程设计报表系统软件30416.2.4 开发升级中国标准模块数据库30416.2.5 建立外挂HOOK-UP数据库304第2篇 典型炼化装置仪表与控制应用307第1章 炼油厂自动化仪表应用3081.1 炼油厂简介3081.2 仪表选型原则3091.2.1 基本原则3091.2.2 温度测量仪表3091.2.3 压力测量仪表3101.2.4 流量测量仪表1.2.5 液位测量仪表3101.2.6 控制阀3111.2.7 在线分析仪3111.2.8 防雷浪涌保护器3111.2.9 其他仪器的选用3111.3 主要生产装置仪表选型3121.3.1 常减压装置3121.3.2 催化裂化装置3121.3.3 加氢装置3121.3.4 重整装置3131.3.5 储运设施3131.3.6 公用工程3141.4 进口仪表设备314第2章 常减压装置仪表控制系统3162.1 工艺简介3162.2 控制系统配置3162.3 主要控制回路317第3章 催化裂化DCS控制3253.1 工艺简介3253.2 DeltaV DCS系统方案3253.3 主要控制回路3263.4 维护经验330第4章 催化裂化电液滑阀的控制3324.1 工艺简介3323324.3 主要控制回路3334.4 电液滑阀的应用336第5章 加氢裂化装置仪表控制3385.1 工艺简介3385.2 控制系统配置3385.3 主要控制回路3405.4 装置仪表使用情况341第6章 连续重整装置仪表控制3446.1 工艺简介3446.2 控制系统配置3446.2.1 DCS控制系统3446.2.2 其他控制系统3456.3 主要控制回路3456.4 控制方案3466.4.1 反应系统的温度控制3466.4.2 再接触压力的分程-超驰控制3466.4.3 催化剂再生系统中氮气的压力控制3476.4.4 连续重整装置中充氮的分程控制3476.4.5 锅炉三冲量控制3486.4.6 催化剂再生闭锁料斗循环控制系统3486.4.7 催化剂再生隔离系统349第7章 气体分馏装置仪表控制3507.1 工艺简介3507.2 控制系统配置7.3 主要控制回路3517.3.1 精馏塔压力控制3517.3.2 精馏塔温度控制352第8章 延迟焦化装置仪表控制3538.1 工艺简介3538.2 控制系统配置3538.2.1 装置过程控制系统3538.2.2 装置机组控制系统3548.2.3 装置联锁控制系统3548.2.4 装置水力除焦控制系统3548.3 主要控制回路3548.3.1 延迟焦化装置主要控制方案3548.3.2 复杂控制回路介绍及组态3558.4 机组控制方案3588.4.1 TS-3000控制器组成3588.4.2 机组的基本控制方案3588.5 水力除焦系统控制方案3628.5.1 焦炭塔工艺简介3628.5.2 自动顶盖机介绍3628.5.3 水力除焦联锁控制方案3628.5.4 塔顶隔断阀控制方案3638.5.5 钻机绞车控制方案3638.5.6 自动顶盖机允许开盖联锁方案363第9章 加氢装置控制系统3653659.2 控制系统组成及特点3659.3 典型控制回路3659.3.1 加氢高分液面自控回路3659.3.2 加热炉出口温度自控回路3669.3.3 加氢总瓦斯压控回路3669.3.4 加热炉分支进料控制回路367第10章 制硫装置的控制系统36810.1 工艺简介36810.2 DCS系统配置36810.3 主要控制回路36910.3.1 酸性气燃烧炉燃烧器燃烧控制36910.3.2 硫黄回收焚烧炉工段主要控制方案37110.4 维护经验372第11章 乙烯裂解装置仪表控制37411.1 控制部分37411.2 安全联锁部分37611.3 塔的关键控制回路37611.4 压缩机关键控制回路37811.5 反应器系统关键控制回路37911.6 干燥器系统的顺序控制380第12章 乙烯扩建装置仪表控制38212.1 工艺简介38212.2 控制系统配置38212.3 其他控制系统38512.4 主要控制回路38512.4.1 KTI裂解炉控制方案38512.4.2 裂解炉进料量和燃烧控制38512.4.3 汽包液位控制38612.5 LUMMUS裂解炉控制方案38612.5.1 裂解气压缩机的防喘振控制38712.5.2 碳二加氢反应器控制38712.5.3 制冷系统控制方案38712.5.4 典型精馏塔联锁控制38712.5.5 装置主要分程控制38912.5.6 APC控制38912.6 仪表伴热在线实时监控39012.7 装置仪表使用情况39112.7.1 仪表及自控的实施特点39112.7.2 检测、控制技术的应用392第13章 乙烯装置裂解气压缩机的控制39313.1 工艺简述39313.2 裂解气压缩机的控制系统393第14章 低压聚乙烯装置仪表控制39714.1 工艺简介39714.2 控制系统配置39714.3 主要控制回路39914.3.1 反应釜H2/C2H4控制回路39914.3.2 离心机转矩联锁控制回路39914.3.3 袋式过滤器控制400第15章 高压聚乙烯SIS-DCS控制40215.1 工艺简介40215.2 控制系统配置40215.3 主要控制回路404第16章 聚乙烯装置的控制40716.1 工艺简介40716.2 DCS系统配置40716.2.1 硬件配置40816.2.2 软件配置40816.2.3 电源和接地40816.3 主要控制回路40816.3.1 串级回路5206T15、5211P1 40816.3.2 选择回路4001F98A、4001F98B 40916.3.3 复杂控制回路41016.4 维护经验41116.5 关键仪表应用与维护412第17章 聚丙烯装置仪表控制41517.1 工艺简介41517.2 控制系统配置41517.3 主要控制回路415第18章 聚丙烯SIS-DCS控制41818.1 工艺简介41818.2 控制系统配置41818.3 主要控制回路419第19章 丙烯腈装置控制系统42119.1 工艺简介42119.2 控制系统组成及特点42119.3 典型控制回路422第20章 顺丁橡胶装置控制系统42520.1 工艺简介42520.2 控制系统组成及特点42520.3 典型控制回路427第21章 制苯装置仪表控制42921.1 工艺简介42921.2 控制系统配置42921.2.1 DCS介绍42921.2.2 PLC介绍43021.3 主要控制回路43121.3.1 制苯装置回路统计43121.3.2 串级回路43121.3.3 分程控制回路43121.3.4 T-601塔进料比值的控制43221.4 装置仪表使用情况432第22章 化肥自动化仪表控制43422.1 工艺简介43422.2 控制系统的配置43522.2.1 控制水平43522.2.2 控制系统的配置43522.3 典型控制回路43522.3.1 主蒸汽压力前馈-燃料/空气负荷控制系统(一段转化炉转化管加热燃烧热负荷)43522.3.2 主蒸汽压力前馈-辅助锅炉炉膛压力与燃料气压力保护控制系统43622.3.3 F-101汽包液位-汽包给水流量和蒸汽流量三冲量控制系统43722.4 装置仪表控制系统选用43822.4.1 装置控制系统的选用43822.4.2 装置的仪表选用439第23章 海洋石油自动化仪表控制44023.1 控制系统的配置44023.2 控制系统功能(PCS)44123.3 应急关断系统(ESD)44223.4 火气监控系统(FGS)44323.5 典型控制回路44323.6 仪表及控制系统应用44423.6.1 热介质系统的组成44523.6.2 热介质系统的控制及保护44523.6.3 热介质系统报警及保护装置44623.7 管控一体化计算机系统应用446第24章 油气田自动化仪表控制44824.1 计量及流量测量仪表44824.1.1 油井单井计量方式的选用44824.1.2 气井计量45024.1.3 原油流量测量仪表的选用45024.1.4 天然气流量测量仪表的选用45124.1.5 水流量测量仪表的选用45124.2 液位测量仪表45124.3 油气生产过程分析仪表45224.4 控制阀452第25章 油气水井的数据采集系统45325.1 井场分类及数据采集45325.1.1 油井45325.1.2 注入井45425.1.3 水源井45525.1.4 气井45525.2 井场主要设施45625.2.1 抽油机井45625.2.2 丛式井场45725.2.3 电泵井45725.2.4 螺杆泵井45725.2.5 天然气井45825.2.6 水源井45825.2.7 注水井45825.3 井场采集控制平台功能45925.3.1 总貌图45925.3.2 导航图45925.3.3 电子巡井45925.3.4 功图数据回放45925.3.5 水井管理45925.3.6 功图计产与量油459第26章 石化电站锅炉的控制46026.1 工艺简介46026.2 系统配置46026.2.1 系统网络结构46026.2.2 系统硬件46026.3 系统组态46326.4 主要控制回路464第27章 热电站锅炉烟气脱硫的控制46727.1 工艺简介46727.2 和利时MACSV系统46727.2.1 网络配置46727.2.2 硬件配置46827.2.3 系统软件配置46927.3 主要控制系统46927.3.1 脱硫系统46927.3.2 布袋除尘器系统470参考文献472版权说明本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。
石油化工仪表DCS系统研究
![石油化工仪表DCS系统研究](https://img.taocdn.com/s3/m/087155d5760bf78a6529647d27284b73f24236d2.png)
石油化工仪表DCS系统研究摘要:在互联网的背景下,经济活动、日常生活等行业正在向信息化管理方向发展,这要求各行业大力加强自身技术和信息自动化技术在具体生产、制造和运营过程中的深度融合和应用,提高关键技术的竞争力。
特别是在石化领域,为了促进更高效的发展和确保企业的安全生产,应高度重视优秀的现代信息技术的设计和应用,如仪表控制系统中的DCS系统,严格管理的设计人员应提前对石化仪表DCS系统的设计过程进行深入分析和观察,从源头上保证系统控制的准确性,提高系统质量和应用水平。
关键词:石油化工;仪表;DCS系统;措施1石油化工仪表自动化技术阐述石油化工仪器在石油工业中不可或缺。
在实际应用中,仪表的精度将直接影响石化产品的质量。
近年来,由于科学技术的快速发展,各行各业的人们对石化产品的需求越来越多,他们越来越渴望提高和控制仪器的测量精度。
石化行业的仪表自动化控制实际上是自动化组件、机械设备、全过程控制和电子信息技术的组合,然后在特定的主要参数设置下,自动化技术以指令的方式操作。
石油化工仪表自动控制的诞生,促使石油化工仪表从最初的精确测量角色转变为精确测量、实际、存储、控制、预警信息、数据处理方法等功能,从而为中国石油化工产业链的稳步发展奠定了良好基础。
2石油化工企业中自动化控制技术的特点2.1可编程为了适应石化行业的生产法规,企业可以使用尖端的自动化技术管理系统软件来管理和控制仪表生产过程中的设备系统。
根据仪器内部结构的简化,采用高端计算机技术对仪器进行调整和更换,使仪器的整体功能和质量得到最佳控制和升级。
2.2准确测量在石化行业中,自动化技术和控制技术的应用石化仪表的应用可以实现与电子信息技术的紧密结合,从而不仅可以提高控制水平,还可以提高计算误差。
在化工企业生产过程中,可以借助仪器的基本功能,对收集到的有效信息进行分析,为化工企业的生产、规划和建设提供参考。
2.3故障排除与分析仪表作为化工厂的核心机械设备,一般存储大量关键信息,以完成系统的故障检测。
基于DCS的石油化工仪表控制系统设计
![基于DCS的石油化工仪表控制系统设计](https://img.taocdn.com/s3/m/f5ed4decf71fb7360b4c2e3f5727a5e9856a2712.png)
基于 DCS的石油化工仪表控制系统设计摘要:现阶段,作为石油化工行业最重要的研究内容,石油化工仪表控制已成为严重制约我国石油化工行业可持续发展的关键问题,与人们的正常生活息息相关。
因此,基于DCS的石油化工仪表控制系统的设计对促进我国石油化工行业的健康、可持续发展具有重要意义。
DCS控制系统在石油化工仪表控制的应用中起着重要的作用。
基于DCS控制系统,可以改变传统的石油化工仪表控制元件。
通过对石油化工仪表数据的分散控制,实现了节约成本、提高效率,提高了石油化工仪表的控制精度。
关键词:DCS;石油化工;仪表控制;控制系统;系统设计引言石化企业生产水平的自动化对提高化工生产效率和生产质量具有积极作用。
DCS控制系统作为石油化工仪表控制系统中的常规自动控制技术,其原理是基于DCS系统及相关技术,通过应用电气单元组合仪表灯和动态控制模式,实现对石油化工整个正常运行过程的全方位控制,并将监督管理工作落实到每个生产环节,以达到对整个石化产品进行批量控制的目的,确保生产方法和措施具有足够的安全性、稳定性和平衡性,为石化行业高效、高质量的批量生产提供一定的物质技术基础。
1DCS控制系统在石油化工生产过程中,为了提高DCS控制系统的计算能力,完成各部分的复杂操作,需要对不同的生产仪表和设备进行控制,主要包括微机数据和信息的采集和处理。
这种计算形式可以提高DCS控制系统的运行效率。
在实际操作过程中,要求工作人员充分了解DCS控制系统的各种功能和内容,掌握各种功能的体现,使其操作更加方便、准确,减少操作环节中因人工失误造成的一些问题,另外还可以基于数字屏来显示出各种石油化工生产方面的仪表设备数据,对数据信息内容进行全面的处理和分析,基于显示屏基础来了解石油化工生产方面的细节内容,为管理工作人员了解生产情况提供方便。
如果要修改DCS控制系统的具体方案,也可以直接在显示屏中对企业进行适当的调整,这就需要工作人员能够充分了解整体的方案,为后续的工作提供方便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探讨石油化工仪表控制系统
摘要: 进入21世纪,随着我国计算机水平高速发展,拉动了对自动化仪表与控制系统的需求,我国新上的大型项目所用自动化仪表和控制系统的先进程度已经处于世界领先水平。
关键词:石油化工;仪表控制系统
1.新型分析仪与自动检测的应用
为适应现场总线控制系统要求,现场总线型变送器获得了迅速发展。
此变送器是全数字式,结构简单,分辨力和稳定性都高于一般智能型变送器。
由于现场总线数字仪表产品日趋完善,并具有可靠性高、可互操作性(即可将不同品牌产品集成组态)等特点,在石化过程控制领域将会得到更多应用。
国内外商业贸易的发展,要求提高商品交割计量精确度,石化出厂计量应用的质量流量计精确度为±0.1%或更高。
石化企业为加强产品质量管理,也促进了在线分析仪表的应用。
它会直接影响到石化企业产品质量及先进控制应用的水平,因此得到了石化系统的积极推广,主要包括在线油品质量分析仪,在线气相或液相色谱仪及其他物理特性分析仪等。
最新的在线多路近红外(nir)光谱分析仪已应用于石化企业炼油调合系统并取得较好效果。
新一代实验室低成本汽油质量指标快速测定仪已成功应用于中石化杭州炼油厂等单位,受到了用户的好评。
软测量技术发展也很快,主要用于解决石化企业部分分析检测难题。
由于环境保护要求越来越高,环保仪表应用也增多,如在线烟气分析、综合水质分析仪、在线cod分析仪、do分析仪及ph分析仪等。
石化对工
厂维护工作越来越重视,特别是对预测维护保养问题更感兴趣。
有些公司要求提供在线联机和实时传感系统,用于监控热交换器和加热炉的效率,振动和腐蚀及评估“健康“状况的指示器。
采用具有诊断和预测维护保养能力的仪表与系统,可使现有设备的生产潜力增长1%~3%,同时非计划的维护保养费用可降低10%~30%。
2.fcs与dcs共存
fcs是在dcs的基础上发展起来的,代表潮流与发展方向,国内有的大型项目已采用fcs,如上海赛科乙烯、南海石化项目等,上海赛科乙烯的fcs已投运,今后会有更多的项目采用fcs。
在现阶段,fcs 尚没有统一的国际标准,而dcs应用很广,技术成熟,发展很快,因此,dcs仍占有不可替代的地位,预计在今后很长一个时期,dcs与fcs将相互兼容、并存。
另外,也有的大型工程项目采取fcs和dcs 混用方式,以发挥各自的优势。
国内外大公司的dcs应用领域广,已具有完备的功能并不断采用新技术,向开放性、网络化方向发展。
3.先进控制的应用
石化企业生产装置采用先进控制,可以提高装置运行的稳定性和安全性、提高产品的质量和收率、增加装置处理量、降低运行成本、带来明显的经济效益。
目前一些先进控制技术已成熟,应用比较成功的有鲁棒pid控制和多变量预测等控制技术。
先进控制的主要特点如下:(1)它是基于模型的控制策略。
如:模型预测控制和推断控制等。
目前,基于知识的控制如智能控制和模糊控制正成为先进控制的一个重要发展方向。
(2)先进控制通常用于处理复杂的多变量
过程控制问题。
如大时滞、多变量耦合、被控变量与控制变量存在各种约束等。
先进控制是建立在常规单回路控制之上的动态协调约束控制,可使控制系统适应实际工业生产过程动态特性和操作要求。
(3)先进控制的实现需要足够的计算能力作为支持平台,可以在上位机或dcs/fcs中实现。
国外开发先进控制的公司很多,主要有美国honeywell公司的控制器,profit、美国aspentech公司的控制器dmc-plus、美国abb公司的控制器star、美国foxboro公司的控制器connoissur、日本yokogawa公司的控制器smoc。
国内,主要是清华大学和浙大中控等单位进行开发,并取得成功。
石化系统与美国honeywell公司合作,成功地实施了催化裂化装置先进控制。
至今中石化、中石油两大股份公司已有几十套装置成功运行了先进控制,主要有常减压、催化裂化、柴油加氢、延迟焦化、乙烯裂解、聚丙烯、聚乙烯等,取得了显著的经济效益。
4.制造执行系统(mes)
近年来,石化企业采用erp/mes/pcs三层管理与控制系统,这已是自动化技术的发展趋势。
从石化企业推广应用erp的经验可知:只上erp没有配套的mes,很难取得预期的效果。
因此,现已开发了mes 并加大mes应用的力度,采用mes技术使企业信息系统取得了较好的效果。
据美国arc公司调查统计,如果应用mes,产品质量可以提高19.2%,劳动生产率提高13.5%,产量提高11.5%。
石化企业生产与经营过程,大致可分为三层:操作控制层是装置dcs/fcs、实时数据库;生产管理层是生产调度、油品储运等;经营管理层是erp等三个
层面。
erp系统需要mes提供的成本、制造周期和预计产出时间等实时生产数据,生产装置所有投入、产出数据都需在mes系统平衡处理基础上才能导入到erp系统中。
因此,石化行业erp是否能取得效果,将取决于制造执行系统(mes)实施的水平和数据源质量以及处理的效率。
国内外大型石化公司已采用mes,其mes主要由以下几部分组成:(1)实时数据库与信息管理。
通过实时数据库,企业可集成生产计划与生产调度、先进控制与优化、设备维护与管理、动态成本管理、化验信息系统、流程模拟与优化、erp等系统,并把这些信息有机连在一起,在业务管理和生产控制之间起到上下贯通、管控一体化的作用。
(2)生产计划与调度优化。
生产调度系统实施企业生产计划,保证全厂稳定、高效地生产。
调度决策系统将生产计划、生产调度、工艺操作和油品储运等联系起来,提前预测生产和油品库存情况,并可进行调度优化。
(3)流程模拟与工程。
通过工程流程模拟与优化等先进技术,找到最佳的操作条件,在满足生产装置安全生产和产品质量合格的优化条件下进行生产,是石化企业挖潜增效的有效途径。
(4)先进控制与优化。
先进控制解决方案主要包括非线性控制器、在线监控、软仪表推理技术、优化控制器维护等,可应用于催化裂化、连续重整、大型延迟焦化及乙烯等各种生产装置。
用线性规划(lp)为优化基础,控制器能使生产工况在最优卡边操作。
当控制器投用后,还需要监控其性能,以便作周期性维护,使其保持精确度。
闭环实时优化可强化装置的可靠性,并提高效益。
(5)数据校正与物料平衡。
通过实时数据库等系统,许多炼化企
业已实现了生产过程数据的自动采集、生产装置的远程监测等,其数据校正与分析应用有以下几点:全厂生产工艺过程的物料、能源平衡计算;为成本核算、收率核算、油品移动、罐区管理和生产统计等应用提供准确可靠的数据;诊断仪表故障,发现并及时处理跑冒滴漏现象;为生产计划和调度提供有力支持;为erp等系统提供基础数据。
(6)实时动态模拟系统。
实时动态模拟系统可提供整个炼厂高精确度、多功能动态模拟,可用于设计、工厂开车、工厂改造等方面的操作改进,并通过提高炼厂生产能力和培训操作员技能,实现效益的最大化。
在石化系统几家企业已应用mes系统,通过对物流的综合跟踪管理,可有效降低油品的损耗,有了mes这套系统后对公用工程的数据可进行有效的管理,降低了能耗,提高了能源使用效率。
mes为erp 系统提供准确及时的生产数据,提高了erp的应用效果。
石化工业应用mes以后,预计项目应用的加工成本可降低1%,操作效率提高1%。
今后,信息技术、自动化技术包括mes技术和网络技术,将会在石化生产过程中发挥更大的作用。
今后推动dcs、fcs、先进控制技术的应用和发展寄望于流程工业,以石油和化工行业为领头军。
在“信息化带动工业化,工业化促进信息化”国策的指引下,必将迎来dcs、fcs、先进控制技术的应用和发展的春天。