详解机器人手腕结构图

合集下载

工业机器人腕部结构设计 ppt课件

工业机器人腕部结构设计  ppt课件
工业机器人腕部结构设计
-----驱动部分
PPT课件
1
目录
一、工业机器人补充资料 二、工业机器人驱动机构 三、工业机器人传动机构
PPT课件
2
一 、工业机器人补充资料
• 1、自由度
• 2、精度:工业机器人精度是指定位精度和 重复定位精度。定位精度是指机器人手部 实际到达位置与目标位置之间的差异。重 复定位精度是指机器人重复定位其手部于 同一目标位置的能力,可以用标准偏差这 个统计量来表示,它是衡量一列误差值的 密集度,如下图示
气缸的精确位置很难。因此气动装置通常仅用于插入操作 或1/2自由度关节上; • 结构简单,安全可靠,价格便宜;
PPT课件
11
液压驱动与气压驱动之对比
液压驱动 • 适于搬运较重的物体 • 不适于高速移动 • 适于确定高精度位置
气压驱动 • 适于搬运较轻的物体 • 适于高速移动 • 不适于确定高精度位置
优点:调速方便(可无级调速),调速范围宽,低速性能好 (启动转矩大,启动电流小),运行平稳,转矩和转速容易控制。
缺点:换相器需经常维护,电刷极易磨损,必须经常更换, 噪音比交流电机大。
PPT课件
15
交流电机驱动
AC servomotor
1. 工作原理
PPT课件
16
同步电机:定子是永磁体,所谓同步是指转子速度与定子 磁场速度相同。
4.交流电机的控制方式
改变定子绕组上的电压或频率,即电压控制或频率控制方式。
伺服电机的精度由编码器的精度决定。
PPT课件
18
步进电机驱动
步进电机驱动系统主要用于开环位置控制系统。优点:控 制较容易,维修也较方便,而且控制为全数字化。缺点:由于开 环控制,所以精度不高。

任务二机器人的手腕结构课件

任务二机器人的手腕结构课件
任务二机器人的手腕结 构课件
• 机器人手腕结构的应用与发展趋势 • 机器人手腕结构的优化与创新设计
CHAPTER 01
机器人手腕结构概述
手腕结构的重要性
提高机器人的灵活性
提升机器人的工作效率
手腕结构可以使机器人更准确地控制 末端执行器的姿态和位置,实现更加 精细和复杂的操作。
手腕结构可以扩大机器人的工作范围, 使其能够到达更远的空间位置,提高 工作效率。
详细描述
柔性手腕具有较好的柔性和顺应性,可以适应各种不同的工作需求。由于其结构简单,重量较轻,转动惯量较小, 响应速度快。但是,柔性手腕的刚度较低,承载能力有限,通常用于轻量级、对精度要求不高的机器人中。此外, 柔性手腕的设计需要考虑材料的力学性能和机构的稳定性。
多关节型手腕
总结词
多关节型手腕是一种复杂的手腕结构,由多个关节组 成,可以实现多自由度的运动。
详细描述
机械臂型手腕具有较高的刚度和承载能力,可以用于重负载、高精度的机器人中。由于 其结构复杂,机械臂型手腕的转动惯量较大,响应速度较慢。但是,通过优化设计,可 以减小转动惯量,提高响应速度。此外,机械臂型手腕还可以通过改变关节长度和连杆
结构来实现不同的运动轨迹和姿态。
柔性手腕
总结词
柔性手腕是一种特殊的手腕结构,通过柔性材料或机构实现弯曲和扭转。
机器人手腕结构的应用与发展趋势
工业机器人
工业机器人是手腕结构应用的主要领域之一,它们在生产线上的装配、焊接、搬运 等任务中发挥着重要作用。
工业机器人的手腕结构通常采用关节式或滑槽式设计,具有较高的自由度和灵活性, 能够完成各种复杂的动作。
随着工业自动化的发展,工业机器人将在智能制造、柔性制造等领域发挥更大的作用。

机器人学_第2章_机器人机械结构

机器人学_第2章_机器人机械结构
• 电机M3→两级同步带传动B3、B3′→减速器R3→肘关节摆动 n3
– 肩关节的摆动:
• 电机M2→同步带传动B2→减速器R2→肩关节摆动n2
29
腕部俯仰
关节型机器人传动 系统图:
肘关节摆动
肩关节的摆动
腕部的旋转
30
腕部旋转局部图例:
电机M5→减速器R5→链轮 副 C5→锥齿轮副G5→旋转运动n5
上料道与下料道分 别设在机床的两侧, 双臂能同时动作, 两臂同步沿横梁移 动,缩短辅助时间
b.双臂交叉配置,
两臂轴线交于机床 的中心,两臂交错 伸缩进行上下料, 并同时沿横梁移动
c.双臂交叉配置,
悬伸梁式,横梁长 度较a,b短,双臂位 于横梁的同一侧
5
(2).双臂悬挂式(b)
双臂回转型,双 臂交叉且绕同轴 回转,分别负责 上下料(主要是 盘状零件),只 需一个动力源, 结构紧凑,动作 范围大
第2章 机器人的机械结构
2.1 机身和臂部 2.2 腕部和手部结构 2.3 传动部件设计
1
2.1 机身和臂部
• 一.机身和臂部的作用
• 机身是直接连接支承传动手臂和行走机 构的部件,机身可以是固定的,也可以 是行走式的
• 手臂部件用来支承腕部(关节)和手部 (包括工件和工具),并带动它们在空 间运动
• 远距离传动手腕:
–有时为了保证具有足够大的驱动力,驱动装 置又不能做得足够小,同时也为了减轻手腕 的重量,采用远距离的驱动方式,可以实现 三个自由度的运动。
44
1)液压直接驱动BBR手腕图例:
回转 R
俯仰 B
偏转 B
45
2). 单回转腕部 结构示例
46
3)双回转油缸驱动手腕

机器人手部结构详解精品PPT课件

机器人手部结构详解精品PPT课件

5.异形吸盘:
结构特点:
可用来吸附鸡蛋、 锥颈瓶等物件。 扩大了真空吸盘 在机器人上的应 用。
6.喷气式吸盘:
工作原理:
压缩空气进入喷嘴后,利用伯努利效应,当压缩 空气刚进入时,由于喷嘴口逐渐缩小,致使气流 速度逐渐增加。当管路截面收缩到最小处时,气 流速度达到临界速度,然后喷嘴管路的截面逐渐 增加,使与橡胶皮碗相连的吸气口处,造成很高 的气流速度而形成负压。
43
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
讲师:XXXXXX XX年XX月XX日
当手爪夹紧和松开物体时,手指作回转运动。当 被抓物体的直径大小变化时,需要调整手爪的位 置才能保持物体的中心位置不变。
平动型:
手指由平行四杆机构传动,当手爪夹紧和松开物 体时,手指姿态不变,作平动。
平移型:
当手爪夹紧和松开工件时,手指作平移运动,并 保持夹持中心的固定不变,不受工件直径变化的 影响。
手部可能还有一些电、气、液的接口: 由于手部的驱动方式不同造成。对这 些部件的接口一定要求具有互换性。
2.手部是末端操作器:
可以具有手指,也可以不具有手指; 可以有手爪,也可以是专用工具。
末端操作器图例(1):
每个手指有三个或 四个关节。技术关 键是手指之间的协 调控制。
末端操作器图例(2):
2.设有检测开关的手爪装置:
工作原理:
手爪装有限位开 关5和7。在指爪 4沿垂直方向接 近工件6的过程 中,限位开关检 测手爪与工件的 相对位置。当工 件接触限位开关 时发信号,汽缸 通过连杆3驱动
指爪夹紧工件。
4.上料吸盘(1):

机器人本体结构_图文

机器人本体结构_图文

腕部及手部结构
机器人腕部结构的基本形式和特点
机器人的手部作为末端执行器是完成抓握工件或执行特定作业的重要部件,也需要有多种结构。腕部是 臂部与手部的连接部件,起支承手部和改变手部姿态的作用。目前,RRR型三自由度手腕应用较普遍。
腕部是机器人的小臂与末端执行器(手部或称手爪)之间的连接部件,其作用是利用自身的活动度确定手部 的空间姿态。对于一般的机器人,与手部相连接的手腕都具有独驱自转的功能,若手腕能在空间取任意 方位,那么与之相连的手部就可在空间取任意姿态,即达到完全灵活。 从驱动方式看,手腕一般有两种形式,即远程驱动和直接驱动。直接驱动是指驱动器安装在手腕运动关 节的附近直接驱动关节运动,因而传动路线短,传动刚度好,但腕部的尺寸和质量大,惯量大。远程驱 动方式的驱动器安装在机器人的大臂、基座或小臂远端上,通过连杆、链条或其他传动机构间接驱动腕 部关节运动,因而手腕的结构紧凑,尺寸和质量小,对改善机器人的整体动态性能有好处,但传动设计 复杂,传动刚度也降低了。 按转动特点的不同,用于手腕关节的转动又可细分为滚转和弯转两种。滚转是指组成关节的两个零件自 身的几何回转中心和相对运动的回转轴线重合,因而能实现360°无障碍旋转的关节运动,通常用R来标 记。弯转是指两个零件的几何回转中心和其相对转动轴线垂直的关节运动。由于受到结构的限制,其相 对转动角度一般小于360°。弯转通常用B来标记。
一、腕部的自由度
手腕按自由度个数可分为单自由度手腕、二自由度手腕和三自由度手腕。
腕部实际所需要的自由度数目应根据机器人的工作性能要求来确定。在有些情况下,腕部具 有两个自由度,即翻转和俯仰或翻转和偏转。一些专用机械手甚至没有腕部,但有些腕部为 了满足特殊要求还有横向移动自由度。
6种三自由度手腕的结合方式示意图

第七讲机器人的机械臂结构课件

第七讲机器人的机械臂结构课件

三、典型机械臂结构
1.手臂直线运动机构
常见方式:
行程小时:采用油缸或气缸直接驱动;
当行程较大时:可采用油缸或气缸驱动
齿条传动的倍增机构或采用步进电机或 伺服电机驱动,并通过丝杆螺母来转换 为直线运动。
典型结构:
油缸驱动的手臂伸缩运动结构 电机驱动的丝杆螺母直线运动结构
油缸—齿条机构图例:
油缸驱动的手臂伸缩运动结构图例:
四根导向柱 的臂部伸缩 机构:
手臂的 垂直伸缩运 动由油缸3 驱动。
特点:
工作行程长, 抓重大,适 合于抓举工 件形状不规 则、有偏转 力矩的场合。
1—手部 2—夹紧缸;3—油缸;4—导向柱;5—运行架;6—行走车轮; 7—轨道;8—支座
电机驱动丝杆螺母直线运动结构图例:
关节型机器人传动 系统图:
关节型机器人腕部旋转 局部图:
电机M5→减速器R5→链轮 副 C5→锥齿轮副G5→旋转运动n5
关节型机器人腕部俯仰 局部图:
电机M4→减速器R4→链轮副 C4→俯仰运动n4
关节型机器人肘关节
局部图:
电机M3→两级同步带传动B3、 B3′→减速器R3→肘关节摆动n3
关节型机器人肩关节 局部图例:
电机M2→同步带传 动B2→减速器R2→肩 关节摆动n2
四、机械臂的控制
1、伺服系统的分类
液压伺服系统
机械臂各关节的运动通常由液压伺服阀 控制液压缸实现。
电动伺服系统
机械臂各关节的运动通常由步进电机或 直流电机驱动。
伺服直线液压缸图例:
电动伺服控制系统图例:
作业:
1、设计三种机器人小臂相对于大臂的直线运动方案,动力源为电机 驱动,用示意图表达。 2、画出型号为20a的工字钢的截面形状,并标注出有关几何参数。 3、解释液压伺服系统和电动伺服系统的组成及工作原理。

任务二机器人的手腕结构

任务二机器人的手腕结构
工业机器人的机械结构
手部(末端操作器) 工业机器人的 机械结构 手腕 手臂 机身 确定手部作业方向
工业机器人的手腕
课程目标
掌握机器人的手腕结构组成 掌握机器人的手腕工作原理 掌握机器人手腕的作用
工业机器人的手腕
机器人的手腕是连接手部与手臂的部件,它的主要作用是支承手 部,因此它具有独立的自由度,以满足机器人手部完成复杂动作的要 求。 一、手腕的分类
工业机器人的手腕
工业机器人按自由度数目
二自由度手腕 三自由度手腕
按驱动方式
直接驱动手腕
远距离传动手腕
工业机器人的手腕
二、手腕的典型结构 确定手部作业方向一般需要3个自由度 (1)臂转 绕小臂轴线方向的旋转。
(2)手转 使手部绕自身的轴线方向旋转。
(3)腕摆 使手部相对于臂进行摆动。
柔顺性概念
柔顺装配技术有两种:一种是从检测、控制的角度,采取各种不同的 搜索方法,实现边校正边装配。另一种是从机械结构的角度在手腕部配置 一个柔顺环节,以满足柔顺装配的要求。

关节型机器人腕部结构设计(全套,CAD有图)

关节型机器人腕部结构设计(全套,CAD有图)

1前言1.1机器人的概念机器人是一个在三维空间中具有较多自由度,并能实现较多拟人动作和功能的机器,而工业机器人则是在工业生产上应用的机器人。

美国机器人工业协会提出的工业机器人定义为:“机器人是一种可重复编程和多功能的,用来搬运材料、零件、工具的操作机”。

英国和日本机器人协会也采用了类似的定义。

我国的国家标准GB/T12643-90将工业机器人定义为:“机器人是一种能自动定位控制、可重复编程的、多功能的、多自由度的操作机。

能搬运材料、零件或操持工具,用以完成各种作业”。

而将操作机定义为:“具有和人手臂相似的动作功能,可在空间抓放物体或进行其它操作的机械装置”。

机器人系统一般由操作机、驱动单元、控制装置和为使机器人进行作业而要求的外部设备组成。

1.1.1操作机操作机是机器人完成作业的实体,它具有和人手臂相似的动作功能。

通常由下列部分组成:a.末端执行器又称手部,是机器人直接执行工作的装置,并可设置夹持器、工具、传感器等,是工业机器人直接与工作对象接触以完成作业的机构。

b. 手腕是支承和调整末端执行器姿态的部件,主要用来确定和改变末端执行器的方位和扩大手臂的动作范围,一般有2~3个回转自由度以调整末端执行器的姿态。

有些专用机器人可以没有手腕而直接将末端执行器安装在手臂的端部。

c. 手臂它由机器人的动力关节和连接杆件等构成,是用于支承和调整手腕和末端执行器位置的部件。

手臂有时包括肘关节和肩关节,即手臂与手臂间。

手臂与机座间用关节连接,因而扩大了末端执行器姿态的变化范围和运动范围。

d. 机座有时称为立柱,是工业机器人机构中相对固定并承受相应的力的基础部件。

可分固定式和移动式两类。

1.1.2驱动单元它是由驱动器、检测单元等组成的部件,是用来为操作机各部件提供动力和运动的装置。

1.1.3控制装置它是由人对机器人的启动、停机及示教进行操作的一种装置,它指挥机器人按规定的要求动作。

1.1.4人工智能系统它由两部分组成,一部分是感觉系统,另一部分为决策-规划智能系统。

典型机器人结构示例ppt课件

典型机器人结构示例ppt课件
18
手腕图例:
19
三、主要运动
20
1.腰转运动:
运动传动链:
关节电机1→Z1/Z2→Z3/Z4→Z4与立柱空心 轴相连→实现腰转
结构特点:
轴38为一对轴承支承的悬臂轴; 齿轮33与空心轴31固联,空心轴由两个推
力轴承限制其轴向位移。轴套30起轴承座 的作用。
21
腰转运动传动原理图:
的运动,并分析其结构。点:肩关节运动(2):
在俯视图和A—A示图中,后壳盖9与立柱空 心轴31螺纹联接,空心轴10与后壳盖9螺纹 联接,空心轴10固定不动。
齿轮17与后壳盖9螺纹联接,齿轮17固定不 动,当小齿轮16与之啮合时,只能是自转又 公转,由于轴14支承在大臂上,带动大臂绕 水平轴10旋转,实现肩关节的旋转运动。
10
1.立柱和基座(2):
基座:支承整个立柱以上部分,同时与
作业现场固定联接。基座上装有关节1 的驱动电机以及基座内部为该关节的两 级直齿圆柱齿轮减速器;基座上有小臂 的定位夹板,两个控制手爪装置的气动 阀。整个基座是一个铝制的整体铸件。
11
立柱和基座图例:
12
2.大臂:
主要由内部铝制的整体铸件骨架外加薄 铝盖板构成。大臂上装有肩关节(关节 2)、肘关节(关节3)的驱动电机,内 部装有相应的减速机构。
57
电磁制动闸图例:
58
PT-600弧焊机器人:
PT-600型机器人是五自由度关节型弧 焊机器人。采用直流伺服电机驱动、 微机控制,结构紧凑,工作范围大, 不仅用于弧焊作业,还可用于搬运和 装配作业。
59
PT-600弧焊机器人外形图(1):
60
PT-600弧焊机器人外形图(2):

关节型机器人腕部结构设计(全套,CAD有图)

关节型机器人腕部结构设计(全套,CAD有图)

1前言1.1机器人的概念机器人是一个在三维空间中具有较多自由度,并能实现较多拟人动作和功能的机器,而工业机器人则是在工业生产上应用的机器人。

美国机器人工业协会提出的工业机器人定义为:“机器人是一种可重复编程和多功能的,用来搬运材料、零件、工具的操作机”。

英国和日本机器人协会也采用了类似的定义。

我国的国家标准GB/T12643-90将工业机器人定义为:“机器人是一种能自动定位控制、可重复编程的、多功能的、多自由度的操作机。

能搬运材料、零件或操持工具,用以完成各种作业”。

而将操作机定义为:“具有和人手臂相似的动作功能,可在空间抓放物体或进行其它操作的机械装置”。

机器人系统一般由操作机、驱动单元、控制装置和为使机器人进行作业而要求的外部设备组成。

1.1.1操作机操作机是机器人完成作业的实体,它具有和人手臂相似的动作功能。

通常由下列部分组成:a.末端执行器又称手部,是机器人直接执行工作的装置,并可设置夹持器、工具、传感器等,是工业机器人直接与工作对象接触以完成作业的机构。

b. 手腕是支承和调整末端执行器姿态的部件,主要用来确定和改变末端执行器的方位和扩大手臂的动作范围,一般有2~3个回转自由度以调整末端执行器的姿态。

有些专用机器人可以没有手腕而直接将末端执行器安装在手臂的端部。

c. 手臂它由机器人的动力关节和连接杆件等构成,是用于支承和调整手腕和末端执行器位置的部件。

手臂有时包括肘关节和肩关节,即手臂与手臂间。

手臂与机座间用关节连接,因而扩大了末端执行器姿态的变化范围和运动范围。

d. 机座有时称为立柱,是工业机器人机构中相对固定并承受相应的力的基础部件。

可分固定式和移动式两类。

1.1.2驱动单元它是由驱动器、检测单元等组成的部件,是用来为操作机各部件提供动力和运动的装置。

1.1.3控制装置它是由人对机器人的启动、停机及示教进行操作的一种装置,它指挥机器人按规定的要求动作。

1.1.4人工智能系统它由两部分组成,一部分是感觉系统,另一部分为决策-规划智能系统。

5.3工业机器人手腕-课件

5.3工业机器人手腕-课件

• 微软雅黑,大小(18为推荐,若内容多,可改为16);此区域图文混排, 动画元件最后固定位置勿超出此区域。;编排形式可自选,勿超出此区域
俯仰
俯仰
偏转
翻转
BR手腕
BB手腕
翻转
RR手腕
2024/2/29
10
微 3. 软三雅自黑由,度2手0,腕标题
•➢微由软B关雅黑节,和大R关小(节1组8为合推而荐成,,若组内合容的多方,式可改有为多1种6)多;样此。区域图文混排,
2024/2/29
5
微 二软、雅手黑腕,的20自,标由题度
• 微软雅黑,大小(18为推荐,若内容多,可改为16);此区域图文混排, 动画元件最后固定位置勿超出此区域。;编排形Z 式可自选,勿超出此区域
w
腕 爪

Ɵ1

➢ 按自由度数目来分,手腕可分为单自由度、二自由度和三自由度。
2024/2/29
6
2024/2/29
12
三微、软雅柔黑顺,手20腕,结标题构
• 微中软空雅固定黑件,大小(18为推荐,若内容多,可改为16);此区域图文混排, 动画元件最后固定位置勿超出此区域。;编排形式可自选,勿超出此区域
螺丝
钢珠 弹簧
上部浮动件
工件
下部浮动件
弹簧
机械手
2024/2/29
13
三微、软雅柔黑顺,手20腕,结标题构
• 微软雅黑,大小(18为推荐,若内容多,可改为16);此区域图文混排, 动人画手元爪的件定最位后精固度定无位法置满勿足装超配出要此求区时域,。会;导致编装排配形困式难可。自选,勿超出此区域
➢ 类型: ➢ 1. 主动柔顺装配 边校正边装配,配有检测元件如视觉传感器、力传感器等 ➢ 2. 被动柔顺装配 在手腕部配置一个柔顺环节

第三章3.3机器人腕部结构

第三章3.3机器人腕部结构

第三章机器人的机械结构系统3.3机器人腕部结构【内容提要】本课主要学习工业机器人腕部结构。

介绍机器人腕部的三种运动、两种转动;机器人腕部的自由度;腕部的驱动方式;机器人的柔顺腕部以及机器人腕部典型结构。

知识要点:✓机器人腕部分类✓手腕的自由度✓手腕的驱动方式✓柔顺腕部✓腕部典型结构重点:✓掌握机器人腕部的分类✓掌握机器人手腕的自由度✓掌握机器人手腕的驱动方式✓掌握机器人腕部典型结构难点:✓掌握机器人腕部的分类✓机器人腕部典型结构关键字:✓手腕、柔顺腕部、腕部自由度【本课内容相关资料】3.3机器人腕部结构腕部是连接机器人的小臂与末端执行器(臂部和手部)之间的结构部件,其作用是利用自身的活动度来确定手部的空间姿态,从而确定手部的作业方向。

对于一般的机器人,与手部相连接的腕部都具有独驱自转的功能,若腕部能在空间取任意方位,那么与之相连的手部就可在空间取任意姿态,即达到完全灵活。

多数将腕部结构的驱动部分安排在小臂上。

腕部是臂部与手部的连接部件,起支承手部和改变手部姿态的作用。

目前,RRR型三自由度腕部应用较普遍。

3.3.1机器人腕部的转动方式1.腕部的运动机器人一般具有6个自由度才能使手部(末端执行器)达到目标位置和处于期望的姿态。

为了使手部能处于空间任意方向,要求腕部能实现对空间3个坐标轴x,y,z的旋转运动,如图3-15所示。

这便是腕部的3个运动:腕部旋转、腕部弯曲、腕部侧摆,或称为3个自由度。

(1)腕部旋转腕部旋转是指腕部绕小臂轴线的转动,又叫做臂转。

有些机器人限制其腕部转动角度小于360°。

另一些机器人则仅仅受到控制电缆缠绕圈数的限制,腕部可以转几圈。

如图3-15a 所示。

a)臂转b)手转c)腕摆d)腕部坐标系图3-15腕部的三个运动和坐标系(2)腕部弯曲腕部弯曲是指腕部的上下摆动,这种运动也称为俯仰,又叫做手转。

如图3-15b所示。

(3)腕部侧摆腕部侧摆指机器人腕部的水平摆动,又叫做腕摆。

机器人腕部结构分析

机器人腕部结构分析

• 附加俯仰运动:
第35页/共38页

轴 星 经
过架B 、Z回2轴0转、S时Z不1→6转、迫而Z使1T7、轴齿Z回轮18转Z实22现→绕附齿齿加轮轮俯ZZ2仰231、的运Z过动21 不程
转 中
→ 自
当 转
行 →
轮系驱动三自由度手腕图例(5):
• 附加回转运动:
第36页/共38页
• 轴B、轴S不转而T轴回转→齿轮Z23、Z21不转→当行 星架回转时→迫使齿轮Z11绕齿轮Z23的过程中自转 →
一、手腕的自由度
第2页/共38页
1.手腕的自由度:
• 为了使手部能处于空间任意方向,要求腕部能实现对空间三个坐标轴X、 Y、Z 的 旋 转 运 动 。 这 便 是 腕 部 运 动 的 三 个 自 由 度 , 分 别 称 为 翻 转 R (Roll)、俯仰P(Pitc h)和偏转Y(Yaw)。
• 并不是所有的手腕都必须具备三个自由度,而是根据实际使用的工作性 能要求来确定。
→20、手Z腕16壳→
直线运动转化为旋转运动:
第33页/共38页
轮系驱动三自由度手腕图例(3):
• 偏转运动:
第34页/共38页
• 油缸1中的活塞左右移动→带动链轮2旋转→锥齿轮
副 连
在Z 3
/一Z 4起→→带带动动花行键星轴架5 、及6手旋腕转作→偏花转键运轴动6




9
轮系驱动三自由度手腕图例(4):
轮系驱动二自由度手腕图例(4):
• 思考题:
图中所示的情况,当 S轴不输入,只有B 轴输入时,腕部存在 哪些运动,为什么?
第27页/共38页
轮系驱动二自由度手腕图例(3):
• 附加回转运动:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

详解机器人手腕结构图
————————————————————————————————作者:————————————————————————————————日期:
【详解】机器人手腕结构图
机器人手腕是连接末端操作器和手臂的部件,它的作用是调节或改变工件的方位, 因而它具有独立的自由度,以
使机器人末端操作器适应复杂的动作要求。

工业机器人一般需要6个自由度才能使手部达到目标位置并处于期望的姿态。

为了使手部能处于空间任意方向, 要求腕部能实现对空间三个坐标轴x、y、z的转动,即具有翻转、俯仰和偏转三个自由度,如图2.31所示。

通常也把手腕的翻转叫做Roll,用R表示;把手腕的俯仰叫做Pitch,用P表示; 把手腕的偏转叫Yaw,用Y表示。

图2.31 手腕的自由度(a)绕z轴转动; (b)绕y轴转动; (c) 绕x轴转动;(d) 绕x、y、z轴转动
手腕的分类
1.按自由度数目来分手腕按自由度数目来分, 可分为单自由度手腕、2自由度手腕和3自由度手腕。

(1)单自由度手腕,如图2.32所示。

图(a)是一种翻转(Roll)关节, 它把手臂纵轴线和手腕关节轴线构成共轴形式。

这种R关节旋转角度大, 可达到360°以上。

图(b)、(c)是一种折曲(Bend)关节(简称B关节), 关节轴线与前后两个连接件的轴线相垂直。

这种B关节因为受到结构上的干涉, 旋转角度小,大大限制了方向角。

图(d)所示为移动关节。

图2.32单自由度手腕(a) R手腕;(b) B手腕;(c)Y手腕;(d) T手腕
(2) 2自由度手腕,如图2.33所示。

2自由度手腕可以由一个R关节和一个B关节组成BR手腕(见图2.33(a)),也可以由两个B关节组成BB手腕(见图2.33(b))。

但是,不能由两个R关节组成RR手腕,因为两个R共轴线,所以退化了一个自由度, 实际只构成了单自由度手腕,见图2.33(c)。

图2.33 二自由度手腕(a) BR手腕; (b) BB手腕; (c) RR手腕
(3)3自由度手腕,如图2.34所示。

3自由度手腕可以由B 关节和R关节组成许多种形式。

图2.34(a)所示是通常见到的BBR手腕,使手部具有俯仰、偏转和翻转运动, 即RP Y运动。

图2.34(b)所示是一个B关节和两个R关节组成的BRR手腕,为了不使自由度退化,使手部产生RPY运动,第一个R关节必须进行如图所示的偏置。

图2.34(c)所示是三个R关节组成的RRR手腕,它也可以实现手部RPY运动。

图2.34(d)所示是BBB手腕, 很明显,它已退化为二自由度手腕,只有PY运动,实际上不采用这种手腕。

此外,B关节和R关节排列的次序不同,也会产生不同的效果,同时产生了其它形式的三自由度手腕。

为了使手腕结构紧凑,通常把两个B关节安装在一个十字接头上, 这对于BBR手腕来说,大
大减小了手腕纵向尺寸。

图2.34 三自由度手腕
(a) BBR手腕;(b) BRR手腕; (c) RRR手腕; (d) BBB手腕
2.按驱动方式来分手腕按驱动方式来分,可分为直接驱动手腕和远距离传动手腕。

图2.35所示为Moog公司的一种液压直接驱动BBR手腕, 设计紧凑巧妙。

M1、M2、M3是液压马达, 直接驱动手腕的偏转、俯仰和翻转三个自由度轴。

图2.36所示为一种远距离传动的RBR手腕。

Ⅲ轴的转动使整个手腕翻转, 即第一个R关节运动。

Ⅱ轴的转动使手腕获得俯仰运动, 即第二个B关节运动。

Ⅰ轴的转动即第三个R 关节运动。

当c轴一离开纸平面后,RBR手腕便在三个自由度轴上输出RPY运动。

这种远距离传动的好处是可以把尺寸、重量都较大的驱动源放在远离手腕处, 有时放在手臂的后端作平衡重量用,这不仅减轻了手腕的整体重量, 而且改善了机器人的整体结构的平衡性。

图2.35液压直接驱动BBR手腕
图 2.36 远距离传动RBR手腕
手腕的典型结构
设计手腕时除应满足启动和传送过程中所需的输出力矩外, 还要求手腕结构简单,紧凑轻巧,避免干涉,传动灵活;多数情
况下,要求将腕部结构的驱动部分安排在小臂上,使外形整齐;设法使几个电动机的运动传递到同轴旋转的心轴和多层套筒上去,运动传入腕部后再分别实现各个动作。

下面介绍几个常见的机器人手腕结构。

图2.37所示为双手悬挂式机器人实现手腕回转和左右摆动的结构图。

A-A剖面所表示的是油缸外壳转动而中心轴不动, 以实现手腕的左右摆动;B-B剖面所表示的是油缸外壳不动而中心轴回转,以实现手腕的回转运动。

其油路的分布如图2.37所示。

图2.37 手腕回转和左右摆动的结构图
图2.38所示为PT-600型弧焊机器人手腕部结构图和传动原理图。

由图可以看出, 这是一个具有腕摆与手转两个自由度的手腕结构,其传动路线为: 腕摆电动机通过同步齿形带传动带动腕摆谐波减速器7,减速器的输出轴带动腕摆框1实现腕摆运动; 手转电动机通过同步齿形带传动带动手转谐波减速器10, 减速器的输出通过一对锥齿轮9实现手转运动。

需要注意的是, 当腕摆框摆动而手转电动机不转时,联接末端执行器的锥齿轮在另一锥齿轮上滚动, 将产生附加的手转运动, 在控制上要进行修正。

图 2.38 PT-600型弧焊机器人手腕结构图
图2.39所示为KUKAIR-662/100型机器人的手腕传动原理图。

这是一个具有3个自由度的手腕结构, 关节配置
形式为臂转、腕摆、手转结构。

其传动链分成两部分: 一部分在机器人小臂壳内, 3个电动机的输出通过带传动分别传递到同轴传动的心轴、中间套、外套筒上; 另一部分传动链安排在手腕部, 图2.40所示为手腕部分的装配图。

图2.39 KUKA IR-662/100型机器人手腕传动图图2.40 KUKAIR-662/100型机器人手腕装配图
其传动路线为:(1)臂转运动。

臂部外套筒与手腕壳体7通过端面法兰联接,外套筒直接带动整个手腕旋转完成臂转运动。

(2) 腕摆运动。

臂部中间套通过花键与空心轴4联接, 空心轴另一端通过一对锥齿轮12、13带动腕摆谐波减速器的波发生器16, 波发生器上套有轴承和柔轮14,谐波减速器的定轮10与手腕壳体相联,动轮11通过盖18和腕摆壳体19相固接, 当中间套带动空心轴旋转时,腕摆壳体作腕摆运动。

(3)手转运动。

臂部心轴通过花键与腕部中心轴2联接, 中心轴的另一端通过一对锥齿轮45、46带动花键轴41, 花键轴的一端通过同步齿形带传动44、36带动花键轴35,再通过一对锥齿轮传动33、17带动手转谐波减速器的波发生器25, 波发生器上套有轴承和柔轮29, 谐波减速器的定轮31通过底座34与腕摆壳体相联,动轮24通过安装架23与联接手部的法兰盘30相固定, 当臂部心轴带动腕部中心轴旋转
时, 法兰盘作手转运动。

柔顺手腕结构
在用机器人进行的精密装配作业中,当被装配零件之间的配合精度相当高,由于被装配零件的不一致性,工件的定位夹具、机器人手爪的定位精度无法满足装配要求时, 会导致装配困难,因而, 柔顺性装配技术有两种:
一种是从检测、控制的角度出发, 采取各种不同的搜索方法,实现边校正边装配; 有的手爪还配有检测元件,如视觉传感器(如图2.41 所示)、力传感器等,这就是所谓主动柔顺装配。

另一种是从结构的角度出发,在手腕部配置一个柔顺环节, 以满足柔顺装配的需要, 这种柔顺装配技术称为被动柔顺装配。

图2.41 带检测元件的手
图2.42所示是具有移动和摆动浮动机构的柔顺手腕。

水平浮动机构由平面、钢球和弹簧构成,实现在两个方向上进行浮动;摆动浮动机构由上、下球面和弹簧构成, 实现两个方向的摆动。

在装配作业中,如遇夹具定位不准或机器人手爪定位不准时, 可自行校正。

其动作过程如图2.43所示, 在插入装配中工件局部被卡住时,将会受到阻力,促使柔顺手腕起作用,使手爪有一个微小的修正量,工件便能顺利插入。

图2.44所示是另一种结构形式的柔顺手腕,其工作原理与上述柔顺手腕相似。

图2.45所示是采用板弹簧作为柔性元件组成的柔顺手腕,在基座上通过板弹簧1、2联接框架,框架另两个侧面上通过板弹簧3、4联接平板和轴,装配时通过4块板弹簧的变形实现柔顺性装配。

图2.46所示是采用数根钢丝弹簧并联组成的柔顺手腕。

图2.42移动摆动柔顺手腕图2.43 柔顺手腕动作过程
图2.44柔顺手腕图 2.45 板弹簧柔顺手腕图 2.46 钢丝弹簧柔顺手腕。

相关文档
最新文档