2018高中高考一轮复习文科数学 参数方程.ppt
2018届高三数学文一轮复习课件:选4-4-2 参数方程 精品
![2018届高三数学文一轮复习课件:选4-4-2 参数方程 精品](https://img.taocdn.com/s3/m/400a65b8a98271fe910ef9d4.png)
x=t-3, 3.(2016·株洲模拟)已知直角坐标系 xOy 中,直线 l 的参数方程为y= 3t (t 为参数)。以直角坐标系 xOy 中的原点 O 为极点,x 轴的非负半轴为极轴,圆 C 的极坐标方程为 ρ2-4ρcosθ+3=0,则圆心 C 到直线 l 的距离为________。
x=t+2,
分别为 l:y=1-s (s 为参数)和 C:y=t2
(t 为参数),若 l 与 C 相交于
A,B 两点,则|AB|=________。
解析:直线 l 的普通方程为 x+y=2,曲线 C 的普通方程为 y=(x-2)2(y≥0), 联立两方程得 x2-3x+2=0,求得两交点坐标为(1,1),(2,0),所以|AB|= 2。
微知识❷ 直线的参数方程 过定点 P0(x0,y0)且倾斜角为
α
的直线的参数方程为
xy==xy00++ttcsionsαα,
(t
为参数),则参数 t 的几何意义是 有向线段 P0P 的数量
。
微知识❸ 圆的参数方程
圆心为(a,b),半径为 r,以圆心为顶点且与 x 轴同向的射线,按逆时
针方向旋转到圆上一点所在半径成的角 α 为参数的圆的参数方程为
解析:记 A(x1,y1),B(x2,y2),将 θ=4π转化为直角坐标方程为 y=x(x≥0), 曲线为 y=(x-2)2,联立上述两个方程得 x2-5x+4=0,所以 x1+x2=5,故线 段 AB 的中点坐标为52,52。
答案:25,25
x=t, 5.在平面直角坐标系 xOy 中,直线 l 的参数方程为y=t+1 (参数 t∈R), 圆 C 的参数方程为yx==scionsθθ+1, (参数 θ∈[0,2π)),则圆心 C 到直线 l 的距离 是__________。
高考数学一轮单元复习:第73讲 参数方程
![高考数学一轮单元复习:第73讲 参数方程](https://img.taocdn.com/s3/m/1d473326a5e9856a5612607c.png)
│要点探究
► 探究点3 探究点
例3
直线的参数方程
[2009·无锡模拟 过点 P(-3,0)且倾斜角为 30° 无锡模拟] 无锡模拟 - 且倾斜角为 1 =+ x=t+ t , (t 为参数 相交于 A、B 两点.求 为参数)相交于 、 两点. 的直线和曲线 1 y=t- = -t 的长. 线段 AB 的长.
│要点探究
点评】 【点评】曲线的参数方程和普通方程是曲线方程的 不同形式.一般地, 不同形式.一般地,可以通过消去参数从参数方程得到 普通方程,有利于识别曲线的类型. 普通方程,有利于识别曲线的类型.在参数方程与普通 方程的互化中, 方程的互化中,必须使 x,y 的取值范围保持一致. , 的取值范围保持一致.
│要点探究
福建卷] 变式题 [2009·福建卷 已知直线 L:3x+4y-12=0 福建卷 : + - = 与圆
x=- +2cosθ, =-1+ , =- C: : y=2+2sinθ = +
(θ 为参数 .试判断他们的公 为参数).
共点个数. 共点个数.
│要点探究
解答】 圆的方程可化为(x+ 【解答】 圆的方程可化为 +1)2+(y-2)2=4.其圆 - 其圆 心为 C(-1,2),半径为 2. - , |3×(-1)+4×2-12| 7 - + - 由于圆心到直线的距离 d= = =5 2 2 3 +4 <2,故直线 L 与圆 C 的交点个数为 2. ,
π 3π (φ 为参数 ,φ∈[0,2π)且 φ≠ ,φ≠ ; 为参数), ∈ 且 2 2 (t 为参数 . 为参数).
x=2pt2 = 2 抛物线 y =2px(p>0)的一个参数方程为 的一个参数方程为 y=2pt =
高三一轮复习精细化数学课件:参数方程(28页)
![高三一轮复习精细化数学课件:参数方程(28页)](https://img.taocdn.com/s3/m/92add4155acfa1c7ab00cc4b.png)
d
17
17
当 a 4 0,即 a 4 时 当sin 1 时,d 取最大值
dmax
a9 17
17
a 8
综上所述:a 8 或 a 16
极坐标
知识储备
极坐标系:在平面上取一个定点O,由O 点出发的一条射线Ox ,一个长度单位
及计算角度的正方向通常取逆时针方向 ,合称为一个极坐标系.
6
y 2sin 5 1
6
点
2, 11
6
的直角坐标为:
3,1
点在直角坐标中的象限,与极坐标的极角所在象限相同.
例2、将下列各点的直角坐标化为极坐标:
1 3,3
; 2 1, 1
;33, 0
;
2
解:1 2 3 32 12 2 3
y
P0 x0 , y0
P x0 t cos, y0 t sin
t2 cos2 t2 sin2
0
x
t
t 表示直线上动点P 到定点P0 的距离.
若P1 、P2 是 l 上的两点,它们所对应的参数分别为 t1 , t2 ,则
1 P1,P2 的坐标分别为 x0 t1 cos, y0 t1 sin , x0 t2 cos, y0 t2 sin
椭圆 x2 a2
y2 b2
1a b 0的参数方程是:
x
y
a cos b sin
为参数
椭圆 y2 a2
x2 b2
1a b 0的参数方程是:
高考数学大一轮复习 第十二章 系列4选讲 12.2 坐标系与参数方程(第1课时)坐标系教案(含解析)
![高考数学大一轮复习 第十二章 系列4选讲 12.2 坐标系与参数方程(第1课时)坐标系教案(含解析)](https://img.taocdn.com/s3/m/37058913f08583d049649b6648d7c1c708a10b65.png)
第1课时坐标系考情考向分析极坐标方程与直角坐标方程互化是重点,主要与参数方程相结合进行考查,以解答题的形式考查,属于低档题.1.平面直角坐标系在平面上,取两条互相垂直的直线的交点为原点,并确定一个长度单位和这两条直线的方向,就建立了平面直角坐标系.它使平面上任意一点P都可以由唯一的有序实数对(x,y)确定,(x,y)称为点P的坐标.2.极坐标系(1)极坐标与极坐标系的概念一般地,在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.点O称为极点,射线Ox称为极轴.平面内任一点M的位置可以由线段OM的长度ρ和从射线Ox到射线OM的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M的极坐标.ρ称为点M 的极径,θ称为点M的极角.一般认为ρθ的取值X围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ)(ρ≠0)建立一一对应的关系.我们约定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M为平面内的任一点,它的直角坐标为(x,y),极坐标为(ρ,θ).由图可知下面关系式成立:⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ或⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x (x ≠0),这就是极坐标与直角坐标的互化公式. 3.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r 的圆ρ=r (0≤θ<2π)圆心为(r,0),半径为r 的圆ρ=2r cos_θ⎝⎛⎭⎪⎫-π2≤θ<π2圆心为⎝⎛⎭⎪⎫r ,π2,半径为r 的圆ρ=2r sin_θ(0≤θ<π)过极点,倾斜角为α的直线θ=α(ρ∈R )或θ=π+α(ρ∈R )过点(a,0),与极轴垂直的直线ρcos θ=a ⎝⎛⎭⎪⎫-π2<θ<π2过点⎝ ⎛⎭⎪⎫a ,π2,与极轴平行的直线ρsin_θ=a (0<θ<π)题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面直角坐标系内的点与坐标能建立一一对应关系,在极坐标系中点与坐标也是一一对应关系.( × )(2)若点P 的直角坐标为(1,-3),则点P 的一个极坐标是⎝ ⎛⎭⎪⎫2,-π3.( √ )(3)在极坐标系中,曲线的极坐标方程不是唯一的.( √ ) (4)极坐标方程θ=π(ρ≥0)表示的曲线是一条直线.( × ) 题组二 教材改编2.[P11例5]在直角坐标系中,若点P 的坐标为(-2,-6),则点P 的极坐标为________.答案 ⎝⎛⎭⎪⎫22,4π3 解析 ρ=(-2)2+(-6)2=22,tan θ=-6-2=3,又点P 在第三象限,得θ=4π3,即P ⎝⎛⎭⎪⎫22,4π3. 3.[P32习题T4]若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为________________________.答案 ρ=1cos θ+sin θ⎝⎛⎭⎪⎫0≤θ≤π2解析 ∵y =1-x (0≤x ≤1),∴ρsin θ=1-ρcos θ(0≤ρcos θ≤1), ∴ρ=1sin θ+cos θ⎝ ⎛⎭⎪⎫0≤θ≤π2.4.[P32习题T5]在极坐标系中,圆ρ=-2sin θ(ρ≥0,0≤θ<2π)的圆心的极坐标是________.答案 ⎝⎛⎭⎪⎫1,3π2解析 由ρ=-2sin θ,得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,化成标准方程为x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为⎝⎛⎭⎪⎫1,3π2.题组三 易错自纠5.在极坐标系中,已知点P ⎝⎛⎭⎪⎫2,π6,则过点P 且平行于极轴的直线方程是________.答案 ρsin θ=1解析 先将极坐标化成直角坐标,P ⎝ ⎛⎭⎪⎫2,π6转化为直角坐标为x =ρcos θ=2cos π6=3,y=ρsin θ=2sin π6=1,即P (3,1),过点P (3,1)且平行于x 轴的直线为y =1,再化为极坐标为ρsin θ=1.6.在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为ρ=2sin θ,则曲线C 的直角坐标方程为____________. 答案 x 2+y 2-2y =0解析 由ρ=2sin θ,得ρ2=2ρsin θ,所以曲线C 的直角坐标方程为x 2+y 2-2y =0.7.在极坐标系下,若点P (ρ,θ)的一个极坐标为⎝ ⎛⎭⎪⎫4,2π3,求以⎝ ⎛⎭⎪⎫ρ2,θ2为坐标的不同的点的极坐标.解 ∵⎝⎛⎭⎪⎫4,2π3为点P (ρ,θ)的一个极坐标.∴ρ=4或ρ=-4.当ρ=4时,θ=2k π+2π3(k ∈Z ),∴ρ2=2,θ2=k π+π3(k ∈Z ). 当ρ=-4时,θ=2k π+5π3(k ∈Z ), ∴ρ2=-2,θ2=k π+5π6(k ∈Z ). ∴⎝⎛⎭⎪⎫ρ2,θ2有四个不同的点:P 1⎝ ⎛⎭⎪⎫2,2k π+π3(k ∈Z ),P 2⎝ ⎛⎭⎪⎫2,2k π+4π3(k ∈Z ),P 3⎝⎛⎭⎪⎫-2,2k π+5π6(k ∈Z ),P 4⎝⎛⎭⎪⎫-2,2k π+11π6(k ∈Z ).题型一 极坐标与直角坐标的互化1.(2018·某某模拟)在极坐标系中,已知圆C 经过点P ⎝ ⎛⎭⎪⎫2,π3,圆心C 为直线ρsin ⎝ ⎛⎭⎪⎫θ-π3=-3与极轴的交点,求圆C 的极坐标方程.解 以极点为坐标原点,极轴为x 轴建立平面直角坐标系, 则直线方程为y =3x -23,点P 的直角坐标为(1,3), 令y =0,得x =2,所以C (2,0),所以圆C 的半径PC =(2-1)2+(0-3)2=2,所以圆C 的方程为(x -2)2+(y -0)2=4,即x 2+y 2-4x =0, 所以圆C 的极坐标方程为ρ=4cos θ.2.(2019·某某省某某一中月考)在极坐标系中,已知圆C :ρ=4cos θ被直线l :ρsin ⎝⎛⎭⎪⎫θ-π6=a 截得的弦长为23,某某数a 的值.解 因为圆C 的直角坐标方程为(x -2)2+y 2=4, 直线l 的直角坐标方程为x -3y +2a =0, 所以圆心C 到直线l 的距离d =|2+2a |2=|1+a |,因为圆C 被直线l 截得的弦长为23,所以r 2-d 2=3. 即4-(1+a )2=3,解得a =0或a =-2.3.(2018·某某期中)已知在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎪⎨⎪⎧x =r cos θ+2,y =r sin θ+2(θ为参数,r >0).以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρsin ⎝⎛⎭⎪⎫θ+π4+1=0.(1)求圆C 的圆心的极坐标;(2)当圆C 与直线l 有公共点时,求r 的取值X 围.解 (1)由C :⎩⎪⎨⎪⎧x =r cos θ+2,y =r sin θ+2,得(x -2)2+(y -2)2=r 2,∴曲线C 是以(2,2)为圆心,r 为半径的圆, ∴圆心的极坐标为⎝⎛⎭⎪⎫22,π4.(2)由直线l :2ρsin ⎝ ⎛⎭⎪⎫θ+π4+1=0, 得直线l 的直角坐标方程为x +y +1=0,从而圆心(2,2)到直线l 的距离d =|2+2+1|2=522.∵圆C 与直线l 有公共点,∴d ≤r ,即r ≥522.思维升华(1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴的正半轴重合;③取相同的单位长度.(2)直角坐标方程化为极坐标方程比较容易,只要运用公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程则相对困难一些,解此类问题常通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换. 题型二 求曲线的极坐标方程例1将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到曲线C .(1)求曲线C 的标准方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与直线l 垂直的直线的极坐标方程.解 (1)设(x 1,y 1)为圆上的任一点,在已知变换下变为曲线C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1,得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的标准方程为x 2+y 24=1.(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线的斜率为k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,化为极坐标方程,并整理得2ρcos θ-4ρsin θ=-3, 故所求直线的极坐标方程为ρ=34sin θ-2cos θ.思维升华求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点.(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式. (3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.跟踪训练1已知极坐标系的极点为直角坐标系xOy 的原点,极轴为x 轴的正半轴,两种坐标系中的长度单位相同,圆C 的直角坐标方程为x 2+y 2+2x -2y =0,直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t (t 为参数),射线OM 的极坐标方程为θ=3π4.(1)求圆C 和直线l 的极坐标方程;(2)已知射线OM 与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长. 解 (1)∵ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 圆C 的直角坐标方程为x 2+y 2+2x -2y =0, ∴ρ2+2ρcos θ-2ρsin θ=0,∴圆C 的极坐标方程为ρ=22sin ⎝⎛⎭⎪⎫θ-π4. 又直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =t (t 为参数),消去t 后得y =x +1,∴直线l 的极坐标方程为sin θ-cos θ=1ρ.(2)当θ=3π4时,OP =22sin ⎝ ⎛⎭⎪⎫3π4-π4=22,∴点P 的极坐标为⎝ ⎛⎭⎪⎫22,3π4,OQ =122+22=22,∴点Q 的极坐标为⎝ ⎛⎭⎪⎫22,3π4,故线段PQ 的长为322.题型三 极坐标方程的应用例2在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足OM ·OP =16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎪⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.解 (1)设点P 的极坐标为(ρ,θ)(ρ>0),点M 的极坐标为(ρ1,θ)(ρ1>0).由题意知OP =ρ,OM =ρ1=4cos θ.由OM ·OP =16,得C 2的极坐标方程ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0). 由题意,知OA =2,ρB =4cos α,于是△OAB 的面积S =12·OA ·ρB ·sin∠AOB=4cos α·⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π3=2⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3. 思维升华极坐标应用中的注意事项(1)极坐标与直角坐标互化的前提条件:①极点与原点重合;②极轴与x 轴正半轴重合;③取相同的长度单位.(2)若把直角坐标化为极坐标求极角θ时,应注意判断点P 所在的象限(即角θ的终边的位置),以便正确地求出角θ.利用两种坐标的互化,可以把不熟悉的问题转化为熟悉的问题. (3)由极坐标的意义可知平面上点的极坐标不是唯一的,如果限定ρ取正值,θ∈[0,2π),平面上的点(除去极点)与极坐标(ρ,θ)(ρ≠0)建立一一对应关系. 跟踪训练2在极坐标系中,求直线ρsin ⎝⎛⎭⎪⎫θ+π4=2被圆ρ=4截得的弦长.解 由ρsin ⎝⎛⎭⎪⎫θ+π4=2,得22(ρsin θ+ρcos θ)=2,可化为x +y -22ρ=4可化为x 2+y 2=16,圆心(0,0)到直线x +y -22=0的距离d =|22|2=2,由圆中的弦长公式,得弦长l =2r 2-d 2=242-22=4 3.故所求弦长为4 3.1.(2018·某某省某某师X 大学附属中学模拟)在极坐标系中,已知圆C :ρ=22cos θ和直线l :θ=π4(ρ∈R )相交于A ,B 两点,求线段AB 的长.解 圆C :ρ=22cos θ的直角坐标方程为x 2+y 2-22x =0, 即(x -2)2+y 2=2,直线l :θ=π4(ρ∈R )的直角坐标方程为y =x ,圆心C 到直线l 的距离d =|2-0|2=1, 所以AB =2(2)2-1=2.2.在极坐标系中,圆C 的极坐标方程为ρ2-8ρsin ⎝⎛⎭⎪⎫θ-π3+13=0,已知A ⎝⎛⎭⎪⎫1,3π2,B ⎝⎛⎭⎪⎫3,3π2,P 为圆C 上一点,求△PAB 面积的最小值. 解 圆C 的直角坐标方程为x 2+y 2+43x -4y +13=0, 即(x +23)2+(y -2)2=3,由题意,得A (0,-1),B (0,-3),所以AB =2.P 到直线AB 距离的最小值为23-3=3,所以△PAB 面积的最小值为12×2×3= 3.3.(2018·某某省姜堰、某某、前黄中学联考)圆C :ρ=2cos ⎝ ⎛⎭⎪⎫θ-π4,与极轴交于点A (异于极点O ),求直线CA 的极坐标方程.解 圆C :ρ2=2ρcos ⎝ ⎛⎭⎪⎫θ-π4=2ρcos θ+2ρsin θ,所以x 2+y 2-2x -2y =0, 所以圆心C ⎝⎛⎭⎪⎫22,22,与极轴交于A (2,0). 直线CA 的直角坐标方程为x +y =2, 即直线CA 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=1.4.在以直角坐标系中的原点O 为极点,x 轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=21-sin θ.(1)将曲线的极坐标方程化为直角坐标方程;(2)过极点O 作直线l 交曲线于点P ,Q ,若OP =3OQ ,求直线l 的极坐标方程. 解 (1)∵ρ=x 2+y 2,ρsin θ=y , ∴ρ=21-sin θ化为ρ-ρsin θ=2,∴曲线的直角坐标方程为x 2=4y +4.(2)设直线l 的极坐标方程为θ=θ0(ρ∈R ), 根据题意知21-sin θ0=3·21-sin (θ0+π),解得θ0=π6或θ0=5π6,∴直线l 的极坐标方程为θ=π6(ρ∈R )或θ=5π6(ρ∈R ).5.在极坐标系中,P 是曲线C 1:ρ=12sin θ上的动点,Q 是曲线C 2:ρ=12cos ⎝ ⎛⎭⎪⎫θ-π6上的动点,求PQ 的最大值.解 对曲线C 1的极坐标方程进行转化,∵ρ=12sin θ,∴ρ2=12ρsin θ,∴x 2+y 2-12y =0, 即x 2+(y -6)2=36.对曲线C 2的极坐标方程进行转化, ∵ρ=12cos ⎝ ⎛⎭⎪⎫θ-π6,∴ρ2=12ρ⎝⎛⎭⎪⎫cos θcosπ6+sin θsin π6, ∴x 2+y 2-63x -6y =0,∴(x -33)2+(y -3)2=36, ∴PQ max =6+6+(33)2+32=18.6.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.解 (1)因为x =ρcos θ,y =ρsin θ, 所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2. 故ρ1-ρ2=2,即MN = 2.由于C 2的半径为1,所以△C 2MN 为等腰直角三角形, 所以△C 2MN 的面积为12.7.(2018·某某江阴中学调研)在极坐标系中,设圆C :ρ=4cos θ与直线l :θ=π4(ρ∈R )交于A ,B 两点,求以AB 为直径的圆的极坐标方程.解 以极点为坐标原点,极轴为x 轴的正半轴建立直角坐标系,则由题意,得圆C 的直角坐标方程为x 2+y 2-4x =0,直线l 的直角坐标方程为y =x .由⎩⎪⎨⎪⎧ x 2+y 2-4x =0,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧ x =2,y =2,所以交点的坐标分别为(0,0),(2,2).所以以AB 为直径的圆的直角坐标方程为(x -1)2+(y -1)2=2,即x 2+y 2=2x +2y , 将其化为极坐标方程为ρ2=2ρ(cos θ+sin θ),即ρ=2(cos θ+sin θ).8.以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的方程为ρsin ⎝⎛⎭⎪⎫θ-2π3=-3,⊙C 的极坐标方程为ρ=4cos θ+2sin θ.(1)求直线l 和⊙C 的直角坐标方程;(2)若直线l 与圆C 交于A ,B 两点,求弦AB 的长.解 (1)直线l :ρsin ⎝⎛⎭⎪⎫θ-2π3=-3, ∴ρ⎝⎛⎭⎪⎫sin θcos 2π3-cos θsin 2π3=-3, ∴y ·⎝ ⎛⎭⎪⎫-12-x ·32=-3,即y =-3x +2 3. ⊙C :ρ=4cos θ+2sin θ,ρ2=4ρcos θ+2ρsin θ,∴x 2+y 2=4x +2y ,即x 2+y 2-4x -2y =0.(2)⊙C :x 2+y 2-4x -2y =0,即(x -2)2+(y -1)2=5.∴圆心C (2,1),半径R =5,∴⊙C 的圆心C 到直线l 的距离 d =|1+23-23|(3)2+12=12, ∴AB =2R 2-d 2=25-⎝ ⎛⎭⎪⎫122=19. ∴弦AB 的长为19.9.在极坐标系中,曲线C 的方程为ρ2=31+2sin 2θ,点R ⎝⎛⎭⎪⎫22,π4. (1)以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,把曲线C 的极坐标方程化为直角坐标方程,R 点的极坐标化为直角坐标;(2)设P 为曲线C 上一动点,以PR 为对角线的矩形PQRS 的一边垂直于极轴,求矩形PQRS 周长的最小值,及此时P 点的直角坐标.解 (1)∵x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 23+y 2=1, 点R 的直角坐标为R (2,2).(2)设P (3cos θ,sin θ),根据题意,设PQ =2-3cos θ,QR =2-sin θ,∴PQ +QR =4-2sin ⎝⎛⎭⎪⎫θ+π3, 当θ=π6时,PQ +QR 取最小值2, ∴矩形PQRS 周长的最小值为4, 此时点P 的直角坐标为⎝ ⎛⎭⎪⎫32,12. 10.(2018·某某)在极坐标系中,直线l 的方程为ρsin ⎝⎛⎭⎪⎫π6-θ=2,曲线C 的方程为ρ=4cos θ,求直线l 被曲线C 截得的弦长.解 因为曲线C 的极坐标方程为ρ=4cos θ,所以曲线C 是圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为 ρsin ⎝ ⎛⎭⎪⎫π6-θ=2, 则直线l 过点A (4,0),且倾斜角为π6, 所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB =π6.如图,连结OB .因为OA 为直径,从而∠OBA =π2, 所以AB =4cos π6=2 3. 因此,直线l 被曲线C 截得的弦长为2 3.11.已知曲线C 的参数方程为⎩⎨⎧ x =2+5cos α,y =1+5sin α(α为参数),以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程; (2)若直线l 的极坐标方程为ρ(sin θ+cos θ)=1,求直线l 被曲线C 截得的弦长. 解 (1)曲线C 的参数方程为⎩⎨⎧ x =2+5cos α,y =1+5sin α(α为参数),∴曲线C 的普通方程为(x -2)2+(y -1)2=5.将⎩⎪⎨⎪⎧ x =ρcos θ,y =ρsin θ代入并化简得ρ=4cos θ+2sin θ,即曲线C 的极坐标方程为ρ=4cos θ+2sin θ.(2)∵l 的直角坐标方程为x +y -1=0,∴圆心C (2,1)到直线l 的距离d =22=2, ∴弦长为25-2=2 3.12.在极坐标系中,曲线C :ρ=2a cos θ(a >0),l :ρcos ⎝⎛⎭⎪⎫θ-π3=32,C 与l 有且仅有一个公共点.(1)求a ;(2)O 为极点,A ,B 为曲线C 上的两点,且∠AOB =π3,求OA +OB 的最大值. 解 (1)曲线C :ρ=2a cos θ(a >0),变形为ρ2=2aρcos θ,化为x 2+y 2=2ax ,即(x -a )2+y 2=a 2,∴曲线C 是以(a,0)为圆心,以a 为半径的圆.由l :ρcos ⎝⎛⎭⎪⎫θ-π3=32, 展开为12ρcos θ+32ρsin θ=32, ∴l 的直角坐标方程为x +3y -3=0.由题意,知直线l 与圆C 相切,即|a -3|2=a , 又a >0,∴a =1.(2)由(1)知,曲线C :ρ=2cos θ.不妨设A 的极角为θ,B 的极角为θ+π3, 则OA +OB =2cos θ+2cos ⎝⎛⎭⎪⎫θ+π3 =3cos θ-3sin θ=23cos ⎝⎛⎭⎪⎫θ+π6, 当θ=11π6时,OA +OB 取得最大值2 3.。
高中数学一轮总复习文科基础复习题及解析(二)
![高中数学一轮总复习文科基础复习题及解析(二)](https://img.taocdn.com/s3/m/3ed0a93dbceb19e8b8f6bac7.png)
高中数学一轮总复习文科基础复习题及解析第二部分 选考部分第十二讲 选考内容第一节 选修4-4 坐标系与参数方程1.在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程. 解析:(1)圆C 1的极坐标方程为ρ=2, 圆C 2的极坐标方程为ρ=4cos θ.解⎩⎪⎨⎪⎧ρ=2,ρ=4cos θ得ρ=2,θ=±π3,故圆C 1与圆C 2交点的坐标为⎝⎛⎭⎫2,π3,⎝⎛⎭⎫2,-π3. 注:极坐标系下点的表示不唯一,(2)由⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎪⎨⎪⎧x =1,y =t ,-3≤t ≤ 3.2.已知直线l 经过点P (1,1),倾斜角α=π6,(1)写出直线l 的参数方程.(2)设l 与圆x 2+y 2=4相交于两点A ,B ,求点P 到A ,B 两点的距离之积.解析:(1)直线的参数方程为⎩⎨⎧x =1+t cos π6,y =1+t sin π6(t 为参数),即⎩⎨⎧x =1+32t ,y =1+12t (t 为参数).(2)把直线的参数方程⎩⎨⎧x =1+32t ,y =1+12t (t 为参数)代入x 2+y 2=4得(1+32t )2+(1+12t )2=4,t 2+(3+1)t -2=0, ∴t 1t 2=-2,则点P 到A ,B 两点的距离之积为2.3.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为C 与x 轴、y 轴的交点. (1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 解析:(1)由ρcos ⎝⎛⎭⎫θ-π3=1 得ρ⎝⎛⎭⎫12cos θ+32sin θ=1.从而C 的直角坐标方程为12x +32y =1,即x +3y =2.当θ=0时,ρ=2,所以M (2,0). 当θ=π2时,ρ=233,所以N ⎝⎛⎭⎫233,π2.(2)因为M 点的直角坐标为(2,0), N 点的直角坐标为⎝⎛⎭⎫0,233.所以P 点的直角坐标为⎝⎛⎭⎫1,33, 则P 点的极坐标为⎝⎛⎭⎫233,π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R ).4.已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =sin α,y =cos 2 α,α∈[0,2π),曲线D 的极坐标方程为ρsin(θ+π4)=- 2. (1)将曲线C 的参数方程化为普通方程;(2)曲线C 与曲线D 有无公共点?试说明理由.解析:(1)由⎩⎪⎨⎪⎧x =sin α,y =cos 2α,α∈[0,2π)得x 2+y =1,x ∈[-1,1].(2)由ρsin(θ+π4)=-2得曲线D 的普通方程为x +y +2=0.⎩⎪⎨⎪⎧x +y +2=0,x 2+y =1得x 2-x -3=0.解得x =1±132∉[-1,1],故曲线C 与曲线D 无公共点.5.以平面直角坐标系的原点为极点,以x 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α是参数),直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π6=2 3. (1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设点P 为曲线C 上任意一点,求点P 到直线l 的距离的最大值. 解析:(1)∵直线l 的极坐标方程为 ρcos ⎝⎛⎭⎫θ+π6=23, ∴ρ⎝⎛⎭⎫cos θcos π6-sin θsin π6=23, ∴32x -12y =2 3. 即直线l 的直角坐标方程为3x -y -43=0.由⎩⎪⎨⎪⎧x =2cos α,y =3sin α 得x 24+y 23=1. 即曲线C 的普通方程为x 24+y 23=1.(2)设点P (2cos α,3sin α), 则点P 到直线l 的距离 d =|23cos α-3sin α-43|2=|15cos (α+φ-43)|2,其中tan φ=12.当cos(α+φ)=-1时,d max =15+432,即点P 到直线l 的距离的最大值为15+432. 6.已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρcos(θ-π4)=2.(1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程. 解析:(1)由ρ=2知ρ2=4,所以x 2+y 2=4; 因为ρ2-22ρcos(θ-π4)=2,所以ρ2-22ρ(cos θcos π4+sin θ·sin π4)=2.所以x 2+y 2-2x -2y -2=0. (2)将两圆的直角坐标方程相减, 得经过两圆交点的直线方程为x +y =1. 化为极坐标方程为ρcos θ+ρsin θ=1, 即ρsin(θ+π4)=22.7.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎫θ-π4=2 2. (1) 求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值. 解析:(1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎪⎨⎪⎧ x 2+(y -2)2=4,x +y -4=0,得⎩⎪⎨⎪⎧x 1=0,y 1=4,⎩⎪⎨⎪⎧x 2=2,y 2=2.所以C 1与C 2交点的极坐标为⎝⎛⎭⎫4,π2,⎝⎛⎭⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3).故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab2+1,所以⎩⎨⎧b2=1,-ab2+1=2,解得a =-1,b =2.8.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N 的极坐标分别为(2,0),⎝⎛⎭⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解析:(1)由题意知,M ,N 的平面直角坐标分别为(2,0)⎝⎛⎭⎫0,233.又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝⎛⎭⎫1,33,故直线OP 的平面直角坐标方程为y =33x .(2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0)⎝⎛⎭⎫0,233,所以直线l 的平面直角坐标方程为3x +3y -23=0.(2)又圆C 的圆心坐标为(2,-3),半径r =2, 圆心到直线l 的距离d =|23-33-23|3+9=32<r ,故直线l 与圆C 相交.第二节 选修4-5 不等式选讲1.已知函数f (x )=|2x -a |+a ,a ∈R ,g (x )=|2x -1|.(1)若当g (x )≤5时,恒有f (x )≤6,求a 的最大值; (2)若当x ∈R 时,恒有f (x )+g (x )≥3,求a 的取值范围. 解析:(1)g (x )≤5⇔|2x -1|≤-5⇔2x -1≤5⇔-2≤x ≤3;f (x )≤6⇔|2x -a |≤6-a ⇔a -6≤2x -a ≤6-a ⇔a -3≤x ≤3. 依题意有,a -3≤-2,a ≤1. 故a 的最大值为1.(2)f (x )+g (x )=|2x -a |+|2x -1|+a ≥|2x -a -2x +1|+a =|a -1|+a , 当且仅当(2x -a )(2x -1)≤0时符号成立.解不等式|a -1|+a ≥3,得a 的取值范围是[2,+∞).2.已知f (x )=|ax +1|(a ∈R ),不等式f (x )≤3的解集为{x |-2≤x ≤1}. (1)求a 的值;(2)若⎪⎪⎪⎪f (x )-2f ⎝⎛⎭⎫x 2≤k 恒成立,求k 的取值范围. 解析:(1)由|ax +1|≤3得-4≤ax ≤2.又f (x )≤3的解集为{x |-2≤x ≤1},所以当a ≤0时,不合题意.当a >0时,-4a ≤x ≤2a ,得a =2.(2)记h (x )=f (x )-2f (x2),则h (x )=⎩⎨⎧1(x ≤-1),-4x -3⎝⎛⎭⎫-1<x <-12,-1(x ≥-12)所以|h (x )|≤1,因此k ≥1.3.已知函数f (x )=|2x +2|+|2x -3|.(1)若∃x 0∈R ,使得不等式f (x 0)<m 成立,求m 的取值范围; (2)求使得不等式f (x )≤|4x -1|成立的x 的取值范围. 解析:(1)∵f (x )=|2x +2|+|2x -3|≥|(2x +2)-(2x -3)|=5,∴∃x 0∈R ,使得不等式f (x 0)<m 成立的m 的取值范围是(5,+∞). (2)∵f (x )=|2x +2|+|2x -3|≥|2x +2+2x -3|=|4x -1|, ∴|2x +2|+|2x -3|≥|4x -1|,当且仅当(2x +2)(2x -3)≥0时取等号, ∴x 的取值范围是(-∞,-1]∪⎣⎡⎭⎫32,+∞. 4.已知函数f (x )=|x -a |.(1)若f (x )≤m 的解集为{x |-1≤x ≤5},求实数a ,m 的值; (2)当a =2且t ≥0时,解关于x 的不等式f (x )+t ≥f (x +2t ).解析:(1)由|x -a |≤m ,得a -m ≤x ≤a +m ,所以⎩⎪⎨⎪⎧ a -m =-1,a +m =5,解得⎩⎪⎨⎪⎧a =2,m =3.(2)当a =2时,f (x )=|x -2|,f (x )+t ≥f (x +2t ),即 |x -2+2t |-|x -2|≤t .①当t =0时,不等式①恒成立,即x ∈R ;当t >0时,不等式等价于⎩⎪⎨⎪⎧x <2-2t ,2-2t -x -(2-x )≤t或⎩⎪⎨⎪⎧2-2t ≤x <2,x -2+2t -(2-x )≤t 或⎩⎪⎨⎪⎧x ≥2,x -2+2t -(x -2)≤t ,解得x <2-2t 或2-2t ≤x ≤2-t 2或x ∈∅,即x =2-t 2.综上,当t =0时,原不等式的解集为R ; 当t >0时,原不等式的解集为{x |x ≤2-t2}.5.已知a ,b ,c 为实数,且a +b +c =2m -2,a 2+14b 2+19c 2=1-m .(1)求证:a 2+b 24+19c 2≥(a +b +c )214; (2)求实数m 的取值范围.解析:(1)由柯西不等式得:⎣⎡⎦⎤a 2+⎝⎛⎭⎫12b 2+⎝⎛⎭⎫13c 2·(12+22+32)≥(a +b +c )2, 即⎝⎛⎭⎫a 2+14b 2+19c 2·14≥(a +b +c )2,所以a 2+14b 2+19c 2≥(a +b +c )214,当且仅当|a |=14|b |=19|c |时,取等号. (2)由已知得(a +b +c )2=(2m -2)2,结合(1)的结论可得:14(1-m )≥(2m -2)2,即2m 2+3m -5≤0,所以-52≤m≤1,又a2+14b2+19c2=1-m≥0,所以m≤1,故m的取值范围为-52≤m≤1.6.设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则a+b>c+d;(2)a+b>c+d是|a-b|<|c-d|的充要条件.证明:(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2.因为a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得a+b+c+d,②若a+b>c+d则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.7.设f(x)=|x-1|-2|x+1|的最大值为m.(1)求m;(2)若a,b,c∈(0,+∞),a2+2b2+c2=m,求ab+bc的最大值.解析:(1)当x≤-1时,f(x)=3+x≤2;当-1<x<1时,f(x)=-1-3x<2;当x ≥1时,f (x )=-x -3≤-4. 故当x =-1时,f (x )取得最大值m =2.(2)a 2+2b 2+c 2=(a 2+b 2)+(b 2+c 2)≥2ab +2bc =2(ab +bc ), 当且仅当a =b =c =22时,等号成立. 此时,ab +bc 取得最大值1.8.已知函数f (x )=|x -2|+|x -4|的最小值为m ,实数a ,b ,c ,n ,p ,q 满足a 2+b 2+c 2=n 2+p 2+q 2=m .(1)求m 的值;(2)求证:n 4a 2+p 4b 2+q 4c2≥2.解析:(1)f (x )=|x -2|+|x -4|≥|(x -2)-(x -4)|=2,当且仅当2≤x ≤4时,等号成立,故m =2.(2)因为[(n 2a )2+(p 2b )2+(q 2c )2]·(a 2+b 2+c 2)≥(n 2a ·a +p 2b ·b +q 2c ·c )2,即(n 4a 2+p 4b 2+q 4c 2)×2≥(n 2+p 2+q 2)2=4, 所以n 4a 2+p 4b 2+q 4c2≥2.9.已知f (x )=|x +1|+|x -1|,不等式f (x )<4的解集为M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |. 解析:(1)f (x )=|x +1|+|x -1| =⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1.2x ,x >1,当x <-1时,由-2x <4,得-2<x <-1; 当-1≤x ≤1时,f (x )=2<4,∴-1≤x ≤1; 当x >1时,由2x <4,得1<x <2. ∴M =(-2,2).(2)证明:a ,b ∈M 即-2<a <2,-2<b <2.∵4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2)=(a 2-4)·(4-b 2)<0, ∴4(a +b )2<(4+ab )2, ∴2|a +b |<|4+ab |.10.已知二次函数f (x )=x 2+ax +b (a ,b ∈R )的定义域为[-1,1],且|f (x )|的最大值为M . (1)试证明|1+b |≤M ; (2)试证明M ≥12;(3)当M =12时,试求出f (x )的解析式.解析:(1)∵M ≥|f (-1)|=|1-a +b |,M ≥|f (1)|=|1+a +b |,∴2M ≥|1-a +b |+|1+a +b |≥|(1-a +b )+(1+a +b )|=2|1+b |,∴M ≥|1+b |.(2)依题意,M ≥|f (-1)|,M ≥|f (0)|,M ≥|f (1)|,又|f (-1)|=|1-a +b |,|f (1)|=|1+a +b |,|f (0)|=|b |,∴4M ≥|f (-1)|+2|f (0)|+|f (1)|=|1-a +b |+2|b |+|1+a +b |≥|(1-a +b )-2b +(1+a +b )|=2.∴M ≥12.(3)当M =12时,|f (0)|=|b |≤12,-12≤b ≤12.①同理-12≤1+a +b ≤12.②-12≤1-a +b ≤12.③ ②+③得-32≤b ≤-12.④由①④得b =-12,当b =-12时,分别代入②③得⎩⎨⎧-1≤a ≤0,0≤a ≤1⇒a =0,因此f (x )=x 2-12. 11.已知函数f (x )=|2x +1|+|2x -3|.(1)若关于x 的不等式f (x )<|1-2a |的解集不是空集,求实数a 的取值范围; (2)若关于t 的一元二次方程t 2+26t +f (m )=0有实根,求实数m 的取值范围. 解析:(1)∵f (x )=|2x +1|+|2x -3|≥|(2x +1)-(2x -3)|=4,∴|1-2a |>4, ∴a <-32或a >52,∴实数a 的取值范围为⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫52,+∞. (2)Δ=24-4(|2m +1|+|2m -3|)≥0.即|2m +1|+|2m -3|≤6,∴不等式等价于⎩⎪⎨⎪⎧ m >32,(2m +1)+(2m -3)≤6或 ⎩⎪⎨⎪⎧ -12≤m ≤32,(2m +1)-(2m -3)≤6或 ⎩⎪⎨⎪⎧m <-12,-(2m +1)-(2m -3)≤6.∴32<m ≤2或-12≤m ≤32或-1≤m <-12, ∴实数m 的取值范围是[-1,2].12.已知函数f (x )=|3x +2|.(1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n(a >0)恒成立,求实数a 的取值范围. 解析:(1)不等式f (x )<4-|x -1|.即|3x +2|+|x -1|<4.当x <-23时,即-3x -2-x +1<4, 解得-54<x <-23: 当-23≤x ≤1时,即3x +2-x +1<4, 解得-23≤x ≤12; 当x >1时,即3x +1+x -1<4,无解.综上所述,x ∈⎝⎛⎭⎫-54,12.(2)1m +1n =⎝⎛⎭⎫1m +1n (m +n )=1+1+n m +m n≥4, 令g (x )=|x -a |-f (x )=|x -a |-|3x +2|=⎩⎨⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,即0<a ≤103.。
高三数学一轮复习精品教案1:第2讲 参数方程教学设计
![高三数学一轮复习精品教案1:第2讲 参数方程教学设计](https://img.taocdn.com/s3/m/15b7501169dc5022aaea00eb.png)
第二节参_数_方_程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么,⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.2.常见曲线的参数方程和普通方程点的轨迹 普通方程 参数方程直线y -y 0=tan α(x -x 0)⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α (t 为参数) 圆 x 2+y 2=r 2 ⎩⎪⎨⎪⎧ x =r cos θy =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数)1.不明确直线的参数方程中的几何意义导致错误,对于直线参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.(t 为参数)注意:t 是参数,α则是直线的倾斜角.2.参数方程与普通方程互化时,易忽视互化前后的等价性. 『练一练』1.若直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t (t 为参数),则直线的斜率为________.『解析』∵y -2x -1=-3t 2t =-32,∴tan α=-32.『答案』-322.参数方程为⎩⎪⎨⎪⎧x =3t 2+2y =t 2-1(0≤t ≤5)的曲线为________.(填“线段”“射线”“圆弧”或“双曲线的一支”)『解析』化为普通方程为x =3(y +1)+2, 即x -3y -5=0, 由于x =3t 2+2∈『2,77』, 故曲线为线段. 『答案』线段1.化参数方程为普通方程的方法消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法.2.利用直线参数方程中参数的几何意义求解问题的方法经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=t 1+t 22; (2)|PM |=|t 0|=t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|P A |·|PB |=|t 1·t 2|. 『练一练』1.已知P 1,P 2是直线⎩⎨⎧x =1+12t ,y =-2+32t (t 为参数)上的两点,它们所对应的参数分别为t 1,t 2,则线段P 1P 2的中点到点P (1,-2)的距离是________.『解析』由t 的几何意义可知,线段P 1P 2的中点对应的参数为t 1+t 22,P 对应的参数为t=0,∴线段P 1P 2的中点到点P 的距离为|t 1+t 2|2.『答案』|t 1+t 2|22.已知直线⎩⎨⎧x =2-12t ,y =-1+12t (t 为参数)与圆x 2+y 2=4相交于B ,C 两点,则|BC |的值为________.『解析』∵⎩⎨⎧x =2-12t =2-22t ′,y =-1+12t =-1+22t ′,⎝⎛⎭⎫t ′=22t 代入x 2+y 2=4,得⎝⎛⎭⎫2-22t ′2+⎝⎛⎭⎫-1+22t ′2=4,t ′2-32t ′+1=0,∴|BC |=|t ′1-t ′2|=(t ′1+t ′22-4t ′1t ′2)=(32)2-4×1=14.『答案』14考点一参数方程与普通方程的互化1.曲线⎩⎨⎧x =23cos θy =32sin θ(θ为参数)中两焦点间的距离是________.『解析』曲线化为普通方程为y 218+x 212=1,∴c =6,故焦距为2 6.『答案』262.(2014·西安质检)若直线3x +4y +m =0与圆⎩⎪⎨⎪⎧x =1+cos θ,y =-2+sin θ(θ为参数)相切,则实数m 的值是________.『解析』圆⎩⎪⎨⎪⎧x =1+cos θ,y =-2+sin θ消去参数θ,化为普通方程是(x -1)2+(y +2)2=1.因为直线与圆相切,所以圆心(1,-2)到直线的距离等于半径,即|3+4×(-2)+m |5=1,解得m =0或m =10.『答案』0或103.(2014·武汉调研)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线⎩⎨⎧x =-t ,y =3t(t 为参数,t ∈R )与曲线C 1:ρ=4sin θ异于点O 的交点为A ,与曲线C 2:ρ=2sin θ异于点O 的交点为B ,则|AB |=________.『解析』由题意可得,直线y =-3x ,曲线C 1:x 2+(y -2)2=4,曲线C 2:x 2+(y -1)2=1,画图可得,|AB |=4cos 30°×12= 3.『答案』3『备课札记』 『类题通法』参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的另一种表示形式,参数方程化为普通方程关键在于消参,消参时要注意参变量的范围.考点二参数方程的应用『典例』 (2014·郑州模拟)已知直线C 1:⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求点P 轨迹的参数方程,并指出它是什么曲线.『解』 (1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1,联立方程⎩⎨⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点坐标分别为(1,0),⎝⎛⎭⎫12,-32.(2)依题意,C 1的普通方程为x sin α-y cos α-sin α=0,则A 点的坐标为(sin 2α,-sin αcos α),故当α变化时,P 点轨迹的参数方程为⎩⎨⎧x =12sin 2α,y =-12sin αcos α(α为参数),∴点P 轨迹的普通方程为(x -14)2+y 2=116.故点P 的轨迹是圆心为(14,0),半径为14的圆.『备课札记』在本例(1)条件下,若直线C 1:⎩⎪⎨⎪⎧x =1+t cos αy =t sin α,(t 为参数),与直线C 2⎩⎪⎨⎪⎧x =s ,y =1-as (s 为参数)垂直,求a . 解:由(1)知C 1的普通方程为y =3(x -1),C 2的普通方程为y =1-ax ,由两线垂直得-a ×3=-1,故a =33. 『类题通法』1.解决直线与圆的参数方程的应用问题时一般是先化为普通方程再根据直线与圆的位置关系来解决问题.2.对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数)当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题. 『针对训练』(2013·新课标卷Ⅱ)已知动点P ,Q 在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t(t 为参数)上,对应参数分别为t =α与t =2α为(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解:(1)依题意有P (2cos α,2sin α),Q (2cos2α,2sin2α), 因此M (cos α+cos2α,sin α+sin2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点.考点三极坐标、参数方程的综合应用『典例』 (2013·福建高考)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.『解』 (1)由点A ⎝⎛⎭⎫2,π4在直线ρcos ⎝⎛⎭⎫θ-π4=a 上, 可得a = 2.所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.『备课札记』 『类题通法』涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.『针对训练』(2014·石家庄质检)已知P 为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与半圆C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程.解:(1)由已知,点M 的极角为π3,且|OM |=π3,故点M 的极坐标为(π3,π3).(2)由(1)可得点M 的直角坐标为(π6,3π6),A (1,0),故直线AM 的参数方程为⎩⎨⎧x =1+(π6-1)t ,y =3π6t(t 为参数).『课堂练通考点』1.(2013·重庆高考)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.『解析』ρcos θ=4化为直角坐标方程为x =4①,⎩⎪⎨⎪⎧x =t 2,y =t 3,化为普通方程为y 2=x 3 ②,①②联立得A (4,8),B (4,-8),故|AB |=16. 『答案』162.(2013·江西高考)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.『解析』消去曲线C 中的参数t 得y =x 2,将x =ρcos θ,y =ρsin θ代入y =x 2中,得ρ2cos 2θ=ρsin θ,即ρcos 2θ-sin θ=0.『答案』ρcos 2θ-sin θ=03.(2014·合肥模拟)在平面直角坐标系中,直线l 的参数方程为⎩⎨⎧x =12t ,y =22+32t(t 为参数),若以直角坐标系的原点O 为极点,x 轴非负半轴为极轴,且长度单位相同,建立极坐标系,曲线C 的极坐标方程为ρ=2cos ⎝⎛⎭⎫θ-π4.若直线l 与曲线C 交于A ,B 两点,则|AB |=________.『解析』首先消去参数t ,可得直线方程为3x -y +22=0,极坐标方程化为直角坐标方程为⎝⎛⎭⎫x -222+⎝⎛⎭⎫y -222=1,根据直线与圆的相交弦长公式可得|AB |=21-⎝⎛⎭⎫642=102. 『答案』1024.(2014·苏州模拟)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为:ρsin 2θ=cos θ.(1)求曲线C 的直角坐标方程;(2)若直线l 的参数方程为⎩⎨⎧x =2-22t ,y =22t(t 为参数),直线l 与曲线C 相交于A ,B 两点,求|AB |的值.解:(1)将y =ρsin θ,x =ρcos θ代入ρ2sin 2θ=ρcos θ中,得y 2=x , ∴曲线C 的直角坐标方程为:y 2=x .(2)把⎩⎨⎧x =2-22t ,y =22t ,代入y 2=x 整理得,t 2+2t -4=0,Δ>0总成立.设A ,B 两点对应的参数分别为t 1,t 2, ∵t 1+t 2=-2,t 1t 2=-4,∴|AB |=|t 1-t 2|=(-2)2-4×(-4)=3 2.。
高考文科数学复习专题极坐标与参数方程
![高考文科数学复习专题极坐标与参数方程](https://img.taocdn.com/s3/m/bae0a36a28ea81c759f57826.png)
高考文科数学复习专题极坐标与参数方程Newly compiled on November 23, 20201.曲线的极坐标方程.(1)极坐标系:一般地,在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O称为极点,射线Ox称为极轴.(2)极坐标(ρ,θ)的含义:设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.显然,每一个有序实数对(ρ,θ),决定一个点的位置.其中ρ称为点M的极径,θ称为点M的极角.极坐标系和直角坐标系的最大区别在于:在直角坐标系中,平面上的点与有序数对之间的对应关系是一一对应的,而在极坐标系中,对于给定的有序数对(ρ,θ),可以确定平面上的一点,但是平面内的一点的极坐标却不是唯一的.(3)曲线的极坐标方程:一般地,在极坐标系中,如果平面曲线C上的任意一点的极坐标满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.2.直线的极坐标方程.(1)过极点且与极轴成φ0角的直线方程是θ=φ和θ=π-φ,如下图所示.(2)与极轴垂直且与极轴交于点(a,0)的直线的极坐标方程是ρcos θ=a,如下图所示.(3)与极轴平行且在x轴的上方,与x轴的距离为a的直线的极坐标方程为ρsin θ=a,如下图所示.3.圆的极坐标方程.(1)以极点为圆心,半径为r的圆的方程为ρ=r,如图1所示.(2)圆心在极轴上且过极点,半径为r 的圆的方程为ρ=2rcos_θ,如图2所示.(3)圆心在过极点且与极轴成π2的射线上,过极点且半径为r 的圆的方程为ρ2rsin_θ,如图3所示.4.极坐标与直角坐标的互化.若极点在原点且极轴为x 轴的正半轴,则平面内任意一点M 的极坐标M(ρ,θ)化为平面直角坐标M(x ,y)的公式如下:⎩⎨⎧x =ρcos θ,y =ρsin θ或者tan θ=y x ,其中要结合点所在的象限确定角θ的值. 1.曲线的参数方程的定义.在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数,即⎩⎨⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组所确定的点M(x ,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x ,y 之间关系的变数t 叫做参变数,简称参数.2.常见曲线的参数方程.(1)过定点P(x 0,y 0),倾斜角为α的直线:⎩⎨⎧x =x 0+tcos α,y =y 0+tsin α(t 为参数), 其中参数t 是以定点P(x 0,y 0)为起点,点M(x ,y)为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论:①设A ,B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则|AB|=|t B-t A |=(t B +t A )2-4t A ·t B ;②线段AB 的中点所对应的参数值等于t A +t B2.(2)中心在P(x 0,y 0),半径等于r 的圆:⎩⎨⎧x =x 0+rcos θ,y =y 0+rsin θ(θ为参数) (3)中心在原点,焦点在x 轴(或y 轴)上的椭圆:⎩⎨⎧x =acos θ,y =bsin θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎨⎧x =bcos θ,y =asin θ. 中心在点P(x 0,y 0),焦点在平行于x 轴的直线上的椭圆的参数方程为⎩⎨⎧x =x 0+acos α,y =y 0+bsin α(α为参数). (4)中心在原点,焦点在x 轴(或y 轴)上的双曲线:⎩⎨⎧x =asec θ,y =btan θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎨⎧x =btan θ,y =asec θ. (5)顶点在原点,焦点在x 轴的正半轴上的抛物线:⎩⎨⎧x =2p ,y =2p(t 为参数,p>0). 注:sec θ=1cos θ.3.参数方程化为普通方程.由参数方程化为普通方程就是要消去参数,消参数时常常采用代入消元法、加减消元法、乘除消元法、三角代换法,消参数时要注意参数的取值范围对x ,y的限制.1.已知点A 的极坐标为⎝ ⎛⎭⎪⎫4,5π3,则点A 2.把点P 的直角坐标(6,-2)化为极坐标,结果为6. 3.曲线的极坐标方程ρ=4sin θ化为直角坐标方程为x 2+(y -2)2=4.4.以极坐标系中的点⎝ ⎛⎭⎪⎫1,π6为圆心、1为半径的圆的极坐标方程是ρ=2cos ⎝⎛⎭⎪⎫θ-π6.5.在平面直角坐标系xOy 中,若直线l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos θ,y =2sin θ(θ为参数)的右顶点,则常数a 的值为3. 解析:由直线l :⎩⎨⎧x =t ,y =t -a ,得y =x -a.由椭圆C :⎩⎨⎧x =3cos θ,y =2sin θ,得x 29=y 24=1.所以椭圆C 的右顶点为(3,0).因为直线l 过椭圆的右顶点,所以0=3-a ,即a =3.一、选择题1.在平面直角坐标系xOy 中,点P 的直角坐标为(1,-3).若以原点O 为极点,x 轴正半轴为极轴建立极坐标系,则点P 的极坐标可以是(C )2.若圆的方程为⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),直线的方程为⎩⎨⎧x =t +1,y =t -1(t为参数),则直线与圆的位置关系是(B )A .相离B .相交C .相切D .不能确定3.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是⎩⎨⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为(D )B .214 D .2 2解析:由题意可得直线和圆的方程分别为x -y -4=0,x 2+y 2=4x ,所以圆心C(2,0),半径r =2,圆心(2,0)到直线l 的距离d =2,由半径,圆心距,半弦长构成直角三角形,解得弦长为2 2.4.已知动直线l 平分圆C :(x -2)2+(y -1)2=1,则直线l 与圆O :⎩⎨⎧x =3cos θ,y =3sin θ(θ为参数)的位置关系是(A ) A .相交 B .相切 C .相离 D .过圆心解析:动直线l 平分圆C :(x -2)2+(y -1)2=1,即圆心(2,1)在直线l上,又圆O :⎩⎨⎧x =3cos θ,y =3sin θ的普通方程为x 2+y 2=9且22+12<9,故点(2,1)在圆O 内,则直线l 与圆O 的位置关系是相交.二、填空题5.在平面直角坐标系xOy 中,已知曲线C 的参数方程是⎩⎨⎧y =sin θ-2,x =cos θ(θ是参数),若以O 为极点,x 轴的正半轴为极轴,则曲线C 的极坐标方程可写为ρ2+4ρsin_θ+3=0.解析:在平面直角坐标系xOy 中,⎩⎨⎧y =sin θ-2,x =cos θ(θ是参数),∴⎩⎨⎧y +2=sin θ,x =cos θ.根据sin 2θ+cos 2θ=1,可得x 2+(y +2)2=1,即x 2+y 2+4y +3=0.∴曲线C 的极坐标方程为ρ2+4ρsin θ+3=0.6.在平面直角坐标系中圆C 的参数方程为⎩⎨⎧x =2cos θ,y =2+2sin θ(θ为参数),以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,则圆C 的圆心的极坐标为⎝⎛⎭⎪⎫2,π2.三、解答题7.求极点到直线2ρ=1sin ⎝ ⎛⎭⎪⎫θ+π4(ρ∈R)的距离.解析:由2ρ=1sin ⎝⎛⎭⎪⎫θ+π4ρsin θ+ρcos θ=1x +y =1,故d =|0+0-1|12+12=22. 8.极坐标系中,A 为曲线ρ2+2ρcos θ-3=0上的动点,B 为直线ρcos θ+ρsin θ-7=0上的动点,求|AB|的最小值.9.(2015·大连模拟)曲线C 1的参数方程为⎩⎨⎧x =cos θ,y =sin θ(θ为参数),将曲线C 1上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的3倍,得到曲线C 2.以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :ρ(cos θ-2sin θ)=6.(1)求曲线C 2和直线l 的普通方程;(2)P 为曲线C 2上任意一点,求点P 到直线l 的距离的最值.解析:(1)由题意可得C 2的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数),即C 2:x 24+y 23=1, 直线l :ρ(cos θ-2sin θ)=6化为直角坐标方程为x -2y -6=0. (2)设点P(2cos θ,3sin θ),由点到直线的距离公式得点P 到直线l 的距离为d =|2cos θ-23sin θ-6|5=⎪⎪⎪⎪⎪⎪6+4⎝ ⎛⎭⎪⎫32sin θ-12cos θ5=⎪⎪⎪⎪⎪⎪6+4sin ⎝⎛⎭⎪⎫θ-π65=55⎣⎢⎡⎦⎥⎤6+4sin ⎝⎛⎭⎪⎫θ-π6.所以255≤d ≤25,故点P 到直线l 的距离的最大值为25,最小值为255.10.已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l 经过定点P(3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程.(2)设直线l 与曲线C 相交于A ,B 两点,求|PA|·|PB|的值.解析:(1)由曲线C 的参数方程⎩⎨⎧x =1+4cos θ,y =2+4sin θ(θ为参数),得普通方程为(x -1)2+(y -2)2=16,即x 2+y 2-2x -4y =11=0.直线l 经过定点P(3,5),倾斜角为π3,直线的参数方程为⎩⎨⎧x =3+12t ,y =5+32t(t 是参数).(2)将直线的参数方程代入x 2+y 2-2x -4y -11=0,整理,得t 2+(2+33)t -3=0,设方程的两根分别为t 1,t 2,则t 1t 2=-3,因为直线l 与曲线C 相交于A ,B 两点,所以|PA|·|PB|=|t 1t 2|=3.。
2016届高考数学文科一轮复习课件:10-4参数方程
![2016届高考数学文科一轮复习课件:10-4参数方程](https://img.taocdn.com/s3/m/f52d5f3d2af90242a895e531.png)
栏 目 链 接
课前自修
2.点斜式.
x=x0+at, (t 为参数) y=y0+bt.
b 其中,(x0,y0)表示该直线上的一点, 表示直线的斜率. a 当 a,b 分别表示点 M(x,y)在 x 方向与 y 方向的分速度时,t 就具有物理意义——时间,相应的 at,bt 则表示点 M(x,y)在 x 方向,y 方向上相对(x0,y0)的位移.
栏 目 链 接
参数 . 参变数 ,简称________ y 的变数 t 叫做________
相对于参数方程而言, 直接给出点的横、 纵坐标间关系的方程叫 做普通方程.
课前自修
二、圆的参数方程
圆 (x - x0)2 + (y - y0)2 = r2 的 参 数 方 程 为 _________________(θ 为参数) 特别地,圆心在原点,半径为 r 的圆 x2+y2=r2 的参数 方程是________________ (θ 为参数). 其中参数 θ 的几何意义是 OM0 绕点 O 逆时针旋转到 OM 的位置时,OM0 转过的角度.
2 x=2pt , (t 为参数) y=2pt.
其中参数 t 表示抛物线上除顶点外的任意一点与原点连线的斜率 的倒数,其范围为 t∈(-∞,+∞).
栏 目 链 接
课前自修
六、直线的参数方程
1.标准式.
x=x0+tcos θ, 经过点 M0(x0, y0), 倾斜角为 θ 的直线的参数方程为 (t 为参数) y=y0+tsin θ
栏 目 链渐开线的参数方程.
x=r(cos φ+φsin φ), (φ 为参数) y=r(sin φ-φcos φ).
其中 r 为基圆的半径, φ 为过切点的半径与 x 轴正方向所成的角.
利用圆的参数方程解决最值问题课件-2025届高三数学一轮复习
![利用圆的参数方程解决最值问题课件-2025届高三数学一轮复习](https://img.taocdn.com/s3/m/7f6f709aa0c7aa00b52acfc789eb172ded639934.png)
= −1 + 2cos ,
1.(2024 ·宜春模拟)已知曲线ቊ
( 为参数)上任意一点 0 , 0 ,
= 1 + 2sin
[2 2, +∞)
不等式 ≥ 0 + 0 恒成立,则实数的取值范围是__________.
解析 根据题意,曲线ቊ
= −1 + 2cos ,
( 为参数),
利用圆的参数方程解决最值问题
一 利用圆的参数方程求代数式的最值
二 利用圆的参数方程求范围
三 利用圆的参数方程求距离等最值
06 利用圆的参数方程解决最值问题
2
= 0 + cos ,
1. 圆的方程有标准方程、一般方程、参数方程,一般我们把方程ቊ
(
= 0 + sin
是参数)称为圆 − 0 2 + − 0 2 = 2 的参数方程.
当sin = 1时,取得最大值,最大值为1.
5
4
故实数的取值范围是[− , 1].
1 2
+
2
5
4
− .
06 利用圆的参数方程解决最值问题
10
利用圆的参数方程,采用代入法把求实数的取值范围问题转化为求三角函数的值域问
题,使问题迅速获解,可谓转化巧妙.
06 利用圆的参数方程解决最值问题
11
12
磨尖点三 利用圆的参数方程求距离等最值
06 利用圆的参数方程解决最值问题
典例3 (2024 ·上海模拟)已知动圆 −
2
+ −
14
2
= 1经过原点,则动圆上的
2+2
点到直线 − + 2 = 0距离的最大值是_______.
高考数学总复习第一轮复习课件:选修4-4(2)参数方程ppt课件(含答案)
![高考数学总复习第一轮复习课件:选修4-4(2)参数方程ppt课件(含答案)](https://img.taocdn.com/s3/m/51827b8bb8f67c1cfad6b8c8.png)
y42=1,∴椭圆 C 的右顶点坐标为(3,0),若直线 l 过(3,0),则 3-a=0, ∴a=3.]
解析答案
栏目导航
14
课堂 题型全突破
答案 栏目导航
6
2.常见曲线的参数方程和普通方程
点的轨迹
普通方程
参数方程
直线
y-y0=tan α(x-x0)
xy= =xy00+ +ttcsions
α, α
(t 为参数)
圆
x2+y2=r2
x=_r_c_o_s_θ___, y=__rs_i_n_θ___
(θ 为参数)
椭圆
ax22+by22=1(a>b>0)
栏目导航
11
3.直线 l 的参数方程为xy= =12+ -t3,t (t 为参数),则直线 l 的斜率 为________.
-3 [将直线 l 的参数方程化为普通方程为 y-2=-3(x-1),因 此直线 l 的斜率为-3.]
解析答案
栏目导航
12
4.曲线
C
的参数方程为xy= =scions
栏目导航
参数方程与普通方程的互化
1.将下列参数方程化为普通方程.
x=1t , (1)y=1t t2-1
(t 为参数);
x=2+sin2θ, (2)y=-1+cos 2θ (θ 为参数).
15
栏目导航
[解]
(1)∵1t 2+1t
t2-12=1,∴x2+y2=1.
∵t2-1≥0,∴t≥1 或 t≤-1.
又 x=1t ,∴x≠0.
高考数学一轮复习考点知识专题练习77---参数方程
![高考数学一轮复习考点知识专题练习77---参数方程](https://img.taocdn.com/s3/m/0030d5172e3f5727a5e96267.png)
l
x=3+tcos 的参数方程y=4+tsin
α, α
(t 为参数,α 为倾斜角),
得直线 l 的普通方程为 y-4=k(x-3)(斜率存在),
即 kx-y+4-3k=0.
当直线 l 与圆 C 交于两个不同的点时,圆心到直线的距离小于圆的半径,
|5-2k|
21
即 k2+1<2,解得 k>20.
即直线 l 的斜率的取值范围为2210,+∞.
代入(*)式,可得 x2=y,
所以 C2 的直角坐标方程为 x2=y.
(2)因为 A,B 异于原点,
(x-1)2+y2=1, 所以联立y=kx,
可得 Ak2+2 1,k22+k 1;
y=kx, 联立y=x2,
可得 B(k,k2).
故|OA|·|OB|= 1+k2·k2+2 1· 1+k2·|k|=2|k|.
又 k∈(1, 3],所以|OA|·|OB|∈(2,2 3].
6.(2019·惠州调研)在直角坐标系 xOy 中,曲线 C1 的参数方程为xy==2--2+35t,45t
(t
为参数).以坐标原点为极点,以 x 轴正半轴为极轴建立极坐标系,曲线 C2 的极坐标方 程为 ρcos θ=tan θ.
(1)求曲线 C1 的普通方程与曲线 C2 的直角坐标方程; (2)若 C1 与 C2 交于 A,B 两点,点 P 的极坐标为2 2,-π4,求|P1A|+|P1B|的值. 解:(1)由曲线 C1 的参数方程消去参数 t 可得,曲线 C1 的普通方程为 4x+3y-2= 0. 由 x=ρcos θ,y=ρsin θ 可得,曲线 C2 的直角坐标方程为 y=x2. (2)由点 P 的极坐标为2 2,-4π,可得点 P 的直角坐标为(2,-2),∴点 P 在曲
高三数学一轮复习课时作业11:第2讲 参数方程
![高三数学一轮复习课时作业11:第2讲 参数方程](https://img.taocdn.com/s3/m/24f3d38a915f804d2b16c1d1.png)
第2课时 参数方程1.(2018·保定模拟)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解 (1)由ρ=23sin θ,得ρ2=23ρsin θ, 所以x 2+y 2=23y ,所以⊙C 的直角坐标方程为x 2+(y -3)2=3. (2)设P ⎝⎛⎭⎫3+12t ,32t ,又C (0,3),则|PC |=⎝⎛⎭⎫3+12t 2+⎝⎛⎭⎫32t -32=t 2+12, 故当t =0时,|PC |取得最小值,此时,点P 的直角坐标为(3,0).2.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t(t 为参数),椭圆C的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.解 直线l 的参数方程化为普通方程为3x -y -3=0, 椭圆C 的参数方程化为普通方程为x 2+y 24=1,联立方程组⎩⎪⎨⎪⎧3x -y -3=0,x 2+y 24=1,解得⎩⎪⎨⎪⎧x 1=1,y 1=0或⎩⎨⎧x 2=-17,y 2=-837,不妨取A (1,0),B ⎝⎛⎭⎫-17,-837,则|AB |=⎝⎛⎭⎫1+172+⎝⎛⎭⎫0+8372=167.3.已知在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =22t -2,y =22t(t 为参数),以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,求以极点为圆心且与直线l 相切的圆的极坐标方程.解 ∵直线l 的直角坐标方程为x -y +2=0, ∴原点到直线l 的距离r =22=1. ∴以极点为圆心且与直线l 相切的圆的极坐标方程为ρ=1.4.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2(t 为参数),在以O 为极点,以x 轴正半轴为极轴的极坐标系中,曲线C 2的方程为ρsin ⎝⎛⎭⎫θ+π4=22,求曲线C 1与曲线C 2的交点个数.解 曲线C 1,C 2化为普通方程和直角坐标方程分别为x 2=2y ,x +y -4=0,联立⎩⎪⎨⎪⎧x 2=2y ,x +y -4=0,消去y 得x 2+2x -8=0,因为判别式Δ>0,所以方程有两个实数解.故曲线C 1与曲线C 2的交点个数为2.5.已知直线l 的参数方程为⎩⎨⎧x =-1-32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6. (1)求圆C 的直角坐标方程;(2)点P (x ,y )是直线l 与圆面ρ≤4sin ⎝⎛⎭⎫θ-π6的公共点,求3x +y 的取值范围. 解 (1)因为圆C 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6, 所以ρ2=4ρsin ⎝⎛⎭⎫θ-π6=4ρ⎝⎛⎭⎫32sin θ-12cos θ. 又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以x 2+y 2=23y -2x ,所以圆C 的直角坐标方程为x 2+y 2+2x -23y =0. (2)设z =3x +y ,由圆C 的直角坐标方程为x 2+y 2+2x -23y =0, 得(x +1)2+(y -3)2=4,所以圆C 的圆心是(-1,3),半径是2.将⎩⎨⎧x =-1-32t ,y =3+12t 代入到z =3x +y ,得z =-t .又直线l 过C (-1,3),圆C 的半径是2,所以-2≤t ≤2,所以-2≤-t ≤2,即3x +y 的取值范围是『-2,2』.6.(2016·全国Ⅱ)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入到C 的极坐标方程,得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10,得cos 2α=38,tan α=±153.所以l 的斜率为153或-153.7.(2018·洛阳模拟)在极坐标系中,曲线C 的极坐标方程为ρ=42·sin ⎝⎛⎭⎫θ+π4.现以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎨⎧x =-2+12t ,y =-3+32t (t为参数).(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)设直线l 和曲线C 交于A ,B 两点,定点P (-2,-3),求|P A |·|PB |的值. 解 (1)因为ρ=42sin ⎝⎛⎭⎫θ+π4=4sin θ+4cos θ, 所以ρ2=4ρsin θ+4ρcos θ, 所以x 2+y 2-4x -4y =0,即曲线C 的直角坐标方程为(x -2)2+(y -2)2=8; 直线l 的普通方程为3x -y +23-3=0. (2)把直线l 的参数方程代入到圆C : x 2+y 2-4x -4y =0中, 得t 2-(4+53)t +33=0,t 1,2=4+53±403-412,则t 1t 2=33.点P (-2,-3)显然在直线l 上.由直线标准参数方程下t 的几何意义知,|P A |·|PB |=|t 1t 2|=33,所以|P A |·|PB |=33.8.已知曲线C 1:⎩⎪⎨⎪⎧ x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t(t 为参数)的距离的最小值.解 (1)曲线C 1:(x +4)2+(y -3)2=1, 曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是以坐标原点为中心,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M ⎝⎛⎭⎫-2+4cos θ,2+32sin θ. 曲线C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|, 从而当cos θ=45,sin θ=-35时,d 取最小值855.9.已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数),以直角坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=-4cos θ. (1)求曲线C 1与C 2的交点的极坐标;(2)A ,B 两点分别在曲线C 1与C 2上,当|AB |最大时,求△OAB 的面积(O 为坐标原点).解 (1)由⎩⎪⎨⎪⎧ x =2cos θ,y =2+2sin θ,得⎩⎪⎨⎪⎧x =2cos θ,y -2=2sin θ,两式平方相加,得x 2+(y -2)2=4,即x 2+y 2-4y =0.①由ρ=-4cos θ,得ρ2=-4ρcos θ,即x 2+y 2=-4x .② ①-②得x +y =0,代入①得交点为(0,0),(-2,2). 其极坐标为(0,0),⎝⎛⎭⎫22,3π4. (2)如图.由平面几何知识可知,A ,C 1,C 2,B 依次排列且共线时|AB |最大, 此时|AB |=22+4,点O 到AB 的距离为 2. ∴△OAB 的面积为S =12×(22+4)×2=2+2 2.10.已知曲线C 的参数方程是⎩⎨⎧ x =a cos φ,y =3sin φ(φ为参数,a >0),直线l 的参数方程是⎩⎪⎨⎪⎧x =3+t ,y =-1-t (t 为参数),曲线C 与直线l 有一个公共点在x 轴上,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 的普通方程;(2)若点A (ρ1,θ),B ⎝⎛⎭⎫ρ2,θ+2π3,C ⎝⎛⎭⎫ρ3,θ+4π3在曲线C 上,求1|OA |2+1|OB |2+1|OC |2的值. 解 (1)直线l 的普通方程为x +y =2,与x 轴的交点为(2,0). 又曲线C 的普通方程为x 2a 2+y 23=1,所以a =2,故所求曲线C 的普通方程是x 24+y 23=1.(2)因为点A (ρ1,θ),B ⎝⎛⎭⎫ρ2,θ+2π3,C ⎝⎛⎭⎫ρ3,θ+4π3在曲线C 上,即点A (ρ1cos θ,ρ1sin θ), B ⎝⎛⎭⎫ρ2cos ⎝⎛⎭⎫θ+2π3,ρ2sin ⎝⎛⎭⎫θ+2π3, C ⎝⎛⎭⎫ρ3cos ⎝⎛⎭⎫θ+4π3,ρ3sin ⎝⎛⎭⎫θ+4π3在曲线C 上, 故1|OA |2+1|OB |2+1|OC |2=1ρ21+1ρ22+1ρ23=14⎣⎡⎦⎤cos 2θ+cos 2⎝⎛⎭⎫θ+2π3+cos 2⎝⎛⎭⎫θ+4π3+ 13⎣⎡⎦⎤sin 2θ+sin 2⎝⎛⎭⎫θ+2π3+sin 2⎝⎛⎭⎫θ+4π3=14⎣⎢⎡⎦⎥⎤1+cos 2θ2+1+cos ⎝⎛⎭⎫2θ+4π32+1+cos ⎝⎛⎭⎫2θ+8π32+ 13⎣⎢⎡⎦⎥⎤1-cos 2θ2+1-cos ⎝⎛⎭⎫2θ+4π32+1-cos ⎝⎛⎭⎫2θ+8π32 =14×32+13×32=78.。
高三数学极坐标与参数方程一轮复习讲义
![高三数学极坐标与参数方程一轮复习讲义](https://img.taocdn.com/s3/m/3ce5ff624a35eefdc8d376eeaeaad1f34693112a.png)
4
2
4
这就是点Q的轨迹方程.
化为直角坐标方程为(x 2 )2 ( y 2 )2 1 .
8
8 16
因此点Q的轨迹是以(1 ,3 )为圆心,1 为半径的圆.
44
4
7
直角坐标与极坐标互化要注意互化的前提 若要判断曲线的形状;可先将极坐标方程化为 直角坐标方程;再判断 在直角坐标系中;求曲线 的轨迹方程的方法有直译法;定义法;动点转移 法 在极坐标系中;求曲线的极坐标方程;这几种 方法仍然是适用的
专题八 自选模块
1. 极 坐 标 与 直 角 坐 标 的 互 化
1 互 化 的 前 提 :
①极点与直角坐标系的原点重合;
② 极 轴 与 x轴 的 正 方 向 重 合 ; ③两种坐标系中取相同的长度单位.
2互
化
公
式
x
y
cos sin
2 , t a n
x2 y2 y ,x
x
. 0
2 .1 圆 心 在 ( x 0, y 0 ), 半 径 为 r的 圆 的 参 数 方 程 为 :
5
1以 极 点 为 原 点 , 极 轴 为 x轴 的 正 半 轴 , 建 立 直 角
坐 标 系 , 则 点 A的 直 角 坐 标 为 ( 2,0 ), 直 线 l的 直 角 坐 标 方
程 为 x y 2 m 0 .因 为 A到 直 线 l的 距 离 d |
1 m 3, 所 以 m 2.
8
【变式训练】(2011 5月名校创新试卷)如图,在极坐标系中,
已知曲线C1:
2cos (0
2
),O1
1, 0,
C2:
4cos (0
2
),O2
高考数学一轮复习规划8.3圆的方程课件
![高考数学一轮复习规划8.3圆的方程课件](https://img.taocdn.com/s3/m/3b1f17e0b8d528ea81c758f5f61fb7360b4c2be8.png)
=x 上,则圆 C 的方程为
()
A. (x-1)2+(y-1)2=2
B. (x-1)2+(y+1)2=2
C. (x+1)2+(y-1)2=4
D. (x+1)2+(y+1)2=4
解:圆心在 y=x 上,设圆心为(a,a),因为圆 C 与直线 y=-x 及 x+y-4=0 都相
切,所以圆心到两直线 y=-x 及 x+y-4=0 的距离相等,
核心考点
第八章 平面解析几何
若圆(x-1)2+(y-1)2=2 关于直线 y=kx+3 对称,则 k 的值是
A. 2
B. -2
C. 1
() D. -1
解:由题意知直线 y=kx+3 过圆心(1,1),即 1=k+3,解得 k=-2. 故选 B.
考试要求
必备知识
自主评价
核心考点
第八章 平面解析几何
()
(4)若点 M(x0,y0)不在圆 x2+y2+Dx+Ey+F=0 内,则 x20+y20+Dx0+Ey0+F≥0.
()
(5)已知圆的方程为 x2+y2-2y=0,过点 A(1,2)作该圆的切线,只有一条. ( )
解:(1)√; (2)×; (3)×; (4)√; (5)×.
考试要求
必备知识
自主评价
考试要求
必备知识
自主评价
核心考点
解法二:设圆的方程为(x-a)2+(y-b)2=r2(r>0), 因为点 A(4,1),B(2,1)在圆上,故( (42- -aa) )22+ +( (11- -bb) )22= =rr22, , 又因为ba- -12=-1,解得 a=3,b=0,r= 2, 故所求圆的方程为(x-3)2+y2=2. 故填(x-3)2+y2=2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般地, 在平面直角坐标系中,如果曲线上任意一点的
坐标x, y都是某个变数t的函数 x f (t),
y
g (t ).
(2)
并且对于t的每一个允许值, 由方程组(2) 所确定的点 M(x,y)都在这条曲线上, 那么方程(2) 就叫做这条曲线的 参数方程, 联系变数x,y的变数t叫做参变数, 简称参数.
解 :由椭圆参数方程,设点P(3cos ,2sin )
三角形ABO面积一定,需求 SABP最大即可
即求点P到直线AB的距离的最大值。
直线AB的方程为:x y 1 2x 3y 6 0
32
d | 6cos 6sin 6 | 6 2 sin( ) 1
22 32
13
4
当
=
4
时, d有最大值,面积最大.
x y
3t, 2t 2
(t为参数) 1.
(1)判断点M1(0, 1),M2(5, 4)与曲线C的位置关系;
(2)已知点M3(6, a)在曲线C上, 求a的值。
二、圆的参数方程
y
M(x,y)
r
o
M0 x
x
y
r r
cost(, t为参数) sin t.
t的物理意义是质点作匀速圆周运动的时刻
x
解: 设∠XOA=φ, 则
y
A: (acosφ, a sinφ),
A
B: (bcosφ, bsinφ),
B
M
由此:
x y
a b
scions(为参数)
O
Nx
即为点M轨迹的参数方程.
消去参数得: x2 y2 1, 即为点M轨迹的普通方程. a2 b2
参数方程
x y
a b
scions(为参数)是椭圆
M(x,y)
因为uuuMuuu0rM
// e,所以存在实数t r
R,
使M0M te,即
M0(x0,yr0)
(x x0, y y0) t(cos,sin)
e
即所,以xxxx00
t
t
cos ,
cos ,
y
y
y0
y0
t sin
t sin
(cos , sin )
所以,该直线的参数方程为 O
AB 1 k2 ( x1 x2 )2 4x1 x2 2 5 10
由(*)解得:x1
1 2
5 ,x2
1 2
5
y1
3 2
5 ,y2
3 2
5
记直线与抛物线的交点坐标A( 1 5 , 3 5 ),B( 1 5 , 3 5 )
2
2
2
2
则 MA MB (1 1 5 )2 (2 3 5 )2 (1 1 5 )2 (2 3 5 )2
y
r r
cos(, sin.
为参数)
θ的几何意义是OM0绕点O逆时针旋转到OM的位置时 ,OM0转过的角度.
圆的参数方程的一般形式
圆心在点(x0,y0),半径为r的圆的参数方程
x {
x0
r
cos
( 为参数)
y y0 r sin
对应的普通方程为(x x0 )2 ( y y0 )2 r2
(1)说明C
是哪种曲线,并将C 的方程化为极坐标方程;
1
1
(2)直线C3的极坐标方程为 =0,满足tan0 =2,若
曲线C1与C2的公共点都在C3上,求a.
《新坐标》P162 例3
练习:《新坐标》P165 例3、 变式训练3
例4、在椭圆 x2 y2 1上求一点M,使M到直线l : 94
x 2y 10 0的距离最小.
小结:借助椭圆的参数方程,可以将椭圆上的任意一 点的坐标用三角函数表示,利用三角知识加以解决.
1 例5、已知A,B两点是椭圆
x2 9
y2 4
与坐标轴正半轴的两个交点,在第一象限的椭圆弧上
求一点P,使四边形OAPB的面积最大.
y
解:物资出舱后,设在时刻t,水平位移为x,
500
垂直高度为y,所以
x 100t,
y
500
1 2
gt
2
.(g=9.8m/s2
)
令y 0, 得t 10.10s.
o
x 代入x 100t,得 x 1010m.
所以,飞行员在离救援点的水平距离约为1010m时投放物资,
可以使其准确落在指定位置.
一、参数方程的概念:
a2 b2
椭圆的参数方程:yx
acos bsin
(为参数)
椭圆的参数方程中参数φ的几何意义:
是∠AOX=φ,不是∠MOX=φ.称离心角
圆的标准方程: x2+y2=r2
圆的参数方程:
x y
r cos r sin
(为参数)
θ的几何意义是 ∠AOP=θ,是旋转角
y
B O
Aφ
M
Nx
y P
θ
O
A x
例3、把下列普通方程化为参数方程.
r e
t
M0
所以,直线参数方程中 参数t的绝对值等于直
r e
线上动点M到定点M0的 距离. |t|=|M0M|
O
x
例6.已知直线l : x y 1 0与抛物线y x2交于
A,B两点,求线段AB的长度和点M(-1,2)到A,B
两点的距离之积。
分析: 1.用普通方程去解还 是用参数方程去解;
y
A
2
2
2
2
3 5 3 5 4 2
例6.已知直线l : x y 1 0与抛物线y x2交于A,B两点,求线段 AB的长度和点M(-1,2)到A,B两点的距离之积。 (1)如何写出直线l的参数方程?
①
(2)如何求出交点A,B所对应的参数t1,t2 ?
①
(3) AB、MA MB 与t1,t2有什么关系?
物资投出机舱后,它的运动由下列两种运动合成:
y
(1)沿ox作初速为100m/s的匀速直线运动; (2)沿oy反方向作自由落体运动。
500
o
x
如图,一架救援飞机在离灾区地面500m高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾 区指定的地面(不记空气阻力),飞行员应如何确定投放 时机呢?
分析:设M点的坐标为(x,y)
点A 的横坐标与M点的横坐 标相同, 点B 的纵坐标与M点的纵坐标 相同.
y
B O
A
M
Nx
而A、B的坐标可以通过 引进参数建立联系.
如下图,以原点O为圆心,分别以a,b(a>b>0) 为半径作两个同心圆,设A为大圆上的任意一点,连 接OA,与小圆交于点B ,过点A作AN⊥ox,垂足为N, 过点B作BM⊥AN,垂足为M,求当半径OA绕点O旋 转时点M的轨迹参数方程.
设过点M(x 0
,y 0
)的直线L与曲线C交于A,
B两点,
对应的参数分别为t1, t2,则
(1) AB = t1 t2 ;
(2)MA MB t1 t2 ;
(3)线段AB的中点对应的参数值是 t1+t2 . 2
练习:《新坐标》P164. 变式训练2
高三(8)班高考数学第一轮复习
考点1 参数方程与普通方程的互化
高考数学第一轮复习
复习三十一 参数方程
如图,一架救援飞机在离灾区地面500m高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾 区指定的地面(不记空气阻力),飞行员应如何确定投放 时时机呢?
投放点
提示: 即求飞行员在离救援点的水平距离 多远时,开始投放物资?
? 救援点
如图,一架救援飞机在离灾区地面500m高处以100m/s 的速度作水平直线飞行. 为使投放救援物资准确落于灾 区指定的地面(不记空气阻力),飞行员应如何确定投放 时机呢?
4 cos 3 sin t
t
,
(t为参数),
C2: xy
8 cos 3sin
,
(
为参数).若C1上的点P对应的
参数为t
2
,Q为C2上的动点,求PQ中点M 到
直线C3: xy
3 2
2t(, t为参数)距离的最小值. t
高三(11)班高考数学第一轮复习
考点3 参数方程与极坐标方程的综合应用
1、参数方程和极坐标方程的综合题,求解的一般 方法是分别化为普通方程和直角坐标方程后求解. 当然,还是要结合题目本身特点,确定选择何种方 程.
高三(11)班高考数学第一轮复习
例2、已知曲线C: x2 4
y2 9
1,
直线l
:
x
y
2 2
t, 2t
(t为
参数).
(1)写出曲线C的参数方程,直线l的普通方程;
(2)过曲线C上任一点P作与l夹角为300的直线,
交l于点A,求 PA 的最大值与最小值.
《新坐标》P196例2
练习、已知曲线C1:xy
(1)
x y
3 2t, (2)
1 4t.
x y
1
t
2
1, t
.
(3)
x y
t t
1, t (4)
1. t
x
y
5 cos , 3 sin .
x cos ,
(5)
y
cos
2
1.
高三(8)班高考数学第一轮复习
考点2 参数方程的应用
利用曲线的参数方程求解两曲线间的最值问题 是行之有效的好方法.
2、解题时要注意数形结合的应用,即充分利用参数 的几何意义,或者利用ρ和θ的几何意义,直接求解, 化繁为简.
例3、(2016全国)在直角坐标系xoy中,曲线C1的