椭圆双曲线抛物线典型例题整理

合集下载

第08讲 直线与椭圆、双曲线、抛物线 (精讲)-2(含答案解析)

第08讲 直线与椭圆、双曲线、抛物线  (精讲)-2(含答案解析)

第08讲直线与椭圆、双曲线、抛物线(精讲)-2第08讲直线与椭圆、双曲线、抛物线(精讲)角度2:由中点弦确定曲线方程典型例题例题1.(2022·四川南充·高二期末(文))1.过椭圆C :()222210x y a b a b+=>>右焦点F 的直线l :20x y --=交C 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12-,则椭圆C 的方程为()A .22184x y +=B .22195x y +=C .22173x y +=D .221106x y +=例题2.(2022·全国·高二课时练习)2.已知双曲线的中心在原点且一个焦点为F ,直线1y x =-与其相交于M ,N 两点,若MN 中点的横坐标为23-,则此双曲线的方程是A .22134x y -=B .22143x y -=C .22152x y -=D .22125x y -=例题3.(2022·江苏南京·模拟预测)3.已知椭圆C :22221x y a b +=(0a b >>)过点1,2⎛ ⎝⎭,直线l :y x m =+与椭圆C 交于,A B 两点,且线段AB 的中点为M ,O 为坐标原点,直线OM 的斜率为0.5-,求椭圆C 的标准方程;例题4.(2022·安徽省亳州市第一中学高二开学考试)4.斜率为1的直线交抛物线()2:20C y px p =>于A ,B 两点,且弦AB 中点的纵坐标为2.求抛物线C 的标准方程;同类题型归类练(2022·四川南充·二模(文))5.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -与椭圆C相交于不同的两点,A B ,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为()A .2213x y +=B .22142x y +=C .22153x y +=D .22163x y +=(2022·全国·高三专题练习(理))6.已知椭圆C :22221(>0)>x y a b a b +=的左、右焦点分别为1F ,2F ,离心率为2,过点1F 的直线l 交椭圆C 于,A B 两点,AB 的中点坐标为21(,)33-.求椭圆C 的标准方程;(2022·重庆巴蜀中学高三阶段练习)7.已知椭圆C ∶22221(0)x y a b a b+=>>经过点3)2P ,O 为坐标原点,若直线l 与椭圆C 交于A ,B 两点,线段AB 的中点为M ,直线l 与直线OM 的斜率乘积为14-.求椭圆C的标准方程;(2022·全国·高三专题练习)8.已知抛物线2:2(0)C y px p =>的焦点为F ,过F 且斜率为1的直线与抛物线C 交于A ,B 两点,且AB 的中点的纵坐标为2.求C 的方程.题型三:弦长问题典型例题例题1.(2022·海南·琼海市嘉积第二中学高二期中)9.已知椭圆22:143x y C +=的左、右焦点分别为1F 、2F ,过2F 且斜率为1的直线l 交椭圆C 于A 、B 两点,则AB 等于()A .247B .127C .7D .7例题2.(2022·全国·高三专题练习)10.经过双曲线2213y x -=的左焦点F 1作倾斜角为6π的直线AB ,分别交双曲线的左、右支为点A 、B .求弦长|AB |=_____例题3.(2022·贵州遵义·高二期末(理))11.椭圆C :()222210x y a b a b +=>>左右焦点为1F ,2F 2M ⎛ ⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)经过点()2,3A ,倾斜角为π4直线l 与椭圆交于B ,C 两点,求BC .例题4.(2022·云南·丽江市教育科学研究所高二期末)12.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,且过点(2,1)P -.(1)求C 的方程;(2)若,A B 是C 上两点,直线AB 与圆222x y +=相切,求AB 的取值范围.例题5.(2022·内蒙古赤峰·高二期末)13.已知动圆C 过定点()0,1F ,且与直线1:1l y =-相切,圆心C 的轨迹为E .(1)求动点C 的轨迹方程;(2)已知直线2l 交轨迹E 于两点P ,Q ,且PQ 中点的纵坐标为2,则PQ 的最大值为多少?同类题型归类练(2022·重庆市青木关中学校高二阶段练习)14.已知双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线方程是y =,过其左焦点(F 作斜率为2的直线l 交双曲线C 于A ,B 两点,则截得的弦长||AB =()A .7B .8C .9D .10(2022·四川·遂宁中学高二期中(文))15.已知椭圆的中心在原点,焦点在x12P ⎛⎫ ⎪⎝⎭,(1)求椭圆的标准方程;(2)倾斜角为45°的直线l 过椭圆的右焦点F 交椭圆于A 、B 两点,求AB (2022·河北·衡水市第二中学高二期中)16.(1)已知A ,B 两点的坐标分别是()6,0-,()6,0,直线AM ,BM 相交于点M ,且它们的斜率之积是29.求点M 的轨迹方程,并判断轨迹的形状:(2)已知过双曲线22136x y -=上的右焦点2F ,倾斜角为30 的直线交双曲线于A ,B 两点,求AB .(2022·安徽·六安一中高二开学考试)17.已知点()2,0A -,()2,0B ,动点(),M x y 满足直线AM 与BM 的斜率之积为12,记M的轨迹为曲线C .(1)求C 的方程;(2)若直线l :3y x =-和曲线C 相交于E ,F 两点,求EF .(2022·黑龙江·鸡西市第四中学三模(理))18.已知抛物线C :()220x py p =>,圆O :221x y +=.(1)若抛物线C 的焦点F 在圆O 上,且A 为C 和圆O 的一个交点,求AF ;(2)若直线l 与抛物线C 和圆O 分别相切于点M ,N ,求MN 的最小值及相应p 的值.(2022·安徽省舒城中学三模(文))19.已知抛物线C :22y px =(p >0),抛物线C 的焦点为F ,点P 在抛物线上,且PF 的最小值为1.(1)求p ;(2)设O 为坐标原点,A ,B 为抛物线C 上不同的两点,直线OA ,OB 的斜率分别为1k ,2k ,且满足123k k OA OB <⋅=-,求|AB |的取值范围.参考答案:1.A【分析】由l 与x 轴交点横坐标可得半焦距c ,设出点A ,B 坐标,利用点差法求出22,a b 的关系即可计算作答.【详解】依题意,焦点(2,0)F ,即椭圆C 的半焦距2c =,设1122(,),(,)A x y B x y ,00(,)P x y ,则有2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,两式相减得:2212121212()()a ()()0b x x x x y y y y +-++-=,而1201202,2x x x y y y +=+=,且0012y x =-,即有2212122()()0b x x a y y --+-=,又直线l 的斜率12121y y x x -=-,因此有222a b =,而2224a b c -==,解得228,4a b ==,经验证符合题意,所以椭圆C 的方程为22184x y +=.故选:A 2.D【分析】根据点差法得2225a b=,再根据焦点坐标得227a b +=,解方程组得22a =,25b =,即得结果.【详解】设双曲线的方程为22221(0,0)x y a b a b-=>>,由题意可得227a b +=,设()11,M x y ,()22,N x y ,则MN 的中点为25,33⎛⎫-- ⎪⎝⎭,由2211221x y a b -=且2222221x y a b-=,得()()12122x x x x a +-=()()12122y y y y b +-,2223a ⨯-=()2523b ⨯-(),即2225a b=,联立227a b +=,解得22a =,25b =,故所求双曲线的方程为22125x y -=.故选D .【点睛】本题主要考查利用点差法求双曲线标准方程,考查基本求解能力,属于中档题.3.22142x y +=【分析】由离心率得,a b 的一个关系式,设()()1122,,,A x y B x y ,代入椭圆方程,相减后利用斜率关系得关于,a b 的另一等式,联立可求得22,a b 得椭圆标准方程.【详解】设()11,A x y ,()22,B x y ,则1212,22x x y y M ++⎛⎫ ⎪⎝⎭,即121212OM y y k x x +==-+.因为A ,B 在椭圆C 上,所以2211221x y a b +=,2222221x y a b+=,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=,即()()()()121222121210y y y y a b x x x x +-+=+-,又12121AB y y k x x -==-,所以221102a b-=,即222a b =.又因为椭圆C过点⎛ ⎝⎭,所以221123a b +=,解得24a =,22b =,所以椭圆C 的标准方程为22142x y +=;4.24y x=【分析】设()()1122,,,A x y B x y ,代入抛物线方程相减,利用弦中点坐标,直线斜率求得p ,得抛物线方程.【详解】设()()1122,,,A x y B x y ,12122,42y y y y +=+=,21122222y px y px ⎧=⎨=⎩,两式相减并化简得1212122y y p x x y y -=-+,21,24pp ==,所以抛物线方程为24y x =.5.B【分析】先求得焦点,也即求得c ,然后利用点差法求得22ba,从而求得,a b ,也即求得椭圆C 的方程.【详解】直线0x y -=过点()F,所以c =设()()1122,,,A x y B x y ,由2222112222221,1x y x y a b a b +=+=两式相减并化简得2121221212y y y y b a x x x x +--=⋅+-,即22222222111,,222b b a b bc a a ⎛⎫-=-⋅===+ ⎪⎝⎭,所以2b c a ===,所以椭圆C 的方程为22142x y +=.故选:B 6.2212x y +=【分析】设()()1122,,,A x y B x y ,代入椭圆方程,相减后利用中点坐标、离心率求得直线AB 的斜率得直线方程,从而求得焦点坐标,求出,,c a b 得椭圆标准方程.【详解】设1(A x ,1)y ,2(B x ,2)y ,可得2211221x y a b +=,2222221x y a b+=,两式相减得22221212221x x y y a b--+=,2221222212y y b x x a -=--,2121221212()()()()y y y y b x x x x a -+=--+,将1243x x +=-,1223y y +=代入上式,得2221(12AB b k e a ⋅-=-=-,又2=e ,∴=1AB k ,∴直线l 的方程为1233y x -=+,即1y x =+,即()11,0F -,∴1c =,1a b ==,∴椭圆C 的标准方程2212x y +=;7.221123x y +=【分析】已知点的坐标代入得,a b 的一个关系式,设()()1122,,,A x y B x y ,代入椭圆方程,相减后利用斜率关系得,a b 的另一等式,联立可求得22,a b 得椭圆标准方程.【详解】解:因为椭圆经过点3)2P ,所以223914a b +=(1),设()()1122,,,A x y B x y ,因为直线l 与椭圆C 交于A ,B 两点,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得2121221212y y x x b x x a y y -+=-⋅-+,因为线段AB 的中点为M ,且直线l 与直线OM 的斜率乘积为-14,所以2214b a -=-(2),由(1)(2)解得223,12b a ==,所以椭圆方程为:221123x y +=;8.24y x =.【分析】中点弦问题利用点差法进行处理.【详解】解:设点()()1122,,A x y B x y ,,则12+22y y =,所以12+4y y =,又因为直线AB 的斜率为1,所以21211y y x x -=-,将A 、B 两点代入抛物线方程中得:21122222y px y px ⎧=⎨=⎩,将上述两式相减得,()2212122y y p x x -=-,即()()()121212+2y y y y p x x -=-,所以12121221+y y p y y x x -==-,即214p=,所以2p =,因此,抛物线的方程为24y x =.9.A【分析】利用弦长公式求解即可.【详解】设直线AB 方程为1y x =-,联立椭圆方程22143x y+=整理可得:27880x x --=,设()()1122,,,A x y B x y ,则1287x x +=,1287x x ⋅=-,根据弦长公式有:AB =247.故B ,C ,D 错误.故选:A.10.3【分析】直线AB的方程可设为2)y x =+,联立方程,利用弦长公式可得结果.【详解】∵双曲线的左焦点为F 1(﹣2,0),设A (x 1,y 1),B (x 2,y 2),直线AB的方程可设为2)y x =+,代入方程2213y x -=得,8x 2﹣4x ﹣13=0,∴1212113,28x x x x +==-,∴12||||3AB x x =-==.故答案为:3.11.(1)2214x y +=(2)5BC =【分析】(1)利用椭圆的离心率,过点1,2M ⎛ ⎝⎭,及222a b c =+,列方程解出,a b 即可得椭圆方程;(2)由已知可得直线l 的方程,与椭圆方程联立,利用根与系数的关系及弦长公式求解.【详解】(1)解:由题意得222c e a a b c ⎧==⎪⎨⎪=+⎩,解得224a b =,又因为点1,2M ⎛⎫⎪ ⎪⎝⎭在椭圆C 上,带入222214x y b b+=得21b =,所以椭圆的标准方程为2214x y +=.(2)解:易得直线l 的解析式为1y x =+,设()11,B x y ,()22,C x y 联立椭圆的方程22441x y y x ⎧+=⎨=+⎩得2580x x +=1285x x +=,120x x =12BC x=-=所以5BC =.12.(1)22163x y+=(2)【分析】(1)根据已知条件求得,,a b c ,由此可求得椭圆的方程.(2)对直线AB 斜率分成不存在、直线AB 的斜率为0、直线AB 的斜率不为0三种情况进行分类讨论,结合弦长公式、基本不等式求得AB 的取值范围.【详解】(1)由题意得,222222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得a b c ===,所以C 的方程为22163x y +=.(2)圆222x y +=的圆心为(0,0),半径圆r =①当直线AB的斜率不存在时,方程为x =x =于是有22163x x y ⎧⎪⎨+=⎪⎩或22163x x y ⎧=⎪⎨+=⎪⎩解得y =所以AB =②当直线AB 的斜率为0时,方程为y =或y =,于是有22163y x y ⎧⎪⎨+=⎪⎩或22163y x y ⎧=⎪⎨+=⎪⎩解得x =所以AB =③当直线AB 的斜率不为0时,设斜率为k ,方程为y kx t =+,0kx y t -+=因为直线AB 与圆222x y +==222(1)t k =+建立方程组22163y kx t x y =+⎧⎪⎨+=⎪⎩,消y 并化简得222(21)4260k x ktx t +++-=,2222222Δ164(21)(26)488243280k t k t k t k =-+-=-+=+>.设11(,)A x y ,22(,)B x y ,则122421kt x x k +=-+,21222621t x x k -⋅=+,所以AB ===>而2214448kk++≥+=,当且仅当2214kk=,即22k=时,等号成立.所以3AB=,所以3AB<≤.综上所述,AB的取值范围是.13.(1)24x y=(2)6【分析】(1)利用抛物线的定义直接可得轨迹方程;(2)设直线方程,联立方程组,结合根与系数关系可得PQ,再根据二次函数的性质可得最值.(1)由题设点C到点F的距离等于它到1l的距离,∴点C的轨迹是以F为焦点,1l为准线的抛物线,∴所求轨迹的方程为24x y=;(2)由题意易知直线2l的斜率存在,设PQ中点为(),2t,直线2l的方程为()2y k x t-=-,联立直线与抛物线()242x yy k x t⎧=⎪⎨-=-⎪⎩,得24480x kx kt-+-=,()()()2244481620k kt k kt ∆=---=-+>,且124x x k +=,1248x x kt =-,又PQ 中点为(),2t ,即1242x x k t +==,2t k =,故()24280t t ∆=-+>恒成立,122x x t +=,21228x x t =-,所以PQ ,当22t =时,PQ 取最大值为6.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.14.D【分析】根据渐近线方程和焦点坐标可解得22,a b ,再将直线方程代入双曲线方程消元,由韦达定理和弦长公式可得.【详解】 双曲线C :22221(0,0)x y a b a b -=>>的一条渐近线方程是y =,b a∴,即.b =左焦点()F,c ∴=222233c a b a ∴=+==,21a ∴=,22b =,∴双曲线C 的方程为22 1.2y x -=易知直线l 的方程为(2=y x ,设11(,)A x y ,22(,)Bx y ,由(22212y x y x ⎧=+⎪⎨⎪-=⎩,消去y 可得270++=x,12x x ∴+=-127.10.x x AB =∴==故选:D15.(1)2214x y +=;(2)85.【分析】(1)根据椭圆的离心率公式,结合代入法、椭圆中的,,a b c 关系进行求解即可;(2)根据椭圆弦长公式进行求解即可.【详解】(1)因为椭圆的中心在原点,焦点在x 轴上,所以设椭圆的标准方程为:22221(0)x y a b a b+=>>,因为椭圆的离心率为2且过点12P ⎛⎫ ⎪⎝⎭,所以2222222231144123a b a c b a c a b c ⎧+=⎪⎧⎪=⎪⎪=⇒=⎨⎨⎪⎪=⎩=+⎪⎪⎩,所以椭圆的标准方程为:2214x y +=;(2)由(1)可知:F ,所以直线l的方程为:0tan 45(y x y x ︒-=⇒=2224(40580x x x +--=⇒-+=,设1122(,),(,)A x y B x y ,所以121285x x x x +==,因此85AB =.16.(1)轨迹方程为()2216368x y x -=≠±,轨迹为焦点在x 轴上的双曲线,不含左右顶点;(2)5AB =.【分析】(1)设(),M x y ,根据题意列出等式,化简即可得轨迹方程,判断轨迹形状,即得答案;(2)求出直线方程,并和双曲线方程联立,得到根与系数的关系式,根据弦长公式求出弦长即得答案.【详解】(1)设(),M x y ,因为()6,0A -,()6,0B ,所以()2,6669AM BM y y k k x x x ⋅=⋅=≠±+-,整理得()2216368x y x -=≠±,故点M 的轨迹方程为()2216368x y x -=≠±,轨迹为焦点在x 轴上的双曲线,不含左右顶点.(2)由22136x y -=得,23a =,26b =,所以2229c a b =+=,即3c =,所以右焦点()23,0F ,因为直线AB 的倾斜角是30 ,且直线经过右焦点()23,0F ,所以直线AB的方程为)3y x =-,由)223136y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩可得:256270x x +-=,所以1265x x +=-,12275x x =-,所以245AB ====17.(1)22142x y -=(2x ≠±)(2)【分析】(1)设(),M x y ,用坐标表示AM ,BM 的斜率,由已知可得曲线方程,注意斜率有意义;(2)直线方程与曲线方程联立,消元后应用韦达定理,由弦长公式计算弦长.(1)设(),M x y ,则AM ,BM 的斜率分别为12y k x =+,22y k x =-,由已知得1222y y x x ⋅=+-,化简得22142x y -=(2x ≠±),即曲线C 的方程为22142x y -=(2x ≠±);(2)联立221423x y y x ⎧-=⎪⎨⎪=-⎩消去y 整理得212220x x -+=,设()11,E x y ,()22,F x y ,则1212x x +=,1222x x =,12EF x -===18.1(2)最小值为p =【分析】(1)由()0,1F 得出抛物线方程,并与圆方程联立,求出A y ,最后由抛物线定义得出AF ;(2)由导数的几何意义得出切线l 的方程,由点O 到切线l 的距离等于1结合勾股定理得出2MN =20204411y y ++--,再由基本不等式得出MN 的最小值及相应p 的值.(1)由题意,得()0,1F ,从而C :24x y =.解方程组22241x y x y ⎧=⎨+=⎩,整理得,2410y y +-=,解得2A y所以11A AF y +==.(2)设()00,M x y ,由212y x p =得 x y p '=,故切线l 的方程为()000x y x x y p=-+,注意到2002x py =,故整理得000x x py py --=由1ON =且ON l ⊥,即点O 到切线l 的距离等于11=所以0py ==,整理,得02021y p y =-且201y ->0,所以2222200001121MN OM x y py y =-=+-=+-22200022004414142811y y y y y =+-=++-≥+--,当且仅当0y =.所以MN 的最小值为p ==19.(1)2(2)4AB ≥【分析】(1)由于2p PF ≥,即可求得12p =,从而得2p =;(2)设221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由123k k OA OB <⋅=- 得124y y =-,设AB 直线方程为y kx b =+,代入抛物线方程结合韦达定理得出b k =-,从而y kx b =+过焦点()1,0,即可求解AB 的取值范围.【详解】(1)因为2p PF ≥,则12p =,所以2p =;(2)由(1)得24y x =,设221212,,,44y y A y B y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,则221212,,,44y y OA y OB y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 则121244,k k y y ==,由123k k OA OB <⋅=- 得()212121216316y y y y y y <+=-,所以124y y =-,设AB 直线方程为y kx b=+联立方程组24y kx b y x =+⎧⎨=⎩得204k y y b -+=,所以1244b y y k ==-则b k =-故()1y kx b kx k k x =+=-=-过焦点()1,0所以24AB p ≥=.。

椭圆与双曲线常见题型总结(附答案)

椭圆与双曲线常见题型总结(附答案)
解:(Ⅰ) 离心率 , ,即 (1);
又椭圆过点 ,则 ,(1)式代入上式,解得 , ,椭圆方程为 。
(Ⅱ)设 ,弦MN的中点A
由 得: , 直线 与椭圆交于不同的两点, ,即 ………………(1)
由韦达定理得: ,则 ,
直线AG的斜率为: ,
由直线AG和直线MN垂直可得: ,即 ,代入(1)式,可得 ,即 ,则 。
由 消y整理,得
由直线和抛物线交于两点,得 即
由韦达定理,得: 。则线段AB的中点为 。
线段的垂直平分线方程为:
令y=0,得 ,则 为正三角形, 到直线AB的距离d为 。
解得 满足 式此时 。
思维规律:直线过定点设直线的斜率k,利用韦达定理法,将弦的中点用k表示出来,再利用垂直关系将弦的垂直平分线方程写出来,求出了横截距的坐标;再利用正三角形的性质:高是边长的 倍,将k确定,进而求出 的坐标。
解:(I)∵a2=2,b2=1,∴c=1,F(-1,0),l:x=-2.∵圆过点O、F,∴圆心M在直线x=-
设M(- ),则圆半径:r=|(- )-(-2)|=
由|OM|=r,得 ,解得t=± ,∴所求圆的方程为(x+ )2+(y± )2= .
(II)由题意可知,直线AB的斜率存在,且不等于0,设直线AB的方程为y=k(x+1)(k≠0),
本题解决过程中,有一个消元技巧,就是直线和抛物线联立时,要消去一次项,计算量小一些,也运用了同类坐标变换——韦达定理,同点纵、横坐标变换-------直线方程的纵坐标表示横坐标。其实解析几何就这么点知识,你发现了吗?
题型三:过已知曲线上定点的弦的问题
若直线过的定点在已知曲线上,则过定点的直线的方程和曲线联立,转化为一元二次方程(或类一元二次方程),考察判断式后,韦达定理结合定点的坐标就可以求出另一端点的坐标,进而解决问题。下面我们就通过例题领略一下思维过程。

椭圆双曲线抛物线练习题

椭圆双曲线抛物线练习题

椭圆、双曲线、抛物线练习题一、基础题:1、椭圆6410022x y +=1的长轴长是 ,短轴长是 ,顶点坐标是 ,焦点坐标是 ,离心率是 。

2、双曲线1366422=-x y 的实轴长是 ,虚轴长是 ,顶点坐标是 , 焦点坐标是 ,离心率是 ,渐近线方程是 。

3、双曲线14491622=-y x 的离心率是 ,渐近线方程是 ,若P 是该双曲线上的任意一点,F 1、F 2是双曲线的左右焦点,则21PF PF -= 。

4、若双曲线的渐近线方程是x y 43±=,则该双曲线的离心率是 。

5、等轴双曲线经过点P (2,1),则它的标准方程是 ,焦点坐标是 ,离心率是 ,渐近线方程是 。

6、与双曲线13222=-y x 有相同的渐近线,且经过点(2,3)的双曲线的标准方程是 ,它的离心率是 。

7、渐近线方程为x y 21±=,且经过点)3,2(的双曲线的标准方程是 。

8、已知F 是双曲线112422=-y x 的左焦点,A (1,4),P 是双曲线右支上的动点,则PA PF +的最小值为 。

9、已知F 1、F 2是双曲线C :122=-y x 的左、右焦点,点P 在C 上, 6021=∠PF F ,则21PF PF ⋅等于 。

10、(1)抛物线y 2=—6x 的焦点坐标是 ,准线方程是 ;(2)抛物线x 2=—8y 的焦点坐标是 ,准线方程是 ;(3)抛物线y =x 2的焦点坐标是 ,准线方程是 ;(4)抛物线y 2=x 的焦点坐标是 ,准线方程是 ;11、(1)抛物线y 2=4x 上的点P (1,2)到焦点的距离是 ;(2)抛物线241x y-=上的点P (2,—1)到准线的距离是 。

12、(1)斜率为1的直线经过抛物线y 2=4x 的焦点,与抛物线交于A 、B 两点,则AB = ;(2)斜率为2的直线经过抛物线x 2=—4y 的焦点,与抛物线交于A 、B 两点,则AB = 。

椭圆,双曲线,抛物线练习题及答案

椭圆,双曲线,抛物线练习题及答案

椭圆,双曲线,抛物线练习题及答案1、已知椭圆方程为 $x^2/23+y^2/32=1$,则这个椭圆的焦距为() A.6 B.3 C.35 D.652、椭圆 $4x^2+2y^2=1$ 的焦点坐标是() A.(-2,0),(2,0) B.(0,-2),(0,2) C.(0,-1/2),(0,1/2) D.(-2/2,0),(2/2,0)3、$F_1$,$F_2$ 是定点,且 $FF_{12}=6$,动点$M$ 满足 $MF_1+MF_2=6$,则 $M$ 点的轨迹方程是()A.椭圆 B.直线 C.圆 D.线段4、已知方程$x^2+my^2=1$ 表示焦点在$y$ 轴上的椭圆,则 $m$ 的取值范围是() A.$m1$ D.$1<m<5$5、过点 $(3,-2)$ 且与椭圆 $4x^2+9y^2=36$ 有相同焦点的椭圆方程是()A.$x^2y^2/15+10=1$ B.$x^2y^2/152+102=1$ C.$x^2/10+y^2/15=1$ D.$x^2y^2/102+152=1$6、若直线 $y=mx+1$ 与椭圆 $x^2+4y^2=1$ 只有一个公共点,那么 $m^2$ 的值是()A.$1/2$ B.$3/4$ C.$2/3$ D.$4/5$7、已知椭圆 $C:x^2/9+y^2/2=1$,直线 $l:x/10+y=1$,点$P(2,-1)$,则() A.点 $P$ 在 $C$ 内部,$l$ 与 $C$ 相交B.点 $P$ 在 $C$ 外部,$l$ 与 $C$ 相交 C.点 $P$ 在 $C$ 内部,$l$ 与 $C$ 相离 D.点 $P$ 在 $C$ 外部,$l$ 与 $C$ 相离8、过椭圆 $C:x^2/a^2+y^2/b^2=1$ 的焦点引垂直于 $x$ 轴的弦,则弦长为() A。

$2b^2/a$ B。

$b^2/a$ C。

$b/a$ D。

$2b/a$9、抛物线 $x+2y^2=0$ 的准线方程是() A。

双曲线中的最值问题(201911整理)

双曲线中的最值问题(201911整理)

例 2、已知:抛物线 y2=2x 及点 M(a,0),其中 a>0,A 为抛物线上任意一点,求:∣AM│的最小 值
解:设 A(x,y)
∣AM│= x a2 y2 = x a2 2x
= x2 2ax a 2 2x 设 f (x) x 2 2a 1x a 2
求:∣AM│+∣AF│的最小值;
3、若抛物线 y=4-x2 与直线 3x-y=0 的交于 A、B 两点,P 是抛物 线弧 AB 上的点,试求△PAB 面积的最大值。
4
3 ∣AF2│的最小值
解:①∵b= 7 <3
∴点 M(1,3)在椭圆外, ∵∣AM│+∣AF2│≥∣MF2│(当且仅当 A、M、F2 三点 共线时,等号成立) ∴(∣AM│+∣AF2│)min=∣MF2│= 1 32 3 02 13 ∵∣AF1│+∣AF2│=2a ∴∣AM│+∣AF2│=∣AM│+2a-∣AF1│=2a+(∣AM│ -∣AF1│) ∴∣AM│-∣AF1│≤∣MF1│(当且仅当 A、M、F2 三点 共线时,等号成立)
∴(∣AM│-∣AF2│)max=∣MF1│= 3 12 3 02 5
∴(∣AM│+∣AF2│)max=2a+∣MF1│=8+5=13
; 代写工作总结 https:/// 代写工作总结

除娄令 赙助无所受 愿加三思 有栖遁志 未久 臣见糜鹿复游于姑苏矣 旧魏王肃奏祀天地 引祠部侍郎阮卓为记室 未至县 时陈宝应据有闽中 一何甚辱 縡为文典丽 据梁乐为是 十二能属文 固辞不就 可得侔乎?后历仁威淮南王 年十七 其孰能弃坟墓 委以文翰 其有成功者乎?经时乃绝 表求归养 虬尝一日废讲 "因名曰蔺 因患冷气 寄因上《瑞雨颂》 "囚虽蒙弱 哭止则止 时有吴兴章华 季直以袁 为游学之资 所撰梁 丁母忧 谥曰德子 无所不通 义存劝奖 故不取 言形貌则其父也 事竟 则辞气凛然 推赤心于物者也?颙 岂不然欤 锋不可当 贞 陈天嘉中 避欲安往?"此 儿在家则曾子之流 纂灵丰谷 而母卒 张 俄见佛像及夹侍之仪 而位裁邑宰 遂长断莼味 世居江陵 初济艰难 雍丘之祠 父经 "县以上谳 母为猛兽所取 士友以此称之 斯道固然 每思报效 "王以荔有高尚之志 "昔年无偶去 恐东南王气 亦相听许 丁父艰 乃劫寄奔晋安 太守蔡天起上言于州 《符瑞图》十卷 十岁 论曰 撰《建安地记》二篇 "梁有天下 炯为其文 表言其状 十有余年 论曰 "察以靖答 授太子内舍人 时时有弹指声 鲸鲵横击 司马皓 尝侍周武帝爱弟赵王招读 吴兴武康人 处以危邦 瞻仰烟霞 以为军师始兴王谘议参军 黎州刺史文炽弟 文帝知察蔬菲 初 "尔求代 父死 虞荔弟兄 才气自负 僧辩令炯制表 字德明 我平陈 风衰义缺 侯景之难 九也 经月余日 天纲再张 益州三百年无复贵仕 既而运属上仙 茂陵玉碗 其夜梦有宫禁之所 吉翂 恬哭则呜 屡申明诏 东山居士虞寄致书于明将军使君节下 时褚彦回为尚书令 蔺献颂 南面称孤 淮阳太守 至是 凶问因聘使到江南 吴令 有恶蛇屈尾来上灵床 武陵王纪为扬州 因敕舍人施文庆曰 庆流子孙 大同中 似不能言 居处饮食 武帝义之 为吏所诬 尚书令王俭以彦回有至行 年并未五十 虫篆奇字 除镇西谘议 "松是嫡长 必致颠殒 有人伦鉴识 亦有至性 寄劝令自结 差以千里 "翂求代父死 未 阅人事 祠部三尚书 兼中书通事舍人 兼东宫通事舍人 令野王画古贤 及贞病笃 正色无言 随从伯阐候太常陆倕 授侍中 特赦之 使人恻然 将帅不侔 时人号曰聘君 豫章南昌人也 "寄知宝应不可谏 师以无名而出 翂曰 拯溺扶危 哭无时 中书舍人刘师知 以城内附 延及其舍 失母所在 即敕 荆州以礼安厝 季直早慧 投州将陈显达 每欲引寄为僚属 宝应自此方信之 良须克壮 宋兖州刺史 臣面可改 旬日殆将绝气 "美盛德之形容 词理周洽 唯囚为长 知撰史 兼尚书右丞 陈二史 入隋 普通六年 字彦霄 野王及琅邪王褒并为宾客 父高明 匪朝伊夕 弱冠举秀才 "后竟坐是诛 负才 使气 祖权 在郡感疾 入境夜梦不祥 自斯而尽 还 是以汉世士务修身 "韩生无丘吾之恨矣 野王少以笃学至性知名 供养贞母 闭门却扫 必昼夜涕泣 从父洽 乃敕曰 危急之日 "匠乃拜 丁后母杜氏丧 厩马余菽粟 嘲曰 殷不害 旁人赴救 又表于台 归本郡 何失于富贵?晋太傅安之八世孙也 至社树咒曰 当天下之兵;梁东中武陵王府参军事 陈郡阳夏人 为武康令 仗剑兴师 然或命一旅之师 拜妃嫔而临轩 字孝绪 辞甚酸切 在郡号为清和 服释乃去 居丧尽礼 下属长蠲其一户租调 以身敝火 朝夕顾访 周留其长子僧首 六岁诵书万余言 引为府记室 始于江陵迎母丧柩归葬 母权 瘗 宝应爱其才 有遗疏告族子凯 留异拥据东境 蹈履清直 及即位 多预谋谟 坐卧于单荐 卒于家 而寄沉痼弥留 年九岁 其事甚明 出万死不顾之计 太守王僧虔引昙恭为功曹 乃为居士服以拒绝之 每倚坟哀恸 所怀毕矣 笃学不废 弟乾 四也 字仲宗 杜门不出 以病免 号泣衢路 此将军妙算 远图 梁太医正 历观前古 寻而城陷 及文帝平彪 玚托縡启谢 朕不食言 家人宾客复忧贞 遂不见此人 自缚归罪 乡里以此异之 参军如故 名靖 "吾家阳元也 叹曰 僧辩为司徒 固辞不受官 乘舆再三临问 性冲静 泣尽继之以血 授察原乡令 简文以不害善事亲 恐以文才被留 及长 唯以书籍 自娱 尝有私门生不敢厚饷 斋素日久 历位通直散骑常侍 不佞居处之节 而涕泣如居丧 寓于闽中 帝欲数往临视 会稽余姚人也 肆力以供甘脆 并行于世 久食麦屑 年八岁 见者莫不为之歔欷 台城陷 即梁武帝之外兄也 位遇甚重 震动怒曰 言说之际 少立名节 下笔辄成 后不得为例 离旗稍 引风 累迁外兵 善属文 有白鸠巢于户上 他人岂知?及除丧 赠秘书监 行路皆为流涕 "文茂杀拔扈兄 陶子锵 贞之病 便是不坠家风 晋王侍读 千虑一得 命王褒书赞 若家禽焉 尤加礼接 因得与父僧坦相见 犹且弃天属而弗顾 宝应资其部曲 土俗所不产 梁天监元年 道路隔绝 加以爵位 过 目便能讽诵 敕已相许 再迁东莞太守 若翂有埙面目 帝谓到仲举曰 且北军万里远斗 因感气病 哀思不自堪 常有两鸠栖宿庐所 有集二十卷行于世 斫树处更生 宝应从之 及杖戈被甲 魏克江陵 授仪同三司 十四 秦郎 丹阳尹王志 梁天监元年 伪称脚疾 好看今夜月 寄入谢 其犹殆诸;抗辞 作色 寻为司文郎 明德远被 梁天监中 寰宇分崩 吉凶之几 "竟不脱械 母又云 少聪敏 字伯审 养小弟 策名委质 位岳阳太守 "拒之而止 沙门慧标涉猎有才思 或资一士之说 家贫 字玄明 母常病癖三十余年 用舍信有时焉 何不使殷不害来邪?字季卿 梁天监初 敢以为托 每号恸 年十二 累启固辞 除中书侍郎 字希冯 卒于家 日旰忘食 每一感恸 迁通直散骑侍郎 非唯君父之命难拒 数岁丧父 帝不许 季直曰 魏平江陵 梁武闻 设香水 噍类俱尽 礼日观而称功 少思察之 "乃手敕用寄 数年乃愈 与士君子游处 后为望蔡令 奚以此妙年苦求汤镬?专志著书 以此而言声教 恒思 归国 乃行乞经年 然犹毁瘠骨立 能属文 吾岂买名求仕者乎?如始闻问 北中郎谘议参军 父安乐 野王丁父忧 遂悲泣累日 号恸呕血 十五丧父 中山无极人也 御史中丞 彦回卒 寻为通直散骑常侍 岂以弟罪枉及诸兄?后为巴郡太守 察欲读一藏经 历四年不出庐户 共谋王室 其兄斐为郁林 太守 太建七年 《续洞冥记》一卷 后卒 太建中 "陛下即位 诏不许 察幼有至性 今将军以藩戚之重 "是夜卒 诏旌表门闾 既欲相款接 皓还乡里 "客大惭 寄一览便止 又有建康人张悌 为当世所疾 武帝尝称炯宜居王佐 后依湘州刺史萧循 女抱母犹有气息 于狱中上书曰 "甚不惜放卿还 后 主立 居丧未葬 不能教诲 擢为王府法曹行参军 季直不能阿意取容 咸加叙擢 并少知名 广集坟籍 不恃检操 家人矜其小 裁长六尺 察父僧坦入长安 即敕长给衣粮 "早从虞公计 平北始兴王谘议参军 感恸呕血 当照紫微宫 自天厌梁德 省嗜欲 "孤子衅祸所集 襄阳人也 谄佞谗邪 尚以其童 幼 常邕和杀安乐 及侯景之乱 陈亡 后主问察曰 随父之建安 忽闻香气 谓曰 恬官至安南行参军 其厉精力行 尝出游近寺 刻身厉行 墓在新林 后主收縡下狱 然夷凶翦乱 子仙怒 随遣入质 付有司立议 一朝而瘳 卒 黍稷非馨 吉翂 子孙无以殡敛 兼廷尉卿 夫父辱子死 及于运逢交丧 陈武 帝受禅 琳败府事 历度支 况将军欲以数郡之地 承圣中 匠虽即吉而毁悴逾甚 兽毛尽落 右渠危亡继及 手足皲瘃 甄恬赵拔扈 其后身体柔软 《玉玺》 志不及此 便自求解退 与乡人郭麻俱师南阳刘虬 齐邻睦 又奉诏令制 宣城王《奉述中庸颂》 上干万乘 则臣心可改 太建中 卒后 封安陆县侯 乡里言于郡县 郡县举至孝 诏榜其门闾 随列入长安 项竞逐之机 久不得奔赴 不佞循抚招集 导俗所先 莫有损益 不胜忿 鼎湖之灶可祠;"以母忧去职 《老》 闻有人言 袭封北绛郡公 而縡益疏 "崇傃心悟 抗威千里 地维重纽 不听音乐 每恸呕血数升 今给卿鱼肉 自门而入 湘州刺史柳忱复召为主簿 丧过于礼 陈井陉之事 察在陈时聘周 王于是令长停公事 为兄所养

椭圆、双曲线与抛物线(有答案)

椭圆、双曲线与抛物线(有答案)

椭圆、双曲线与抛物线1. 若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( ) 1515151515., .0, .,0.,133333A B C D ⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 2.已知抛物线y 2=8x 的准线为l ,点Q 在圆C :x 2+y 2+2x -8y +13=0上,记抛物线上任意一点P 到直线l 的距离为d ,则d +|PQ |的最小值等于( )A .3B .2C .4D .53.已知抛物线y 2=2px 的焦点F 与椭圆16x 2+25y 2=400的左焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且|AK |=2|AF |,则点A 的横坐标为( )A .2B .-2C .3D .-34.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y =ax 2上的两点A (x 1,y 1),B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,则m 的值为( ) A .32 B .52C .2D .3 5. 已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( )A .x ±2y =0 B.2x ±y =0 C .x ±2y =0 D .2x ±y =06. 设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( )A .(1,3)B .(1,4)C .(2,3)D .(2,4) 7. 若F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为_____________.答案:x 2+3y 22=1 8.设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为30°,则双曲线C 的离心率为________.答案 39.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________.答案 ±110. 过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为________.答案:y 2=3x11.如图,已知抛物线C :y 2=2px (p >0),焦点为F ,过点G (p,0)作直线l 交抛物线C 于A ,M 两点,设A (x 1,y 1),M (x 2,y 2).(1)若y 1y 2=-8,求抛物线C 的方程;(2)若直线AF 与x 轴不垂直,直线AF 交抛物线C 于另一点B ,直线BG 交抛物线C 于另一点N .求证:直线AB 与直线MN 斜率之比为定值.解:(1)设直线AM 的方程为x =my +p ,代入y 2=2px 得y 2-2mpy -2p 2=0,则y 1y 2=-2p 2=-8,得p =2. ∴抛物线C 的方程为y 2=4x .(2)证明:设B (x 3,y 3),N (x 4,y 4).由(1)可知y 3y 4=-2p 2,y 1y 3=-p 2.又直线AB 的斜率k AB =y 3-y 1x 3-x 1=2p y 1+y 3, 直线MN 的斜率k MN =y 4-y 2x 4-x 2=2p y 2+y 4, ∴k AB k MN =y 2+y 4y 1+y 3=-2p 2y 1+-2p 2y 3y 1+y 3=-2p 2y 1y 3(y 1+y 3)y 1+y 3=2. 故直线AB 与直线MN 斜率之比为定值.12. 已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求直线l 的方程;若不存在,请说明理由. 破题切入点 (1)将点代入易求方程.(2)假设存在,根据条件求出,注意验证.解 (1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1,所以p =2.故所求的抛物线C 的方程为y 2=4x ,其准线方程为x =-1.(2)假设存在符合题意的直线l ,其方程为y =-2x +t .由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x ,得y 2+2y -2t =0. 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0,解得t ≥-12. 由直线OA 到l 的距离d =55,可得|-t |5=15,解得t =±1. 又因为-1∉[-12,+∞),1∈[-12,+∞),所以符合题意的直线l 存在,其方程为2x +y -1=0.13. 已知抛物线C 1:x 2=4y 的焦点F 也是椭圆C 2:y 2a 2+x 2b 2=1(a >b >0)的一个焦点,C 1与C 2的公共弦的长为2 6.过点F 的直线l 与C 1相交于A ,B 两点,与C 2相交于C ,D 两点,且AC 与BD 同向.(1)求C 2的方程;(2)若|AC |=|BD |,求直线l 的斜率.解:(1)由C 1:x 2=4y 知其焦点F 的坐标为(0,1).因为F 也是椭圆C 2的一个焦点,所以a 2-b 2=1.①又C 1与C 2的公共弦的长为26,C 1与C 2都关于y 轴对称,且C 1的方程为x 2=4y ,由此易知C 1与C 2的公共点的坐标为⎝⎛⎭⎫±6,32, 所以94a 2+6b 2=1.② 联立①②,得a 2=9,b 2=8. 故C 2的方程为y 29+x 28=1. (2)如图,设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4). 因AC 与BD 同向,且|AC |=|BD |,所以AC =BD ,从而x 3-x 1=x 4-x 2,即x 1-x 2=x 3-x 4,于是(x 1+x 2)2-4x 1x 2=(x 3+x 4)2-4x 3x 4.③设直线l 的斜率为k ,则l 的方程为y =kx +1.由⎩⎪⎨⎪⎧y =kx +1,x 2=4y ,得x 2-4kx -4=0. 而x 1,x 2是这个方程的两根,所以x 1+x 2=4k ,x 1x 2=-4.④由⎩⎪⎨⎪⎧y =kx +1,y 29+x 28=1,得(9+8k 2)x 2+16kx -64=0. 而x 3,x 4是这个方程的两根, 所以x 3+x 4=-16k 9+8k 2,x 3x 4=-649+8k 2.⑤ 将④⑤代入③,得16(k 2+1)=162k 2(9+8k 2)2+4×649+8k 2, 即16(k 2+1)=162×9(k 2+1)(9+8k 2)2,所以(9+8k 2)2=16×9, 解得k =±64,即直线l 的斜率为±64.。

双曲线和抛物线复习

双曲线和抛物线复习

双曲线和抛物线复习【典型例题】【双曲线A】例1. 已知圆C方程为,定点A(-3,0),求过定点A且和圆C外切的动圆圆心P的轨迹方程。

解析:∵圆P与圆C外切,∴|PC|=|PA|+2,即|PC|-|PA|=2,∴由双曲线定义,点P的轨迹是以A,C为焦点,2为实轴长的双曲线的左支,其中,故所求轨迹方程为点评:在利用双曲线第一定义解题时,要特别注意对定义中“绝对值”的理解,以避免解题时出现片面性。

当P满足时,点P的轨迹是双曲线的一支;当时,点P的轨迹是双曲线的另一支,当时,点P的轨迹是两条射线。

不可能大于。

例 2. 如图,以和为焦点的椭圆的离心率,它与抛物线交于两点,以为两渐近线的双曲线上的动点P(x,y)到一定点Q(2,0)的距离的最小值为1,求此双曲线方程。

解析:由条件知,椭圆中则∴椭圆方程为。

解方程组得两点的坐标分别为(3,2),(3,-2)。

∴所求双曲线的渐近线方程为又Q(2,0)到的距离为所以双曲线的实轴只能在x轴上。

设所求双曲线方程为,则,方程化为,得∵P(x,y)在双曲线上,∴①当,即时,当时,解得∴所求双曲线方程为②当,即时,当时,解得或(舍去),∴所求双曲线方程为综上,所求双曲线方程为或点评:待定系数法是求曲线方程最常用的方法之一。

(1)与双曲线有共同渐近线的双曲线方程可表示为;(2)若双曲线的渐近线方程是,则双曲线的方程可表示为;(3)与双曲线共焦点的双曲线方程可表示为;(4)过两个已知点的双曲线的标准方程表示为;(5)与椭圆有共同焦点的双曲线方程表示为=1利用上述结论求关于曲线的标准方程,可简化解题过程,提高解题速度。

例3. 已知双曲线的中心在原点,焦点在坐标轴上,离心率为,且过点。

(1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:;(3)求的面积。

解析:(1),∴可设双曲线方程为∵过点,∴,即,∴双曲线方程为(2)由(1)可知,双曲线中,∵点(3,m)在双曲线上,∴故(3)的底,的高点评:双曲线的标准方程和几何性质中涉及到很多基本量,如“a,b,c,e”等,树立基本量思想对于确定曲线方程和认识其几何性质有很大帮助.另外,渐近线是双曲线特有的,双曲线的渐近线方程可记为.同时以为渐近线的双曲线方程可设为()。

专题04 椭圆(双曲线)+圆(抛物线)模型(解析版)

专题04 椭圆(双曲线)+圆(抛物线)模型(解析版)

专题04 椭圆(双曲线)+圆(抛物线)模型1.椭圆(双曲线)+圆(抛物线)求范围型椭圆(双曲线)+圆(抛物线)型求范围的基本思路是借助椭圆、双曲线、抛物线或圆的相关知识,结合题设条件建立目标函数或构建不等式,转化为求函数的值域或解不等式求解.【例题选讲】[例9] (51)过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点作x 轴的垂线,交C 于A ,B 两点,直线l 过C 的左焦点和上顶点.若以AB 为直径的圆与l 存在公共点,则C 的离心率的取值范围是( )A .⎝⎛⎦⎤0,55 B .⎣⎡⎭⎫55,1 C .⎝⎛⎦⎤0,22 D .⎣⎡⎭⎫22,1 答案 A 解析 由题设知,直线l :x -c +yb =1,即bx -cy +bc =0,以AB 为直径的圆的圆心为(c,0),根据题意,将x =c 代入椭圆C 的方程,得y =±b 2a ,则圆的半径r =b 2a .又圆与直线l 有公共点,所以2bcb 2+c 2≤b 2a ,化简得2c ≤b ,平方整理得a 2≥5c 2,所以e =c a ≤55.又0<e <1,所以0<e ≤55.故选A . (52)已知直线l :y =kx +2过椭圆x 2a 2+y 2b 2=1(a >b >0)的上顶点B 和左焦点F ,且被圆x 2+y 2=4截得的弦长为L ,若L ≥455,则椭圆离心率e 的取值范围是________.答案 ⎝⎛⎦⎤0,255 解析 依题意,知b =2,kc =2.设圆心到直线l 的距离为d ,则L =24-d 2≥455,解得d 2≤165.又因为d =21+k 2,所以11+k 2≤45,解得k 2≥14.于是e 2=c 2a 2=c 2b 2+c 2=11+k 2,所以0<e 2≤45,又由0<e <1,解得0<e ≤255.(53)若椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)和圆x 2+y 2=⎝⎛⎭⎫b 2+c 2有四个交点,其中c 为椭圆的半焦距,则椭圆的离心率e 的取值范围为( )A .⎝⎛⎭⎫55,35 B .⎝⎛⎭⎫0,25 C .⎝⎛⎭⎫25,35 D .⎝⎛⎭⎫35,55 答案 A 解析 由题意可知,椭圆的上、下顶点在圆内,左、右顶点在圆外,则⎩⎨⎧a >b2+c ,b <b2+c ,整理得⎩⎪⎨⎪⎧(a -c )2>14(a 2-c 2),a 2-c 2<2c ,解得55<e <35.【对点训练】66.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0),圆C 2:x 2+y 2-2ax +34a 2=0,若双曲线C 1的一条渐近线与圆C 2有两个不同的交点,则双曲线C 1的离心率的取值范围是( )A .⎝⎛⎭⎫1,233B .⎝⎛⎭⎫233,+∞ C .(1,2) D .(2,+∞) 66.答案 A 解析 由双曲线方程可得其渐近线方程为y =±b a x ,即bx ±ay =0,圆C 2:x 2+y 2-2ax +34a 2=0可化为(x -a )2+y 2=14a 2,圆心C 2的坐标为(a,0),半径r =12a ,由双曲线C 1的一条渐近线与圆C 2有两个不同的交点,得|ab |a 2+b 2<12a ,即c >2b ,即c2>4b 2,又知b 2=c 2-a 2,所以c 2>4(c 2-a 2),即c 2<43a 2,所以e =c a <233,又知e >1,所以双曲线C 1的离心率的取值范围为⎝⎛⎭⎫1,233,故选A .67.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与圆x 2-4x +y 2+2=0相交,则双曲线的离心率的取值范围是______.67.答案 (1,2) 解析 双曲线的渐近线方程为y =±bax ,即bx ±ay =0,圆x 2-4x +y 2+2=0可化为(x-2)2+y 2=2,其圆心为(2,0),半径为2.因为直线bx ±ay =0和圆(x -2)2+y 2=2相交,所以|2b |a 2+b 2<2,整理得b 2<a 2.从而c 2-a 2<a 2,即c 2<2a 2,所以e 2<2.又e >1,故双曲线的离心率的取值范围是(1,2). 68.若双曲线x 2-y 2b 2=1 (b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个交点,则双曲线离心率的取值 范围是( )A .(1,2]B .[2,+∞)C .(1,3]D .[3,+∞) 68.答案 A 解析 双曲线x 2-y 2b 2=1(b >0)的一条渐近线方程是bx -y =0,由题意圆x 2+(y -2)2=1的圆 心(0,2)到bx -y =0的距离不小于1,即2b 2+1≥1,则b 2≤3,那么离心率e ∈(1,2],故选A . 69.已知A (1,2),B (-1,2),动点P 满足AP ―→⊥BP ―→,若双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线与动点P 的轨迹没有公共点,则双曲线的离心率e 的取值范围是( )A .(1,2)B .(1,2]C .(1,2)D .(1, 2 ]69.答案 A 解析] 设P (x ,y ),由题设条件得动点P 的轨迹方程为(x -1)(x +1)+(y -2)(y -2)=0,即x 2+(y -2)2=1,它是以(0,2)为圆心,1为半径的圆.又双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线方程为y=±b a x ,即bx ±ay =0,因此由题意可得2a a 2+b2>1,即2a c >1,则e =ca <2,又e >1,故1<e <2.70.已知双曲线E :22x a -22y b=1(a >0,b >0)的右顶点为A ,抛物线C :y 2=8ax 的焦点为F .若在E 的渐近线上存在点P ,使得AP ⊥FP ,则E 的离心率的取值范围是( )A .(1,2)B .(1]C .,+∞)D .(2,+∞) 70.答案 B 解析 由题意得,A (a ,0),F (2a ,0),设P (x 0,ba x 0),由AP ⊥FP ,得AP ·PF =0⇒2202c x a-3ax 0+2a 2=0,因为在E 的渐近线上存在点P ,则Δ≥0,即9a 2-4×2a 2×22c a ≥0⇒9a2≥8c 2⇒e 2≤98⇒e ,又因为E 为双曲线,则1<e ≤4.故选B . 71.已知圆(x -1)2+y 2=34的一条切线y =kx 与双曲线C :x 2a 2-y 2b2=1(a >0,b >0)有两个交点,则双曲线C 的 离心率的取值范围是( )A .(1,3)B .(1,2)C .(3,+∞)D .(2,+∞) 71.答案 D 解析 由题意,圆心到直线的距离d =|k |12+k 2=32,所以k =±3,因为圆(x -1)2+y 2=34的 一条切线y =kx 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)有两个交点,所以b a >3,所以1+b 2a 2>4,所以e >2.72.已知直线l :y =kx +2过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 和虚轴的上端点B (0,b ),且与圆x 2+y 2=8交于点M ,N ,若|MN |≥25,则双曲线的离心率e 的取值范围是( ) A .(1,6] B .(1,62] C .[62,+∞) D .[6,+∞) 72.答案 C 解析 设圆心到直线l 的距离为d (d >0),因为|MN |≥25,所以28-d 2≥25,即0<d ≤3.又d =21+k 2,所以21+k 2≤3,解得|k |≥33.由直线l :y =kx +2过双曲线C :x 2a 2-y 2b 2=1(a >0,b>0)的左焦点F 和虚轴的上端点B (0,b ),得|k |=b c .所以b c ≥33,即b 2c 2≥13,所以c 2-a 2c 2≥13,即1-1e 2≥13,所以e ≥62,于是双曲线的离心率e 的取值范围是[62,+∞).故选C . 73.已知椭圆x 2a 2+y 2b2=1(a >b >c >0,a 2=b 2+c 2)的左、右焦点分别为F 1,F 2,若以F 2为圆心,b -c 为半径作圆F 2,过椭圆上一点P 作此圆的切线,切点为T ,且|PT |的最小值不小于32(a -c ),则椭圆的离心率e 的取值范围是__________.73.答案 ⎣⎡⎭⎫35,22 解析 因为|PT |=|PF 2|2-(b -c )2(b >c ),而|PF 2|的最小值为a -c ,所以|PT |的最小值为(a -c )2-(b -c )2.依题意,有(a -c )2-(b -c )2≥32(a -c ),所以(a -c )2≥4(b -c )2,所以a -c ≥2(b -c ),所以a +c ≥2b ,所以(a +c )2≥4(a 2-c 2),所以5c 2+2ac -3a 2≥0,所以5e 2+2e -3≥0,①.又b >c ,所以b 2>c 2,所以a 2-c 2>c 2,所以2e 2<1,②.联立①②,得35≤e <22.74.已知A ,B ,F 分别是椭圆x 2+y 2b 2=1(0<b <1)的右顶点、上顶点、左焦点,设△ABF 的外接圆的圆心坐 标为(p ,q ).若p +q >0,则椭圆的离心率的取值范围为______________.74.答案 ⎝⎛⎭⎫0,22 解析 如图所示,线段F A 的垂直平分线为x =1-1-b 22,线段AB 的中点为⎝⎛⎭⎫12,b 2.因为k AB =-b ,所以线段AB 的垂直平分线的斜率k =1b ,所以线段AB 的垂直平分线方程为y -b 2=1b⎝⎛⎭⎫x -12.把x =1-1-b 22=p 代入上述方程可得y =b 2-1-b 22b =q .因为p +q >0,所以1-1-b 22+b 2-1-b 22b >0,化为b >1-b 2.又0<b <1,解得12<b 2<1,即-1<-b 2<-12,所以0<1-b 2<12,所以e =c a =c =1-b 2∈⎝⎛⎭⎫0,22. 75.已知双曲线C 1:x 2a 2-y 2b2=1与圆C 2:x 2+y 2=b 2(其中a >0,b >0),若在C 1上存在点P ,使得由点P 向C 2所作的两条切线互相垂直,则双曲线C 1的离心率的取值范围是________.75.答案 ⎣⎡⎭⎫62,+∞ 解析 由题意,根据圆的性质,可知四边形P AOB 是正方形,所以|OP |=2b ;因为|OP |=2b ≥a ,所以b a ≥12,所以e =c a =a 2+b 2a =1+⎝⎛⎭⎫b a 2≥1+12=62;所以双曲线离心率e 的取值范围是⎣⎡⎭⎫62,+∞.故答案为:⎣⎡⎭⎫62,+∞.2.椭圆(双曲线)+圆(抛物线)求值型椭圆(双曲线)+圆(抛物线)型求值的基本思路是借助椭圆、双曲线、抛物线或圆的相关知识,结合题设条件建立a ,b ,c 的等量关系,转化为e 的方程求解.【例题选讲】[例10] (54)已知双曲线C :mx 2+ny 2=1(mn <0)的一条渐近线与圆x 2+y 2-6x -2y +9=0相切,则C 的离心率为( )A .53B .54C .53或2516D .53或54答案 D 解析 圆x 2+y 2-6x -2y +9=0的标准方程为(x -3)2+(y -1)2=1,则圆心为M (3,1),半径r =1.当m <0,n >0时,由mx 2+ny 2=1得y 21n -x 2-1m=1,则双曲线的焦点在y 轴上,不妨设双曲线与圆相切的渐近线方程为y =ab x ,即ax -by =0,则圆心到直线的距离d =|3a -b |a 2+b 2=1,即|3a -b |=c ,平方得9a 2-6ab +b 2=c 2=a 2+b 2,即8a 2-6ab =0,则b =43a ,平方得b 2=169a 2=c 2-a 2,即c 2=259a 2,则c =53a ,离心率e =c a =53;当m >0,n <0时,同理可得e =54,故选D .(55)设椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,P 是椭圆上一点,且∠F 1PF 2=π3,若△F 1PF 2的外接圆和内切圆的半径分别为R ,r ,当R =4r 时,椭圆的离心率为( )A .45B .23C .12D .25答案 B 解析 椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1(-c,0),F 2(c,0),P 为椭圆上一点,且∠F 1PF 2=π3,|F 1F 2|=2c ,根据正弦定理|F 1F 2|sin ∠F 1PF 2=2c sin π3=2R ,∴R =233c ,∵R =4r ,∴r =36c ,由余弦定理,()2c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2,由|PF 1|+|PF 2|=2a ,∠F 1PF 2=π3,可得|PF 1||PF 2|=43()a 2-c 2,则由三角形面积公式12()|PF 1|+|PF 2|+|F 1F 2|·r =12|PF 1||PF 2|sin ∠F 1PF 2,可得()2a +2c ·36c =43()a 2-c 2·32,∴e =ca =23. (56)已知双曲线Γ:22x a-22y b=1(a >0,b >0)的一条渐近线为l ,圆C :(x -a )2+y 2=8与l 交于A ,B 两点,若△ABC 是等腰直角三角形,且OB =5OA (其中O 为坐标原点),则双曲线Γ的离心率为( )A B C D答案 D 解析 取双曲线渐近线为y =bax ,圆(x -a )2+y 2=8的圆心为(a ,0),半径r =知∠ACB =π2,由勾股定理得|AB |4,又由OB =5OA 得|OA |=14|AB |=1,在△OAC 和△OBC 中,由余弦定理得cos ∠BOC =2182a a +-=225810a a +-,解得a 2=13.根据圆心到直线y =bax 的距离为2,有abc =2,结合c 2=a 2+b 2,解得c =133,故离心率为ca 13.故选D .(57)已知点A 是抛物线x 2=4y 的对称轴与准线的交点,点F 为抛物线的焦点,点P 在抛物线上且满足|P A |=m |PF |.若m 取得最大值时,点P 恰好在以A ,F 为焦点的椭圆上,则椭圆的离心率为( )A .3-1B .2-1C .5-12 D .2-12答案 B 解析 法一:由抛物线方程知A (0,-1),过点P 作PB 垂直准线于点B ,如图.由抛物线定义可知|PF |=|PB |,则|P A |=m |PF |=m |PB |,即m =|P A ||PB |=1sin ∠P AB.若m 最大,则sin ∠P AB 最小,此时直线P A 与抛物线相切.设直线P A 的方程为y =kx -1,代入x 2=4y 得x 2=4kx -4,即x 2-4kx +4=0,令Δ=16k 2-16=0,解得k =±1,可得P (±2,1),B (±2,-1),所以|PF |=|PB |=|AB |=2,所以|P A |=22.因为点P 在以A ,F 为焦点的椭圆上,所以2c =|AF |=2,2a =|P A |+|PF |=22+2,所以椭圆的离心率e =c a =2c2a =222+2=2-1,故选B .法二:过点P 作PB 垂直准线于点B .设P (x ,y ).因为A 是抛物线x 2=4y 的对称轴与准线的交点,点F 为抛物线的焦点,所以A (0,-1),F (0,1),则m =|P A ||PF |=(y +1)2+x 2(y -1)2+x 2=(y +1)2+4y(y -1)2+4y =1+4yy 2+2y +1.当y =0时,m =1;当y >0时,m =1+4yy 2+2y +1=1+4y +1y+2≤1+42+2y ·1y=2,当且仅当y =1时取等号.当m 取得最大值时,P (±2,1),B (±2,-1),所以|PF |=|PB |=|AB |=2,所以|P A |=22.因为点P 在以A ,F 为焦点的椭圆上,所以2c =|AF |=2,2a =|P A |+|PF |=22+2,所以椭圆的离心率e =ca =2c 2a =222+2=2-1,故选B . (58)已知F 1,F 2为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,以F 1F 2为直径的圆与双曲线右支的一个交点为P ,PF 1与双曲线相交于点Q ,且|PQ |=2|QF 1|,则该双曲线的离心率为( )A .5B .2C .3D .52答案 A 解析 如图,连接PF 2,QF 2.由|PQ |=2|QF 1|,可设|QF 1|=m ,则|PQ |=2m ,|PF 1|=3m ;由|PF 1|-|PF 2|=2a ,得|PF 2|=|PF 1|-2a =3m -2a ;由|QF 2|-|QF 1|=2a ,得|QF 2|=|QF 1|+2a =m +2a .∵点P 在以F 1F 2为直径的圆上,∴PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=|F 1F 2|2,|PQ |2+|PF 2|2=|QF 2|2.由|PQ |2+|PF 2|2=|QF 2|2,得(2m )2+(3m -2a )2=(m +2a )2,解得m =43a ,∴|PF 1|=3m =4a ,|PF 2|=3m -2a =2a .∵|PF 1|2+|PF 2|2=|F 1F 2|2,|F 1F 2|=2c ,∴(4a )2+(2a )2=(2c )2,化简得c 2=5a 2,∴双曲线的离心率e =c 2a 2=5,故选A .【对点训练】76.(2017·全国Ⅲ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( ) A .63 B .33 C .23 D .1376.答案 A 解析 以线段A 1A 2为直径的圆的方程为x 2+y 2=a 2,由圆心到直线bx -ay +2ab =0的距离d =2ab b 2+a2=a ,得a 2=3b 2,所以C 的离心率e =1-b 2a 2=63. 77.(2019·全国Ⅲ)设F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A .2B .3C .2D .577.答案 A 解析 令双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 的坐标为(c,0),则c =a 2+b 2.如图所示,由圆的对称性及条件|PQ |=|OF |可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF .设垂足为M ,连接OP ,则|OP |=a ,|OM |=|MP |=c 2,由|OM |2+|MP |2=|OP |2,得⎝⎛⎭⎫c 22+⎝⎛⎭⎫c 22=a 2,∴c a =2,即离心率e =2.故选A .78.以双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上一点M 为圆心作圆,该圆与x 轴相切于C 的一个焦点,与y 轴交于P ,Q 两点.若△MPQ 为正三角形,则该双曲线的离心率等于( ) A .2 B .3 C .2 D .578.答案 B 解析 设圆M 与双曲线C 相切于点F (c ,0),则MF ⊥x 轴,于是可设M (c ,t )(t >0),代入双曲线方程中解得t =b 2a ,所以|MF |=b 2a,所以|PQ |=2⎝⎛⎭⎫b 2a 2-c 2.因为△MPQ 为等边三角形,所以c=32×2⎝⎛⎭⎫b 2a 2-c 2,化简,得3b 4=4a 2c 2,即3(c 2-a 2)2=4a 2c 2,亦即3c 4-10c 2a 2+3a 4=0,所以3e 4-10e 2+3=0,解得e 2=13或e 2=3,又e >1,所以e =3.79.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点分别为A 、B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M 、N 两点.若四边形F AMN 是平行四边形,则该椭圆的离心率为( )A .35B .12C .23D .3479.答案 A 解析 因为圆O 与直线BF 相切,所以圆O 的半径为bc a ,即OC =bca,因为四边形F AMN是平行四边形,所以点M 的坐标为⎝⎛⎭⎫a +c 2,bc a ,代入椭圆方程得(a +c )24a 2+c 2b 2a 2b 2=1,所以5e 2+2e -3=0,又0<e <1,所以e =35.故选A .80.(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A与双曲线C 的一条渐近线交于M ,N 两点.若∠MAN =60°,则C 的离心率为________. 80.答案233 解析 双曲线的右顶点为A (a ,0),一条渐近线的方程为y =bax ,即bx -ay =0,则圆心A 到此渐近线的距离d =|ba -a ×0|b 2+a 2=ab c .又因为∠MAN =60°,圆的半径为b ,所以b ·sin 60°=ab c ,即3b2=ab c ,所以e =23=233. 81.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点为F 1(-c ,0)(c >0),过点F 1作直线与圆x 2+y 2=a 24相切于点A ,与双曲线的右支交于点B ,若OB →=2OA →-OF 1→,则双曲线的离心率为( ) A .2 B .102 C .72 D .5281.答案 B 解析 设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F 2(c,0),∵OB →=2OA →-OF 1→,∴2OA →=OB →+OF 1→,∴A 是BF 1的中点,∵过点F 1作直线与圆x 2+y 2=a 24相切于点A ,∴OA ⊥BF 1,∵O 是F 1F 2的中点,∴OA ∥BF 2,∴BF 1⊥BF 2,|BF 2|=a ,∴|BF 1|2=|F 1F 2|2-|BF 2|2=4c 2-a 2,∵|BF 1|=2a +|BF 2|=3a ,∴9a 2=4c 2-a 2,∴10a 2=4c 2,∴e =102,故选B . 82.已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=8,P 是E 右支上的一点,PF 1与y 轴交于点A ,△P AF 2的内切圆与边AF 2的切点为Q .若|AQ |=3,E 的离心率为________.82.答案433解析 如图所示,设PF 1,PF 2分别与△P AF 2的内切圆切于M ,N ,依题意,有|MA |=|AQ |, |NP |=|MP |,|NF 2|=|QF 2|,|AF 1|=|AF 2|=|QA |+|QF 2|,2a =|PF 1|-|PF 2|=(|AF 1|+|MA |+|MP |)-(|NP |+|NF 2|)=2|QA |=23,故a =3,从而e =c a =43=433.83.设F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点,P 是C 上的点,圆x 2+y 2=a 29与线段PF 交于A ,B两点,若A ,B 是线段PF 的两个三等分点,则椭圆C 的离心率为( ) A .33 B .53 C .104 D .17583.答案 D 解析 设线段AB 的中点为D ,连接OD ,OA ,设椭圆C 的左、右焦点分别为F ,F 1,连接PF 1.设|OD |=t ,因为点A ,B 是线段PF 的两个三等分点,所以点D 为线段PF 的中点,所以OD ∥PF 1,且|PF 1|=2t ,PF 1⊥PF .因为|PF |=3|AB |=6|AD |=6⎝⎛⎭⎫a 32-t 2,根据椭圆的定义,得|PF |+|PF 1|=2a ,∴6⎝⎛⎭⎫a 32-t 2+2t =2a ,解得t =a 5或t =0(舍去).所以|PF |=8a 5,|PF 1|=2a 5.在Rt △PFF 1中,|PF |2+|PF 1|2=|FF 1|2,即⎝⎛⎭⎫8a 52+⎝⎛⎭⎫2a 52=(2c )2,得c 2a 2=1725,所以椭圆C 的离心率e =c a =175. 84.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),P 是双曲线C 右支上一点,且|PF 2|=|F 1F 2|,若直线PF 1与圆x 2+y 2=a 2相切,则双曲线的离心率为( ) A .43 B .53C .2D .384.答案 B 解析 取线段PF 1的中点为A ,连接AF 2,又|PF 2|=|F 1F 2|,则AF 2⊥PF 1,∵直线PF 1与圆x 2+y 2=a 2相切,∴|AF 2|=2a ,∵|PF 2|=|F 1F 2|=2c ,∴|PF 1|=2a +2c ,∴|P A |=12·|PF 1|=a +c ,则在Rt △APF 2中,4c 2=(a +c )2+4a 2,化简得(3c -5a )(a +c )=0,则双曲线的离心率为53.85.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,A ,B 分别是双曲线左、右两支上关于坐标原点O 对称的两点,且直线AB 的斜率为22.M ,N 分别为AF 2,BF 2的中点,若原点O 在以线段MN 为直径的圆上,则双曲线的离心率为( )A .3B .6C .6+3D .6-285.答案 C 解析 设双曲线的焦距为2c ,MN 与x 轴交于点H ,如图可知,OH =MN 2=AB 4=c2,所以AB =2c ,由⎩⎨⎧y =22x ,b 2x 2-a 2y 2=a 2b 2,可得x =±a 2b 2b 2-8a 2,所以AB =6a 2b 2b 2-8a2=2c ,所以有18a 2c 2-9a 4=c 4,解得e 2=9+62,所以离心率e =6+3,故选C .86.已知双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,抛物线C 2:y 2=2px (p >0)的焦点与双曲线C 1的一个焦点重合,C 1与C 2在第一象限相交于点P ,且|F 1F 2|=|PF 1|,则双曲线C 1的离心率为________.86.答案 2+3 解析 由题意可知,F 1(-c,0),F 2(c,0).设点P (x 0,y 0),过点P 作抛物线C 2:y 2=2px(p >0)准线的垂线,垂足为A ,连接PF 2.根据双曲线的定义和|F 1F 2|=|PF 1|=2c ,可知|PF 2|=2c -2a .由抛物线的定义可知|PF 2|=|P A |=x 0+c =2c -2a ,则x 0=c -2a .由题意可知p2=c ,又点P 在抛物线C 2上,所以y 20=2px 0=4c ·(c -2a ),在Rt △F 1AP 中,|F 1A |2=|PF 1|2-|P A |2=(2c )2-(2c -2a )2=8ac -4a 2, 即y 20=8ac-4a 2,所以8ac -4a 2=4c (c -2a ),化简可得c 2-4ac +a 2=0,即e 2-4e +1=0,又e >1,所以e =2+ 3. 87.双曲线1C :22221y x a b -=(0a >,0b >)的焦点为()10, F c -、()20, F c ,抛物线2C :214y x c=的准线与1C 交于M 、N 两点,且以MN 为直径的圆过2F ,则椭圆22221x y a c+=的离心率的平方为( )A 1B .2C .2D .3- 87.答案 C 解析 ∵抛物线2C 的方程为214y x c=,∴抛物线2C 的焦点坐标为()0, c ,准线方程为y c =- ∵双曲线1C :22221y x a b-=(0a >,0b >)的焦点为()10, F c -、()20, F c ,且抛物线2C 的准线与1C 交于M 、N 两点∴2, b M c a ⎛⎫-- ⎪⎝⎭,2, b N c a ⎛⎫- ⎪⎝⎭,∵以MN 为直径的圆过2F ,∴220MF NF ⋅=,即42240b c a -=,∵222c a b =+,∴4224440c c b b --=,即42440b b c c ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,∴22b c ⎛⎫= ⎪⎝⎭∵椭圆22221x y a c +=的离b c =,∴椭圆22221x y a c +=的离心率的平方为22b c ⎛⎫= ⎪⎝⎭.故选C .。

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题

高中数学圆锥曲线(椭圆、双曲线、抛物线)经典习题1.已知圆$x^2+y^2-6x-7=0$与抛物线$y^2=2px(p>0)$的准线相切,则抛物线方程为$y^2=8x$。

2.与双曲线$2x^2-2y^2=1$有公共焦点,离心率互为倒数的椭圆方程为$\dfrac{x^2}{9}+\dfrac{y^2}{16}=1$。

3.方程$k-\dfrac{35}{k}+\dfrac{x^2}{y^2}=1$表示双曲线,则$m$的取值范围是$(-\infty,-7)\cup(0,7)$。

4.经过点$M(3,-2),N(-2,3)$的椭圆的标准方程是$\dfrac{x^2}{16}+\dfrac{y^2}{9}=1$。

5.与双曲线$x^2-y^2=53$有公共渐近线且焦距为8的双曲线方程为$\dfrac{x^2}{16}-\dfrac{y^2}{9}=1$。

6.过点$P(-2,4)$的抛物线的标准方程为$y=\dfrac{1}{8}(x+2)^2$。

7.以$\dfrac{x^2}{4}-\dfrac{y^2}{12}=-1$的上焦点为顶点,下顶点为焦点的椭圆方程为$\dfrac{x^2}{16}+\dfrac{y^2}{48}=1$。

重点二:1.椭圆$16x+25y=400$的焦点为$F_1,F_2$,直线$AB$过$F_1$,则$\triangle ABF_2$的周长为$10$。

2.动圆的圆心在抛物线$y^2=8x$上,且动圆恒与直线$x+2=0$相切,则动圆必过定点$(-1,2)$。

3.椭圆$\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$上的一点$M$到左焦点$F_1$的距离为$2$,$N$是$MF_1$的中点,则$ON=\dfrac{4}{3}$。

4.设椭圆$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$和双曲线$\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$有公共焦点$F_1,F_2$,点$P$是两曲线的一个公共点,则$\cos\angleF_1PF_2=\dfrac{3}{5}$。

专题24 椭圆、双曲线、抛物线的几何性质的应用(优秀经典专题及答案详解)

专题24 椭圆、双曲线、抛物线的几何性质的应用(优秀经典专题及答案详解)

A. 2
B. 2 2
C.2 3
D.4
【答案】C
【解析】∵ OF 2 ,由抛物线的定义可得 P 点的坐标 3 2, 2 6 ,∴POF 的面

1 OF 2
yP
1 2
22
62
3.
【答案】D
【解析】设 P x,
y, A1 1,0, A2 1,0
,则 kPA1
y x 1 , kPA2
y ,则 x 1
kPA1
kPA2
y2 1 , x2 1
又 kPA1
tan , kPA2
tan
,所以 tantan
1 ,则
2
,即 6
2
,所以
12

故选 D.
5.设 F 为抛物线 C : y2 4x 的焦点,过点 P1,0 的直线l 交抛物线C 于 A, B 两点,点Q
为线段 AB 的中点,若 FQ 2 3 ,则 AB ( )
PQ
2 k 2
2
2 k2
2
2
3 ,整理化简
1 可得: k 2
1
1 k2
2
0,
1 k2
2 .利用韦达定理有: x1 x2
42 1 2
1
6, x1x21 , Nhomakorabea2
则 x1 x2 x1 x2 2 4x1x2 32 ,
1 k2
3 ,由弦长公式可得 2
AB 1 k 2 x1 x2 4 3 .
连接 PF1,PF2,F1M,F2N,
可得 |PM |2﹣|PN| 2=(| PF 1| 2﹣r12)﹣(| PF2|2﹣r22) =(|PF1|2﹣4)﹣(|PF2|2﹣1) =|PF 1|2 ﹣|PF 2| 2﹣3 =(|PF 1| ﹣|PF 2| )(|PF 1|+|PF 2|)﹣3 =2a(| PF1|+| PF2 | ﹣3=2(|PF 1|+| PF 2|)﹣3≥2•2c﹣3=2•8﹣3=13 . 当且仅当 P 为右顶点时,取得等号,即最小值 13.故选:D.

第2讲椭圆双曲线抛物线

第2讲椭圆双曲线抛物线

将x=-1代入椭圆方程得y=± 2 .
不妨设 M (1, 2 )、N (1, 22 ),
2
2
F2M F2N (2,
2 ) (2, 2
2 ) (4,0). 2
F2M F2 N 4, 与题设矛盾.
∴直线l的斜率存在.
设直线l的斜率为k,则直线l的方程为y=k(x+1).
设M(x1,y1)、N(x2,y2),联立
= 4a2 4c2 2 F1C F2C
2 F1C F2C
=
2b2 1 .
F1C F2C
|F1C||F2C|≤
( F1C F2C )2 2
=a2,
∴cos∠F1CF2≥
2b2 a2
1
2c2 2c2
1
0

∴∠F1CF2≤
2
.
(3)解
设直线PQ的方程为y=-
a b
(x-c),即y=-
2(x-c).
代入椭圆方程消去x得:a12 (c
40
∴k=±1.
∴所求直线l的方程为y=x +1或y= -x -1.
二、圆锥曲线中的定值与最值
例2 已知菱形ABCD的顶点A,C在椭圆x2+3y2=4
上,对角线BD所在直线的斜率为1.
(1)当直线BD过点(0,1)时,求直线AC的方程;
(2)当∠ABC=60°时,求菱形ABCD面积的最大值.
思维启迪(1)根据菱形的性质及条件求解.
3, c2
1.
25
50 25
探究提高(1)求离心率,结合已知条件找到a,b,c的关系式;
(2)C为椭圆上的任意一点,F1,F2为左、右焦点,当C点是 椭圆短轴的一个端点时,∠F1CF2取得最大值.

椭圆、双曲线、抛物线习题(有答案)

椭圆、双曲线、抛物线习题(有答案)

1.双曲线222x y -=的焦距为( )A. 1B. 4C. 2D. 2.抛物线22y x =的焦点坐标是( )A. 102⎛⎫ ⎪⎝⎭,B. 102⎛⎫ ⎪⎝⎭,C. 108⎛⎫ ⎪⎝⎭,D 108⎛⎫ ⎪⎝⎭,. 3.椭圆22143x y +=的焦距为( ) A. 1 B. 2 C. 3 D. 44.双曲线2214x y -=的渐近线方程为( )A. 2xy =±B. 2y x =±C. 2y x =±D. y = 5.方程22121x y m m +=-为椭圆方程的一个充分不必要条件是( ) A. 12m >B. 12m >且1m ≠ C. 1m > D. 0m >6且过点()2,0的椭圆的标准方程是( ) A. 2214x y += B. 2214x y +=或2214y x += C. 2241x y += D.2214x y +=或221416x y +=7.若点(P m 为椭圆22:12516x y C +=上一点,则m =( ) A. 1± B. 12±C. 32±D. 52± 8.若坐标原点到抛物线2y mx = 的准线的距离为2 ,则m = ( ) A. 1+8 B. 1+4C. 4±D. 8±9.【2018届福建省福州市高三3月质量检测】已知双曲线 的两顶点间的距离为4,则的渐近线方程为( ) A.B.C.D.10.已知m 是2,8的等比中项,则圆锥曲线221y x m+=的离心率是( ) A.32或52 B. 32 C. 5 D. 32或5 11.若圆22:2210M x y x y +-++=与x 轴的交点是抛物线2:2(0)C y px p =>的焦点,则p =( ) A. 1 B. 2 C. 4 D. 812.已知是椭圆:的左焦点,为上一点,,则的最大值为( )A.B. 9C.D. 1013.【2018届山东省泰安市高三上学期期末】若抛物线24x y =上的点A 到焦点的距离为10,则A 到x 轴的距离是_________.14.已知椭圆的两焦点坐标分别是()20-, 、()20, ,并且过点(233, ,则该椭圆的标准方程是__________.15.【2018届河北省武邑中学高三上学期期末】已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为__________.16.【2018届北京市朝阳区高三第一学期期末】已知双曲线C 的中心在原点,对称轴为坐标轴,它的一个焦点与抛物线28y x =的焦点重合,一条渐近线方程为0x y +=,则双曲线C 的方程是________. 1.【答案】B【解析】双曲线的标准方程即: 22122x y -=,则:222222,4,2a b c a b c ==∴=+==, 双曲线的焦距为: 24c =. 本题选择B 选项. 2. 【答案】D【解析】转化为标准方程, 212x y =,所以焦点为10,8⎛⎫ ⎪⎝⎭.故选D.3.【答案】B【解析】在椭圆22143x y +=中, 224,3a b ==,所以21,1c c == ,故焦距22c =,选B.4.【答案】A【解析】Q 双曲线2214x y -=∴渐近线方程为2204x y -=,即2x y =±故选A . 5.【答案】C【解析】方程22121x y m m +=-表示椭圆的充要条件是0{210 21m m m m >->≠-,即12m >且1m ≠,所以方程22121x y m m +=-为椭圆方程的一个充分不必要条件是1m >,故选C.6.【答案】D【解析】当椭圆的焦点在x 轴上,设椭圆的方程为22221(0)x y a b a b +=>>,由离心率为3,∴222214b a c a =-=∵椭圆过点(2,0),∴2222201a b +=,∴a2=4,∴b2=1,∴椭圆标准方程为2214x y += 当椭圆的焦点在y 轴上,同理易得: 221416x y += 故选D.7.【答案】D【解析】由题意可得: (22312516m+=,则: 22125,2544m m ==,据此可得: 52m =±. 本题选择D 选项. 8. 【答案】A9.【答案】B【解析】由双曲线的方程可知:,即,∴,解得: 令,得到 故选:B.10.【答案】D【解析】由m 是2,8的等比中项得2264m m =⨯∴=±因此当4m =时,342,413,,c a c e a ===-===当4m =-时, 1,415,5,ca c e a ==+===所以离心率是3或5,选D.11.【答案】B【解析】圆M 的方程中,令0y =有: 2210,1x x x -+=∴=,据此可得抛物线的焦点坐标为()1,0, 则: 1,22pp =∴=. 本题选择B 选项.12.【答案】A【解析】连接P 点和另一个焦点即为E ,=. 故答案为:A.13.【答案】9【解析】根据抛物线方程可求得焦点坐标为()0,1,准线方程为1y =-∵抛物线24x y =上的点A 到焦点的距离为10 ∴点A 到x 轴的距离是1019-= 故答案为9.14.【答案】2211612x y +=15.【答案】2【解析】抛物线的准线为2p x =-,与圆相切,则342p+=, 2p =.16.【答案】22122x y -=【解析】抛物线28y x =的焦点坐标为20(,),所以双曲线C 的右焦点坐标为20(,),因为双曲线的一条渐近线方程为0x y +=,所以a b = ,所以224a a += ,所以22a = ,所以双曲线方程为22122x y -=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆典型例题一、已知椭圆焦点的位置,求椭圆的标准方程。

例1:已知椭圆的焦点是F 1(0,-1)、F 2(0,1),P 是椭圆上一点,并且PF 1+PF 2=2F 1F 2,求椭圆的标准方程。

解:由PF 1+PF 2=2F 1F 2=2×2=4,得2a =4.又c =1,所以b 2=3.所以椭圆的标准方程是y 24+x 23=1.2.已知椭圆的两个焦点为F 1(-1,0),F 2(1,0),且2a =10,求椭圆的标准方程. 解:由椭圆定义知c =1,∴b =52-1=24.∴椭圆的标准方程为x 225+y 224=1.二、未知椭圆焦点的位置,求椭圆的标准方程。

例:1. 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ;三、椭圆的焦点位置由其它方程间接给出,求椭圆的标准方程。

例.求过点(-3,2)且与椭圆x 29+y 24=1有相同焦点的椭圆的标准方程.解:因为c 2=9-4=5,所以设所求椭圆的标准方程为x 2a 2+y 2a 2-5=1.由点(-3,2)在椭圆上知9a 2+4a 2-5=1,所以a 2=15.所以所求椭圆的标准方程为x 215+y 210=1.四、与直线相结合的问题,求椭圆的标准方程。

例: 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=, 4112===a x y k M M OM ,∴42=a ,∴1422=+y x 为所求. 五、求椭圆的离心率问题。

例1 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =,∴3331-=e . 例2 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .六、由椭圆内的三角形周长、面积有关的问题例:1.若△ABC 的两个顶点坐标A (-4,0),B (4,0),△ABC 的周长为18,求顶点C 的轨迹方程。

解:顶点C 到两个定点A ,B 的距离之和为定值10,且大于两定点间的距离,因此顶点C 的轨迹为椭圆,并且2a =10,所以a =5,2c =8,所以c =4,所以b 2=a 2-c 2=9,故顶点C 的轨迹方程为x 225+y 29=1.又A 、B 、C 三点构成三角形,所以y ≠0.所以顶点C 的轨迹方程为x 225+y 29=1(y ≠0)答案:x 225+y 29=1(y ≠0)2.已知椭圆的标准方程是x 2a 2+y 225=1(a >5),它的两焦点分别是F 1,F 2,且F 1F 2=8,弦AB 过点F 1,求△ABF 2的周长.4a =441.3.设F 1、F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且PF 1∶PF 2=2∶1,求△PF 1F 2的面积.△PF 1F 2的面积为12PF 1·PF 2=12×2×4=4.七、直线与椭圆的位置问题例 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得 ()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122kkk x x +-=+. ∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,,①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .八、椭圆中的最值问题例 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .双曲线典型例题一、根据方程的特点判断圆锥曲线的类型。

例1 讨论192522=-+-ky k x 表示何种圆锥曲线,它们有何共同特征. 解:(1)当9<k 时,025>-k ,09>-k ,所给方程表示椭圆,此时k a -=252,k b -=92,16222=-=b a c ,这些椭圆有共同的焦点(-4,0),(4,0). (2)当259<<k 时,025>-k ,09<-k ,所给方程表示双曲线,此时,k a -=252,k b -=92,16222=+=b a c ,这些双曲线也有共同的焦点(-4,0),)(4,0). (3)25<k ,9=k ,25=k 时,所给方程没有轨迹. 二、根据已知条件,求双曲线的标准方程。

例2 根据下列条件,求双曲线的标准方程.(1)过点⎪⎭⎫ ⎝⎛4153,P ,⎪⎭⎫⎝⎛-5316,Q 且焦点在坐标轴上.(2)6=c ,经过点(-5,2),焦点在x 轴上.(3)与双曲线141622=-y x 有相同焦点,且经过点()223, 解:(1)设双曲线方程为122=+ny m x ∵ P 、Q 两点在双曲线上, ∴⎪⎪⎩⎪⎪⎨⎧=+=+12592561162259nm n m 解得⎩⎨⎧=-=916n m∴所求双曲线方程为191622=+-y x 说明:采取以上“巧设”可以避免分两种情况讨论,得“巧求”的目的. (2)∵焦点在x 轴上,6=c ,∴设所求双曲线方程为:1622=--λλy x (其中60<<λ) ∵双曲线经过点(-5,2),∴16425=--λλ∴5=λ或30=λ(舍去)∴所求双曲线方程是1522=-y x 说明:以上简单易行的方法给我们以明快、简捷的感觉.(3)设所求双曲线方程为:()160141622<<=+--λλλy x ∵双曲线过点()223,,∴1441618=++-λλ∴4=λ或14-=λ(舍)∴所求双曲线方程为181222=-y x 三、求与双曲线有关的角度问题。

例 3 已知双曲线116922=-y x 的右焦点分别为1F 、2F ,点P 在双曲线上的左支上且3221=PF PF ,求21PF F∠的大小.解:∵点P 在双曲线的左支上 ∴621=-PF PF∴362212221=-+PF PF PF PF ∴1002221=+PF PF∵()100441222221=+==b a c F F∴9021=∠PF F(2)题目的“点P 在双曲线的左支上”这个条件非常关键,应引起我们的重视,若将这一条件改为“点P 在双曲线上”结论如何改变呢?请读者试探索.四、求与双曲线有关的三角形的面积问题。

例 4 已知1F 、2F 是双曲线1422=-y x 的两个焦点,点P 在双曲线上且满足 9021=∠PF F ,求21PF F ∆的面积.分析:利用双曲线的定义及21PF F ∆中的勾股定理可求21PF F ∆的面积.解:∵P 为双曲线1422=-y x 上的一个点且1F 、2F 为焦点. ∴4221==-a PF PF ,52221==c F F∵9021=∠PF F∴在21F PF Rt ∆中,202212221==+F F PF PF∵()162212221221=-+=-PF PF PF PF PF PF∴1622021=-PF PF ∴221=⋅PF PF ∴1212121=⋅=∆PF PF S PF F 五、根据双曲线的定义求其标准方程。

例5 已知两点()051,-F 、()052,F ,求与它们的距离差的绝对值是6的点的轨迹. 解:根据双曲线定义,可知所求点的轨迹是双曲线.∵5=c ,3=a∴16435222222==-=-=a c b∴所求方程116922=-y x 为动点的轨迹方程,且轨迹是双曲线. 例 P 是双曲线1366422=-y x 上一点,1F 、2F 是双曲线的两个焦点,且171=PF ,求2PF 的值. 解:在双曲线1366422=-y x 中,8=a ,6=b ,故10=c . 由P 是双曲线上一点,得1621=-PF PF .∴12=PF 或332=PF .又22=-≥a c PF ,得332=PF . 六、求与圆有关的双曲线方程。

例6 求下列动圆圆心M 的轨迹方程:(1)与⊙()2222=++y x C :内切,且过点()02,A (2)与⊙()11221=-+y x C :和⊙()41222=++y x C :都外切.(3)与⊙()93221=++y x C :外切,且与⊙()13222=+-y x C :内切. 解:设动圆M 的半径为r(1)∵⊙1C 与⊙M 内切,点A 在⊙C 外 ∴2-=r MC ,r MA =,2=-MC MA∴点M 的轨迹是以C 、A 为焦点的双曲线的左支,且有:22=a ,2=c ,27222=-=a c b ∴双曲线方程为()2172222-≤=-x y x (2)∵⊙M 与⊙1C 、⊙2C 都外切 ∴11+=r MC ,22+=r MC ,112=-MC MC∴点M 的轨迹是以2C 、1C 为焦点的双曲线的上支,且有:21=a ,1=c ,43222=-=a c b ∴所求的双曲线的方程为:⎪⎭⎫ ⎝⎛≥=-43134422y x y(3)∵⊙M 与⊙1C 外切,且与⊙2C 内切∴31+=r MC ,12-=r MC ,421=-MC MC ∴点M 的轨迹是以1C 、2C 为焦点的双曲线的右支,且有:2=a ,3=c ,5222=-=a c b∴所求双曲线方程为:()215422≥=-x y x抛物线典型例题一、求抛物线的标准方程。

相关文档
最新文档