函数的幂级数展开
高等数学课件:11-4 函数的幂级数展开式
n 2k n 2k 1
(k 0, 1, 2,)
得级数:
x
1 3!
x3
1 5!
x5
(1)n1
1 (2n1)!
x2n1
其收敛半径为 R , 对任何有限数 x , 其余项满足
sin(
(n
1)
2
)
(n 1)!
x n 1
n
sin x
x
1 3!
x3
1 5!
x5
(1)n
1 ( 2 n1)!
x 2n1
2. 间接展开法 利用一些已知的函数展开式 及幂级数的运算性质, 将所给函数展开成 幂级数. 例3. 将 f ( x) cos x 展开成为关于x 的幂级数. 解:由于
1 x
( 1 x 1)
1 1 x x2 xn 1 x
(1 x 1)
例6. 求
的麦克劳林级数.
解: sin2 x 1 1 cos 2x 22
1 1 (1)n 1
2 2 n0
( 2n) !
x (, )
1 (1)n
4n
x 2n (1)n1
4n
x 2n
2 n1
( 2n) !
f (0) f (0)x f (0) x2 f (n) (0) xn
2!
n!
两个待解决的问题 1) 对此级数, 它的收敛域是什么 ? 2) 在收敛域上 , 和函数是否为 f (x) ?
泰勒公式
若函数
的某邻域内具有 n + 1 阶导数, 则在
该邻域内有 :
f
(x)
f
(
x0 ) f (x0 )(x x0 ) f (n) (x0 ) (x n!
所以展开式对 x =1 也是成立的, 于是收敛域为
高等数学第五节 函数幂级数展开
f(x) f(0) f(0)x f(0) x2 f(n)(0) xn
2!
n!
rn(x). ②
rn(x)f((n n 1 )(1 )x!)xn1 (0θ1).
②式称为麦克劳林公式 . 幂级数
f()0 f(0 )x f(0 )x 2 f(n )(0 )x n ,
rn(x)(n e( θx 1))!xn1 (0θ1),
且 x ≤ x x , 所以eθx ex , 因而有
rn(x)(n e x 1)!xn1(ne x1)!xn1.
注意到,对任一确定的 x 值, e x 是一个确定
的常数 . 而级数 ⑥ 是绝对收敛的,因此其一
例 1 试将函数 f(x) = ex 展开成 x 的幂级数.
解 由 f(n )(x)ex(n1,2,3, ), 可以
得到
f(0 ) f(0 ) f(0 ) f(n )(0 ) 1 .
因此我们可以得到幂级数
1x1x2 1xn .
⑥
2!
n!
显然,这个幂级数的收敛区间为 (,+ ) . 至 于 数 ⑥ 是 否 f(x)以 ex为 和 ,收 函 敛 f数 (x 于 )ex, 还要考察函f(x数)ex 的麦克劳林公式中 项, 因为
所以 f(x) 1 1 1x 2x
(1xx2 xn )
1[1x(x)2 (x)n ]
2 22
2
1 2 2 2 2 21x 2 3 2 31x 2 2 n 2 n 1 11x n .
根据幂级数和的运算法则,其收敛半径应
取较小的一个,故 R = 1,因此所得幂级数的收 敛区间为 1 < x < 1 .
例7
幂级数. 解
常用的幂级数展开式
常用的幂级数展开式1. 什么是幂级数展开式幂级数是一种特殊的函数表示形式,它可以被展开为一个无穷序列的项。
幂级数展开式是将一个函数用幂级数表示的方法,可以将复杂的函数简化为无穷项的和,从而方便进行数学分析和计算。
幂级数展开式的一般形式为:f(x)=a0+a1x+a2x2+a3x3+⋯其中,f(x)是要展开的函数,x是自变量,系数a0,a1,a2,a3,⋯是展开式的项系数。
2. 常见的幂级数展开式2.1 泰勒级数展开式泰勒级数是幂级数的一种特殊形式,其展开式为:f(x)=∑f(n)(a) n!∞n=0(x−a)n其中,f(n)(a)表示函数f(x)在点a处的n阶导数。
泰勒级数展开式适用于将任何函数在某一点附近展开,并可以通过选取适当的展开点和截取适当的项来逼近原函数。
2.2 麦克劳林级数展开式麦克劳林级数是泰勒级数的一种特殊情况,展开式为:f(x)=∑f(n)(0) n!∞n=0x n麦克劳林级数展开式适用于将任何函数在原点附近展开,即展开点为a=0。
2.3 常见的函数的幂级数展开式以下是几个常见函数的幂级数展开式:•指数函数的展开式:e x=∑x n n!∞n=0•正弦函数的展开式:sinx=∑(−1)n (2n+1)!∞n=0x2n+1•余弦函数的展开式:cosx=∑(−1)n (2n)!∞n=0x2n •对数函数的展开式:ln(1+x)=∑(−1)n−1n∞n=1x n3. 幂级数展开的应用幂级数展开式在数学和物理的许多领域中有着广泛的应用。
3.1 数值计算幂级数展开式可以用于近似计算各种函数的值。
通过截取幂级数展开式的有限项,可以得到函数值的近似解,能够在计算机上进行快速高效的数值计算。
3.2 函数逼近幂级数展开式可以将任何函数逼近为一个无穷项的和,从而可以用有限的项来近似表示一个复杂的函数。
这在数值分析和计算机图形学中具有重要的应用,例如图像处理、曲线拟合等。
3.3 物理建模物理学中的许多现象和物理量可以用幂级数展开式来描述,例如电磁场、波动方程等。
函数的幂级数展开式
1 + ( −4 ) n n x , = ln 4 − ∑ n n4 n =1
∞
x ∈ (− 1, 1] −
ln(1 + x ) = ∑ ( −1) n−1
n =1
∞
xn x2 x3 − = x− + − L , x ∈ (−1, 1] n 2 3 18
例9 将 f (x) = xarctanx −ln 1+ x 展 成 开 麦
n= 3
⇒ f ′′′( 0) = 3! a 3
f ′′′(0) ⇒ a3 = 3!
4
f ( x ) = ∑ a n x n = a 0 + a1 x + a 2 x 2 + L ( | x | < r )
n=0
∞
归纳可得, 归纳可得,
f ( k ) ( 0) ak = k!
即得
( k = 0,1,2 L)
∞
16
1 的幂级数. 展开成 x 的幂级数. 例7 将 f ( x ) = 2 x + 4x + 3
解
1 1 f ( x) = 2 = x + 4 x + 3 ( x + 1)( x + 3 )
1 1 1 1 1 1 = − = 2(1 + x ) − 6 ⋅ 1 + x / 3 2 x + 1 x + 3
− x2
展开成 x 的幂级数. 的幂级数.
e =∑
x nቤተ መጻሕፍቲ ባይዱ0
∞
x , x ∈ ( −∞ ,+∞ ) n!
2 n ∞ n
n
所以
e
−x
2
函数的幂级数展开
Rn (x) (x − x0 )n+1
=
Rn (x) − Rn (x0 ) (x − x0 )n+1 − 0
=
(n
Rn (1) +1)(1 − x0 )n
(1 在x0与x之间),
= Rn (1) − Rn (x0 ) (n +1)(1 − x0 )n − 0
=
Rn(2 ) n(n +1)(2 − x0 )n−1
7
首页
上页
返回
下页
结束
铃
(3) 当 n = 0 时,泰勒公式变成拉格朗日中值公式
f ( x) = f ( x0 ) + f ( )( x − x0 ) .
(4) 因为
lim lim x→x0
Rn (x) (x − x0 )n
=
x→ x0
f (n+1) ( )( x − x0 ) = 0 ,
所以 R n ( x ) = o[( x − x0 ) n ] . 佩亚诺(Peano)型余项
f (0) + f (0) x + f (0) x 2 + + f (n) (0) x n +
2!
n!
为 f (x) 的麦克劳林级数.
3
首页
上页
返回
下页
结束
铃
2. 泰勒(Taylor)公式
泰勒中值定理 如果函数 f (x) 在含有 x0 的某个开 区间 (a , b) 内具有直到 n + 1 阶的导数,则对任一
(2
在x0与1之间),
=
=
R (n+1) n
(
)
(n +1)!
函数的幂级数展开式
函数的幂级数展开式
函数的幂级数展开式是将一个函数表示成幂函数的和的形式,即
f(x) = a_0 + a_1*x + a_2*x^2 + a_3*x^3 + ...
其中a_0, a_1, a_2, a_3, ...是待定的常数系数,x是变量。
这个
等式表示了函数f(x)在某个点(可以是无限远)附近的展开形式。
当x接近0的时候,这个级数可以收敛到函数f(x)。
幂级数展
开式的一个常见形式是泰勒级数展开式。
泰勒级数展开式是一种特殊的幂级数展开式,用于将一个光滑函数表示成无穷级数的形式。
泰勒级数展开式的一般形式是:
f(x) = a_0 + a_1*x + a_2*x^2 + a_3*x^3 + ...
其中a_0, a_1, a_2, a_3, ...是待定的常数系数,x是变量。
这个
级数的系数可以通过函数在某个点处的导数来计算。
泰勒级数展开式在数学分析和物理学中有广泛的应用,可以用于近似计算函数的值、求导和积分等问题。
函数的幂级数展开
f (x ) 在
定理 2 ( 充要条件 ) 设函数 f (x ) 在点 x0 有任意阶导数 . 则 f (x) 在区间 ( x0 r , x0 r ) ( r 0 ) 内等于其 Taylor 级数 ( 即可展 )的充要条件是: 对 x ( x0 , r ) , 有 lim Rn ( x) 0 . 其 n 中 Rn (x) 是 Taylor 公式中的余项. 证 把函数 f (x ) 展开为 n 阶 Taylor 公式, 有
1 ( n 1) Rn (x) f ( )( x ) n x, n!
在 0 与 x 之间.
Taylor 公式的项数无限增多时, 得
f ( x0 ) f ( n ) ( x0 ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 ( x x0 ) n 2! n!
f ( n ) ( x) n! , n 1 (1 x) 1 在点 x 0 1 x
无限次可微. 求得
( x 1 ), f ( n ) (0) n!
2013-2-27
. 其 Taylor 级数为
4
1 x x x xn .
2 n
n 0
该幂级数的收敛域为 ( 1 , 1 ) . 仅在区间 ( 1 , 1 ) 内有 f (x) = x n .
a a
x
x ln a
x n ln n a , n! n 0
| x | .
2
2013-2-27
x 2 n 1 sin x ( 1 ) , (2n 1)! n 0
n
x( , ).
幂级数展开公式
幂级数展开公式
按照马克劳林公式的一般形式f(x)=n*f^(n) 连加(n从0到无穷)x^n*f^(n)(0)/n!展开(其中f^(n)(0)表示f的n阶导数在0点的值),只不过最后的每项的形式没什么规律(这也取决于f^(n)(0)的值)。
麦克劳林公式是泰勒公式的一种特殊形式。
1、麦克劳林级数是幂级数的一种,它在x=0处展开。
2、那些特定初等函数的幂级数展开式就是泰勒级数的特定形式,没什么太小区别。
用泰勒公式求极限有时可以达到事半功倍之效。
麦克劳林公式的意义就是在0点,对函数展开泰勒进行。
年maclaurin在访问伦敦时见到了newton,从此便成为了newton的门生。
年编写名著《流数论》,就是最早为newton流数方法作出了系统逻辑阐释的著作。
他以娴熟的几何方法和穷竭法论证了流数学说道,还把级数做为谋分数的方法,并单一制于cauchy以几何形式得出了无穷级数发散的分数辨别法。
他获得数学分析中知名的maclaurin级数展开式,用未定系数法给与证明。
函数的幂级数展开-逼近定理汇总
2
傅里叶级数由正弦函数和余弦函数构成,可以表 示为无穷级数的和,其中每一项都是正弦函数或 余弦函数的线性组合。
3
傅里叶级数的定义基于三角函数的正交性,即在 一个周期内,任何两个不同的三角函数都不会有 相同的积分。
傅里叶级数展开的几何意义
01
傅里叶级数展开的几何意义是将一个周期函数表示为一系列正 弦函数和余弦函数的叠加。
收敛性的判定主要依赖于幂级数的系数和项数, 以及自变量 (x) 的取值范围。
02 泰勒级数展开
泰勒级数定义
泰勒级数定义
对于在某点的可微函数,可以表 示为在该点的n阶导数与n阶倒数 的无穷乘积,即f(x)=f(a)+f'(a)(xa)+f''(a)(xa)^2/2!+...+f^(n)(a)(x-
收敛性的判定通常基于三角函数的性质和函数的周期性,不同的函数可能 有不同的收敛条件和收敛速度。
04 拉格朗日插值法
拉格朗日插值法定义
拉格朗日插值法是一种通过已知的离 散数据点来构造一个多项式,并利用 该多项式对未知数据进行逼近的方法 。
该方法由意大利数学家约瑟夫·拉格朗 日于18世纪提出,是数值逼近理论中 的重要工具之一。
牛顿插值法的收敛性
牛顿插值法的收敛性是指当插值节点增加时,插值多项式的逼近效果会越来越好。具体来说,如果函 数在插值节点上取值的极限存在,则当插值节点趋于无穷时,插值多项式的极限就是该函数的极限。
然而,如果函数在插值节点上取值的极限不存在,则插值多项式的极限也不存在,此时插值多项式无 法逼近该函数。因此,在使用牛顿插值法时需要注意函数的性质和取值情况。
THANKS FOR WATCHING
感谢您的观看
函数幂级数展开式
函数幂级数展开式
假设我们需要展开一个函数 f(x) 的幂级数。
幂级数展开是将一个函数表示为无穷级数的形式,其中每一项都是 x 的幂次的多项式。
我们可以使用泰勒级数展开来近似表示一个函数。
泰勒级数展开的一般形式如下:
f(x) = a0 + a1x + a2x^2 + a3x^3 + ...
其中 a0, a1, a2, a3, ...是待定系数,它们的值可以通过函数求导后代入来确定。
假设我们希望将函数 f(x) 在点 x = a 处展开,我们需要依次求取 f(a), f'(a), f''(a), f'''(a), ... 等导数,并代入泰勒级数展开式中。
之后,我们就可以得到幂级数展开式:
在实际操作中,我们可以选择一个适当的点 a,计算出 a 处的函数值和各阶导数的值,然后代入上述展开式中即可获得函数 f(x) 的幂级数展开式。
需要注意的是,幂级数展开只能在某个范围内是有效的,展开后的级数在展开点附近收敛。
当使用幂级数展开来近似函数时,需要确保展开的范围合适,以获得较好的近似效果。
常见函数的幂级数展开
常见函数的幂级数展开1. 指数函数 (Exponential Function)定义指数函数是指以常数e为底数的幂函数,通常表示为e^x。
其中e是一个常数,约等于2.71828。
用途指数函数在数学、物理、工程等领域中广泛应用。
它的幂级数展开形式可以用于近似计算指数函数的值,特别是当指数函数无法直接计算时。
工作方式指数函数的幂级数展开中,每一项的系数都是x的幂次与常数e的幂次之比。
通过将幂级数的前n项相加,可以近似计算指数函数的值。
指数函数的幂级数展开如下所示:e^x = 1 + x/1! + x^2/2! + x^3/3! + … + x^n/n! + …其中n!表示n的阶乘(n的所有正整数乘积),定义为n! = n * (n-1) * (n-2) * … * 2 * 1。
通过增加幂级数的项数,可以获得更精确的结果。
然而,幂级数展开通常在x的绝对值较小的范围内有效,当x的绝对值较大时,需要使用其他方法来计算指数函数的值。
指数函数的幂级数展开可以通过计算机程序来实现,例如使用Python编写以下代码:import mathdef exponential_series(x, n):result = 0for i in range(n):result += x**i / math.factorial(i)return resultx = 2.0n = 10print(exponential_series(x, n))上述代码计算了指数函数e^2的近似值,使用了前10项的幂级数展开。
2. 正弦函数 (Sine Function)定义正弦函数是一个周期函数,常用于描述周期性的波动现象。
它的幂级数展开可以用于近似计算正弦函数的值。
用途正弦函数在物理、工程等领域中广泛应用,例如描述振动、波动、电磁波等现象。
通过正弦函数的幂级数展开,可以计算正弦函数在给定角度处的近似值。
工作方式正弦函数的幂级数展开中,每一项的系数都与角度的幂次相关。
数学分析14.2函数的幂级数展开
第十四章 幂级数 2 函数的幂级数展开一、泰勒级数概念:若函数f 在点x 0的某邻域上存在直至n+1阶的连续导数,则去除泰勒公式的拉格朗日型余项R n (x)=1n 01)(n )x x (1)!(n )ξ(f ++-+后所得级数: n00n 0(n))x -(x n!)(x f ∑∞==f(x 0)+f ’(x 0)(x-x 0)+2!)(x f 0''(x-x 0)2+…+ n!)(x f 0(n)(x-x 0)n +… 称为函数f 在x 0处的泰勒级数.例1:证明:函数f(x)=⎪⎩⎪⎨⎧=≠0x ,00x ,e 2x1- 在x=0处的泰勒级数收敛,但不收敛于函数本身.证:∵在x=0处,f (n)(0)=0, n=1,2,…,∴f 在x=0处的泰勒级数为 0+0·x+2!0·x+…+n!0·x+…,它在(-∞,+∞)上收敛,且其和函数S(x)=0, 显见,对于一切x ≠0,f(x)≠S(x),得证!定理14.11:设f 在点x 0具有任意阶导数,那么f 在区间(x 0-r,x 0+r)上等于它的泰勒级数的和函数的充分条件是:对一切满足不等式|x-x 0|<r 的x ,有∞n lim →R n (x)=0,其中R n (x)是f 在x 0处的泰勒公式余项.注:若f 在点x 0的某邻域上等于其泰勒级数的和函数,则称函数f 在点x 0的这一邻域上可以展开成泰勒级数,并称等式:f(x)=f(x 0)+f ’(x 0)(x-x 0)+2!)(x f 0''(x-x 0)2+…+ n!)(x f 0(n)(x-x 0)n +…右边为f 在x 0处的泰勒展开式,或称幂级数展开式,其具有唯一性. 当x 0=0时,n 0n (n)x n!(0)f ∑∞==f(0)+f ’(0)x+2!(0)f ''x 2+…+ n!(0)f (n)x n +…称为f 的麦克劳林级数.积分型余项:R n (x)=nx 01)(n )t x ((t)f n!1-⎰+dt ; 拉格朗日型余项:R n (x)=1n 01)(n )x x (1)!(n )ξ(f ++-+, ξ在0和x 之间; 柯西余项:R n (x)=1n n 1)(n x )θ1)(θx (f n!1++-, 0≤θ≤1.二、初等函数的幂级数展开式例2:证明k 次多项式函数f(x)=c 0+c 1x+c 2x 2+…+c k x k 的展开式是它本身. 证:∵f (n)(0)=⎩⎨⎧>≤k n ,0kn ,c !n n ,总有∞n lim →R n (x)=0,∴f(x)=f(0)+f ’(0)x+2!(0)f ''x 2+…+ k!(0)f (k)x k =c 0+c 1x+c 2x 2+…+c k x k ,即多项式函数的幂级数展开式就是它本身.例3:求函数f(x)=e x 的展开式.解:∵f (n)(x)=e x,f (n)(0)=1 (n=1,2,…). ∴R n (x)=1n θxx 1)!(n e ++, 0≤θ≤1. 又对任意实数x ,|R n (x)|≤1n θx x 1)!(n e ++→0 (n →∞),∴∞n lim →R n (x)=0. ∴e x=1+x+2!1x 2+…+n!1x n+…=∑∞=0n n n!x ,|x|<+∞.例4:求sinx 和cosx 的展开式. 解:∵(sinx)(n)=sin(x+2n π), (n=1,2,…);又(sin0) (2k)=0, (sin0)(2k-1)=(-1)k+1. ∴|R n (x)|=1)!(n x 2π1)(n ξsin 1n +⋅⎪⎭⎫ ⎝⎛+++≤1)!(n x 1n ++→0 (n →∞),∴∞n lim →R n (x)=0.∴sinx=x-3!1x 3 +5!1x 5+…+1)!(2n x (-1)12n n +++…=∑∞=++0n 12n n 1)!(2n x (-1),|x|<+∞.逐项求导得:cosx=1-2!1x 2+4!1x 4+…+(2n)!x (-1)2n n +…=∑∞=0n 2n n (2n)!x (-1),|x|<+∞.例5:求下列函数的展开式:(1)f(x)=ln(1+x);(2)f(x)=lnx 在x=1处. 解:(1)∵f (n)(x)=n1-n x )1(1)!-(n )1(+-,f (n)(0)=(-1)n-1(n-1)!, (n=1,2,…). 对f 的麦克劳林级数x-21x 2 +31x 3 +…+(-1)n-1n1x n +…求收敛半径R=n(-1)1)(n (-1)lim n 1-n ∞n +→=1,又当x=1时,收敛;当x=-1时,发散, ∴该级数的收敛域是(-1,1]. 当0≤x ≤1时,|R n (x)|=1n 1n n x ξ)(11)!(n n!)1(++++- =1n n ξ1x 1n )1(+⎪⎪⎭⎫ ⎝⎛++-≤1n 1+→0 (n →∞), 当-1<x<0时,|R n (x)|=1n n 1n n x θ)(1θx)(1n!n!)1(++++-=n1n θx 1θ1θx 1x ⎪⎭⎫⎝⎛+-++, 0≤θ≤1.∵0≤θx 1θ1+-≤1, ∴|R n (x)|≤θx1x 1n ++≤x 1x 1n -+→0 (n →∞). ∴∞n lim →R n (x)=0.从而ln(1+x)=x-21x 2 +31x 3 +…+(-1)n-1n 1x n+…=∑∞=1n n 1-n n x (-1), x ∈(-1,1].(2)设1+t=x ,则lnx=ln(1+t), t ∈(-1,1]. ∵ln(1+t) =∑∞=1n n1-n n t (-1), t ∈(-1,1].∴lnx 在x=1处的展开式为:lnx =∑∞=1n n1-n n )1-(x (-1), x ∈(0,2].例6:讨论二项式函数f(x)=(1+x)a 的展开式.解:当a 为正整数时,二项式展开式为f(x)=0a C +1a C x+2a C x 2+…+a a C x a; 当a 不等于正整数时,f (n)(x)=a(a-1)…(a-n+1)(1+x)a-n , n=1,2,… f (n)(0)=a(a-1)…(a-n+1), n=1,2,…对f(x)的麦克劳林级数 1+ax+2!1)-a(a x 2+…+n!1)+n -(a …1)-a(a x n+…求收敛半径 R=n)-(a …1)-a(a n!1)+n -(a …1)-a(a 1)!(n lim∞n +→=1,又当x=±1时,若a ≤-1, 发散;若-1<a<0, x=1收敛, x=-1发散;若a>0, 收敛. ∴收敛域不确定.又当|x|<1时,R n (x)=1-a n1n )θx 1(θx 1θ1x n!n)-(a 1)-a(a +⎪⎭⎫ ⎝⎛+-⋯+, 0≤θ≤1.由级数∑∞=+⋯0n 1n x n!n)-(a 1)-a(a 在(-1,1)收敛,知1n ∞n x n!n)-(a 1)-a(a lim+→⋯=0. 又0≤θx 1θ1+-≤1, ∴0<1-a n)θx 1(θx 1θ1+⎪⎭⎫ ⎝⎛+-≤(1+θx)a-1<(1+|x|)a-1≤2a-1.∴∞n lim →R n (x) =1-a n1n ∞n )θx 1(θx 1θ1x n!n)-(a 1)-a(a lim +⎪⎭⎫⎝⎛+-⋯+→=0. 从而有 (1+x)a=1+ax+2!1)x -a(a 2+…+n!1)x +n -(a …1)-a(a n +…=1+∑∞=1n nn!1)x +n -(a …1)-a(a , |x|<1.注:当a=-1时,x 11+=1-x+x 2+…+(-1)n x n+…=∑∞=-0n n n x )1(, |x|<1.当a=-21时,x11+=1-21x+4231⋅⋅x 2+…+(-1)n !)!n 2(!!1)-(2n x n +…=1+∑∞=1n n nx !)!n 2(!!1)-(2n (-1)=∑∞=++0n n n x 1)(2n !)!n 2(!!1)(2n (-1), x ∈(-1,1].例7:求下列函数的展开式: (1)2x 11+;(2)2x11-;(3)arctanx ;(4)arcsinx. 解:(1)记t=x 2, ∵t 11+=∑∞=-0n n n t )1(, |t|<1. ∴2x 11+=∑∞=-0n 2nn x )1(, |x|<1. (2)记t=-x 2, ∵t11+=∑∞=++0n n nt 1)(2n !)!n 2(!!1)(2n (-1), t ∈(-1,1].∴2x 11-=∑∞=++0n 2n x 1)(2n !)!n 2(!!1)(2n , |x|<1.(3)对(1)逐项求积:arctanx=∑∞=++-0n 12n n12n x )1(, |x|<1.(4)对(2)逐项求积:arcsinx=∑∞=+++0n 212n )1n 2(!)!n 2(x !!1)(2n , |x|≤1.例8:求下列函数在x=0处的幂级数展开式: (1)f(x)=(1-x)ln(1-x);(2)f(x)=lnx1x1-+. 解:(1)记t=1-x ∈(0,2), ∵lnt 在t=1处的幂级数展开式为:lnt=∑∞=1n n1-n n )1-(t (-1), t ∈(0,2]. ∴ln(1-x) 在x=0处的幂级数展开式为:ln(1-x)=∑∞=-1n nnx , x ∈[-1,1).∴(1-x)ln(1-x)=∑∞=+1n 1n n x -∑∞=1n n n x =∑∞=2n n 1-n x -∑∞=2n n n x -x =-x+∑∞=2n n1)-n(n x , x ∈[-1,1).(2)∵ln(1+x)=∑∞=1n n 1-n n x (-1), x ∈(-1,1];ln(1-x)=∑∞=-1n nnx , x ∈[-1,1). ∴lnx1x1-+在x=0处的幂级数展开式为: ln x 1x 1-+=ln(1+x)-ln(1-x)=∑∞=1n n 1-n n x (-1)+∑∞=1n n n x =2∑∞=1n 1-2n 1-2n x , x ∈(-1,1).例9:计算ln2的近似值,精确到0.0001.解:由ln x 1x 1-+=2∑∞=1n 1-2n 1-2n x , x ∈(-1,1). 当x=31时,ln2=21-2n 1n 311-2n 1⋅∑∞=.又 0<R n =2⎪⎭⎫⎝⎛⋯+⋅++⋅+++32n 12n 3132n 13112n 1<⎪⎭⎫ ⎝⎛⋯+++++4212n 313111)(2n 32=212n 31111)(2n 32-⋅++=1)(2n 3411-2n +⋅. 当n=4时,0<R n <73941⋅⋅<0.0001. ∴ln2≈21-2n 41n 311-2n 1⋅∑==2⎪⎭⎫⎝⎛⋅+⋅+⋅+75331713151313131≈0.6931.例10:用间接方法求非初等函数F(x)=⎰x0t -2e dt 的幂级数展开式.解:记x=-t 2, 由e x=∑∞=0n n n!x ,|x|<+∞,得2-t e =∑∞=-0n n 2n n!t )1(,|t|<+∞. 又R=1n n ∞n a a lim +→=n!)1(1)!(n )1(lim 1n n ∞n +→-+-=+∞,∴∑∞=-0n n2n n!t )1(在(-∞,+∞)内闭一致收敛. ∴⎰x0t -2e dt=∑⎰∞=-0n xn 2n n!t )1(dt=∑∞=++-0n 1n 2n 1)(2n n!x )1(, |x|<+∞.习题1、设函数f 在区间(a,b)上的各阶导数一致有界,即存在M>0,对一切x ∈(a,b),有|f (n)(x)|≤M, n=1,2,…. 证明:对任意x,x 0∈(a,b)有f(x)=∑∞=-0n n 00)n ()x x (!n )x (f , (f(0)(x)=f(x), 0!=1). 证:对任意x,x 0∈(a,b),∵|R n (x)|=1n 01)(n )x -(x 1)!(n ) (ξf +++≤1n a)-(b 1)!(n M++→0 (n →∞),由定理14.11可知:f(x)=∑∞=-0n n 00)n ()x x (!n )x (f .2、利用已知函数的幂级数展开式,求下列函数在x=0处的幂级数展开式,并确定它收敛于该函数的区间:(1)2x e ;(2)x 1x 10-;(3)x21x -;(4)sin 2x ;(5)x -1e x ;(6)22x -x 1x +;(7)⎰x 0t sint dt ;(8)(1+x)e -x;(9)ln(x+2x 1+). 解:(1)记t=x 2, 由e t=∑∞=0n n n!t ,|t|<+∞,得2x e =∑∞=0n n 2n!x ,|x|<+∞.(2)∵x 11-=∑∞=0n nx , |x|<1. ∴x 1x 10-=∑∞=+0n 10n x , |x|<1.(3)记t=-2x ,由t11+=∑∞=++0n n nt 1)(2n !)!n 2(!!1)(2n (-1), t ∈(-1,1].得x 211-=∑∞=+⋅+0n n n x 1)(2n !)!n 2(2!!1)(2n =∑∞=++0n n x 1)(2n !n !!1)(2n , x ∈[-21,21). ∴x21x -=∑∞=+++0n 1n x 1)(2n !n !!1)(2n , x ∈[-21,21).(4)sin 2x=2cos2x-1;由cost=∑∞=0n 2n n (2n)!t (-1), |t|<+∞,得cos2x=∑∞=-0n n2n)!(2n (2x ))1(, |x|<+∞.∴sin 2x=21-∑∞=-0n n 2n )!(2n (2x ))1(21=∑∞=+-1n n 21-n 21n x )!(2n 2)1(, |x|<+∞. (5)∵e x=∑∞=0n n !n x , |x|<+∞;x 11-=∑∞=0n n x , |x|<1.∴x -1e x =⎪⎪⎭⎫ ⎝⎛∑∞=0n n !n x ⎪⎭⎫ ⎝⎛∑∞=0n n x =∑∑∞==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛0n n n 0k x !k 1, |x|<1. (6)22x -x 1x +=⎪⎭⎫ ⎝⎛+--x 211x 1131=⎥⎦⎤⎢⎣⎡-∑∑∞=∞=0n n n 0n n (2x)(-1)x 31 =n n 0n ]x (-2)[131-∑∞=, |x|<21. (7)由sint=∑∞=++-0n 1n 2n )!1(2n t )1(,|t|<+∞,得t sint =∑∞=+-0n n 2n )!1(2n t )1(,|t|<+∞.∴⎰xt sintdt=⎰∑∞=+-x 00n n 2n )!1(2n t )1(dt=∑⎰∞=+-0n x 0n 2n )!1(2n t )1(dt=∑∞=+++-0n 1n 2n )!11)(2n (2n x )1(,|x|<+∞.(8)由e t=∑∞=0n n !n t ,|t|<+∞,得e -x=∑∞=0n n n !n x (-1),|x|<+∞,∴(1+x)e -x=∑∞=0n n n !n x (-1)+∑∞=+0n 1n n !n x (-1)=1+∑∞=++1n 1n n !1)(n nx (-1),|x|<+∞.(9)[ln(x+2x 1+)]’=2x 11+,由t11+=1+∑∞=1n nnx !)!n 2(!!1)-(2n (-1), t ∈(-1,1],得 2x 11+=1+∑∞=1n 2nnx !)!n 2(!!1)-(2n (-1), |x|≤1. ∴ln(x+2x 1+)=⎰∑⎥⎦⎤⎢⎣⎡+∞=x1n 2n n t !)!n 2(!!1)-(2n (-1)1dt =x+∑⎰∞=1n x 02n n x !)!n 2(!!1)-(2n (-1)=x+∑∞=++1n 12n nx )1n 2(!)!n 2(!!1)-(2n (-1)=∑∞=+++0n 12n 2nx )1n 2(!)!n 2(!!1)(2n (-1),|x|≤1.3、求下列函数在x=1处的泰勒展开式. (1)f(x)=3+2x-4x 2+7x 3;(2)f(x)=x1.解:(1)f(1)=8;f ’(1)=15;f ”(1)=34;f ”’(1)=42;f (n)(1)=0 (n ≥4). ∴在x=1处,f(x)=8+15(x-1)+17(x-1)2+7(x-1)3, |x|<+∞.(2)f(x)=x 1=1)-x (11+=∑∞=0n n n 1)-(x (-1) , |x-1|<1.4、求下列函数的麦克劳林级数展开式: (1))x 1)(x 1(x 2--;(2)xarctanx-ln 2x 1+. 解:(1)令)x 1)(x 1(x 2--=x )1()x 1(x 2+-=x 1A -+2x )1(B -+x1C+, 可得A=-41,B=21,C=-41. ∴)x 1)(x 1(x 2--=-x 1141-⋅+2x )1(121-⋅-x1141+⋅ =-∑∞=0n n x 41-∑∞=0n nn x (-1)41+∑∞=+0n n 1)x (n 21=∑∞=+0n n n ]x 2(-1)-1[n 21, |x|<1. (2)arctanx=∑∞=++-0n 12n n12n x )1(=∑∞=--1n 12n 1-n 1n 2x (-1), |x|<1.ln 2x 1+=21ln(1+x 2)=∑∞=1n 2n1-n n x (-1)21, |x|≤1. ∴xarctanx-ln 2x 1+=∑∞=-1n 2n 1-n 1n 2x (-1)-∑∞=1n 2n 1-n 2n x (-1)=∑∞=-1n 2n 1-n 1)n 2n(2x (-1), |x|<1.5、试将f(x)=lnx 按1x 1x +-的幂展开成幂级数.证:∵ln x 1x1-+=2∑∞=++0n 12n 12n x , |x|<1.∴lnx=x1x 11x 1x11+--+-+=212n 0n x 1x 112n 1+∞=⎪⎭⎫⎝⎛+-+∑, |x|<1.。
幂级数的展开
x
(n + 1)!
x
e
x
由比值判别法知:级数∑
n =0
x
n +1
(n + 1)!
e 收敛,故其一般项趋于0,
即 lim
x
n +1
n →∞
(n + 1)!
e =0,x ∈ (-∞,+∞) 从而有 lim Rn ( x) = 0
x n →∞
16
间接法
根据唯一性, 利用常见展开式, 通过变量代换, 根据唯一性 利用常见展开式 通过变量代换 四则运 恒等变形, 逐项求导, 逐项积分等方法,求展开式 求展开式. 算, 恒等变形 逐项求导 逐项积分等方法 求展开式
定理中的公式称为函数f(x)按(x − a)的幂级数展开到n阶的泰勒公式 或f(x)在x = a处的n阶泰勒公式,简称为n阶泰勒公式。
f(x)的泰勒公式表明,函数f(x)的值可近似地表示为 1 1 (n) 2 f(x) ≈ f(a) + f' (a)(x - a) + ' ' f (a )( x − a ) + L + f (a )( x − a ) n 2! n! 而近似误差可由Rn ( x)来估计。
§7.6函数的幂级数展开 7.6函数的幂级数展开
一、泰勒级数 二、泰勒公式 三、函数的泰勒级数展开
1
问题 n ∞ n −1 x ∑ (−1) n = ln(1 + x )
n =1
( −1 < x ≤ 1)
f ( x) = ∑an ( x − x0 )n
n=0
∞Leabharlann 存在幂级数在其收敛 域内以f(x)为和函数 域内以 为和函数
函数的幂级数展开
y
6
4
2
对任何实数 x, 都有 e| x| n 1 lim | x | 0, n ( n 1)!
因而 lim Rn ( x ) 0.
n
y ex
(n 2)
(n 0)
1 2
(n 3)
1
O
2
x
由定理 14.11 得到
1 1 2 e 1 x x 1! 2!
§2 函数的幂级数展开
由泰勒公式知道, 可以将满足一定条件的 函数表示为一个多项式与一个余项的和 . 如 果能将一个满足适当条件的函数在某个区间 上表示成一个幂级数, 就为函数的研究提供 了一种新的方法.
一、泰勒级数
二、初等函数的幂级数展开式
前页 后页 返回
一、泰勒级数
在第六章§3的泰勒定理中曾指出, 若函数f在点x0 的某邻域内存在直至n+1阶的连续导数, 则 f ( x0 ) f ( x ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 2! f ( n ) ( x0 ) ( x x0 )n Rn ( x ), (1) n! 这里为 Rn ( x )拉格朗日型余项
这是泰勒公式带来的重要结论.
再进一步, 设函数 f 在x x0 处存在任意阶导数, 就 可以由函数 f 得到一个幂级数
f ( x0 ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 2! ( n) f ( x0 ) ( x x0 )n , n!
1 x ( n1) Rn ( x ) f ( t )( x t )n dt , n! 0
1 Rn ( x ) f ( n1) ( ) x n1 , 在 0 与 x 之间, ( n 1)!
幂级数展开的通用公式
幂级数展开的通用公式在数学领域中,幂级数是一种重要的数学工具,被广泛应用于各个领域,包括微积分、物理学、工程学等。
幂级数的展开是将一个函数表示为一列无限级数的形式,可以通过幂级数的通用公式来实现。
本文将介绍幂级数的基本概念、通用公式以及具体的应用案例。
一、幂级数的基本概念幂级数是一种形如 f(x) = a₀ + a₁x + a₂x² + a₃x³ + ... 的级数,其中a₀, a₁, a₂, a₃, ... 是常数系数,被称为幂级数的系数。
x 是变量,表示幂级数的自变量。
对于每个给定的 x 值,幂级数可以收敛或发散。
幂级数的收敛性需要通过一些数学方法判断,例如比值测试、根值测试等。
如果幂级数在某个区间内对于所有 x 值都收敛,那么该幂级数在该区间内是收敛的。
二、幂级数展开的通用公式幂级数可以通过通用公式进行展开。
幂级数展开的通用公式可以表示为:f(x) = Σ(aₙ * (x - c)ⁿ)在通用公式中,aₙ 是幂级数的系数,(x - c) 是幂级数的基,n 是指数。
幂级数展开的通用公式表达了幂级数的每一项,通过不同的系数和指数可以获得不同的幂级数展开形式。
三、幂级数展开的应用案例幂级数展开在实际问题中有广泛的应用。
以下是一些常见的应用案例:1. 泰勒级数展开:泰勒级数展开是将一个函数在某个特定点处展开成幂级数的形式。
通过将函数进行幂级数展开,可以将复杂的函数近似表示为简单的幂级数形式,从而方便进行计算。
例如,将函数 sin(x) 展开成泰勒级数可以得到它的近似值。
2. 函数逼近:幂级数展开可以用于函数逼近问题。
通过选择合适的系数和指数,可以将一个给定的函数逼近成一个幂级数。
这对于需要近似计算的函数,在一定精度要求下可以提供快速的计算解决方案。
3. 物理学应用:幂级数展开在物理学中有广泛的应用。
例如,电磁场的势能可以通过幂级数展开来进行描述和计算。
这种展开可以帮助解决复杂的物理问题,并为物理学家提供更好的理解和预测能力。
七个常用幂级数展开式
七个常用幂级数展开式幂级数展开式是由无限正整数幂按从小到大序列构成的无限级数,用符号表示为:若给定一个函数 f(x),它含有一个数 x,那么在任意给定的点x=a我们可以用无穷个幂级数展开式来表示它,具体形式为:f(x) = a + a(x - a) + a(x - a) + a(x - a) + a(x - a) +…其中a、a、a、a、a等分别是f(x)的系数,而a可以为任意数。
在数学中,有七个常用的幂级数展开式。
下面简单介绍一下每个幂级数展开式的基本特征。
(1)指数级数展开式:指数级数展开式是指一个函数f(x)可以用指数形式表示,其数学表达式如下:f(x) = a + ae^x + ae^(2x) + ae^(3x) + ae^(4x) +…指数级数展开式的拟合能力非常强,尤其是在x非常小的情况下。
(2)线性级数展开式:线性级数展开式也叫多项式函数,其数学表达式如下:f(x) = a + ax + ax + ax + ax +…线性级数展开式是一种最简单的幂级数展开式,其展开形式与指数级数展开式不同,它只含有一个变量,且系数仅有一个未知常数。
(3)正弦级数展开式:正弦级数展开式是根据正弦函数(sin x)的拓展而得到的级数,其数学表达式如下:f(x) = a + asin x + asin(2x) + asin(3x) + asin(4x) + ...正弦级数展开式的非常强的拟合能力可以用来分析并解释许多实际的数据,例如地理数据、医疗数据、经济数据等。
(4)余弦级数展开式:余弦级数展开式也叫余弦函数,它是根据余弦函数(cos x)来拓展的,其数学表达式如下:f(x) = a + acos x + acos(2x) + acos(3x) + acos(4x) +…余弦级数展开式跟正弦级数展开式类似,但它可以表示一些平稳变化的趋势和抖动性变化的趋势。
(5)正切级数展开式:正切级数展开式是根据正切函数(tan x)的拓展而得到的,其数学表达式如下:f(x) = a + atan x + atan(2x) + atan(3x) + atan(4x) +…正切级数展开式可以用来分析类似单项式函数的复杂函数,并可拟合有数据背景的正弦函数和余弦函数。
6.4 函数的幂级数展开
1 3 1 5 x n 1 sinx x x x (1) 3! 5! ( 2n 1)! ( x ) .
用直接法还可得到,对任意实数
a
2 n 1
a,有
a(a 1) 2 a(a 1)(a 2) 3 (1 x ) 1 ax x x 2! 3! a(a 1)(a n 1) n x n! ( 1 x 1)
例题6-23
将函数 f ( x ) cos x 展开为x的幂级数.
x ) cosx , 解 因为(sin
2 n 1 1 3 1 5 x sinx x x x (1)n1 3! 5! ( 2n 1)! ( x ) .
而
所以根据幂级数可逐项求导的法则, 可得
中的余项 rn ( x) 0(n ) 时,函数f(x)能
够在x0点的邻域内展开为 ( x x0 ) 的幂级数
式(6.8),即有
f ( x0 ) f ( x ) f ( x0 ) f ( x0 )( x x0 ) ( x x0 ) 2 2! ( n) f ( x0 ) n ( x x0 ) (6.9) n!
在x 1点处展开式是否成立,要视 a值而定,
1 1 对应于 a 1, a , a , 有 2 2 1 1 x x 2 x 3 ( 1 x 1) 1 x 1 1 2 1 3 3 1 3 5 4 1 x 1 x x x x 2 2 4 2 4 6 2 4 6 8 ( 1 x 1)
例 6-21 试将函数 f(x) = ex 展开成 x
的幂级数.
( n) x 由 f ( x ) e (n 1 , 2 , 3 ,) , 可以 解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案函 数 的 幂 级 数 展 开复 旦 大 学 陈纪修 金路1. 教学内容函数的幂级数(Taylor 级数)展开是数学分析课程中最重要的内容之一,也是整个分析学中最有力的工具之一。
通过讲解将函数展开成幂级数的各种方法,比较它们的优缺点,使学生在充分认识函数的幂级数展开的重要性的基础上,掌握如何针对不同的函数选择最简单快捷的方法来展开幂级数,提高学生的计算与运算能力。
2.指导思想(1)函数的幂级数(Taylor 级数)展开作为一个强有力的数学工具,在分析学中占有举足轻重的地位。
通常的数学分析教科书往往注重于讲解幂级数的理论,而忽视了讲解将函数展开成幂级数的方法,这样容易造成学生虽然掌握了幂级数的基本理论,但在实际计算中,即使对于一个很简单的函数,在求它的幂级数展开时也会感到很困难,这种状况必须加以改变。
(2)求函数的幂级数展开是每个数学工作者时时会碰到的问题,虽然我们有函数的幂级数展,但一般来说,直接利用(*)式来求函数的幂级数展开往往很不因此有必要向学生介绍一些方便而实用的幂级数展开方法,提高学生的实际计算能力,3. f (x )在 x 0 的某个邻域O (x 0, r )中能级数:(*).,(0r x O(1) x ∈(-∞, +∞)。
(2) =+0!)12(n n )!12()1(!5!31253+-+-+-=+n x x x x n n+ …, x ∈(-∞, + ∞)。
(3) f (x ) = cos x = ∑∞=-02!)2()1(n nn x n)!2()1(!4!21242n x x x nn -+-+-= + …, x ∈(-∞, + ∞)。
(4) f (x ) = arctan x = ∑∞=----112112)1(n n n xn 12)1(531253+-+-+-=+n x x x x n n + …, x ∈[-1, 1]。
(5) f (x ) = ln (1 + x ) = ∑∞=+-11)1(n nn x nnx x x x x nn 1432)1(432--++-+-= + …, x ∈(-1, 1]。
(6) f x x ()()=+1α,α≠0是任意实数。
当α是正整数m 时,f (x ) = (1 + x )m = 1 + mx +22)1(x m m -+ … + 1-m mx + x m ,x ∈(-∞, +∞) 即它的幂级数展开就是二项式展开,只有有限项。
当α不为0和正整数时,∑∞=α⎪⎪⎭⎫ ⎝⎛α=+0)1(n n x n x , ⎪⎩⎪⎨⎧><<--≤-∈-∈-∈.0,01,1],1,1[],1,1(),1,1(ααα当当当x x x 其中 ⎪⎪⎭⎫ ⎝⎛n α= !)1()1(n n +-α-αα , (n = 1,2,…) 和10=⎪⎪⎭⎫ ⎝⎛α。
设函数f (x )在 x 0 的某个邻域O (x 0, r )中任意阶可导,要求它在O (x 0, r )中的幂级数展开,一开始就考虑利用公式(*)往往不是明智之举。
下面我们通过具体实例介绍幂级数展开的一些方便而实用的方法:1. 通过各种运算与变换,将函数化成已知幂级数展开的函数的和。
例1 的幂级数展开。
解 ⎪⎭⎫ ⎝⎛+⋅x 21172 ,)n n x +⎥⎦⎤12, ).21,21(-∈x例2 求x x f 3sin )(= 在6=x 的幂级数展开。
解 )6(3c o s 41)6(6s i n 433s i n 41s i n 43s i n )(3πππ--⎪⎭⎫ ⎝⎛-+=-==x x x x x x f )6(3cos 41)6cos(83)6sin(833πππ---+-=x x x , 利用(2)式与(3)式,即得到).,(,)6)(132()!2()1(83)6()!12()1(833)(2120012+∞-∞∈--⋅---+-=-∞=∞=+∑∑x x n x n x f n n n n n n n ππ 例3 求 )0(,ln )(>=x x x f 关于变量11+-x x 的幂级数展开。
解 令,11+-=x x t 则)10(,11<<-+=t ttx 。
利用(5)式,即得到 )1ln()1ln(11ln ln t t t t x --+=-+= nn n n n t n t n ∑∑∞=∞=++-=1111)1(.0,)11(12121212112121>+-⋅+=⋅+=∑∑∞=++∞=x x x n t n n n n n2.对已知幂级数展开的函数进行逐项求导或逐项积分。
例4 求21)(xx f = 在1=x 的幂级数展开。
解 由于∑∞=-=-+==0)1()1(111)(n n x x x x g ,利用逐项求导,即可得到).2,0(,)1)(1()1()(')(101∈-+=-=-=∑∑∞=∞=-x x n x n x g x f n n n n例 5 求 f (x )= arcsin x 在0=x 的幂级数展开。
解 利用(6)式 )21(-=α,可知当x ∈(-1,1)时,n x n n 2!)!2(!)!12(-+ …,x ∈[-1, 1]。
Raabe 判别法得到。
3.对形如)()(x g x f ,)()(x g x f 的函数,可分别用 Cauchy 乘积与“待定系数法”。
设 f (x ) 的幂级数展开为∑∞=0n nn x a ,收敛半径为R 1,g(x ) 的幂级数展开为∑∞=0n n n x b , 收敛半径为R 2,则f (x )g(x )的幂级数展开就是它们的Cauchy 乘积:f (x )g(x ) = (∑∞=0n nn x a )(∑∞=0n nn x b ) =∑∞=0n n nx c,其中c n =∑=-nk kn k ba 0,∑∞=0n n nx c的收敛半径≥R min {R 1,R 2}。
当b 0 ≠ 0时,我们可以通过待定系数法求)()(x g x f 的幂级数展开:设 )()(x g x f = ∑∞=0n n nx c,则(∑∞=0n nn x b ) (∑∞=0n nn x c )=∑∞=0n n nx a,分离x 的各次幂的系数,可依次得到b 0c 0 = a 0 ⇒ c 0 =a ,b 0c 1 + b 1 c 0 = a 1 ⇒ c 1 = b 0 c 2 + b 1 c 1 + b 2 c 0 = a 2 ⇒ c 2 ……一直继续下去,可求得所有的c n 。
例6 求e x sin x 的幂级数展开( 到x 5 )。
解432!5 由于x ∈(-∞, + ∞)都成立。
例7 解 c 5 x 5 + …,于是) = -+-!5!353x x x , =152,因此tan x = x + 31x 3 + 152 x 5+ …。
4. “代入法”对于例7,我们还可采用如下的“代入法”求解:在u -11= ∑∞=0n n u = 1 + u + u 2 + … 中,以u =+-!4!242x x 代入,可得到x cos 1= 1 + (+-!4!242x x ) + ( +-!4!242x x )2 + … = 1 + x 2 + 245x 4+ …,然后求sin x 与xcos 1的Cauchy 乘积,同样得到上述关于tan x 的幂级数展开。
需要向学生指出的是,利用“待定系数法”与“代入法”求幂级数展开,我们目前无法得到它的收敛范围,而只能知道在x =0x 的小邻域中,幂级数展开是成立的(事实上,tan x 的幂级数展开的收敛范围是 (-2π, 2π),它的证明需要用到复变函数的知识)。
“代入法”经常用于复合函数,例如形如e f (x ),ln(1 + f (x ))等函数的求幂级数展开问题。
例8 求x e x f sin )(= 在0=x 的幂级数展开( 到x 4 )解 以 +-=+-==+∞=∑6)!12()1(sin 3120x x x n x u n n n +++===∑∞=x x n x e x f n n x320sin sin 61sin 21sin 1!sin )(即可得到,81211)(42sin +-++==x x x e x f x 注 对于求函数x e x f c o s )(=在0=x 的幂能采用以-+-==42241211cos x x x u代入(f 该怎样正确使用“代入法”。
例9应理解为=≠.0,解= -+-!5!3142x x 。
令u - -+3232u u ,即得 x -!5!34) - 21( -+-!5!342x x )2 + … = ---180642x x 。
利用例9,我们可以得到一些有趣的结果。
在前面我们已得到等式x x sin = ∏∞=π-1222)1(n n x , 两边取对数,再分别将ln )1(222π-n x 展开成幂级数,ln x x sin = ∑∞=π-1222)1ln(n n x = - ∑∞=+π+π1444222)21(n n x n x 。
将上式与本例中的结果相比较,它们的x 2系数,x 4系数都对应相等,于是就得到等式∑∞=121n n= 62π, ∑∞=141n n = 904π。
如果我们在计算时更精细些,也就是将ln xxsin 的幂级数展开计算到x 6,x 8,…,还可以获得∑∞=161n n ,∑∞=181n n ,…的精确值。
注意点1. 如果)(x f 在0x 邻域的幂级数展开存在,则幂级数必然是它在 x 0 的Taylor 级数(*);但反之则不然。
事实上,我们举出过在0x x = 任意阶可导的函数)(x f ,它在0x 的Taylor级数并不收敛于)(x f 。
但一般来说,对于有解析表达式的初等函数)(x f ,只要它在0x x = 任意阶可导,则它在0x 的Taylor 级数就是它在0x 邻域的幂级数展开。
2. 要让学生知道,遇到求函数的幂级数展开问题,不要首先想到用(*)式。
事实上,上面我们介绍的求幂级数展开的一些方法,比起直接利用公式(*)来都要方便,而学生应该学会如何在上述方法中选择一种最方便最快捷的方法。
3. 一般来说,利用“待定系数法”与“代入法” 求幂级数展开,我们往往只能求出幂级数的初始几项,而不易求出幂级数的一般项,也不易求出幂级数的收敛半径。
但是对于许多具体问题,只要求出幂级数的初始几项就够了,例如例9中的问题。
关于幂级数的收敛半径,等学生学习了复变函数课程后就很容易确定。