脂肪干细胞运用

脂肪干细胞运用
脂肪干细胞运用

ADSCs的分离与纯化

关于ADSCs的获取方法很多,但不管哪种方法所得到的并非单一的脂肪干细胞,是一组具有干细胞特性的细胞群。目前应用最广泛的分离方法是酶胶原消化法。首先将无菌条件下切取的脂肪组织块剪成细小的颗粒,PBS液冲洗干净后,用0.1%的胶原酶在37℃下振荡消化4O~90 min,再用含10%胎牛血清的等体积DMEM培养基终止。1 200 r/min离心5~10 min,弃上清液及悬浮的脂肪组织,重悬细胞后经过细胞筛过滤,所得细胞按2—4×105/cm 接种于50ml培养瓶内。37℃条件5%的CO 饱和湿度培养箱内培养,2 d后首次换液,以后3d换液一次,至细胞达70%~8O%融合时用0.25%胰酶消化,并传代。经过提取获得的以脂肪干细胞为主的细胞群接种后数小时即开始贴壁生长,24h内完成贴壁。细胞的形状与成纤维细胞相似,体积较小,核浆比较大,随后细胞体积渐增大,克隆形成。经传代后,细胞的形态及排列才趋于一致。由于目前尚未发现脂肪干细胞表面存在特异性的分子标记物,因此无法利用分子表型来分离纯化。然而可通过纯化脂肪组织块来间接达到纯化脂肪干细胞的目的。流式细胞仪检测显示:传至第3代时,可达95%以上的细胞纯度。

ADSCs的生物学特性

1.ADSCs的鉴定

在ADSCs鉴定上,现阶段尚无特异性鉴定方法。用免疫荧光法和流式细胞术检测结果均显示ADSCs表达特异性分子CD44,OCT一4,E—eadherin,流式细胞术检测细胞周期显示绝大多数细胞是处于静止期

的干细胞,传代后生长迅速,随机挑选来源标本,对细胞进行染色体核型分析显示ADSCs具有遗传稳定性。

ADSCs分泌多种生长因子

在生理功能方面,脂肪干细胞能分泌相当数量的细胞因子,包括肝细胞生长因子(HGF)、血管内皮生长因子(VEGF)、胎盘生长因子(PGF)、转化生长因子一B(TGF—B)、成纤维细胞生长因子(FGF一2)等,低表达的因子有Ang一2 C。

2.ADSCs的多向分化能力

与骨髓间充质干细胞相比,脂肪干细胞具有储量丰富、取材容易、扩增迅速、不宜衰老、排斥反应低等优点。在特定培养基和特异的诱导剂作用下可分化为特定的体细胞,在组织修复、细胞移植、基因治疗等领域有着潜在价值。

向脂肪细胞分化:在特定培养基中加入一定浓度地塞米松、胰岛素、吲哚美辛及1一甲基一3~异丁基一黄嘌呤,3周后发现ADSCs向脂肪细胞分化,可检测出ADSCs表达许多脂肪细胞的特异性标记:脂蛋白脂肪酶、脂肪酸结合蛋白aP2、PPAR—r2、leptin(瘦素)、Glut4(葡萄糖转运蛋白等。镜下观察可见胞内有空泡形成。这些特点是脂肪细胞形成的标志。

向血管内皮细胞分化:将ADSCs置于含甲基纤维素和血管内皮生长因子的半固体培养基中加以培养,镜下可见有分支状的管腔结构形成,免疫组化证实有内皮细胞特异性的表面标记一CD31和vW 因子。Planat等描述了将培养3d的ADSCs注入后肢缺血损伤的实验小鼠后

肢肌肉中,15d以后给以血管造影及多普勒检查发现损伤后肢血供出现显著改善的实验结果。

向成骨细胞分化: h—ADSCs在加入维生素C、B一磷酸甘油(BGP)和维生素D3的培养基中培养几代后,细胞表面形成的突起,其形态与体内的成骨细胞相似,用茜素红染色可见细胞内出现了钙小结”。国外有将ADSCs作为种子细胞植入网状支架中,成功地修复狗的颅骨的报导。国内马舟涌等将获得的脂肪干细胞和进行成骨诱导后的脂肪干细胞分别种植在复合骨形态发生蛋白和纤维蛋白胶支架上,并移植到骨缺损模型中。实验证明,经诱导后的脂肪干细胞在复合骨形态发生蛋白和纤维蛋白胶支架中可以促进骨骼愈合。这也间接证明了ADSCs的确向成骨细胞分化。

向软骨细胞分化:在体外,将维生素C、转化生长因子(TFG)、胰岛素添加到特定培养基里,可以定向诱导AD—SCs向软骨细胞分化。结果在培养基里形成了细胞小结,经免疫组化分析得知,这些细胞小结表达Ⅱ型胶原纤维、硫酸软骨素、硫酸角质素等。杨亚军等用CDMPI 体外诱导sD大鼠脂肪干细胞,结果诱导后的脂肪干细胞形态由长梭型向软骨细胞的多角形方向转变。免疫组化显示CDMPI诱导大鼠ADSCs后可以分泌软骨特异性基质糖胺聚糖(GAG)和Ⅱ型胶原,并进一步向软骨细胞方向分化增殖。

向心肌细胞分化:从脂肪组织中分离的脂肪基质血管组分(stromal vascular fraction,SVF)即脂肪组织去除成熟脂肪细胞后,所获得的具有于细胞特性的基质细胞,直接种植在半固体的甲基纤维素培养

基中,6d后,出现了各种不同的细胞形态,有成群的前脂肪细胞/脂肪细胞,成纤维样细胞等等,11—14d后,一些圆形的细胞开始了独立的收缩活动,在几天内,肌管样结构出现,并大量生长增殖,20—30d后,局部出现了一簇有结合力的细胞群体,和有分支的纤维细胞共同结合在一起。在这期间,24d时,整个局部出现了单一节律的搏动。在分子水平上,这些搏动的细胞能表达几种心脏特有的mRNA,如转录因子,GATA一4和Nkx2.5,心室和心房肌凝蛋白轻链MLC一2v和MLC一2a,以及ANP(心钠素)。这些数据表明了这些搏动细胞的心肌细胞特性。

向神经细胞方向分化:国外一些研究人员用B一巯基乙醇(B—mercaptoethanol,B—ME)诱导h—ADSCs向神经细胞分化,30min后即出现类神经元样的细胞,3h后出现了神经元细胞表型,表达神经细胞早期阶段的标志性因子nestin、NSE、NeuN等,这证明了ADSCs 能在体外分化为神经前体细胞,目前技术水平尚不能使之向成熟的神经元细胞或星型胶质细胞分化。

ADSCs的临床应用前景展望

1.在组织工程中的应用

应用组织工程有两种方案,一种是将种子细胞在体外接种于支架上培养,然后再进行移植;一种是将种子细胞与可降解材料复合物直接移植到体内诱导目标组织形成。目前脂肪干细胞应用于临床仍处于动物实验阶段。有报道利用脂肪干细胞和支架成功地修复了骨缺损模型中犬的骨缺损。

脂肪干细胞在修补受损伤的组织时与体外生物I型胶原支架材料的相容脂肪干细胞具有增殖能力和多向分化潜能。对多种组织的损伤具有良好的修复作用。而且取材方便,是组织工程研究中的重要种子细胞之一。不同材料对细胞的生长、分化和黏附均有不同的影响,因而种子细胞能否在支架材料上良好生长,并表达自身特异性功能是目前组织工程研究的一个热点。

I型胶原支架材料与脂肪干细胞具有良好的体外生物相容性,而且具有对细胞、组织等无毒性;不影响生物体的生长、增殖等功能。有实验表明用体外生物I型胶原支架材料与脂肪干细胞进行体外混合培养,证明了脂肪干细胞能在I型胶原支架材料上良好的附着、生长、增殖并在三维支架材料内保持均匀分布。故I型胶原支架可作为构建脂肪组织工程的细胞载体。I型胶原作为体外细胞培养支架时.有促进细胞粘附和诱导生长分化的作用,是良好的培养粘附剂。其降解产物可被细胞利用合成新的基质。不产生毒性代谢产物,不影响内环境pH 值,因此不会影响细胞的生长增殖。胶原蛋白及相关制品已广泛应用于临床医学中,已被美国FDA 批准作为人工皮肤材料。

研究利用人脂肪干细胞作为种子细胞,进行体外细胞种植胶原支架。通过倒置显微镜和电镜观察细胞伸展、黏附和生长过程。镜下显示,种子细胞种植胶原材料后,生长状态良好,无明显细胞毒性表现,在培养条件相对稳定的情况下.细胞可以进行正常增殖、迁移并分泌细胞外基质。通过检测.细胞与支架的黏附率达97%以上。说明该支架对细胞有良好的亲和性。

脂肪干细胞在骨组织中的应用

骨外伤、骨肿瘤和先天性畸形患者中常存在大面积的骨缺损。而修复材料的匮乏一直是临床面临的难题之一。传统骨修复的材料,如肋骨和髂嵴等自体骨,可获取的组织量有限。且对取材部位造成损伤:磷灰石和去矿化异体骨等异体材料,存在免疫排斥、疾病传染及骨溶解等问题。近年来,干细胞和骨组织工程研究的不断深人,为临床骨缺损的修复提供了新思路。脂肪干胞(Adipose—derived stem cell,ADSC)由于来源丰富且容易获取,体内、外实验均证实其能分化形成骨样组织,已成为骨组织工程的重要的种子细胞来源。而外国人Friedenstein将骨祖细胞分为确定性骨祖细胞(determined osteogenic precursor cells,DOPC)和诱导性骨祖细胞(inducible osteogenic precursorcells,IOPC),确定性骨祖细胞是间充质细胞不能自发向成骨细胞转化,在一定的诱导因素后,才能向成骨细胞转化。由于脂肪干细胞来源稳定且含量丰富,在体内不经基因修饰或外源性生长因子刺激也能修复骨缺损,这使它在未来组织工程骨修复临床骨缺损的应用中备受关注。但目前对脂肪干细胞参与修复骨缺损的机制尚不清楚。研究表明间充质干细胞随着传代次数的增多而逐渐丧失其多向分化潜能。向脂肪细胞的分化能力只能维系10代以内,以后向成软骨细胞、神经星状细胞分化的功能相继丧失,但是体外培养的间充质干细胞向成骨细胞的分化能力可维持20代以上,有研究证实不同种属间间充质干细胞可能有差异因此今后的研究需要深入了解脂肪干细胞在局部骨缺损修复中的作用,并寻找最佳的局部环境

促进其成骨分化。自然状态下,体内调控干细胞成骨分化的环境信号,包括局部微环境内的细胞因子、细胞与细胞或细胞与基质的相互作用,以及机械应力等,在今后,对这些因素的更多发现,及其对它们相互作用的更深入理解可能是体外条件下精确地调控脂肪干细胞成骨分化的关键。目前,已有应用自体脂肪干细胞修复大面积颅颌面缺损的报道,随着对脂肪干细胞成骨机制的了解,相信脂肪干细胞参与构建的组织工程化骨将会尽快地真正应用于临床大面积骨缺损的修复。针对性别因素对脂肪干细胞分化影响的研究发现,雌性动物的脂肪干细胞脂肪分化趋势较强,而雄性动物的脂肪干细胞更易表达成骨标志物,这可能与激素促进了脂肪干细胞向脂肪细胞分化有关。

与此相应,科学家研究发现,男性脂肪干细胞的成骨分化时间早于女性,分化速度更快,分化效率也明显高于女性。目前,对胚胎期及出生后骨发生分子机制的研究受到广泛关注,一些分化调控因子,如骨形态发生蛋白骨髓的间充质干细胞家族等,被用来增强脂肪干细胞体内、外的成骨分化能力。骨髓的间充质干细胞家族属于旁分泌的转化生长因子TGF—B家族。大量研究示,骨损伤愈合过程中, 骨髓的间充质干细胞具有刺激间充质干细胞向成,目细胞分化的作用。骨髓的间充质干细胞通过与细胞表面骨髓的间充质干细胞受体结合,磷酸化下游信号分子R—Smad(Smad l、5和8),磷酸化的R—Smad与Smad 4结合形成复合体.进而与核内转录因子结合,调控成骨相关靶基因I 型胶原蛋白、OPN 和OCN 等的转录.目前通过转染骨髓的间充质干细胞基因至脂肪干细胞,证实内源性表达增强的骨髓的间充质干细胞2、

骨髓的间充质干细胞4和骨髓的间充质干细胞7等能明显增强脂肪干细胞的体内、外成骨能力。

脂肪干细胞上皮分化在喉组织工程中的应用.

声带瘢痕是一个较难解决的临床问题,尚缺乏有效的治疗手段,目前其主要的治疗方法是向声带中注射填充物或细胞,试图恢复声带浅层的振动性。声带振动受损主要是由于固有层细胞外基质的中断、胶原沉积增多、弹性纤维的丢失等引起。有证据表明声带注射细胞或基质对恢复声带黏膜波的作用是有的。另外,从人的声带中获取成纤维细胞比较困难。现有的组织工程方法是将声带的成纤维细胞包被在一系列的支架上。用自体细胞来源的组织结构工程代替声带被覆黏膜可能成为严重声带瘢痕的治疗方式。实现该目标的第一步是构建类似于声带固有层和上皮层的三维细胞群基质。切除声带瘢痕后,用新的有组织结构的细胞外基质和上皮作为替代物,改善声带的振动功能。本研究便是介绍一种新的组织工程方法来构建声带被覆黏膜的替代物,以便恢复声带固有层和上皮的振动功能。通过脂肪抽吸分离获得脂肪源干细胞是一种多功能干细胞,作为一种自体间质细胞的来源,已被广泛用来产生软骨细胞、成骨细胞和纤维细胞。脂肪源干细胞与骨髓源间质干细胞具有相似的遗传特征,可以分化成外胚层和内胚层细胞。研究构建了声带黏膜的组织工程替代物,三维的纤维蛋白和脂肪源干细胞的凝胶与声带的固有层和黏膜层有着相似的显微结构和特性。在研究中,成人脂肪源干细胞可以双向分化成上皮细胞和间质细胞系,并且具有组织结构,表皮生长因子和气体界面是上皮分化的必

备条件。研究结果初步表明,利用组织工程制作声带替代物是可行的。脂肪干细胞在诱导表皮细胞中的研究进展

脂肪干细胞作为一种种子细胞,有望在一定的条件下定向诱导分化成为表皮细胞,并且提高诱导分化率和扩增能力,最终达到临床治疗使用的目的。其具有的多向分化潜能,组织来源丰富,取材方便,创伤小,增殖能力强等优点是其他众多间充质干细胞所无法比拟的。但同时脂肪干细胞在无免疫力的移植受体上表现的肿瘤样无限增生的特性,在进入临床试验前仍需要寻找并建立合适的动物模型进行长期观测以确定其移植的安全性;其次,脂肪干细胞向表皮细胞诱导尚无一安全稳定并行之有效的培养、诱导方式;以及在批量提取生产脂肪干细胞的过程中,如何保障细胞质量的均一稳定性仍然有待进一步研究。脂肪干细胞通过向表皮细胞进行诱导无疑对难愈合创面的修复提供了非常理想的解决方案,作为一种可用的种子细胞,有望在一定的条件下定向诱导分化成为表皮细胞,并且提高诱导分化率和扩增能力,最终达到临床治疗使用的目的。其具有的来源丰富,取材方便,创伤小,增殖能力强等优点无疑是其他众多间充质干细胞所无法比拟的。在未来的科技发展条件下一定会实现脂肪干细胞诱导转化形成表皮细胞的美好愿望的。

2. 在缺血性疾病中的应用

ADSCs能分泌多种细胞生成因子,这一特性可被应用于缺血眭疾病的治疗。在整形外科领域,研究人员将标记有Dil的ADSCs注射于大鼠背部任意型皮瓣蒂部,1周后发现实验组注射部位毛细血管显著增生,

在增生的毛细血管周围大量存在标记有Dil的血管内皮细胞,皮瓣成活面积显著高于对照组。推测其机理:一方面ADSCs分化为血管内皮细胞,另一方面分泌促血管生成因子所致。

3.在慢性炎症疾病中的应用

有研究表明,生物活性因子在某些组织再生过程中发挥重要作用,其机理与这些生物因子能促使修复细胞向局部迁移、增殖和增加胶原分泌量来加速创伤愈合。研究人员利用ADSCs可分泌多种生物活性因子这一特点将它注入由TNBS诱导的结肠炎创面,发现其愈合速度且显增快.

4.旁分泌

脂肪组织通过分泌细胞因子及生长因子参与机体的内分泌[3]。ASCs 分泌大量的上皮生长因子( EGF) 、血管内皮生长因子( VEGF) 、碱性成纤维细胞生长因子( bFGF ) 、肝细胞生长因子( HGF) 、转化生长因子-β( TGF-β) 、胰岛素样生长因子( IGF) 及脑源性神经营养因子( BDNF) [4~ 9],它们也分泌细胞因子如Flt-3 配体、粒细胞集落刺激因子( G-CSF) 、粒细胞巨噬细胞刺激因子( GMCSF)、巨噬细胞集落刺激因( M-SCF) 、白细胞介素-6( IL-6) 、白细胞介素-7( IL-7) 、白细胞介素-8( IL-8) 、白细胞介素-11( IL-11) 、白细胞介素-12( IL-12) 、白血病抑制因子( LIF) 及肿瘤坏死因子-α( TNF-α) 。脂肪组织这种旁分泌因子的分泌很可能导致肥胖症患者体内上述因子表达量的升高。特别要指出的是这些被ASCs 分泌的血管生成因子及抗细胞凋亡因子在缺氧的条件下其分泌显著增加。

HGF 为ASCs 分泌的主要血管生成因子,他们在ASCs 旁分泌效应中具有重要的作用。上述因子受到抑制时能够损伤ASCs 在缺血性组织中血管生成及重建的效果。敲除HGF能够降低ASCs 促进EC 增殖的水平并抑制抗性细胞凋亡。

5.心血管重建

急性及慢性缺血性心脏病为全球高死亡率的疾病之一。传统的治疗方法不能替代缺失的心肌细胞或心肌纤维化组织。注入培养的和新鲜分离的ASCs 能够改善实验诱导的心肌损伤机体的心肌功能。将人ASCs 注射到小鼠心脏的梗塞部位,心肌功能得到保护,此外,左心室收缩末期体积显著降低。在猪模型中也报道了相似的结果。人 ASCs 在体外能够分化为心肌细胞,表达心肌特异标志物troponin-I 及myosin light chain 2,甚至能够节律性收缩。然而,与平滑肌分化相似,体内ASCs 向心肌细胞的分化仍具有争议。报道了ASCs 在注射后2 周表达心肌标志物,但是发现向大鼠心脏处注射人ASCs,其向平滑肌细胞分化而不向心肌细胞分化。心脏处注射的ASCs 通过分泌血管生长因子促进血管生成并抑制损伤心脏的细胞凋亡。另外,ASCs 也能直接在心肌缺血部位促进神经发芽,进而增强心肌收缩功能。注射ASCs 的方法主要有两种。传统的方法将ASCs 通过注射器注入心肌内,大量的细胞会出现死亡或流失,最终会减弱治疗效果。另一种方法是通过在温度控制下皿中的scaffold-free单元进行心

外膜注射。该方法的优势在于不存在任何外来材料,可对细胞粘附力进行保护,而且不会对任何不同细胞种群进行合并。一些以细胞单位

为基础的方法在鼠、犬及猪模型中能够改善受损心脏的功能.

6.神经系统重建

多种生长因子如神经生长因子( NGF) 、纤毛神经营养因( CNF) 、IGF 及FGF 均由损伤后神经末端分泌。这些生长因子促进轴突的生长,与外周神经系统主要的支持细胞———施旺细胞关系密切。由于上述再生是由长期神经损伤导致,细胞治疗如干细胞治疗能够通过将生长因子引入间隙从而促进神经再生。ASCs 能分泌一些神经生长因子如IGF、FGF,因此这些细胞能够促进神经修复。另外,最近有ASCs 向神经系细胞及施旺细胞成功分化的报道。相较于BSCs,ASCs 的nestin 表达量更高,nestin 能用于识别扩增的成年神经祖细胞。一些结果表明ASCs 向施旺细胞分化,其机制也被详细研究,其过程的可逆通过骨骼肌损坏完成。通过将ASCs 分化为施旺细胞样表型检测其治疗外周神经的效果。然而,在上述方法能够安全的用于临床研究前还需搜集大型动物模型的实验数据。ASCs 不仅能够应用于外周神经损伤,也被用于中枢神经损伤中。在犬模型中用ASCs 治疗脊柱损伤同时能够改善神经功能,ASCs 在体内向星形胶质细胞、少突细胞及神经元细胞分化。发现小鼠模型中的ASCs 通过分化为施旺细胞可治疗脊柱损伤。但该研究中,作者指出即使将施旺细胞转导到主要的损伤位点并有显著的组织学改善,但其功能的改善仍不可见。因此,推测完整的脊柱功能恢复需要更复杂形式的治疗而不仅仅为单一细

胞类型或细胞因子的注射。ASCs 能够在注射后于神经系统中存活并通过直接分化或旁分泌因子的分泌促进神经恢复。因此,ASCs 能够

作为中枢神经损伤及外周神经损伤治疗的潜在资源。

7.癌症转移及入侵

由于基质细胞能够导致多种肿瘤的发展,所以在这些细胞用于再生医学的临床研究前有必要弄清间充质基质细胞于癌症发展过程中的作用效果。基质细胞包括成纤维细胞、外膜细胞、成肌纤维细胞、脉管系统和巨噬细胞,他们结合形成能够控制内皮细胞分化及扩增的微环境。胸腺癌发展期间,肿瘤细胞识别组织微环境来支持其扩增并

向周围组织中入侵。肿瘤聚集基质纤维的过程称为促结缔组织增生反应。这些肿瘤相关的成纤维重编程能够产生生长因子、细胞因子及细胞外基质重塑蛋白。最近的研究表明BSCs 通过聚集乳腺癌细胞促进乳腺癌的转移及入侵。BSCs 产生趋化因子配体5( CCL5) ,该因子在共培养下能够促进胸腺肿瘤的发展。相较于BSCs,ASCs 为组织中存在的干细胞,与乳腺癌细胞局部相邻,同时有研究表明脂肪细胞与乳腺癌细胞间存在一定的相互作用。最近的研究将白色脂肪细胞与癌症发展相结合。一种体内的鼠模型证实ASCs 经过静脉注射后能够进入肿瘤位点,同时基质来源的生长因子-1( SDF-1) /CXC 受体4( CXC R4) 在ASCs 介导的促进肿瘤生成中具有重要的作用。指出ASCs分泌的IL-6 与乳腺肿瘤细胞的迁移及入侵相关。IL-6 为多种癌症中重要的生长因子,如多种骨髓瘤( MM) 及前列腺癌。另外,一种体内研究表明ASCs 分泌的SDF-1 能够促进乳腺癌的入侵及形成。也有报道指出人ASCs 能够产生CCL5。在将人ASCs 与MDAMB-231 乳腺癌细胞共培养后,大量的CCL5 消失。然而,ASCs 治疗癌症肿瘤是具有

争议性的。许多研究报道移植的ASCs 在鼠模型中能够影响乳腺癌的产生及生长。乳腺肿瘤细胞与基质细胞间的双向关系被炎症细胞因子及趋化因子介导,进而影响肿瘤的发展。因此,在脂肪干细胞治疗用于临床应用前,脂肪组织对于肿瘤细胞行为影响的分子机制有待进一步深入研究。

脂肪干细胞在颗粒脂肪移植中的作用

颗粒脂肪移植技术是替代传统移植填充物的新型手术治疗方法,被广泛的应用于美容整形烧烫伤等方面。临床上多采用自体脂肪细胞移植来消除免疫排斥等不良反应,但是在移植的过程中发现,颗粒脂肪移植后形成坏死、炎症以及高比率的脂肪吸收等现象,提示在颗粒脂肪移植后的整体能量供给出现了问题,血液微循环不足造成脂肪的流失的主要原因.脂肪干细胞是一种能够大量获取、具有多种分化潜质的多功能细胞,脂肪干细胞具有易获取,低免疫原性、组织相容性好以及抗击凋亡等特点,被广泛的应用于各项研究中。脂肪干细胞被认为能在多方面协助移植物,其中主要包括:①移植后部分脂肪细胞出现死亡等消亡情况,脂肪干细胞会分化成颗粒脂肪细胞,进而对细胞形成补充,较少脂肪的吸收溶解;②移植后在短期内移植物处于缺氧缺营养支撑时期,脂肪干细胞可以促进血管生成因子的释放,进而促进

血管再生,恢复移植物的供养情况提高脂肪的成活率;③同时脂肪干细胞也具有自我恢复存活的功能,增加了移植物的自我修复和减少脂肪吸收。另外有研究表明,脂肪干细胞具有在缺氧的情况,继续发挥细胞生物学功能,是一种很强生命力的干细胞种群。

研究主要探讨了脂肪干细胞在颗粒脂肪移植中的作用,采用对比分析的试验方法,在24只裸鼠上设置3个组别分别为对照组、颗粒脂肪移植组、颗粒脂肪+脂肪干细胞移植组,通过测定血浆中血管内皮生长因子和碱性成纤维细胞生长因子的水平、估算微血管密度、苏木精-伊红染色结合油红O染色等手段,探究脂肪干细胞在颗粒脂肪移植中的作用,实验结果显示,脂肪干细胞具有很强的促进脂肪细胞成活率、减少脂肪吸收率、改善移植物的血液微循环、促进脂肪细胞功能等方面的作用。同时试验中发现混合移植组因为加入了脂肪干细胞,造成血浆中血管内皮生长因子和碱性成纤维细胞生长因子水平显著高于单纯颗粒脂肪移植组,血管内皮生长因子和碱性成纤维细胞生长因子被认为是在脂肪移植的过程中发挥着关键作用的2种细胞因子,血管内皮生长因子主要是与机体内血管内皮生长因子受体2的受体相结合,促进血管生成,由血管内皮生长因子受体2受体介导的血管生成可以促进血管内皮细胞的增殖以及细胞迁移,进而诱导血管的再生,并且增加血管的通透性,促进新生血管网的重建,使得移植脂肪组织得到更充足的血供,从而提高移植脂肪组织的存活率,并且降低移植脂肪组织的吸收率。另外有研究表明,碱性成纤维细胞生长因子是对血管形成和再生有促进

作用的生长因子,活化各种修复细胞,既作用于内皮细胞趋化因子,同时促进内皮细胞的分裂,因此具有强烈的促进前脂肪细胞增殖分化及心血管形成的作用,在脂肪移植的早期可为移植的脂肪提供良好的血供,极大缩短组织的缺血时间,进而降低组织由于缺血而造成的坏死,增加存活率,在后期可减少移植脂肪的吸收率,以获得稳定的手术效果。

研究中发现,移植4周后观察移植物的重量发现颗粒脂肪移植组相对于混合移植组的移植物的重量明显下降(P<0.01),提示脂肪干细胞能显著提高脂肪细胞的存活率和降低脂肪细胞的吸收率。在微血管密度的测定结果中发现颗粒脂肪移植组相对于混合移植组的微血管密度明显下降(P<0.01),提示脂肪干细胞能显著性的提升移植物中微循环,改善血供提高移植物的存活。在油红O染色中也可以得到相同的印证。研究结果显示在脂肪干细胞移植的过程中能够显著的改善移植物的微循环和提高促血管生成因子的释放,进而促进了脂肪细胞的生成和提高脂肪移植的存活率。

脂肪细胞的基础知识

脂肪细胞的基础知识 脂肪细胞的生长全过程及其形态变化脂肪母细胞,是指能向脂肪细胞分化的ADSCs在激素、生物活性因子、寒冷等因素刺激下均能逐渐分化成为单能干细胞。它可保持着干细胞增殖活跃的特性,脂肪母细胞再进一步分化为前脂肪细胞,即通常人们所说的脂肪细胞前体。前脂肪细胞再经历细胞融合、接触抑制和克隆扩增等步骤启动向成熟脂肪细胞分化,并在胰岛素、地塞米松等诱导剂作用下完成向成熟脂肪细胞的分化。全过程可以表示为:多能干细胞——脂肪母细胞——前脂肪细胞——不成熟脂肪细胞——成熟脂肪细胞。生长期前脂肪细胞的形态与成纤维细胞相似,经诱导分化,其细胞骨架和细胞外基质发生变化,开始进入不成熟细胞向成熟细胞转变。细胞形态由成纤维细胞样逐渐趋于类圆或圆形,胞体逐渐增大,胞质中开始出现小脂滴,脂质开始累积,以后小脂滴增多并融合为较大的脂滴,可经油红“O”染色等方法于显微镜下显色,从而获得成熟脂肪细胞的形态特征。此时的细胞无分裂增殖能力,为脂肪细胞分化的终末阶段。 张高娜,梁正翠.动物脂肪细胞的研究进展[J].饲料工业,2009,30(2):42-44. 脂肪细胞由起源于中胚层的间充质干细胞逐步分化形成,按间充质干细胞→脂肪母细胞→前脂肪细胞→不成熟脂肪细胞→成熟脂肪细胞的过程发展。前脂肪细胞在多种转录因子调控下,激活脂肪组织相关基因,并在这些基因的顺序性调控下,经一系列复杂的步骤分化为成熟脂肪细胞。 张艳.脂肪细胞分化过程中的分子事件[J].儿科药学杂志,2008,14(1):56-57.

间充质干细胞 概念: 不同文献中,分别命名为抽脂处理细胞(processed lipoaspirate cells, PLA),脂肪基质微管碎片细胞(stromal vascularfraction cells, SVF),脂肪组织源基质细胞(adipose-tissue derived stromal cells, ATSCs),脂肪源中胚层干细胞(adipose-derived mesodermal stem cells, ADMSCs)等。这些不一致的名称均指从脂肪组织中分离的、可在体外大量扩增并具有多向分化潜能的细胞。 李惠侠,屈长青. 脂肪组织源性干细胞研究进展[J]. 生理科学进展,2007,38(2) 脂肪细胞是由起源于中胚层的间充质干细胞(mesenchymal stem cell, MSC)逐步分化、发育而来,MSC主要分布于脂肪组织和骨髓中。脂肪细胞不同发育阶段的两类细胞系为多能干细胞系和前体脂肪细胞系,前者为不定向的细胞系,能转变为稳定的脂肪细胞、肌细胞和软骨细胞,后者为定向的细胞系,是目前体外研究脂肪细胞分化应用最为广泛的细胞系。 庞卫军,李影. 脂肪细胞分化过程中的分子事件[J]. 细胞生物学杂志,2005,27: 497-500. 脂肪来源的间充质干细胞(adipose tissue derived mesenchymal stem cells, ADMSCs) 间充质干细胞(mesenchymal stem cells, MSCs)具有自我更新及多向分化潜能,是一种 具有潜力的组织工程种子细胞。目前研究得比较多的是骨髓来源的MSCs,但骨髓中的间 充质干细胞数量很少(约占细胞总数的1/105),且存在取材困难等问题。MSCs广泛分布于 其他组织中,包括肌肉、血管、肝脏、胰腺和脂肪等。 ADMSCs表面有CD29、CD44、CD71、CD90、CD105/SH-2、SH-3、STRO-1等多 种抗原标志。 李冬艳,宇丽. 脂肪来源的间充质干细胞分离方法的改进[J]. 暨南大学学报(医学版),2007,28(6). 脂肪源性干细胞(adipose-derived stem cells,ADSCs) Zuk等从脂肪组织中分离出了一种成纤维细胞样细胞,它与骨髓间充质干细胞(MSCs)形态相似,称之为脂肪干细胞(ADSCs),平均每300 ml脂肪组织可获得2×108~ 6×108个这样的细胞。ADSCs和MSCs具有相同的表现型,对CD29、CD44、CD71、 CD70、CD105/SH2和SH3为阳性反应,对CD31、CD34和CD45为阴性反应。此外, 它们还具有各自特征性的表达分化抗原:ADSCs具有特征性表达分化抗原CD49d,而MSCs具有特征性表达分化抗原CD106。 张高娜, 梁正翠. 动物脂肪细胞的研究进展[J]. 饲料工业,2009,30(2) 间充质干细胞(mesenchymal stem cells,MSCs)是一类具备干细胞特点的细胞系,具有自我更新能力、长期的活性和多系分化潜能。 脂肪来源的间充质干细胞(adipose tissue-derived mesenchymal stem cells,ADSCs),以其取材方便、来源丰富等多种优势逐渐取代骨髓间充质干细胞(bone marrow-derived mesenchymal stem cells,BMSCs)。 免疫表型:研究发现ADSCs主要表达CD13、CD44、CD73、CD90、CD105、CD106、CD166、CD29、CD49e和HLA-ABC,而不表达CD34、CD3、CD19、CD45、CD14、CD117、CD31、CD62L、CD95L和HLA-DR。这个结果和其他的MSCs几乎一致。但ADSCs与BMSCs也有差别:大部分BMSCs表达CD10,而表达CD10的ADSCs仅占5%~20%;几乎所有的ADSCs表达CD49f和CD54,而BMSCs极少表达。 周苏娜,张明鑫. 脂肪来源的间充质干细胞的生物学特征及临床应用[J]. 中国现代普通外科进展,2009,12(1). 不同细胞的表面标志是不同的,脂肪干细胞的表面标记为:CD9、CD10、CD13、CD29、CD10、CD44、CD49e、CD49d、CD54、CD55、CD59、CD90、CD105、CD107、CD146、

脂肪组织来源的干细胞提取、制备及储存质量管理专家共识

脂肪组织来源的干细胞提取、制备及储存质量管理专家共识 脂肪组织来源的干细胞(adipose tissue-derived stromal/stem cells,ASCs)是从脂肪组织中分离提取得到的,具有取材容易、对机体损伤小、体内储备量大、体外可大规模培养、可多向分化等优点。ASCs在人体修复重建、免疫调节及组织再生等方面的应用成为近年来干细胞研究的重要内容,也是组织工程及再生医学的研究热点。 大量研究表明,自体脂肪组织移植到软组织缺损部位后,其中40%~60%会被吸收,自体脂肪组织结合ASCs移植,能明显减少自体脂肪组织移植的吸收、液化、坏死及纤维化等情况发生,有利于构建具有生物学结构和功能的脂肪组织。同时,利用脂肪组织可以进行大规模的ASCs提取、制备、储存,为再生医学提供种子细胞。 目前,国内外尚缺乏ASCs提取、分离、制备及储存的标准和质量管理规范,导致各制备机构或研究应用机构之间无法进行统一评估和交流,严重制约了ASCs在皮肤软组织修复重建等相关领域的发展。为了建立安全、规范、稳定、可追溯的行业共识、指南及标准,从源头保证ASCs的提取、制备、储存的高质性和安全性,中国医药生物技术协会皮肤软组织修复与重建技术分会联合从事细胞制备和存储、皮肤软组织修复重建、分子生物学及整形和美容外科等多学科的专家,参照中国医药生物技术协会《细胞库质量管理规范》及《干细胞制剂制备质量管理自律规范》,组织起草脂肪组织采集及ASCs制备、检测、储存的标准和质量管理专家共识,旨在促进ASCs在皮肤软组织修复重建技术等领域研究成果的转化,进一步促进多学科的交流和发展。 1 脂肪组织采集 1.1 脂肪组织采集机构要求 脂肪组织的采集工作应在取得《医疗机构执业许可证》的医疗机构中实施。采集人员应持医师或者护士执业证书,经过相应的专业技术培训。采集机构应具有完整的标准化操作规程(standard operation procedure,SOP),并备有采集过程中的应急预案。采集过程应在层流手术室内进行无菌操作,最大限度地减少污染和交叉感染的发生。 1.2 脂肪组织供者要求 对供者健康状况进行全面检查(如一般信息、既往病史和家族性遗传病等)及病原微生物的感染筛查和在危险疫区停留情况的调查。身体状态良好、有完整体检报告、无遗传性家族病史、无恶性肿瘤、无急慢性传染病及血液系统疾病;血常规及分类、肝肾功能正常;人源性特定病毒(包括但不仅限于HIV、HBV、HCV、HTLV、EBV、CMV等)阴性、梅毒螺旋体阴性(提供脂肪组织的同时,另需提供不少于8ml外周血用于复检,ABO血型、HLA-Ⅰ类和Ⅱ类分型检查,以备追溯性查询)。若供者HBV、HCV、HTLV、EBV、CMV检查结果为阳性,实验室应具有处理感染性样本的独立物理空间、独立的空调系统,能做到使用后的器具和相关物品可经过灭活处理后再移出该区域。感染性样本与非感染性样本的处理及制备不使用同一设备,方可进行脂肪组织的采集,但必须使供者知情,同时通知接收、制备、质控及医护人员等做好防护措施。当实验室不具备上述相对应病原体阳性制备/培养区时,不得采集上述阳性供者的脂肪组织。若供者HIV、梅毒螺旋体检查结果为阳性时,不得采集供者的脂肪组织。高度怀疑HIV感染或者考虑HIV感染窗口期的供者不予采集。 1.3 采集方式、采集部位和采集量 1.3.1 采集方式 用肿胀液(生理盐水250ml+2%利多卡因10~15ml+肾上腺素0.25mg)局部浸润麻醉供脂肪组织区域,以20ml注射器配备口径1.5~3.5mm、侧孔3.0~5.0mm的吸脂针,进入供区,形成负压,呈扇形手动均匀吸取脂肪组织,吸出3~5mm3脂肪组织颗粒,若脂肪组织颗粒

脂肪源性干细胞与整形美容医学

脂肪源性干细胞与整形美容医学 一、脂肪干细胞介绍 二、ADSCs研究应用的三优势(脂肪干C应用及三大优势) 三、ADSCs在整形美容领域的应用研究 四、展望 一、脂肪干细胞介绍 1976年Fridenstein等首先报道从骨髓中分离出克隆源性的具有多向分化潜能的基质细胞-骨髓间充质干细胞(marrow-derived mesenchymal stem cells,MSCs)。Zuk等于2001年发现脂肪组织中除了含有已经定型的前脂肪细胞外,也包含一种具有多向分化潜力的细胞群,其性质与MSCs十分相似,但又不完全相同。 这些细胞已被证实不仅具有分化成为骨骼、软骨、脂肪、心肌、神经等组织的能力,而且同样具有促进伤口愈合、损伤组织细胞再生和减少疤痕的能力及抗衰老能力。 这种细胞被称为脂肪来源干细胞(adipose-derived stem cells,ADSCs)、脂肪来源成体干细胞(adipose-derived adult stem cells,ADAS cells)、脂肪来源成体间质细胞(adipose-derived adult stromal cells)、脂肪来源间质细胞(adipose-derived stromal

cells,ADSCs)、脂肪间充质干细胞(adipose mesenchymal stem cells,AdMSCs),成脂肪细胞(lipoblast)等等。现在被统称为脂肪源性干细胞(adipose-derived stem cells,ADSCs)。 二、ADSCs研究应用的三优势(脂肪干C应用及三大优势) 作为以修复重建为主旨的整形外科及以年轻化为核心的美容医学,再生医学一直是备受关注与研究探索的领域。由于MSCs获取途径与疾病治疗性价比的差异,整形外科领域再生医学研究与临床应用受到限制。脂肪源性间充质干细胞一经报道,首先在整形外科领域引起轰动效应,这种关注大大推动了ADSCs的研究,它的临床应用也正在追赶着MSCs的步伐。 首先,来源取材方便不仅是ADSCs一个最大的优势,也是整形外科的优势。一方面,脂肪组织在体内分布广泛,储量丰富;另一方面,吸脂术是整形外科成熟的常规手术,手术风险小,其作为常规“废弃的副产品”获取容易。 对患者来说,吸脂雕塑体形的同时享受干细胞的年轻化神奇功效是一次双赢的生命重塑,痛苦与恐惧感少于骨髓提取,亦无血源污染与免疫排斥风险,由此形成临床应用的优势。据国外报道,1994~2000年开展吸脂术的初期阶段,进行的66570例吸脂手术中,死亡率为0,发生

脂肪干细胞治疗ED

脂肪干细胞治疗E D Prepared on 22 November 2020

EBioMedicine 前列腺癌根治术后勃起功能障碍患者海绵体内注射自体脂肪干细胞的安全 性和潜在功能性研究:一个开放的I期临床试验 Martha Kirstine Haahr a,e,f,1, Charlotte Harken Jensen b,e,1, Navid Mohamadpour Toyserkani c,e,f, Ditte Caroline Andersen b,e,f, Per Damkier b,f, Jens Ahm Srensen c,e,f, Lars Lund a,e,f, Sren Paludan Sheikh b,d,e, 摘要 背景:前列腺癌是男性最常见的癌症,而前列腺癌根治术(RP)通常会导致勃起功能障碍 (ED),严重影响患者术后的生活质量。当前的干预,主要包括PDE-5抑制剂,但治疗效果 乏善可陈。有文献指出,利用脂肪干细胞来治疗ED得到了潜在的满意结果。本研究中我们 使用自体吸脂后新鲜分离的脂肪来源的再生细胞(ADRCs)进行了一个前瞻性的一期的单 臂临床试验。 方法:17名前列腺癌根治术后的ED患者,使用传统疗法,无法得到满意的效果。本研究为 前瞻性的一期的单臂临床试验。所有受试者在入组之前进行5-18个月都经历了前列腺癌根 治术,随访到海绵体内注射6个月后。ADRCs根据其干细胞表面标记物进行分选。主要终 点是细胞治疗的安全性和耐受性,而次要结果是勃起功能的改善。记录任何不良事件,而 勃起功能使用IIEF-5评分。本研究注册账号为:NCT02240823。 研究结果:在为期一个月的评估中,海绵体内注射ADRCs的耐受性良好,只有使用脂肪提 取液引起的不良反应,而在其后的研究随访中均未见效果报道。在研究期间,总体而言, 8人恢复了勃起功能并能完成性交。进行分层分析之后,非尿失禁患者(平均IIEF= 7 (95% CI 5-12),11人中的8人恢复勃起功能(IIEF6个月= 17(6-23)),(P = )。相 比之下,失禁患者没有恢复勃起功能(中位IIEF1/3/6 个月= 5(95%CI 5-6); 平均差1 (95%CI ),P >)。 解释:新鲜分离的自体ADRCs海绵体内注射是一种安全的手术。并且具有改善IIEF评分 和勃起功能的作用。具有良好的应用前景 资金:丹麦医学研究理事会,欧登塞大学医院和丹麦癌症协会。 1.介绍 很多基础研究对于干细胞治疗效果的前景进行了报道,并已吸引了 非常广泛的研究瞩目。在临床实践中,然而,这类研究大部分仍停留在 实验室阶段,除了骨髓移植和化疗期间的干细胞治疗。而临床使用干细 胞治疗勃起功能障碍(ED)是一种可行的临床实践方案。

人脂肪来源间充质干细胞库的初步建立

人脂肪来源间充质干细胞库的初步建立 徐潇,张旭毅,闫俊灵,陈冲,赵欣,李明辉,汤苏阳 【摘要】[摘要]目的探讨建立生物学性状稳定的人脂肪来源间充质干细胞(hADSCs)库的可行性,旨在为组织工程种子细胞提供更多来源。方法对分离得到的hADSCs采用液氮低温冻存,并在一定时间复苏培养,以流式细胞仪检测其表面抗原Z在诱导培养基中对其进行成脂和成骨诱导培养,光镜下观察细胞形态Z 免疫组织化学方法检测成骨诱导的特异标志物碱性磷酸酶(ALP)的表达, 观察hADSCs在复苏前后的分化能力。结果从脂肪组织中分离培养扩增获得数目稳定的hADSCs ,经冻存并复苏后的hADSCs形态和表面抗原保持不变Z可继续扩增10代以上,倍增时间为48h o复苏后第2、第6、第10代hADSCs 均保持了较强的成脂及成骨分化能力。结论初步建立hADSCs库,可为再生医学修复重建组织工程提供较好的种子细胞。 【期刊名称】解放军医学杂志 【年(卷),期]2016(041)012 【总页数】6 【关键词】[关键词]脂肪来源间质干细胞;干细胞库;低温保存;可行性研究近年来,再生医学的迅速发展为组织工程修复组织缺损提供了种子细胞和可利用的细胞基质,其中脂肪干细胞与其他干细胞相比具有来源丰富、取材简单、便于培养、无组织配型及免疫排斥问题、可跨胚层多向分化、增殖速度快等显著优点Z是优秀的组织工程种子细胞[1-3]O人脂肪来源间充质干细胞(human adipose-derived Stem CeIlS , hADSCs)是从脂肪组织中分离获得的一种具有自我更新及多向分化潜能的干细胞[4],是极具前景的组织工程和基因治

脂肪源性干细胞在整形美容中的应用

脂肪源性干细胞在整形美容中的应用 施雨辰一、技术原理 干细胞是一类具有自我复制能力的多潜能细胞,在一定条件下,它可以分化成多种功能细胞,并具有较高的端粒酶活性,是人体的青春活力因子。随着年龄的增长,人体内的干细胞数量会不断降低,增殖分化潜能也不断的衰弱,直接导致衰老和疾病的发生发展。 而选择脂肪源性干细胞是因为,脂肪移植后成活率难以预测,且随着时间而发生变化。但绝大多数研究表明,脂肪源性干细胞可以通过种种方式显著提高脂肪移植后的成活率,而其他方法提高脂肪成活率的程度相对不明显,甚至其价值有待考证。 脂肪源性干细胞就是从脂肪组织中分离提取出来的具有多样分化功能和可塑黏附性的细胞群,所以可以代替病变细胞和老化细胞,起到治疗的作用。同时,脂肪源性干细胞较其他成体干细胞的分化能力强,抗衰老效果显著,疗效更持久。 在整形美容医学中,首先对患者实施常规肿胀麻醉,通过在患者脂肪比较集中部位进行脂肪的抽取,抽取脂肪50mL,然后在其中置入适量的胶原酶液进行震动,以220r/min的条件进行离心处理,混合物充分消化后进行过滤处理;当混合液离心后,会出现脂肪层、生理盐水层以及沉淀层;借助移液管将脂肪予以抽出,并将抽出的脂肪注射进患者的皮肤真皮层中,来重整功能细胞的供应系统,增加正常细胞的数量、活性,从而达到恢复肌肤状况,起到“表面”对抗衰老的目的。 二、技术应用 目前,干细胞医学美容技术在欧美、日本等国发展较为迅速。在中国,在美容整形外科中脂肪源性干细胞主要是应用于凹陷的填充或者各部位的年轻化治疗,且多用于临床试验,在广泛的临床应用中仍存在障碍。同时,一些打着“干细胞”技术的产品使得市场质量参差不齐,市场上销售的大部分“干细胞”技术或产品不是很规

脂肪干细胞的提取及鉴定

脂肪干细胞的提取及鉴定 一、脂肪干细胞(ASCs)的提取及鉴定 1、实验技术及原理: 运用细胞培养技术、流式细胞术(体外扩增后ACSs的表型会发生改变,主要体现在细胞表面蛋白和细胞因子表达的变化),差异离心术(可将基质血管细胞沉淀与悬浮的成熟脂肪细胞分离,沉淀中除ASCs,还包括血细胞、成纤维细胞和内皮细胞,基质血管细胞沉淀可以接种到孰料培养瓶中,基质细胞可贴壁,造血和其他杂质细胞不贴壁,在随后的传代过程中被出去,最终得到的ASCs可再很长时间内保持摸分化状态)。取C57BL,6 WT小鼠2只,常规麻醉消毒,取腹股沟脂肪组织剪碎至糊状,PBS液冲洗去麻药及血液,0.075%II型胶原酶消化(37?,30分钟)以去除外基质,生理盐水终止胶原酶的消化,离心(1200g,10分钟),去上清液及未消化的脂肪,10%FBS的DMEM重悬细胞沉淀,0.16mol/L氯化氨溶解剩余红细胞,离心洗涤,过200目铜网,得到单个核细胞。?镜下计数,按10个细胞/ml种植在培养瓶中,37?5%CO2孵箱培养,24小时后第一次换液,以后3天换液一次,80%融合后0.25% Trypsin,0.02%EDTA消化传代。细胞镜下作形态学观察及取第三代细胞用流式细胞仪作细胞周期及细胞免疫表型(CD29/CD44)的鉴定。 2、实验用品: 2.1 材料:C57BL,6 WT小鼠 2.2 试剂:PBS液,0.075%II型胶原酶消化,10%FBS,低糖DME M 2.3 仪器设备:超净工作台、恒温培养箱、普通显微镜、倒置显微镜、离心机、离心管、解剖剪、眼科剪、镊子(尖头、平头和有沟镊)、小烧杯,200目铜网过滤器,低糖DMEM、血球计数板、橡皮瓶塞、酒精灯、换药碗 3、细胞培养的方法与步骤:

脂肪来源干细胞免疫原性和免疫调节作用的实验研究_韩铮

收稿日期:2009-05-22 作者简介:韩铮(1982-),硕士,E-mail:allenhz520@https://www.360docs.net/doc/8616794381.html, 脂肪来源干细胞免疫原性和免疫调节作用的实验研究 韩铮,姜平,高建华,鲁峰,付冰川,陈晓炜(南方医科大学南方医院整形外科,广东广州510515) 摘要:目的探讨脂肪来源干细胞(ADSCs)在体外的免疫原性,以及ADSCs 在家兔同种异体皮片移植中的免疫调节作用。方法将家兔淋巴细胞分别与自体和异体ADSCs 混合培养48h 后加入CCK-8试剂,并用酶标仪检测OD 值;在家兔同种异体移植皮片下注射自体ADSCs ,观察移植皮片的坏死时间,并于术后第7日切取移植皮片的周边组织进行组织学观察。结果家兔淋巴细胞与自体、异体ADSCs 混合培养后用酶标仪检测OD 值分别为(1.527±0.402)和(1.615±0.351),两组OD 值差异无统计学意义;家兔同种异体移植皮片下注射ADSCs 的移植皮片的坏死时间为(7.170±1.472)d ,未注射ADSCs 的对照组移植皮片的坏死时间为(5.830±1.169)d ,两组皮片坏死时间差异具有统计学意义;术后第7日组织学观察见实验组皮下浸润的炎症细胞较少,皮下组织结构完整、清晰;对照组皮下浸润的炎症细胞较多。结论脂肪来源干细胞在体外的免疫原性低,对家兔同种异体皮片移植有免疫调节作用。关键词:脂肪来源干细胞;免疫原性;免疫调节;组织工程中图分类号:Q813 文献标识码:A 文章编号:1673-4254(2009)10-2144-03 脂肪来源干细胞(ADSCs)是成体干细胞的一种,自Zuk 等[1]报道以来,以其来源广泛、取材简便的特点和可多向分化的潜能,成为干细胞及组织工程研究领域的热点[2]。近年来有关ADSCs 的研究主要集中于其多向分化潜能[3-6],而对其免疫学特性仍未展开较深入的研究。本实验以家兔作为动物模型,对家兔 ADSCs 的体外免疫原性及体内的免疫调节作用开展 初步探讨,试为扩充组织工程种子细胞的来源及拓展ADSCs 的应用领域提供实验基础。1材料和方法 1.1实验动物与试剂 健康新西兰大白兔10只,雌雄兼有,体质量 2.0~2.5kg ,由南方医科大学SPF 级动物实验中心提供并饲养。DMEM 高糖培养基,RPMI 1640培养基, 胰酶,FBS (Hyclone ),Ⅰ型胶原酶,CCK-8试剂盒, Percoll 淋巴细胞分离液,PHA (植物凝集素)。1.2方法 1.2.1家兔ADSCs 的分离及体外培养取家兔腹股 沟皮下脂肪5ml ,PBS 缓冲液反复冲洗后剪成约1 mm 3大小的脂肪颗粒,0.1%胶原酶在37℃条件下消化30min 左右。使用等量完全培养基(含10%FBS 的DMEM 高糖培养基)中和,离心(1200r/min )5min 后 去除上清,沉淀混悬后尼龙网过滤并接种于细胞培养瓶中,于37℃、5%CO 2孵箱培养。于24h 后更换培养液,此后每3d 换液1次。观察细胞生长情况,待 6~7d 细胞生长融合达80%~90%后,0.1%胰酶消化后按1∶3进行传代培养。1.2.2体外实验 1.2.2.1家兔淋巴细胞的刺激增殖实验取家兔耳缘静脉血5ml ,用Percoll 淋巴细胞分离液通过密度梯度离心法分离出外周血淋巴细胞,计数后与PHA 混 合培养于96孔培养板,具体实验分组如下,实验组:家兔淋巴细胞(1×104/孔)和PHA (100μg/ml ,20μl/孔)混合培养;对照组:单独家兔淋巴细胞培养组(1× 104/孔)。实验组与对照组各培养孔均培养48h 后加入CCK-8试剂(10μl/孔),继续混合培养4h 后用酶 标仪检测培养板上各孔的OD 值。 1.2.2.2家兔ADSCs 体外免疫原性检测实验通过前 述方法分离出家兔淋巴细胞,将其分别与自体 ADSCs 和同种异体ADSCs 混合培养于96孔培养 板,具体实验分组如下,对照组:家兔淋巴细胞(1× 104/孔)和自体家兔的ADSCs (3×103/孔)混合培养;实验组:家兔淋巴细胞(1×104/孔)和同种异体家兔的ADSCs (3×103/孔)混合培养。实验组与对照组各培养孔均培养48h 后加入CCK-8试剂(10μl/孔),继续 混合培养4h 后用酶标仪检测培养板上各孔的OD 值。 1.2.3体内实验家兔10只,随机分成5组(记为A 、B 、C 、D 、E 组),每组2只互为同种异体皮片移植对象。在每只家兔的两侧臀部设计直径为3cm 的圆形 皮片,切取后组内、同侧之间交互移植。实验组(左侧臀部):皮片移植的同时在皮片下注射含自体ADSCs (1×106/kg )的完全培养基2ml ;对照组(右侧臀部):皮片移植的同时在皮片下注射不含自体ADSCs 的完全培养基2ml 。术后每天观察各组家兔臀部移植皮片的存活情况并记录移植皮片的坏死时间(移植皮片红润,质地柔软,视为皮片存活良好;若皮片变为暗褐色且质地坚硬的面积>2/3,视为皮片坏死),于术后第7日将C 组和E 组两组家兔的实验组及对照组移 南方医科大学学报(J South Med Univ)2009;29(10) 2144··

脂肪干细胞成脂诱导及鉴定程序

脂肪干细胞成脂诱导及鉴定程序 一、试剂准备 (一)成脂分化诱导液(Adipogenic Medium, AM)配方【1】: 试剂名称浓度商品信息 1.极限必须培养基 (Dulbecco’S Modified Eagle Medium ,DMEM) 1.0 L (SH30021.01B, Hyclone) 2.胎牛血清 (Fetal Bovine Serum,FBS)10% (ES-009-B, Millipore) 3.青霉素/链霉素 (Penicillin/Streptomycin)1% (TMS-AB2C, CHEMICON) 4.地塞米松 (Dexamethasone,DM) 1μmo/L 分子量:392.46 (D4902-25MG, Sigma) 5.胰岛素 (Insulin, IS) 10 μmol/L 分子量:5808 (91077C—1g, Sigma) 6.3-异丁基-1-甲基黄嘌呤 (Isobutylmethylxanthine,IBMX) 0.5 mmol/L 分子量:222.24 ( I5879-100MG, Sigma) 7.吲哚美辛 (Indomethacin,ID) 200 μmol/L 分子量:357.79 (I7378—5G, Sigma) (二)成脂分化诱导液浓储液配制 试剂名称质量浓缩倍数配制方法 1.Stock A 胎牛血清1ml/管1X( liquid)分装1ml/管X100 保存:-20℃ 2.Stock B 青霉素/链霉素0.1ml/管100X( liquid)分装0.1ml/管X100 保存:-20℃ 3.Stock C 地塞米松0.0117738 g 1000X 溶于30ml 无水乙醇(0.1%) 分装0.1ml/管X300 保存:-20℃ 4.Stock D 胰岛素0.05808 g100X 溶于10ml Hcl(0.1 mol/L,PH2.0) 分装0.1ml/管X100 保存:4℃ 5.Stock E 3-异丁基-1-甲基黄嘌呤0.05556 g 200X 溶于2.5ml DMSO(0. 5%) 分装0.05ml/EP管X50 保存:-20℃ 6.Stock F 吲哚美辛0.07155 g 500X 溶于2ml 无水乙醇(0.2%) 分装0.02ml/管X100 保存:-20℃ (三)成脂分化诱导液工作液配制(10ml) 1.取DMEM(L)8.72ml加入15ml离心管(BD); 2.加1管Stock A(1ml); 3.加1管Stock B(0.1ml); 4.取1管Stock C(0.1ml)溶解,加入0.01ml; 5.加1管Stock E(0.05ml);

脂肪干细胞

?专科小词典? 脂肪干细胞 脂肪干细胞(adipose-derivedstemcells,ADSCs)是一种从脂肪组织中分离提取出的能够贴壁生长、具有可塑性、黏附性和多向分化潜能的中胚层来源的成体干细胞。 2001年,Zuk等通过脂肪抽吸术,在吸出的人体脂肪悬液中第一次分离得到了多向分化的干细胞。传代后培养的ADSCs,多角细胞逐渐减少,传代至第三代时基本消失,大多为梭形细胞,胞浆核仁十分丰富,与骨髓间充质细胞基本没有区别,多次传代后细胞生长速度也无减慢趋势,显示出ADSCs具有易获得、易扩增、不易衰老的明显优势。ADSCs表面的免疫标识会随传代的次数而发生改变,其中CD166、CD106、CD90、CD73、CD63、CD44、C29在最初表达量较低,随传代次数的增加而显著增加;与干细胞相关的表面标志CD34一直持续较高的表达水平。ADSCs一般不表达CD62、CD56等。ADSCs可以分化为源于中胚层的多种细胞类型,包括骨骼肌、心肌、软骨、脂肪、成骨等,向心肌细胞分化能力是最低的。此外还可以分化为源于外胚层的神经细胞和源于内胚层的胰腺细胞。ADSCs还可能有助于血管和造血细胞的生成。 由于脂肪组织在人体大量存在,取材容易,少量组织即可获取大量干细胞,能够在体外稳定增殖且衰亡率低,适宜大规模培养,对被采集者身体健康影响小,加上真空负压抽脂术已是成熟的整形技术。因此ADSCs显示出了其他干细胞所不能及的应用前景。 (广州医科大学附属第一医院骨科严广斌整理)?853?中华关节外科杂志(电子版)2016年6月第10卷第3期 ChinJJointSurg(ElectronicEdition),June2016,Vol.10,No.3

人脂肪组织来源的干细胞在骨组织工程中的应用

?综 述? 人脂肪组织来源的干细胞在骨组织工程中的应用 冯 林综述 张锡庆审校 中图分类号 R687 文献标识码 A 文章编号 1005-8478(2005)08-0620-02 作者单位:苏州大学附属儿童医院骨科, 215003 作者简介:冯林,女,河南郑州人,在读博士。研究方向:小儿矫形。 1987年,美国国家科学基金会(NSF )在加利福尼亚举行的专家讨论会上,首次提出了“组织工程”的概念,其定义为[1]:组织工程就是运用工程学和生命科学的原则和方法,研究哺乳类动物正常和病理组织的结构与功能的相互关系,并发展可恢复、保留或改善组织功能的生物替代品。骨组织工程是组织工程的一个重要分支,并且被认为是目前最具有前途和可行性的一个领域。骨组织工程学的研究中种子细胞、支架材料和细胞与材料的相互作用是研究重点。其中种子细胞是组织工程研究中最基本也是首要的环节。 脂肪干细胞是近年来从脂肪组织中分离得到的一群多能干细胞,具有向多种组织分化的潜能。2001年,Zuk 等[2]从人抽脂术中抽取的脂肪组织悬液中第一次分离取得了多向分化干细胞,命名为Pr ocessed L i poas p irate (P LA )。研究发现这些P LA 细胞可以在体外稳定的增殖且衰亡率低。免疫荧光和流式细胞仪检测表明P LA 细胞中的大部分来源于中胚层或间质。因为脂肪组织取材容易,因此虽然发现较晚,但研究非常迅速深入,目前已证实脂肪组织来源的干细胞能向脂肪细胞、成骨细胞、软骨细胞、肌肉细胞及心肌细胞定向转化,可作为组织工程的种子细胞,有很重要的研究价值。 1 人脂肪组织来源干细胞的多向分化能力1.1 向成骨细胞的定向分化 Zuk 等 [2] 通过实验发现:在向成骨方向诱导4d 后,P LA 细胞的结构开始发生变化,由一个狭长的类成纤维细胞形态转变为一种圆形、立体的形状。7d 后,这些细胞开始分泌出岛状的细胞外基质。2周后内源性碱性磷酸酶染色阳性并形成矿化结节。从第2~4周,培养孔中钙化的细胞外基质的量明显增加,具有统计学意义。而且,P LA 细胞向成骨细胞分化的能力可以维持相当长的时间,其表达碱性磷酸酶活性最迟可达培养的175d 。研究证明了P LA 细胞向成骨细胞分化的能力。 1.2 向软骨方向诱导 Huang 、Zuk [3] 等应用组织学和分子生物学的方法证实在 高密度的培养条件下,培养基中加入TGF 2 β、胰岛素、干扰素和抗坏血酸,48h 内可以诱导P LA 细胞形成明显的软骨结节并表达软骨特异性标记Ⅱ型胶原,硫酸软骨素-4和硫酸角质素。逆转录多聚酶链反应分析也确认了Ⅱ型胶原和软骨 特异性蛋白聚糖—聚集蛋白聚糖的表达。因此认为这种多能干细胞确实具有向软骨方向转化的能力。尽管P LA 细胞不是真正的软骨细胞,但是它们所显示出来的原始软骨组织的特征使得其有望成为软骨组织工程的种子细胞。国内的余方圆等[4]从新西兰大白兔体内切取的脂肪组织进行一系列处理后,将获得的脂肪组织干细胞向软骨方向进行了诱导分化,结果发现细胞逐渐变圆,并聚集形成软骨样结节,Ⅱ型胶原呈强阳性、聚集蛋白聚糖表达阳性、番红0、阿利新蓝染色阳性,也说明了干细胞向软骨的定向分化。 1.3 向肌肉方向诱导 M izuno 等 [5] 将P LA 细胞置于肌源性诱导条件下6周后通 过结构学、组织学和逆转录多聚酶链反映观察到肌源性标记 MyoD1和肌球蛋白重链的表达。研究者发现,诱导3周后,P LA 细胞形成多核巨细胞并提示有肌管形成。另外;MyoD1 和肌球蛋白重链表达的时间不同,在P LA 细胞分化的过程中 MyoD1的表达先于肌球蛋白重链。研究结果揭示:大约有15%的P LA 细胞在诱导6周后向肌肉方向分化。目前,骨骼 肌组织工程主要用来治疗原发性的骨骼肌病变和因创伤和缺血继发的骨骼肌的丧失。对于这些疾病现今尚无有效的治疗,尽管P LA 细胞向肌肉方向分化与其向脂肪组织和成骨方向分化的水平相比较低,但通过应用一些外源性的因素进行干扰以及改善培养条件有希望提高P LA 的分化水平,提高其临床应用价值。 1.4 向非中胚层组织的分化 P LA 细胞为多能干细胞,它可以分化成为多种中胚层来 源的组织,如骨、软骨、脂肪和肌肉。A shjian 等[6]则通过研究发现P LA 细胞可以诱导分化为外胚层来源的早期神经祖细胞。未分化的P LA 细胞本身就表达一些特征性的神经细胞标记,如神经原特异性烯醇化酶(NSE )、波形蛋白和神经原特异性核蛋白(Neu N )。在用异丁基甲基黄嘌呤(I B MX )吲哚美辛和胰岛素诱导2周后,大约20%~25%的P LA 分化形成具有典型神经细胞形态特征的细胞;同时伴随着NSE 、波形蛋白和神经生长因子受体tr12A 表达增加。但是,诱导后的 P LA 细胞并没有表达成熟神经原标记MAP 或成熟星型细胞标 记GF AP 。而且向神经原方向诱导的P LA 细胞出现了一个延迟的整流器即K +电流(一种早期发育的离子通道),同时伴有形态学的改变和神经原特异性标记表达的增加。研究结果揭示,尽管向神经原方向诱导的P LA 细胞并未表现出成熟神经原细胞和神经胶质的特异性标记,但其表现出的早期神经

脂肪干细胞运用

A D S C s的分离与纯化关于ADSCs的获取方法很多,但不管哪种方法所得到的并非单一的脂肪干细胞,是一组具有干细胞特性的细胞群。目前应用最广泛的分离方法是酶胶原消化法。首先将无菌条件下切取的脂肪组织块剪成细小的颗粒,PBS液冲洗干净后,用0.1%的胶原酶在37℃下振荡消化4O~90min,再用含10%胎牛血清的等体积DMEM培养基终止。1200r /min离心5~10min,弃上清液及悬浮的脂肪组织,重悬细胞后经过细胞筛过滤,所得细胞按2—4×105/cm接种于50ml培养瓶内。37℃条件5%的CO饱和湿度培养箱内培养,2d后首次换液,以后3d换液一次,至细胞达70%~8O%融合时用0.25%胰酶消化,并传代。经过提取获得的以脂肪干细胞为主的细胞群接种后数小时即开始贴壁生长,24h内完成贴壁。细胞的形状与成纤维细胞相似,体积较小,核浆比较大,随后细胞体积渐增大,克隆形成。经传代后,细胞的形态及排列才趋于一致。由于目前尚未发现脂肪干细胞表面存在特异性的分子标记物,因此无法利用分子表型来分离纯化。然而可通过纯化脂肪组织块来间接达到纯化脂肪干细胞的目的。流式细胞仪检测显示:传至第3代时,可达95%以上的细胞纯度。 ADSCs的生物学特性 1.ADSCs的鉴定

在ADSCs鉴定上,现阶段尚无特异性鉴定方法。用免疫荧光法和流式细胞术检测结果均显示ADSCs表达特异性分子CD44,OCT一4,E—eadherin,流式细胞术检测细胞周期显示绝大多数细胞是处于静止期的干细胞,传代后生长迅速,随机挑选来源标本,对细胞进行染色体核型分析显示ADSCs具有遗传稳定性。 ADSCs分泌多种生长因子 在生理功能方面,脂肪干细胞能分泌相当数量的细胞因子,包括肝细胞生长因子(HGF)、血管内皮生长因子(VEGF)、胎盘生长因子(PGF)、转化生长因子一B(TGF—B)、成纤维细胞生长因子(FGF一2)等,低表达的因子有Ang一2C。 2.ADSCs的多向分化能力 与骨髓间充质干细胞相比,脂肪干细胞具有储量丰富、取材容易、扩增迅速、不宜衰老、排斥反应低等优点。在特定培养基和特异的诱导剂作用下可分化为特定的体细胞,在组织修复、细胞移植、基因治疗等领域有着潜在价值。 向脂肪细胞分化:在特定培养基中加入一定浓度地塞米松、胰岛素、吲哚美辛及1一甲基一3~异丁基一黄嘌呤,3周后发现ADSCs向脂肪细胞分化,可检测出ADSCs表达许多脂肪细胞的特异性标记:脂蛋白脂肪酶、脂肪酸结合蛋白aP2、PPAR—r2、leptin(瘦素)、Glut4(葡

脂肪来源干细胞的生物学特性及细胞表型

中国组织工程研究与临床康复第14卷第36期 2010–09–03出版 Journal of Clinical Rehabilitative Tissue Engineering Research September 3, 2010 Vol.14, No.36 ISSN 1673-8225 CN 21-1539/R CODEN: ZLKHAH 6685 1Department of Plastic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu 610072, Sichuan Province, China; 2Seventh Department of Plastic Surgery, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100144, China Cai Zhen☆, Doctor, Attending physician, Department of Plastic Surgery, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu 610072, Sichuan Province, China caizhen1976@126. com Correspondence to: Jiang Hai-yue, Professor, Doctoral supervisor, Seventh Department of Plastic Surgery, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100144, China jianghaiyue@sohu. com Received:2010-05-28 Accepted:2010-06-24 脂肪来源干细胞的生物学特性及细胞表型☆ 蔡震1,潘博2,林琳2,蒋海越2,庄洪兴2 Biological characteristics and phenotypes of adipose tissue-derived stem cells Cai Zhen1, Pan Bo2, Lin Lin2, Jiang Hai-yue2, Zhuang Hong-xing2 Abstract BACKGROUND: Adipose-derived stem cells (ADSCs) are capable of multi-directional differentiation and exist in human processed lipoaspirate. However, no in-depth studies have addressed biological characteristics of adipose tissue-derived stem cells (ADSCs) in vitro, and there are some disputes on the results from phenotype studies. OBJECTIVE: To investigate biological characteristics and phenotypes of human ADSCs. METHODS: Human adipose tissue was collected from persons undergoing fat extraction. The ADSCs were digested with collagenase, cultured and subcultured in vitro. Cell morphology was observed and growth curves were drawn. The phenotypes of ADSCs were identified by immunohistochemistry and flow cytometry. RESULTS AND CONCLUSION: ADSCs grew well, presented fibroblast-like growth. No significant change in cell morphology was detected within passage 15. The results from immunohistochemistry showed that cells were positive for CD29, CD44, CD105, but negative for CD34, CD45. Flow cytometry results have shown that cells were positive for CD29, CD44, CD105, MHC-Ⅰ, but negative for CD3, CD14, CD19, CD31, CD33, CD34, CD45, CD106, CD117, CD184. Results have suggested that ADSCs can be abundantly harvested and have stable proliferation in poorly differentiated status in vitro. Stem cell-related antigens were highly expressed in ADSCs. Cai Z, Pan B, Lin L, Jiang HY, Zhuang HX. Biological characteristics and phenotypes of adipose tissue-derived stem cells. Zhongguo Zuzhi Gongcheng Yanjiu yu Linchuang Kangfu. 2010;14(36): 6685-6688. [https://www.360docs.net/doc/8616794381.html, https://www.360docs.net/doc/8616794381.html,] 摘要 背景:研究证实脂肪组织提取物中存在脂肪来源的干细胞,并表现出多向分化的潜能,但是关于其体外的生物学特性研究不够深入,其细胞表型的研究结果存在一定争议。 目的:观察脂肪来源的干细胞的生物学特性与细胞免疫表型。 方法:取吸脂手术中废弃的人脂肪组织,胶原酶消化法获得脂肪来源的干细胞,体外传代培养,并进行细胞形态学观察,细胞生长曲线测定,免疫组织化学及流式细胞仪检测其细胞表型。 结果与结论:脂肪来源的干细胞生长旺盛,呈成纤维细胞样生长,15代以内细胞形态未见明显变化;免疫组织化学染色显示,细胞表面标记CD29,CD44,CD105表达阳性,CD34,CD45表达阴性;流式细胞仪检测显示,CD29,CD44,CD105,MHC-Ⅰ为阳性,CD3,CD14,CD19,CD31,CD33,CD34,CD45,CD106,CD117,CD184为阴性。结果说明脂肪来源的干细胞体外生长能力旺盛,高表达干细胞相关抗原,可长期传代且保持低分化状态。 关键词:表型;脂肪来源的干细胞;流式细胞仪;生物学特性;干细胞 doi:10.3969/j.issn.1673-8225.2010.36.008 蔡震,潘博,林琳,蒋海越,庄洪兴.脂肪来源干细胞的生物学特性及细胞表型[J].中国组织工程研究与临床康复,2010,14(36):6685-6688. [https://www.360docs.net/doc/8616794381.html, https://www.360docs.net/doc/8616794381.html,] 0 引言 间充质干细胞是一群存在于身体各个组织内较原始的细胞,具有自我更新及多向分化潜能[1],基于这些能力,间充质干细胞在其临床应用上有很大的潜力。自2001年Zuk证实了经吸脂术获得的脂肪组织中存在具有多向分化潜能的细胞群后[2],脂肪来源的干细胞(adipose tissue-derived stem cells, ADSCs)的概念得以明确,ADSCs因为其取材容易也被广泛研究。有研究表明ADSCs在体外培养中能迅速增长,累积细胞倍增数在第13代时仍无明显的下降趋势;更为重要的是细胞传至第10代时,仅有5%的细胞进入了细胞衰老期。因此ADSCs可以作为组织工程的种子细胞,成为具有广阔治疗应用前景。关于ADSCs的细胞表型研究,目前的研究结果没有得到统一的认定。本课题通过对ADSCs进行体外培养及对其体外生长的生物学性状及其细胞免疫表型做初步研究,为以后深入进行细胞组织工程的应用研究奠定了实验室基础。 1 材料和方法 设计:细胞体外培养与鉴定。 时间及地点:于2008-01/2008-06在中国医学科学院整形外科医院中心实验室完成。 材料: 实验标本:来自中国医学科学院整形外科医

相关文档
最新文档