安徽省合肥市一六八中学圆周运动单元测试卷(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、第六章 圆周运动易错题培优(难)
1.如图所示,有一可绕竖直中心轴转动的水平足够大圆盘,上面放置劲度系数为k 的弹簧,弹簧的一端固定于轴O 上,另一端连接质量为m 的小物块A (可视为质点),物块与圆盘间的动摩擦因数为μ,开始时弹簧未发生形变,长度为L ,若最大静摩擦力与滑动摩擦力大小相等,重力加速度为g ,物块A 始终与圆盘一起转动。

则( )
A .当圆盘角速度缓慢地增加,物块受到摩擦力有可能背离圆心
B .当圆盘角速度增加到足够大,弹簧将伸长
C g
L
μ D .当弹簧的伸长量为x mg kx
mL
μ+【答案】BC 【解析】 【分析】 【详解】
AB .开始时弹簧未发生形变,物块受到指向圆心的静摩擦力提供圆周运动的向心力;随着圆盘角速度缓慢地增加,当角速度增加到足够大时,物块将做离心运动,受到摩擦力为指向圆心的滑动摩擦力,弹簧将伸长。

在物块与圆盘没有发生滑动的过程中,物块只能有背离圆心的趋势,摩擦力不可能背离圆心,选项A 错误,B 正确;
C .设圆盘的角速度为ω0时,物块将开始滑动,此时由最大静摩擦力提供物体所需要的向心力,有
20mg mL μω=
解得
0g
L
μω=
选项C 正确;
D .当弹簧的伸长量为x 时,物块受到的摩擦力和弹簧的弹力的合力提供向心力,则有
2
mg kx m x L μω+=+()
解得
mg kx
m x L μω+=
+()
选项D错误。

故选BC。

2.如图所示,一个竖直放置半径为R的光滑圆管,圆管内径很小,有一小球在圆管内做圆周运动,下列叙述中正确的是()
A.小球在最高点时速度v gR
B.小球在最高点时速度v由零逐渐增大,圆管壁对小球的弹力先逐渐减小,后逐渐增大C.当小球在水平直径上方运动时,小球对圆管内壁一定有压力
D.当小球在水平直径下方运动时,小球对圆管外壁一定有压力
【答案】BD
【解析】
【分析】
【详解】
A.小球恰好通过最高点时,小球在最高点的速度为零,选项A错误;
<
B.在最高点时,若v gR
2
v
-=
mg N m
R
可知速度越大,管壁对球的作用力越小;
>
若v gR
2
v
N mg m
+=
R
可知速度越大,管壁对球的弹力越大。

选项B正确;
C.当小球在水平直径上方运动,恰好通过最高点时,小球对圆管内外壁均无作用力,选项C错误;
D.当小球在水平直径下方运动时,小球受竖直向下的重力,要有指向圆心的向心力,则小球对圆管外壁一定有压力作用,选项D正确。

故选BD。

3.如图所示,在水平圆盘上沿半径方向放置用细线相连的质量均为m的A、B两个物块(可视为质点)。

A和B距轴心O的距离分别为r A=R,r B=2R,且A、B与转盘之间的最大静摩擦力都是f m,两物块A和B随着圆盘转动时,始终与圆盘保持相对静止。

则在圆盘转动的角速度从0缓慢增大的过程中,下列说法正确的是()
A .
B 所受合力一直等于A 所受合力 B .A 受到的摩擦力一直指向圆心
C .B 受到的摩擦力先增大后不变
D .A 、B 两物块与圆盘保持相对静止的最大角速度ωm = 2m
f mR
【答案】CD 【解析】 【分析】 【详解】
当圆盘角速度比较小时,由静摩擦力提供向心力。

两个物块的角速度相等,由2F m r ω=可知半径大的物块B 所受的合力大,需要的向心力增加快,最先达到最大静摩擦力,之后保持不变。

当B 的摩擦力达到最大静摩擦力之后,细线开始提供拉力,根据
2
m 2T f m R ω+=⋅
2A T f m R ω+=
可知随着角速度增大,细线的拉力T 增大,A 的摩擦力A f 将减小到零然后反向增大,当A 的摩擦力反向增大到最大,即A m =f f -时,解得
m
2f mR
ω=
角速度再继续增大,整体会发生滑动。

由以上分析,可知AB 错误,CD 正确。

故选CD 。

4.如图所示,一个边长满足3:4:5的斜面体沿半径方向固定在一水平转盘上,一木块静止在斜面上,斜面和木块之间的动摩擦系数μ=0.5。

若木块能保持在离转盘中心的水平距离为40cm 处相对转盘不动,g =10m/s 2,则转盘转动角速度ω的可能值为(设最大静摩擦力等于滑动摩擦力)( )
A .1rad/s
B .3rad/s
C .4rad/s
D .9rad/s
【答案】BC 【解析】 【分析】 【详解】
根据题意可知,斜面体的倾角满足
3
tan 0.54
θμ=
>= 即重力沿斜面的分力大于滑动摩擦力,所以角速度为零时,木块不能静止在斜面上;当转动的角速度较小时,木块所受的摩擦力沿斜面向上,当木块恰要向下滑动时
11cos sin N f mg θθ+= 2111sin cos N f m r θθω-=
又因为滑动摩擦力满足
11f N μ=
联立解得
1522
rad/s ω=
当转动角速度变大,木块恰要向上滑动时
22cos sin N f mg θθ=+
2
222sin cos N f m r θθω+=
又因为滑动摩擦力满足
22f N μ=
联立解得
252rad/s ω=
综上所述,圆盘转动的角速度满足
522
rad/s 2rad/s 52rad/s 7rad/s 11
ω≈≤≤≈ 故AD 错误,BC 正确。

故选BC 。

5.如图所示,两个啮合的齿轮,其中小齿轮半径为10cm ,大齿轮半径为20cm ,大齿轮中C 点离圆心O 2的距离为10cm ,A 、B 两点分别为两个齿轮边缘上的点,则A 、B 、C 三点的( )
A .线速度之比是1:1:2
B .角速度之比是1:2:2
C .向心加速度之比是4:2:1
D .转动周期之比是1:2:2 【答案】CD 【解析】 【分析】 【详解】
A .同缘传动时,边缘点的线速度相等
v A =v B ①
同轴转动时,各点的角速度相等
ωB =ωC ②
根据
v =ωr ③
由②③联立代入数据,可得
B C 2v v =④
由①④联立可得
v A :v B :v C =2:2:1
A 错误;
B .由①③联立代入数据,可得
A B :2:1ωω=⑤
再由②⑤联立可得
A B C ::2:1:1ωωω=⑥
B 错误; D .由于
2T π
ω
=

由⑥⑦联立可得
A B C ::1:2:2T T T =
D 正确; C .根据
2a r ω= ⑧
由⑥⑧联立代入数据得
A B C ::4:2:1a a a =
C 正确。

故选C
D 。

6.如图甲所示,半径为R 、内壁光滑的圆形细管竖直放置,一可看成质点的小球在圆管内
做圆周运动,当其运动到最高点A 时,小球受到的弹力F 与其过A 点速度平方(即v 2)的关系如图乙所示。

设细管内径略大于小球直径,则下列说法正确的是( )
A .当地的重力加速度大小为R b
B .该小球的质量为
a b
R C .当v 2=2b 时,小球在圆管的最高点受到的弹力大小为a D .当0≤v 2<b 时,小球在A 点对圆管的弹力方向竖直向上 【答案】BC 【解析】 【分析】 【详解】
AB .在最高点,根据牛顿第二定律
2
mv mg F R
-= 整理得
2
mv F mg R
=- 由乙图斜率、截距可知
a mg =, m a R b
=
整理得
a m R
b =
,b g R
= A 错误,B 正确;
C .由乙图的对称性可知,当v 2=2b 时
F a =-
即小球在圆管的最高点受到的弹力大小为a ,方向竖直向下,C 正确; D .当0≤v 2<b 时,小球在A 点对圆管的弹力方向竖直向下,D 错误。

故选BC 。

7.荡秋千是大家喜爱的一项体育活动。

某秋千的简化模型如图所示,长度均为L 的两根细绳下端拴一质量为m 的小球,上端拴在水平横杆上,小球静止时,细绳与竖直方向的夹角
均为θ。

保持两绳处于伸直状态,将小球拉高H 后由静止释放,已知重力加速度为g ,忽略空气阻力及摩擦,以下判断正确的是( )
A .小球释放瞬间处于平衡状态
B .小球释放瞬间,每根细绳的拉力大小均为
2
cos 2cos L H
mg L θθ
- C .小球摆到最低点时,每根细绳的拉力大小均为2cos θ
mg
D .小球摆到最低点时,每根细绳的拉力大小均为2cos 2cos mgH mg
L θθ
+
【答案】BD 【解析】 【分析】 【详解】
AB .设每根绳的拉力大小为T ,小球释放瞬间,受力分析如图1,所受合力不为0 由于速度为0,则有
2cos cos 0T mg θα-=
如图2,由几何关系,有
cos cos cos L H
L θαθ
-=
联立得
2
cos 2cos L H
T mg L θθ
-=
A 错误,
B 正确;
CD .小球摆到最低点时,图1中的0α=,此时速度满足
2112
mgH mv =
由牛顿第二定律得
2
12cos v T mg m R
θ'-=
其中cos R L θ= 联立解得
2
2cos 2cos mgH mg
T L θθ
'=
+ C 错误,D 正确。

故选BD 。

8.荡秋千是小朋友们喜爱的一种户外活动,大人在推动小孩后让小孩自由晃动。

若将此模型简化为一用绳子悬挂的物体,并忽略空气阻力,已知O 点为最低点,a 、b 两点分别为最高点,则小孩在运动过程中( )
A .从a 到O 的运动过程中重力的瞬时功率在先增大后减小
B .从a 到O 的运动过程中,重力与绳子拉力的合力就是向心力
C .从a 到O 的运动过程中,重力与绳子拉力做的总功等于小球在此过程中获得的动能
D .从a 到O 的运动过程中,拉力向上有分量,位移向下有分量,所以绳子拉力做了负功 【答案】AC 【解析】 【分析】 【详解】
A .由题可知,a 、b 两点分别为最高点,所以在a 、b 两点人是速度是0,所以此时重力的瞬时功率为0;在最低点O 时,速度方向与重力方向垂直,所以此时重力的瞬时功率为0,所以从a 到O 的运动过程中重力的瞬时功率在先增大后减小,故A 正确;
B .从a 到O 的运动过程中,将重力分解为速度方向的分力和背离半径方向的分力,所以提供向心力的是重力背离半径方向的分力和绳子的拉力的合力共同提供的,故B 错误;
C .根据动能定理可知,从a 到O 的运动过程中,重力与绳子拉力做的总功等于小球在此
过程中获得的动能,故C正确;
D.从a到O的运动过程中,绳子的拉力与人运动的速度方向垂直,所以拉力不做功,故D错误。

故选AC。

9.一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是()
A.小球过最高点时,杆所受到的弹力可以等于零
B gR
C.小球过最高点时,杆对球的作用力一定随速度增大而增大
D.小球过最高点时,杆对球的作用力可能随速度增大而增大
【答案】AD
【解析】
【分析】
【详解】
A.当小球到达最高点弹力为零时,重力提供向心力,有
2
v
mg m
=
R
解得
=
v gR
=A正确;
即当速度v gR
B.小球通过最高点的最小速度为零,选项B错误;
<
CD.小球在最高点,若v gR
2
v
mg F m
-=
R
杆的作用力随着速度的增大而减小;
>
若v gR
2
v
+=
mg F m
R
杆的作用力随着速度增大而增大。

选项C错误,D正确。

故选AD。

10.如图所示,匀速转动的水平圆盘上放有质量分别为2kg 和3kg 的小物体A 、B ,A 、B 间用细线沿半径方向相连。

它们到转轴的距离分别为R A =0.2m 、R B =0.3m 。

A 、B 与盘面间的最大静摩擦力均为重力的0.4倍。

g 取10m/s 2,现极其缓慢地增大圆盘的角速度,则下列说法正确的是( )
A .小物体A 达到最大静摩擦力时,
B 受到的摩擦力大小为12N B .当A 恰好达到最大静摩擦力时,圆盘的角速度为4rad/s
C .细线上开始有弹力时,圆盘的角速度为
230
3
rad/s D .当A 恰好达到最大静摩擦力时,剪断细线,A 将做向心运动,B 将做离心运动 【答案】AC 【解析】 【分析】 【详解】
A .当增大原盘的角速度,
B 先达到最大静摩擦力,所以A 达到最大静摩擦力时,B 受摩擦力也最大,大小为
f B=km B
g =0.4⨯3⨯10N=12N
故A 正确;
B .当A 恰好达到最大静摩擦力时,圆盘的角速度为ω,此时细线上的拉力为T ,由牛顿第二定律,对A
2A A A k T R m g m ω-=
对B
2B B B T km g m R ω+=
联立可解得
s 13
102
ω=
故B 错误;
C. 当细线上开始有弹力时,此时B 物体受到最大摩擦力,由牛顿第二定律,有
2B B 1B k m R m g ω=
可得
1230
ω=
故C 正确;
D. 当A 恰好达到最大静摩擦力时,剪断细线,A 物体摩擦力减小,随圆盘继续做圆周运动,而B 不再受细线拉力,最大摩擦力不足以提供向心力,做离心运动,故D 错误。

故选AC 。

11.如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,管道内侧壁半径为R , 小球半径为r ,则下列说法中正确的是( )
A .小球通过最高点时的最小速度min v Rg =
B .小球通过最高点时的最小速度min 0v =
C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力
D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力 【答案】BC 【解析】 【详解】
AB.因是在圆形管道内做圆周运动,所以在最高点时,内壁可以给小球沿半径向外的支持力,所以小球通过最高点时的最小速度可以为零.所以选项A 错误,B 正确;
C.小球在水平线ab 以下的管道中运动时,竖直向下的重力沿半径方向的分力沿半径方向向外,小球的向心力是沿半径向圆心的,小球与外壁一定会相互挤压,所以小球一定会受到外壁的作用力,内壁管壁对小球一定无作用力,所以选项C 正确;
D.小球在水平线ab 以上的管道中运动时,当速度较小时,重力沿半径方向上的分力大于或等于小球做圆周运动需要的向心力,此时小球与外壁不存在相互挤压,外侧管壁对小球没有作用力,选项D 错误.
12.如图所示,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、1.5r 。

设本题中的最大静摩擦力等于滑动摩擦力。

以下说法正确的是( )
A .
B 对A 的摩擦力一定为3μmg B .B 对A 的摩擦力一定为3mω2r
C 3g
r
μ
D .转台的角速度可能等于g
r
μ 【答案】BC 【解析】 【分析】 【详解】
AB .对A 受力分析,受重力、支持力以及B 对A 的静摩擦力,静摩擦力提供向心力,有
2(3)(3)f m r m g ωμ=
故A 错误,B 正确;
CD .由于A 、AB 整体、C 受到的静摩擦力均提供向心力,故对A 有
2(3)(3)m r m g ωμ
对AB 整体有
()()23232m m r m m g ωμ+≤+
对物体C 有
()21.5m r mg ωμ≤
解得
23g
r
μω≤
故C 正确,D 错误。

故选BC 。

13.如图所示,半径分别为R 和2R 的甲、乙两薄圆盘固定在同一转轴上,距地面的高度分别为2h 和h ,两物块a 、b 分别置于圆盘边缘,a 、b 与圆盘间的动摩擦因数μ相等,转轴从静止开始缓慢加速转动,观察发现,a 离开圆盘甲后,未与圆盘乙发生碰撞,重力加速度为g ,最大静摩擦力等于滑动摩擦力,则( )
A .动摩擦因数μ一定大于
32R h
B .离开圆盘前,a 所受的摩擦力方向一定指向转轴
C .离开圆盘后,a 运动的水平位移大于b 运动的水平位移
D .若52R
h
μ=
,落地后a 、b 1114【答案】ABD
【解析】 【详解】
A .由题意可知,两物块随圆盘转动的角速度相同,当最大静摩擦力提供物体向心力时,此时的角速度为物体随圆盘做圆周运动的最大角速度,为临界角速度,根据牛顿第二定律得
2b b b 2m g m R μω=
解得b 物体滑离圆盘乙的临界角速度为
b ω=
同理可得,a 物块的临界角速度为
a ω=
由几何知识知,物体a 滑离圆盘时,其位移的最小值为
min x ==
由题意知,其未与圆盘乙相碰,根据平抛运动规律可知
a a min x R t R x ωω=⋅=>= 解得
32R h
μ>
所以A 正确;
B .离开圆盘前,a 随圆盘一起做匀速圆周运动,由静摩擦力来提供向心力,所以a 所受的摩擦力方向一定指向转轴,B 正确;
C .由于
b a ωω<
所以一定是b 物块先离开圆盘,离开圆盘后,物块做平抛运动,对b 物体的水平位移为
b b b 2x v t R ω===同理可得,a 物体的水平位移为
a a a a x v t R t R ωω''==⋅==故离开圆盘后a 的水平位移等于
b 的水平位移,所以C 错误; D .当
52R h
μ=
时 a 的落地点距转轴的距离为
22
1a
11
x R x R
=+=
同理,b的落地点距转轴的距离为
22
2b
(2)14
x R x R
=+=

1
2
11
14
x
x
=
所以D正确。

故选ABD。

14.如图所示,在水平圆盘上放有质量分别为m、m、2m的可视为质点的三个物体A、B、C,圆盘可绕垂直圆盘的中心轴'
OO转动。

三个物体与圆盘间的动摩擦因数相同,最大静摩擦力等于滑动摩擦力。

三个物体与轴O共线且OA OB BC r
===,现将三个物体用轻质细线相连,保持细线伸直且恰无张力。

使圆盘从静止开始转动,角速度极其缓慢地增大,则对于这个过程,下列说法正确的是()
A.A、B两个物体同时达到最大静摩擦力
B.B、C两个物体所受的静摩擦力先增大后不变,A物体所受的静摩擦力先增大后减小再增大
C.当
g
r
μ
ω>时整体会发生滑动
D
2
μμ
ω
<<
g g
r r
时,在ω增大的过程中,B、C间的拉力不断增大
【答案】BCD
【解析】
【分析】
【详解】
ABC.当圆盘转速增大时,静摩擦力提供向心力,三个物体的角速度相等,由2
F m r
ω
=
知,由于C的半径最大,质量最大,故C所需要的向心力增加最快,最先达到最大静摩擦力,此时
()2
1
222
m g m r
μω
=⋅
解得
12
g
r
μ
ω=
当C 的摩擦力达到最大静摩擦力之后,B 、C 间细线开始出现拉力,B 的摩擦力增大,达到最大静摩擦力后,A 、B 间细线开始有力的作用,随着角速度增大,A 的摩擦力将减小到零然后反向增大,当A 达到最大静摩擦力时,对C 有
()2
2222T m g m r μω+=⋅
对A 、B 整体有
2T mg μ=
解得
2g
r
μω=
当g
r
μω>
时整体会发生滑动,故A 错误,BC 正确;
D .当
2μμω<<
g
g
r
r
时,C 所受摩擦力已是最大静摩擦力,对C 分析有
224T mg mr μω+=
在ω增大的过程中,B 、C 间的拉力不断增大,故D 正确。

故选BCD 。

15.如图所示,一个内壁光滑的弯管处于竖直平面内,其中管道半径为R . 现有一个半径略小于弯管横截面半径的光滑小球在弯管里运动,当小球通过最高点时速率为v 0,则下列说法中错误的是
A .若0v gR
B .若0v gR >
,则小球对管内上壁有压力
C .若00v gR <<
D .不论v 0多大,小球对管内下壁都有压力
【答案】D 【解析】 【分析】 【详解】
A .到达管道的最高点,假设恰好与管壁无作用力.则有:小球仅受重力,由重力提供向心力,即:
2
v mg m R
=

0v =
所以A 选项是正确的,不符合题意.
B .当0v >
,则小球到达最高点时,有离心的趋势,与内上壁接触,从而受到内上壁向下
的压力,所以小球对管内上壁有压力,故B 选项是正确的,不符合题意.
C .当00v <<
则小球到达最高点时, 有向心的趋势,与内下壁接触,从而受到内下壁
的压力.所以C 选项是正确的,不符合题意.
D .小球对管内壁的作用力,要从速度大小角度去分析.,若0v >
有压力;若00v <<
D 不正确,符合题意.。

相关文档
最新文档