数学中的有限和无限
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学中的有限和无限
庄清清
摘要本文主要总结了数学中有限与无限的关系,通过实例讨论了无限是有限的基础,无限是由有限构成的,有限由无限组成,无限是有限的延伸,并讨论了它们的质的区别以
及相互关系,为更好的理解有限和无限的关系提供了一些参考.
关键词有限,无限关系
1 引言
“数学是讲述无限的科学.”这句话是代表20世纪数学界辉煌发展的著名数学家、美国普林斯顿高级研究所魏尔教授的至理名言.怎么听起来,这话让人感觉有些奇特而难以捉摸,但事实上数学中的无限的确蕴含着许多令人不可思议奥秘的东西.
然而,以前人们都认为数学是有限的,直到笛卡尔引入的坐标法以及微积分的问世之后,人们才清醒地意识到数学是从有限向无限发展的.这一个发现,结束了初等数学年代而进入了变量数学年代.美国数学史家贝尔说“没有一个一致的数学无限理论,就没有无理数理论,就没有与我们现在所有的即便稍许相似的、任何形式的数学分析,最后,没有分析,像现在存有的大部分数学——包括几何和大部分的应用数学——就不存在了”.由此可见,无限在现代科学数学发展领域中占据着十分重要的地位,甚至可以说,没有无限的延伸,就没有现代的科学数学.
在我们的日常生活当中,我们一般都习惯了数学领域的有限性,因为我们所接触的东西大多数都可以摁摁手指或者脚趾就可以数得清楚了,有限的人,有限的杯子,有限的盘子等等,于是无限的领域就像个无底洞,让我们觉得高深莫测了,但是当我们仔细地想一想,就会清楚地发现数学中,无限其实是由有限构成,而有限又包含着无限,两者相互交叉,相互联系,就例如我们生活中最常见的一条绳子,你就可以将它剪成无数的小段一样,另外我们大家所熟悉的自然数序列“1,2,3,4,5,6,7,8,9, ,n , ”,当你一个个数字的去数,你就会发现自然数序列实际上是一个永远在增长着的没完没了的数列,这就是所谓简单而又让人费解的数学中的无限领域,然而,它又恰恰是由一个个有限的单位组成的.
无限是如此的神秘,“自古以来,没有别的问题像无限这样深深地激动过人的情绪,没有别的想法像它这样富有成效地焕发过人的精神.同时,也没有别的概念像它这 ”1.它引发了三次数学危机:第一次危机发生在公元前580~568样迫切需要澄清
年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比.第二次数学危机发生在十七世纪.十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机.第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾.这三次数学危机都使人们深刻地认识到无限的重要性.
下面我们观察一下几个式子
再如著名的康托(Cantor)集的构造6即我们所谓的三分点集构造:
一段长度为一米的直线段,做以下处理 第一次 我们挖去一个,其长度31,而余下2个,长度3
1; 第二次 我们挖去两个,其长度91,而余下22个,长度21193;
第n 次 我们挖去n 12个,其长度n 3
1,而余下n 2个,长度n 31; 显然,如此继续下去,直到无穷次后,由于在不断地分割舍弃的过程中,所形成的线段数目越来越多,而长度相对越来越小,在极限的情况下,得到一个离散的点集,而这个点集就是一个无限集.显然,这构造理论再次说明了有限是由无限组成的.
再如,我们所有人都认识的两个简单的自然数0和1,然而在它们之间,我们却可以找得到无数个类似0.5,0.05,,0.1,0.01 这样的数字.另外,随意画出一个正三角形或者正方形或者圆,在其里面,我们可以做出无数个与之相似的正三角形或者正方形或者同心圆,这就是人们常说的无限封闭在有限里面(如下图)1
.
人们对数学中有限与无限的普遍认识都是,无限怎么都比有限广,比有限大,而无限由有限组成,但是站在不同的角度上面去看待这个问题,我们就会发现有限其实也是由无限组成,这一观点首先是由数学家们提出来的.我们说无限包含有限是无限存在于有限当中.恩格斯说:“无限纯粹是有限组成的,这一近视矛盾,可事情就是这样.” 7无限性是一个摸不着的、虚拟的东西,无限要通过有限展示出来,宇宙中的万物都是无数具体有限的事物构成.其次无限就是内在于有限当中的元素 ,辩证地思考无限,就不能仅仅停留在“无限的有限就构成无限”这一点上,我们必须进一步充分地认识它.从社会哲学的角度上看,任何事物本身就是一个矛盾体,所以任何事物都包含着突破自己.由此可见,离开有限,无限将不再存在.有限中包含着无限是说任何有限的东西都可以无限地分割,从原子向粒子的无限分割,事物会由于自身的矛盾推动而处于不安分的状态当中,于是不停地向比自己更小的事物转变.有限中存在着无限,在0到1的单位长度上存在着无数个有理数点,也存在着无数个无理数点.在整除的关系中约数是有限的,而倍数的个数是无限的,这就是我们说的有限由无限组成.
5.无限是有限的延伸
说到无限是有限的延伸,那么首先我们要说的就是大家都熟识的数学归纳法了.数
|1时,→lim n 7.2 有限转化为无限
和二项式定理,那我们能走多远呢?”7
数学中的有限与无限就像是一对连体的婴儿,密切相连着,对立却又统一,谁都离不开谁.无限是有限的基础,无限是由有限构成的,有限由无限组成,无限是有限的延伸,它们之间矛盾地存在着,这就需要我们用辩证的思维去理解它,去认识它,它所能给我们带来的就是不断地去深思和探究.
参考文献:
[1]郭华.数学中的有限与无限[N].安阳工程学院学报,2009(1).
[2]华东师范大学数学系.数学分析上册[M].北京:高等教育出版社,2001,23-24.
[3]华东师范大学数学系.数学分析下册[M].北京:高等教育出版社,2001,2-54.
[4]葛军,涂荣豹.初等数学研究教程[M].江苏:江苏教育出版社,2009,165-168.
[5]张永康.试论数学中的有限与无限[N].工程兵工程学院学报,1989(1).
[6]王仲英,郝祥辉.数学中的有限和无限[J].高等数学研究,2007,10(1):77-82.
[7]刘大椿.自然辩证法概论[M].北京:中国人民大学出版社,2008,100-250.
[8]李浙生.论数学中的有限与无限[N].辽宁教育学院学报,1994(4).
[9]仲田纪夫[日]著.丁树深译.无穷的奥秘及其演变[M].北京:科学出版社,2001,32-54.
Mathematics of finite and infinite
Zhuang Qingqing
Abstract:This paper mainly summarizes the relationship between finite and infinite in mathematics, by an example to discuss the infinite is the basis of finite, infinite is composed of a finite, finite is composed of an infinite, unlimited extension is finite, and discusses the difference and relation of the matter, and provides some references
for a better understanding of the finite and the infinite relationship Keywords:finite, infinite
11。