异步时序逻辑电路
异步时序电路的各级触发器
异步时序电路的各级触发器引言在数字电路中,时序电路是一种基于时钟信号的电路,通过控制信号的不同组合和时钟信号的到来实现特定的电路功能。
异步时序电路是一种特殊的时序电路,它的功能和行为受到输入信号的变化而改变,与时钟信号无关。
而各级触发器是异步时序电路中的关键组件,用于存储和传递数据。
本文将对异步时序电路的各级触发器进行全面详细、完整且深入的介绍。
首先,介绍异步时序电路的基本概念和特点;其次,介绍各级触发器的分类和工作原理;最后,讨论各级触发器在数字电路中的应用。
异步时序电路的基本概念和特点异步时序电路是通过不同输入信号的变化来确定其功能和行为的时序电路。
与同步时序电路相比,异步时序电路不需要时钟信号的同步,更加灵活和自由。
其基本特点包括:1.功能与输入信号相关:异步时序电路的功能和行为取决于输入信号的变化。
当输入信号满足特定条件时,电路会执行相应的操作,这种功能与输入信号的变化形成了直接的联系。
2.动态执行:异步时序电路的执行是动态的,即电路在输入信号变化后立即执行相应操作,不需要等待时钟信号的到来。
3.无需全局同步:异步时序电路中的各个组件可以独立地根据输入信号进行处理,无需全局同步。
这种独立处理的方式大大简化了电路的设计和实现。
4.反馈控制:异步时序电路中的组件可以通过反馈控制来实现存储和传递数据。
这种反馈控制的机制使得异步时序电路能够实现复杂的计算和运算逻辑。
各级触发器的分类和工作原理各级触发器是异步时序电路中常用的组件,用于存储和传递数据。
根据触发器的特性和工作原理,可以将其分为SR触发器、D触发器和JK触发器。
SR触发器SR触发器是一种基本的触发器,它有两个输入端S和R,一个输出端Q和Q’。
其工作原理如下:•当S=0、R=0时,保持状态不变。
•当S=1、R=0时,置位触发器,Q=1,Q’=0。
•当S=0、R=1时,复位触发器,Q=0,Q’=1。
•当S=1、R=1时,禁止状态,Q和Q’的值是不确定的。
数字逻辑 5:异步步时序逻辑
单输入变化: 单输入变化:
每一时刻仅允许一个输入变量发生变化。 每一时刻仅允许一个输入变量发生变化。
节拍: 节拍:
按输入信号的变化来区别状态转换的节拍。 按输入信号的变化来区别状态转换的节拍。
《数字逻辑》 第五章·异步时序逻辑
4/32
脉冲异步时序逻辑分析步骤
写出电路的输出函数和激励函数表达式; 写出电路的输出函数和激励函数表达式; 列出电路次态真值表或次态方程组; 列出电路次态真值表或次态方程组; 作出状态表和状态图; 作出状态表和状态图; 画出时间图并用文字描述电路的逻辑功能; 画出时间图并用文字描述电路的逻辑功能;
每个输入变化后,要稳定一段时间不变, 每个输入变化后,要稳定一段时间不变,以保证电路能进入稳 定状态。 定状态。 不允许两个或两个以上的输入信号同时变化。 不允许两个或两个以上的输入信号同时变化。
《数字逻辑》 第五章·异步时序逻辑
19/32
知识点-Ⅱ 知识点-
异步时序电路可分为脉冲型异步时序电路和电平型异步 时序电路。 时序电路。 脉冲型异步时序电路的输入包含脉冲信号, 脉冲型异步时序电路的输入包含脉冲信号,而电平型异 步时序电路的输入仅由电平信号构成。 步时序电路的输入仅由电平信号构成。
《数字逻辑》 第五章·异步时序逻辑
22/32
知识点-Ⅴ 知识点-
为了达到多功能的目的,异步计数器往往采用组合结构, 为了达到多功能的目的,异步计数器往往采用组合结构, 即由两个独立的计数器组成。 由模2和模 即由两个独立的计数器组成。如74LS90由模 和模 计 由模 和模5计 数器组成, 由模2和模 计数器组成等。 数器组成,74LS93由模 和模 计数器组成等。 由模 和模8计数器组成等
《数字逻辑》 第五章·异步时序逻辑
异步时序逻辑电路的分析与设计
异步时序逻辑电路的分析与设计异步时序逻辑电路是一种基于信号的到达时间和时序性的电路设计方法。
与同步时序逻辑电路不同,异步时序逻辑电路中的数据传输和处理不依赖于时钟信号,而是根据输入信号的到达顺序和时序关系来进行操作。
本文将详细介绍异步时序逻辑电路的分析与设计。
异步时序逻辑电路的分析主要包括信号流图的建立和状态表的推导。
首先,通过对输入信号的时序关系进行分析和理解,可以根据具体应用需求建立信号流图。
信号流图是一种图形化表示方式,其中包含了电路中信号的流动方式以及各个元件的逻辑功能。
在建立信号流图时,需要注意信号的输入和输出时间以及逻辑功能的实现方式,这是实现异步时序逻辑电路的关键。
在信号流图的基础上,可以根据信号的到达先后顺序推导状态表。
状态表是对电路中每个元件当前状态和下一状态的描述。
通过观察信号流图,可以确定每个元件在不同状态下的输出值,并利用这些信息进行状态表的推导。
在状态表中,可以列出元件的当前状态和下一状态的取值,并根据逻辑功能的要求来确定元件的控制信号。
异步时序逻辑电路的设计主要涉及到逻辑电路元件的选择和电路的优化。
在异步时序逻辑电路中,常用的逻辑电路元件包括触发器、门电路和编码器等。
根据实际需求,可以选择不同类型的逻辑电路元件来实现电路的逻辑功能。
在设计时,需要注意减少电路的延迟和功耗,提高电路的性能和可靠性。
可以通过选择低延迟的元件、合理布局电路和优化信号传输路径等方式来减小电路的延迟。
另外,可以采用时序检测和冗余检测等方法来增加电路的可靠性。
除了分析和设计,测试和验证是异步时序逻辑电路设计中的重要环节。
可以利用仿真软件对电路进行测试和验证,以确保电路的正确性和性能。
通过仿真可以观察电路的输入输出关系,检测是否存在冲突或错误,并进行合理的调整和优化。
总结起来,异步时序逻辑电路的分析与设计涉及到信号流图的建立、状态表的推导、元件的选择和电路的优化等方面。
通过合理的分析和设计,可以实现复杂的时序逻辑功能,并提高电路的性能和可靠性。
同步时序逻辑电路和异步时序逻辑
同步时序逻辑电路和异步时序逻辑
同步时序逻辑电路和异步时序逻辑电路的区别:
1、时钟信号不同
在同步时序逻辑电路中有一个公共的时钟信号,电路中各记忆元件受它统一控制,只有在该时钟信号到来时,记忆元件的状态才能发生变化,从而使时序电路的输出发生变化,而且每来一个时钟信号,记忆元件的状态和电路输出状态才能改变一次。
由于异步电路没有统一的时钟,状态变化的时刻是不稳定的,通常输入信号只在电路处于稳定状态时才发生变化。
2、触发器的状态是否变化
同步时序电路中几乎所有的时序逻辑都是“同步逻辑”,有一个“时钟”信号,所有的内部内存('内部状态')只会在时钟的边沿时候改变。
异步时序逻辑电路分析时,还需考略各触发器的时钟信号,当某触发器时钟有效信号到来时,该触发器状态按状态方程进行改变,而无时钟有效信号到来时,该触发器状态将保持原有的状态不变。
参考内容:
同步逻辑最主要的优点:
是它很简单。
每一个电路里的运算必须要在时钟的两个脉冲之间固定的间隔内完成,称为一个'时钟周期'。
只有在这个条件满足下(不考虑其他的某些细节),电路才能保证是可靠的。
同步逻辑缺点:
时钟信号必须要分布到电路上的每一个触发器。
而时钟通常都是高频率的信号,这会导致功率的消耗,也就是产生热量。
即使每个触发器没有做任何的事情,也会消耗少量的能量,因此会导致废热产生。
最大的可能时钟频率是由电路中最慢的逻辑路径决定,也就是关键路径。
意思就是说每个逻辑的运算,从最简单的到最复杂的,都要在每一个时脉的周期中完成。
同步时序和异步时序电路
5 . 1 异步时序逻辑电路模型(一)异步时序逻辑电路的分类异步时序电路可以从不同的角度进行分类。
1•冲异步时序电路和电平异步时序电路输入信号有脉冲信号和电平信号两种。
所谓电平信号是以电平的高低来表示信号;而脉冲信号是以脉冲的有无来表示信号。
根据输入信号的不同,异步时序电路又分脉脉冲时序电路和电平异步时序电路两种。
如果加到异步时序电路的输入为脉冲,则称为脉冲异步时序电路;反之,如果输入信号为电平.则称为电平异步时序电路。
2.米勒电路和莫尔电路根据输出与输入的不同关系,异步时序电路有米勒电路和莫尔电路两种类型。
假如电路的输出状态不仅与输入状态有关,还与二次状态有关,这样的异步时序电路称米勒电路;如果电路的输出状态仅与二次状态有关,而与输入状态无关,这样的异步时序电路称为莫尔电路。
(二)异步时序逻辑电路的一般结构异步时序电路由组合电路和存储电路两部分组成。
脉冲异步时序电路的存储电路常采用触发器,它可以是时钟控制触发器,也可以是基本R-S触发器。
在使用时钟控制触发器时,触发器不被统一的时钟脉冲同步,每个触发器的时钟端作为一个独立的输入端。
电平异步时序电路的存储电路采用延迟元件,它可以是外加的延迟元件,也可以利用反馈回路的附加延迟。
脉冲异步时序电路与同步时序电路的主要差别是电路的状态改变方式不同,前者在输入信号的控制下改变状态,而后者却在同一时钟脉冲控制下改变状态。
这一差别导致了脉冲异步时序电路和同步时序电路在分析和设计方法上都有若干差别。
一、5 . 2 脉冲异步时序逻辑电路脉冲异步时序电路状态的改变直接依赖于输入脉冲,即每来一个输入脉冲,电路状态发生一次变化。
由于触发器没有公共的时钟脉冲来同步,电路状态的转换将不可预测。
为了使脉冲异步时序电路可靠工作,对脉冲异步时序电路的输入信号应作如下规定:(1)不允许在两个(或两个以上)输入端同时加输入脉冲;(2)第二个输入脉冲的到来,必须在第一个输入脉冲所引起的整个电路的响应完全结束之后。
05.4电平异步时序逻辑电路设计
⑵ 建立原始流程表 原始流程表, 稳态和 画出原始流程表 填入稳态 ① 画出原始流程表,填入稳态和相应输出 填入非稳态并指定非稳态下的输出 非稳态并指定非稳态下的 ② 填入非稳态并指定非稳态下的输出 ③ 填入无关状态和无关输出 填入无关状态 无关状态和
例:某逻辑电路有两个输入 x1 和 x2,一个输出 Z。输入 输出关系为: 0, 输出关系为:当 x1x2 = 00 时 Z = 0,此后 x1x2 = 01 或 1; x1x2 = 10 时 Z = 1;当 x1x2 = 11 时 1, Z = 1,此后 x1x2 0。作出此电路流程表。 = 01 或 x1x2 = 10 时 Z = 0。作出此电路流程表。 画出典型输入、输出时间图, 解:⑴ 画出典型输入、输出时间图,并设立相应状态 t0 t1 x1x2 00 10 x1 x2 Z ① ② ① ③ ④ ⑤ ④ ⑥ ① ② ④ t2 00 t3 01 t4 11 t5 10 t6 11 t7 t8 t9 t10 11
脉冲源 x2 单脉冲输出 手动控制x 手动控制 1 单脉冲发生器
建立原始流程表。 解:⑴ 建立原始流程表。根据题意可作出典型输 输出时间图。 入、输出时间图。
t0 t1 t2 t3 x2 x1 Z ① ② ①③ ④ ③ ④⑤ ⑥ ⑦ ① ② ① t4 t5 t6 t7 t8 t9 t10 t11 t12
⑵ 化简流程表 根据相容行判断法则,可作出隐含表, 根据相容行判断法则,可作出隐含表,从隐含表可得 (1,2)、(3,4)、(3,5)、(3,6)、(4,5), 相容行对为 (1,2)、(3,4)、(3,5)、(3,6)、(4,5), 据此可作出状态合并图,其最大相容行类为 (1,2)、(3, 据此可作出状态合并图, (1,2)、(3, 5)、(3,6)、(7)。 4,5)、(3,6)、(7)。
同步时序逻辑电路和异步时序逻辑电路
同步时序逻辑电路和异步时序逻辑电路1. 引言说到电路,大家可能会觉得有点儿高深莫测,其实它们就像生活中的各种小插曲,错综复杂但又充满趣味。
今天我们来聊聊两种电路:同步时序逻辑电路和异步时序逻辑电路。
听起来很正式吧?其实就像两位老朋友,各有各的个性,给我们的生活带来不同的滋味。
2. 同步时序逻辑电路2.1 什么是同步电路先说说同步时序逻辑电路。
想象一下,大家一起跳舞,必须跟着节拍来对吧?这就是同步电路的工作原理。
它们依靠一个时钟信号来统一行动,一切都得在这个时钟的节奏下进行。
你想想,如果没有这个节拍,大家就会乱成一团,完全没法协调。
2.2 优点与缺点同步电路的优点可多了。
首先,它们容易设计,因为所有的动作都得听从同一个“老大”——时钟。
这样一来,故障也比较容易定位,就像在大合唱里找出跑调的那个人,轻而易举!但是,当然了,凡事都有两面。
它们在速度上可能会受到限制,因为要等时钟信号到位才能开始下一步,仿佛总得等着老大下命令。
3. 异步时序逻辑电路3.1 什么是异步电路接下来,我们来聊聊异步时序逻辑电路。
这家伙就有点儿“放飞自我”的意思。
想象一下,大家随意地跳舞,没有固定的节拍,各自随心所欲,热火朝天。
这种电路不需要时钟信号,各个部分可以独立工作,就像一场即兴表演,想跳就跳,想停就停。
3.2 优点与缺点异步电路的优点就是速度快,反应灵敏。
因为没有时钟的限制,它们可以在需要的时候马上响应,特别适合处理突发事件,像是过马路时的红绿灯,红灯一亮就得停下,绿灯一闪立马走。
可是,快可不代表好,有时候这就像在一场没有指挥的音乐会上,大家都想表现,结果弄得一团糟,容易出现竞争和冲突。
4. 比较与应用4.1 各自的应用领域那么,这两种电路究竟哪种更好呢?这就要看情况了。
同步电路一般用于那些需要稳定和可靠性的地方,比如计算机和大型系统。
而异步电路则适合需要快速反应的地方,比如一些高频交易系统或者一些需要低延迟的通信设备。
异步时序逻辑电路
(2)状态真值表
现态 y2 0 y1 0 J2 激励函数 K2 J1 K1 时钟 cp2 cp1 次态 y2n+1 y1n+1
0
1 1
1
0 1
Z xy2 y1 J1 K1 1
J 2 K2 1
CP 1 x
CP2 y1
(3)状态表、状态转换图
0/0
x/Z
0/0
现态 y2 y1 0 0 1 1 0 1 0 1
第 六
章
异 步 时 序 逻 辑 电 路
6.1 异步时序逻辑电路的特点和分类
6.1.1 特点
1、电路不存在统一的时钟脉冲; 2、电路状态的改变,直接依赖于输入信号的变化; 6.1.2 分类 1、根据输入信号的形式
(1)脉冲型 (2)电平型
2、根据输出信号的依从关系
(1)Mealy型 (2)Moore型
1K CI 1J 1
&
cp
EWB仿真实验(6-7)
作业3.15
CP A Q1 Q2
6.2 电 平 异 步 时 序 逻 辑 电 路
6.2.1 概述
前面所述同步时序电路和脉冲异步时序电路有两个共同 的特点: ☆ 电路状态的转换是在脉冲作用下实现的; ☆ 电路对过去输入信号的记忆由触发器的状态体现。
事实上,对上述特点可进一步理解如下:
Q3 Q2 Q1
Q
(2) (3)
Q
Q
(2)
Q
Q
(2) (1)
Q
1K CI 1J &
1K CI 1J
1K CI 1J
1
cp
(1) 写出方程 J1 K1 1
J 2 Q3 , K 2 1
第6章 异步时序逻辑电路
(2)求各触发器的次态方程。
Q0 Q1 Q2
n 1
(3)作状态转换表。
次态 Q2n+1Q1n+1Q0n+1 时钟脉冲 CP1 CP0,2
Q2 Q0 Q1 Q 2Q1Q0
n 1
现态 Q2Q1Q0
n 1
CP Q0 1
(4)作状态转换图
Q1Q0
000 001 010 011 100 010
x 1 1 1 1 1 1 1 1
现态 y3y2y1 000 001 010 011 100 101 110 111
激励函数 C3 T3 C2 T2 C1 T1 0 0 0 1 0 0 0 1 d d d 1 d d d 1 0 1 0 1 0 1 0 1 d 1 d 1 d 1 d 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
n
(x由1→0时此式有效) (xQ1由1→0时此式有效)
n 1
(3)作时序图
CP2
Q2 Z
(4)作状态转换表。
现态 Q2Q1 次态 Q2n+1Q1n+1 输入 x
00 01 11
0 1 0
1 1 0
(5)作状态转换图
Q1Q0 /Z
三进制计数器 计数达到3时, Z输出“1”。
00
/1
01 /1
/0
R1 x3 x2 y2
S 2 x2 y 2 y1
输入 x1x2x3
100 100 100 100 010 010 010 010 001 001 001 001
S1 x1
现态 y2 y1
00 01 10 11 00 01 10 11 00 01 10 11
异步时序逻辑电路的分析知识
Q n1 n1
1
0
00 0
001
0
0
1
00 1
011
0
1
0
01 0
001
0
1
1
01 1
111
1
0
0
10 0
100
0
0
0
10 1
100
0
0
1
11 0
100
0
1
0
11 1
100
0
1
1
状态图
Q2n
Q1n Q0n
cp cp cp Q Q n1 2
Q n1
1
n1 0
2
1
0
000 0 0 1 0 0 1
001 0 1 1 0 1 0
010 0 0 1 0 1 1
011 1 1 1 1 0 0
100 1 0 0 0 0 0
101 1 0 0 0 0 1
110 1 0 0 0 1 0
111 1 0 0 0 1 1
Q2Q1Q0
000
001
101
100
4、拟定逻辑功能
011
电路是一种异步五进制加计数电路。
010
110
111
Q 2
CLK
Q Q Q Q CLK (Q Q Q )CLK
01
2
01
2
状态方程
Q n+1 Q ncp Q n cp
0
0
0
0
0
Q n+1 Q ncp Q n cp
1
1
1
1
1
Q n+1 Q ncp Q n cp
同步时序电路和异步时序电路
同步时序电路和异步时序电路触发器是构成时序逻辑电路的基本元件,根据电路中各级触发器时钟端的连接方式,可以将时序逻辑电路分为同步时序电路和异步时序电路。
在同步时序电路中,各触发器的时钟端全部连接到同一个时钟源上,统一受系统时钟的控制,因此各级触发器的状态变化是同时的。
在异步时序逻辑电路中,各触发器的时钟信号是分散连接的,因此触发器的状态变化不是同时进行的。
8.2.1 同步时序电路设计1.同步时序电路原理说明从构成方式上讲,同步时序电路所有操作都是在同一时钟严格的控制下步调一致地完成的。
从电路行为上讲,同步电路的时序电路共用同一个时钟,而所有的状态变化都是在时钟的上升沿(或下降沿)完成的。
例如,基本的D触发器就是同步电路,当时钟上升沿到来时,寄存器把D 端的电平传到Q输出端;在上升沿没有到来时,即使D端数据发生变化,也不会立即将变化后的数据传到输出端Q,需要等到下一个时钟上升沿。
换句话说,同步时序电路中只有一个时钟信号。
2.同步电路的Verilog HDL描述同步逻辑是时钟之间存在固定因果关系的逻辑,所有时序逻辑都在同源时钟的控制下运行。
注意,在Verilog HDL实现时并不要求同一时钟,而是同源时钟。
所谓的同源时钟是指同一个时钟源衍生频率比值为2的幂次方,且初相位相同的时钟。
例如,clk信号和其同初相的2分频时钟、4分频就是同源时钟。
(1)典型的同步描述在Verilog HDL设计中,同步时序电路要求在程序中所有always块的posedge/negedge关键字后,只能出现同一个信号名称(包括同源的信号),并且只能使用一个信号跳变沿。
下面给出一个同步时序电路的描述实例。
【例8-9】通过Verilog HDL给出一个同步的与门。
上述程序比较简单,这里就不给出其仿真结果。
(2)同步复位的描述同步复位,顾名思义,就是指复位信号只有在时钟上升沿为有效电平时,才能达到复位的效果。
否则,无法完成对系统的复位工作。
3_异步时序逻辑电路的分析方法(略)
/0
00
11
/0
/1
01
10
/0
画时序图
本继页续完
时序逻辑电路的分析方法
二、异步时序逻辑电路的 分析
(1)写出各逻辑方程式 (2)写出状态表 (3)画出状态图 (4)画出时序图(波形图)
波形图既可以根据状态表也可以利用 状态图绘出,本例利用状态表绘波形图。
当Q1Q0=10时,Z=0
Q1n Q0n CP0 CP1 Q1n+1Q0n+1/Z
FF0的Q0端决定,只有当Q0 输出为上升沿时(即Q0从0跳
变为(11的)写瞬出间)名,逻FF辑1才工作。
方程式
本继页续完
时序逻辑电路的分析方法
二、异设步初时态序为逻00辑电路的 分析
(1)写出各逻辑方程式 (2)写出状态表
当CP0上升沿时
Q1n Q0n CP0 CP1 Q1n+1Q0n+1/Z
00 01
10
0 10
11
Q0
Q1
各触发器的时钟逻辑方程
CP0=CP FF0(上升沿触发) CP1=Q0 FF1(Q0上升沿触发)
输出方程
Z=Q1nQ0n 各触发器的次态方程
列表 Q0n+1=Qn0
Q1n+1=Qn1
CP时有效 Q0时有效
本继页续完
时序逻辑电路的分析方法
二、异步设初时态序为逻11辑电路的 分析
当Q1Q0=11时,Z=1
Q1n Q0n CP0 CP1 Q1n+1Q0n+1/Z
00
1 10
01
0 00
10
0 10
11
1 01
CP
Q0 0 Q1 0 Z0
异步时序逻辑电路的分析知识
寄存器的工作原理
寄存器是由多个触发器组成的组合逻辑电路,能 够存储多位二进制信息。
寄存器在时钟脉冲的驱动下,将输入信号依次存 储在触发器中,实现数据的串行输入和输出。
寄存器具有并入、并出、串入、串出等多种工作 模式,可根据实际需求进行选择。
异步时序逻辑电路的设计步骤
01
确定电路的功能需求和性能参数。
总结词
状态方程是描述电路状态转换关系的数学模型,通过解状态方程可以得出电路的输出和状态转移规律 。
详细描述
状态方程是一个非线性方程组,描述了电路的状态变量和输入变量之间的关系。通过解状态方程,可 以得出电路的输出和状态转移规律,进而分析电路的逻辑功能和性能指标。
波形图分析法
总结词
波形图是一种直观的表示方法,可以 描述电路的输入输出信号随时间的变 化情况。
异步时序逻辑电路 的分析知识
contents
目录
• 异步时序逻辑电路的基本概念 • 异步时序逻辑电路的分析方法 • 异步时序逻辑电路的设计原理 • 异步时序逻辑电路的实例分析
01
CATALOGUE
异步时序逻辑电路的基本概念
定义与特点
定义:异步时序逻辑电路是一种数字电 路,其状态变化依赖于输入信号的改变 ,而不是统一的时钟信号。
详细描述
复杂异步时序逻辑电路包含多个触发器和记忆元件,这些元件之间相互作用,实现更复 杂的逻辑功能。状态转换图用于描述电路的状态转换过程和逻辑功能,通过分析状态转
换图可以确定电路的逻辑功能和性能。
实例三:实际应用中的异步时序逻辑电路分析
总结词
实际应用中的异步时序逻辑电路具有广泛的 应用领域,如计算机、通信、自动化等。
异步时序逻辑电路的应用场景
和异步时序逻辑电路的不同之处
和异步时序逻辑电路的不同之处1. 定义异步时序逻辑电路是指电路中各功能部件的时钟信号没有统一的节拍,而是根据某些条件来触发;而同步时序逻辑电路则是在整个电路中有统一的时钟信号,所有的功能模块都是在时钟的节拍下同步工作。
2. 时钟信号在异步时序逻辑电路中,各个功能部件的时钟信号并不是统一的,每个部件的工作时间是不固定的,根据输入信号的变化来触发工作;而在同步时序逻辑电路中,所有的功能部件都是在统一的时钟信号下工作,保证了各个部件的同步性。
3. 电路实现异步时序逻辑电路常常使用逻辑门、触发器等基本元件实现,由于时序关系复杂,往往需要通过状态机等辅助逻辑来实现功能;而同步时序逻辑电路由于有统一的时钟信号,可以很好地利用触发器和寄存器等元件来实现,降低了复杂度。
4. 时序关系在异步时序逻辑电路中,不同功能部件之间的时序关系往往是不固定的,根据输入信号的变化来触发工作,导致了复杂的时序关系;而在同步时序逻辑电路中,由于统一的时钟信号,各个功能部件之间的时序关系是固定的,便于设计和分析。
5. 稳定性由于异步时序逻辑电路中各功能部件的时钟信号不统一,容易出现稳定性和可靠性的问题,如时序噪声、时钟抖动等;而同步时序逻辑电路由于统一的时钟信号,相对稳定可靠,降低了设计的难度。
6. 设计难度由于异步时序逻辑电路中时序关系复杂,各功能部件的工作时间不固定,设计难度较大;而同步时序逻辑电路由于统一的时钟信号,时序关系固定,设计难度相对较小。
7. 总结异步时序逻辑电路和同步时序逻辑电路在定义、时钟信号、电路实现、时序关系、稳定性和设计难度等方面都存在明显的不同。
在实际应用中,需要根据具体的需求和性能要求来选择合适的时序逻辑电路,以保证电路的稳定性和可靠性。
在继续对异步时序逻辑电路和同步时序逻辑电路的不同之处进行深入扩展之前,我们需要对两者的实际应用进行进一步了解,以便更全面地分析它们的差异。
实际应用中,同步时序逻辑电路和异步时序逻辑电路各有其优缺点,我们需要根据具体的设计需求和性能要求来选择合适的时序逻辑电路。
第5章 异步时序电路
基本型异步时序电路的稳定条件是 y = Y。换句话说, 在系统达到稳定以后,Y 和 y 总是相同的。 在基本型异步时序电路中不将 y 和 Y 分别看作现态和 次态。
2011-06-01
数字逻辑基础
10
数字逻辑基础
一般规律
当某列只有一个稳定总态时,这一列一般无临 界竞争。 当从相邻列的稳定总态进入该列后,若系统状 态的转换过程中始终只有一个状态变量改变 (即转换距离始终等于1)时,此转换过程一般 无临界竞争。
2011-06-01
数字逻辑基础
34
临界竞争的例子2
y 1y 2
状态循环,无法 达到最终稳定状 态。这是一种特 殊的临界竞争
第5章 异步时序电路
异步与同步时序电路的区别
根本区别:对状态转换的处理。 同步时序电路将所有的输入信号作为状态变化的条件,状态转 换由统一的时钟来同步进行。 异步时序电路没有统一的时钟信号,由输入信号直接引起电路 状态变化。 所以一般而言,异步时序电路对于输入信号的响应可能快于同 步时序电路。
00→10→11→01→11
y1y2
00 01 11
x1x2
00 00 00 00 00 01 01 01 10 10 11 01 01 11 01? 10 10 10 11 11
0000 →1011 →1111 →0110 →?
10
2011-06-01
数字逻辑基础
30
作用下,激励 态的变化不相邻,即有多于一个的状态变量需 要同时发生变化,则称电路存在竞争 如果电路最终达到的稳定状态依赖于状态变量 变化的次序,则称为临界竞争 如果最终达到的稳定状态相同,则称为非临界 竞争
时序逻辑电路的特点和分类
时序逻辑电路的特点和分类1. 时序逻辑电路的概述时序逻辑电路是计算机中一种基本的数字电路,用于处理随时间变化的信号和数据。
它的主要功能是根据输入信号的时序关系,产生特定的输出信号。
相比于组合逻辑电路,时序逻辑电路在处理信号时考虑了时间因素,因此更适用于处理与时间相关的问题。
时序逻辑电路通常由触发器和组合逻辑门组成。
触发器是存储器件,用于存储和传递电平状态。
组合逻辑门则是根据输入信号的组合逻辑关系产生输出信号。
通过适当地组合触发器和组合逻辑门,可以实现各种复杂的时序逻辑功能,如时钟信号的生成、数据的存储与传输、计数器的实现等。
2. 时序逻辑电路的特点时序逻辑电路具有以下几个特点:2.1 时序依赖性时序逻辑电路中的输出信号不仅依赖于当前的输入信号,还依赖于之前的输入信号。
这是因为时序逻辑电路中的触发器具有存储功能,可以保存上一个时刻的信号状态。
通过触发器的状态变化,时序逻辑电路可以实现对时间的敏感处理。
2.2 非平衡输出时序逻辑电路的输出信号通常是非平衡的数字信号,即高电平和低电平的幅度是不等的。
这是由于触发器和组合逻辑门的内部工作原理所决定的。
非平衡输出信号需要经过适当的驱动器才能驱动其他电路,以确保信号的可靠传输。
2.3 时钟信号驱动时序逻辑电路是由时钟信号驱动的,即输出信号的变化和时钟信号的边沿有关。
时钟信号是时序逻辑电路中的一个基准信号,它决定了触发器的状态切换和组合逻辑门的运算时机。
时钟信号的频率决定了时序逻辑电路的工作速度和响应能力。
2.4 存储性能时序逻辑电路中的触发器具有存储功能,可以存储和传递电平状态。
这使得时序逻辑电路可以实现数据的存储和传输,并支持复杂的计算和控制操作。
触发器的存储性能是时序逻辑电路的关键特点之一。
3. 时序逻辑电路的分类根据触发器的类型和组合逻辑门的结构,时序逻辑电路可以分为多种不同的类别。
以下是几种常见的时序逻辑电路分类:3.1 同步时序逻辑电路同步时序逻辑电路是一种基于时钟信号同步的电路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 异步时序逻辑电路
⑵ 列出电路次态真值表 J-K触发器的状态转移发生在时钟端脉冲负跳变的瞬间, 为了强调在触发器时钟端 C1、C2何时有负跳变产生,在次态 真值表中用“↓”表示下跳。仅当时钟端有“↓” 出现时,相 应触发器状态才能发生变化,否则状态不变。 J K Q(n+1)
00
01 10 11
第六章 异步时序逻辑电路
⒉步骤 设计过程与同步时序电路相同,具体如下:
① 形成原始状态图
② 状态化简 ⑤ 画逻辑电路图
③ 状态编码 ④ 确定激励函数 和输出函数
第六章 异步时序逻辑电路
二、举例 例 用T触发器作为存储元件,设计一个异步模8加1计数 器,电路对输入端x出现的脉冲进行计数,当收到第八个脉冲 时,输出端Z产生一个进位输出脉冲。 解 由题意可知,该电路模型为Mealy型。由于状态数目 和状态转换关系非常清楚,可直接作出二进制状态图和状态表。 ⑴作出状态图和状态表 设电路初始状态为“000”,状态变量用y2、y1、y0表示, 可作出二进制状态图如下。
第六章 异步时序逻辑电路
6.1.3 脉冲异步时序逻辑电路的设计
一、方法与步骤 ⒈ 方法: 脉冲异步时序逻辑电路设计的方法与同步时序 逻辑电路设计大致相同,主要应注意两个问题。
⑴由于不允许两个或两个以上输入端同时为1(用1表示 有脉冲出现),设计时可以作如下处理: 当有多个输入信号时,只需考虑多个输入信号中仅一 个为1的情况; 在确定激励函数和输出函数时,可将两个或两个以上 输入同时为1的情况作为无关条件处理。 ⑵当存储电路采用带时钟控制端的触发器时,触发器的 时钟端应作为激励函数处理。设计时通过对触发器的时钟端 和输入端综合处理,有利于函数简化。
0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1
次 态 y2(n+1)y1(n+1) y0(n+1)
0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0
C2 T2 C1 T1 C0 T0
第六章 异步时序逻辑电路
6.1 脉冲异步时序逻辑电路
6.1.1 概
一、结 构
述
脉冲异步时序电路的一般结构如下图所示。
图中,存储电 路可由时钟控制触 发器或非时钟控制 触发器组成。
第六章 异步时序逻辑电路
二、输入信号的形式与约束 1.输入信号为脉冲信号; 2.输入脉冲的宽度必须保证触发器可靠翻转; 3.输入脉冲的间隔必须保证前一个脉冲引起的电路响 应完全结束后,后一个脉冲才能到来; 4.不允许两个或两个以上输入端同时出现脉冲。 对n个输入端的电路,其一位输入只允许出现 n+1种取 值组合,其中有效输入种取值组合为n种。
第六章 异步时序逻辑电路
三、输出信号的形式
脉冲异步时序逻辑电路的输出信号可以是 脉冲信号也可以是电平信号。
第六章 异步时序逻辑电路
6.1.2 脉冲异步时序逻辑电路的分析
一、分析方法与步骤 1. 分析方法 脉冲异步时序逻辑电路的分析方法与同步时序逻辑电路大 致相同。
注意两点: ⑴当存储元件采用时钟控制触发器时,对触发器的时钟控制 端应作为激励函数处理。 仅当时钟端有脉冲作用时,才根据触发器的输入确定状态转 移方向,否则,触发器状态不变。 ⑵根据对输入的约束,分析时可以排除两个或两个以上输入 端同时出现脉冲以及输入端无脉冲出现情况,从而使图、表简化。
Q
0 1
第六章 异步时序逻辑电路
⑶ 作出状态表和状态图 根据次态真值表和输出函数表达式(Z = xy2y1),可作 出该电路的状态表和状态图如下。
现态 次态y2n+1y1n+1 / 输出Z
0/0
y2 y1 0 0 0 1 1 0 1 1
x=1 01/0 10/0 11/0 00/1
00
1/001 1/0来自x/z1011/0
第六章 异步时序逻辑电路
相应二进制状态表为: 现态 y2 y1 y0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 次态y2n+1y1n+1y0n+1 /输出Z x=1 001/0 010/0 011/0 100/0 101/0 110/0 111/0 000/1
0/0
x/Z 1/1 0/0 11 1/0
10
0/0
第六章 异步时序逻辑电路
⑷画出时间图并说明电路逻辑功能。 为了进一步描述该电路在输入脉冲作用下的状态和输出 变化过程,可根据状态表或状态图画出该电路的时间图如下 图所示。
x y2
y1
Z 由状态图和时间图可知,该电路是一个模4加1计数器, 当收到第四个输入脉冲时,电路产生一个进位输出脉冲。
第六章 异步时序逻辑电路
2. 分析步骤
(1) 写出电路的输出函数和激励函数表达式;
(2) 列出电路次态真值表或次态方程组;
(3) 作出状态表和状态图;
(4) 用文字描述电路的逻辑功能(必要时画出时间图)。
第六章 异步时序逻辑电路
二、 分析举例 例 分析下图所示脉冲异步时序逻辑电路,指出该电路 功能。
第六章 异步时序逻辑电路
第 六
章
异 步 时 序 逻 辑 电 路
第六章 异步时序逻辑电路
异步时序逻辑电路中没有统一的时钟脉冲信号,电路状 态的改变是外部输入信号变化直接作用的结果。 根据电路结构和输入信号形式的不同,异步时序逻辑电 路可分为脉冲异步时序逻辑电路和电平异步时序逻辑电路两 种类型。 两类电路均有Mealy型和Moore型两种结构模型。
&
第六章 异步时序逻辑电路
&
解:该电路由两个J-K 触发器和一个与门组成, 有一个输入端x和一个输 出端Z,输出是输入和状 态的函数,属于Mealy型 脉冲异步时序电路。
⑴ 写出输出函数和激励函数表达式 Z = xy2y1 J2 = K2 =1 ; C2 = y1 J1 = K1 =1 ; C1 = x
第六章 异步时序逻辑电路
⑵确定激励函数和输出函数 假定状态不变时,令相应触发器的时钟端为 0 ,输入端 T 任意;而状态需要改变时,令相应触发器的时钟端为1(有脉冲 出现),T端为1。 根据状态表,可得到x为1时激励函数和输出函数真值表:
输入脉冲 现 态
x
1 1 1 1 1 1 1 1
y2 y1 y0