一般周期的函数的傅里叶级数
周期函数的傅里叶级数PPT课件

k 1
k n时非零
0
an
co2snxdx
an
1
an f(x)co nd sx(n1 ,2,3, )
傅里叶(Fourier)级数
(2) 求bn.
f(x)a 2 0k 1(akco ks xbksikn)x
两边同 sin n 时 并 x 乘 从 到 以 逐项积分
f(x)sinnxdxa0
s(x)f(x)f(x)
2
,
若x为f(x)的
第一
类,
间
其中s(x)为f (x)的傅里叶级数的和. 函数
傅里叶(Fourier)级数
注 (1) 函数展开成傅里叶级数的条件比展开成 幂级数的条件低得多;
(2) 周期函数的三角级数展开是唯一的, 就是 其傅里叶级数;
(3) 要注明傅氏级数的和函数与函数 f (x) 相等 的 x 的取值范围.
f (x)的图象
y 和函数的图象
3 2
2 3
•
O •
•
x
•
2
傅里叶(Fourier)级数
f ( x) 4(2coxssinx)
1 sin 2x
2
2
1
(32c
o3x s sin 3x) 3
1 4
sin 4
x
2
1
(52co5x s5si5 nx)
( x ;x , 3, ).
傅里叶(Fourier)级数
傅里叶(Fourier)级数
an
2 n 2
,
0 ,
n1,3,5,,
(1)n1
bn n2,4,6,;
n
.
故 f (x) 的傅里叶级数
f ( x)~4n 1 n 1 2 1( 1 )nco n s x ( 1 n )n 1sin n x
周期信号的傅里叶级数表

分量e j0t 可表示为
1
0
cos 0t
1 2
(e
j0t
e
j0tபைடு நூலகம்
)
表示为
1
1
2
2
0 0 0
因此,当把周期信号 x(t)表示为傅里叶级数
x(t) ake jk0t时,就可以将 x(t) 表示为 k
a1a0 a1
a3a2
a2 a3
0 0
这样绘出的图
称为频谱图
18
频谱图其实就是将 a随k 频率的分布表示出来,
14
有 x(t) ake jk0t , k 0, 1, 2
k
显然 x(也t)是以
为2周 期的。该级数就是傅里叶级
0
数, 称为a傅k 立叶级数的系数。
这表明用傅里叶级数可以表示连续时间周期信号,
即: 连续时间周期信号可以分解成无数多个复指数谐 波分量。
例1:
x(t)
cos 0t
1 e j0t 2
6
3.1历史的回顾 (A Historical Perspective)
任何科学理论, 科学方法的建立都是经过许多人 不懈的努力而得来的, 其中有争论, 还有人为之献 出了生命。历史的经验告诉我们, 要想在科学的 领域有所建树,必须倾心尽力为之奋斗。今天我 们将要学习的傅立叶分析法,也经历了曲折漫长 的发展过程,刚刚发布这一理论时,有人反对, 也有人认为不可思议。但在今天,这一分析方法 在许多领域已发挥了巨大的作用。
即: x(t) akeskt
k
同理: x(n)
ak
Z
n k
k
y(t) ak H (sk )eskt
k
傅里叶级数

u(t)的(傅1)里连叶续级或数只收有敛有于限个 E第m 一Em类 间Em 断 (点Em ) 0,
(2)至多只有有限个极值2点
2
当t k时, u(t)的傅里叶级数收敛于u(t).
a0
1
u(t )dt 1
0
( Em )dt
1
0 Emdt
0
1
an
1
u(t)cos ntdt
0
( Em )cos ntdt
2
a0
u(t )dt
0
2
E sintdt
0
2E
[ cos t]0
4E ,ห้องสมุดไป่ตู้
an
2
2
u(t)cos ntdt
0
E sint cos ntdt
0
E
[sin(n 1)t sin(n 1)t]dt
0
(n 1)
E
cos(n 1)t n1
cos(n 1)t n 1 0
[(
bn
1
f ( x)sin nxdx,
(n 1,2,)
傅里叶级数的收敛性
若周期为 2 的函数 f ( x) 可积,则
f
(x)
a0 2
(an cos nx
n1
bn
sin nx)
问题:
a0
2
(an cos nx
n1
bn sin nx)
?
f
(x)
要满足什么条件?
狄利克雷(Dirichlet)充分条件(收敛定理)
三角函数系的正交性
三角函数系
1,cos x,sin x,cos 2x,sin 2x,
cos nx,sin nx,
《傅里叶级数》课件

FFT的出现极大地促进了数字信号处理领域的发展,尤其在实时信号处理 和大数据分析方面。
小波变换与傅里叶级数的关系
01
小波变换是一种时间和频率的局部化分析方法,用于多尺度信 号处理和分析。
02
小波变换与傅里叶级数都是信号的频域表示方法,但小波变换
频域处理
傅里叶变换将图像从空间域转换到频域,使得图 像的频率特征更加明显,便于进行滤波、增强等 操作。
图像压缩
通过分析图像的频谱,可以去除不重要的频率成 分,从而实现图像的压缩,节省存储和传输资源 。
图像去噪
傅里叶变换在图像去噪中发挥了重要作用,通过 滤除噪声对应的频率成分,可以有效去除图像中 的噪声。
傅里叶级数提供了一种将 复杂信号分解为简单正弦 波的方法,有助于理解和 处理信号。
频谱分析
通过傅里叶变换,可以分 析信号的频率成分,这在 通信、音频处理等领域有 广泛应用。
滤波器设计
利用傅里叶级数或其变换 形式,可以设计各种滤波 器,用于提取特定频率范 围的信号或抑制噪声。
图像处理中的应用
1 2 3
数值分析中的应用
求解微分方程
傅里叶级数在数值分析中常用于 求解初值问题和偏微分方程,通 过离散化和变换,将复杂问题转 化为易于处理的简单问题。
数值积分与微分
傅里叶级数在数值积分和微分中 也有应用,可以将复杂的积分或 微分运算转换为易于计算的离散 形式。
插值与拟合
傅里叶级数可以用于多项式插值 和函数拟合,通过选取适当的基 函数,可以构造出精度较高的插 值函数或拟合模型。
04
傅里叶级数的扩展知识
离散傅里叶变换
离散傅里叶变换(DFT)是连续傅里叶变换的离 散化形式,用于将时域信号转换为频域信号。
周期信号的傅里叶级数表

傅里叶级数与复变函数的关系
傅里叶级数可以看作是复数域中的三角函数,即复数域中的正弦和余弦。在复数域中,正弦和余弦函数表现为复指数函数的 形式。
复数的使用使得傅里叶级数的系数可以表示为实数,从而简化了计算。此外,复数的共轭也提供了相位信息,这在信号处理 中非常重要。
傅里叶级数与小波分析的关系
小波分析是傅里叶分析的进一步发展,它提供了更灵活的时频分析工具。小波变 换可以看作是傅里叶变换的一种扩展,它允许我们在不同的频率段使用不同的基 本函数。
三角函数形式
傅里叶级数的另一种表示形式,利用三角函数来表示周期信号。
傅里叶级数的三角函数形式
01
02
03
正弦形式
余弦形式
系数
傅里叶级数的正弦函数形式,用 于表示只包含正弦波的周期信号。
傅里叶级数的余弦函数形式,用 于表示只包含余弦波的周期信号。
在傅里叶级数中,每个正弦或余 弦函数都对应一个系数,表示该 函数在周期信号中的贡献程度。
03
傅里叶级数的性质
傅里叶级数的收敛性
傅里叶级数在数学上具有收敛性,意味着它可以将一个 周期函数表示为无穷级数,每个项都是正弦或余弦函数。
收敛的速度取决于函数的特性,例如,对于具有快速衰 减的周期函数,傅里叶级数收敛得更快。
傅里叶级数的对称性
傅里叶级数的对称性质是指,对于一个周期函数,其傅里叶级数的正弦和余弦项具有对称性。 这意味着,对于一个给定的周期函数,其傅里叶级数的正弦和余弦项的系数是相同的。
周期信号的傅里叶级 数表
目录
• 傅里叶级数简介 • 周期信号的傅里叶级数表示 • 傅里叶级数的性质 • 傅里叶级数的应用实例 • 傅里叶级数与其他数学工具的关系
01
一般周期函数的傅里叶级数

2 k12k 1
2
( x R,x 2m, m 0,1,2, )
a0 E, an 0 (n 1,2, )
二、定义在 [-l , l ]和[ 0, l ]区间上的函数 展成傅里叶级数
1. 将[–l , l ]上的函数展成傅里叶级数
思
周期延拓 F ( x) 傅里叶展开
想
T 2l
y y f (x)
例1 设f ( x) 的周期T 10,且当 5 x 5 时,
f ( x) x,将 f ( x) 展开成傅里叶级数.
y
解 l 5, f ( x) : 奇函数,
an 0 n 0,1,2,
5 o 5
x
bn
2 l
0l
f
xsin nπx d x
l
2 5
05
x
sin
nπx d 5
x
2 nπ
x
l l
l
(n 0,1,2, )
bn
1 l
l F ( x)sin nx d x,
l
l
(n 1,2, )
1 l f ( x)sin nx d x.
l l
l
例3 将f x e x在 π, π 上展成傅里叶级数
解 f ( x)在 π,π上连续,且满足狄利克雷条件.
(周期延拓
傅里叶展开
傅里叶级数之和函数:
S( xm )
f ( xm ) 2
f
(
xm
)
E. 2
l 2,
当x xm 时,f ( x)连续
f
(
x)
S(
x)
a0 2
(an
n1
cos
nx 2l
bn
一般周期的傅里叶级数

2l 4
(0x2)
机动 目录 上页 下页 返回 结束
(2) 将
作偶周期延拓, 则有
a0 2202xdx
y
o2
x
an
2 2
2x cosn xdx
0
2
n 2 x sn i 2 n x n 2 2 cn o 2 x s 0 2
4
n22
(1)n
1
f(x)x18 2k 1(2k1 1 )2co (2ks 2 1)(x0x2) 精品课件 机动 目录 上页 下页 返回 结束
说明: 如果 f (x) 为奇函数, 则有
(在 f (x) 的连续点
处)
其如中果b n f (x)为f 偶(x 函)s 数,n iln x d x(n 1 ,2 , )
则有
(在 f (x) 的连续点
处)
其中
注:
a 无n 论 哪an种情1f l ( 况x l) lc 在f,(xn f)o cl(x xod )ns sx l的x间d( n x断 (点n 0 , 1 x0 ,2 ,处1 , ,,2) ,傅 里)
2E
(1 4k 2 )
,
精品课件
n2k
机动 目录 上页 下页 返回 结束
0Esintsinntdt
E 20 cn o 1 )s t ( cn o 1 )s td ( t
b 1 0 E sin tsin tdt
E 2tsi22 nt0
n>1
时bnE 2si(nnn(11) )t si(nnn(11))t00
精品课件
机动 目录 上页 下页 返回 结束
由于半波整流函数 f
(t)
由收
f (t)
敛定理可得
《傅里叶级数》课件

傅里叶系数: a_n和b_n,可 以通过积分计算 得到
傅里叶级数的收 敛性:对于满足 一定条件的函数, 傅里叶级数收敛 于该函数
傅里叶级数的计算步骤
傅里叶级数的计算实例
实例:计算正弦函数的傅里 叶级数
计算步骤:确定周期、确定 频率、确定振幅、确定相位
傅里叶级数的定义:将周期函 数分解为无穷多个正弦和余弦 函数的和
傅里叶级数未来的研究方向与挑战
傅里叶级数的快速算法研究 傅里叶级数的应用领域拓展 傅里叶级数的理论研究与证明 傅里叶级数的计算复杂性与优化
感谢您的观看
汇报人:PPT
实例:计算余弦函数的傅里 叶级数
实例:计算三角函数的傅里 叶级数
实例:计算复杂函数的傅里 叶级数
傅里叶级数的应 用实例
信号处理中的应用
滤波器设计:傅里叶级数可以用于设计各种滤波器,如低通滤波器、高通滤波器等。 信号分析:傅里叶级数可以用于分析信号的频率成分,如分析信号的频谱、功率谱 等。
信号处理:傅里叶级数可以用于处理信号,如信号的压缩、增强、去噪等。
傅里叶级数的周期性
傅里叶级数是一种周期函数 周期性是傅里叶级数的基本性质之一 周期性是指函数在一定区间内重复出现 周期性是傅里叶级数在信号处理、图像处理等领域里叶级数的展开式
傅里叶级数的定 义:将周期函数 分解为无穷多个 正弦函数和余弦 函数的线性组合
傅里叶级数的展 开式:f(x) = a_0 + Σ[a_n * cos(nωx) + b_n * sin(nωx)]
数值分析中的应用
傅里叶级数在信号处理中的应用 傅里叶级数在图像处理中的应用 傅里叶级数在音频处理中的应用 傅里叶级数在金融数据分析中的应用
其他应用领域
傅里叶级数的定义及应用

傅里叶级数的定义及应用傅里叶级数是一种将周期函数表示为三角函数和正弦函数之和的数学工具。
它在信号处理、图像处理和电子通信等领域中有着广泛的应用。
本文将介绍傅里叶级数的定义及其在实际中的应用。
第一部分:傅里叶级数的定义傅里叶级数是由法国数学家约瑟夫·傅里叶在19世纪初提出的。
它将周期函数表示为无穷级数的形式,其中每一项为三角函数或正弦函数的乘积。
一个周期为T的函数f(t)可以表示为以下无穷级数的形式:f(t) = a₀ + Σ(aₙcos(nω₀t) + bₙsin(nω₀t))在公式中,a₀是常数项,aₙ和bₙ是系数,n是正整数,ω₀是基波角频率。
根据傅里叶级数的定义,周期函数f(t)可以通过确定其系数来表示。
系数的计算可以通过将函数f(t)与三角函数进行内积运算来实现。
这种数学上的运算使得我们能够将任意周期函数表示为一系列简单的三角函数的和,从而更好地理解和分析函数的特性。
第二部分:傅里叶级数在信号处理中的应用傅里叶级数在信号处理中有着广泛的应用。
信号处理是指对信号进行分析、合成、编码和解码的过程,傅里叶级数为信号处理提供了有效的工具。
首先,傅里叶级数可以将时域信号转换为频域信号。
通过对信号进行傅里叶级数分解,我们可以将信号的频谱表示出来,了解信号在不同频率下的成分情况。
这对于音频信号的合成、滤波、去噪等处理非常有用。
其次,傅里叶级数在通信系统中起着重要的作用。
在数字通信中,信号需要经过调制、解调等处理。
傅里叶级数可以帮助我们理解信道传输中的信号畸变情况,从而对传输信号进行补偿和恢复。
此外,傅里叶级数还广泛应用于图像处理领域。
图像可以看作是由像素点组成的二维数组,每个像素点的灰度值可以用一个周期为1的函数表示。
通过对图像进行傅里叶级数分析,我们可以提取图像中的频域特征,如边缘、纹理等。
这对于图像压缩、增强和恢复等处理具有重要意义。
第三部分:傅里叶级数在其他领域的应用除了信号处理领域,傅里叶级数还在许多其他领域有着广泛的应用。
周期函数的傅里叶级数

2
f (t) a0
A e e n jn 1t n
j n1 t n
2 n1 2
§ 周期信号的傅立叶级数
又A-n
A(A 是n的偶函数)
n
n
n
(n n是n的奇函数)
b0 0,A0
a2 0
b02
a, 0
故
f (t)
1 2
Ane
n
j n1
t
n
1 2
Ane
n
j
n
e jn1 t
f t
Fne jn1t 用FS分析是对周期信号进行谐波分解,即
用谐n波 加权和来合成信号,因此,FS分析又称为谐波分析。
周期信号的对称性与付立叶系数的关系。
f (t)的对称条件
展开式中系数特点
f (t)
f (t),纵轴对称(偶函数 )
bn
0,an
4 T
t0
T 2
t0
f (t) cos n1tdt
nT
2
n
n
0
Sa( n1 ) 0
2
即 Fn>0
Sa( n1 ) 0 即 Fn<0
2
F e n
1 2
An
j n
§ 周期信号的傅立叶级数
此例中F n
A
T
Sa( n
2
)为一实数。幅度频谱与相位频谱可以合
画在一张图上。
c n
1 2
A n
-4
2
2
4 A
T
1 213141 51
101
第四步:讨论频谱结构与 、T 的关系
§ 周期信号的傅立叶级数
An
一般周期函数的傅里叶级数

(3) 若 f ( x) 只在 [0, l] 上有定义,且满足收敛 定理的条件,可将它展开成正弦级数和余弦
级数。
展开成正弦级数的方法: 首先,将 f ( x)进行奇延拓,将它拓广
为 [l, l] 上的奇函数 F ( x) ;然后,将 F ( x) 展开成傅氏级数(正弦级数);最后,再将 x 限制在 [0, l] 上,就得到 f ( x) 的正弦级数 展开式。 即:
按(1)、(2)式求出 an , bn , 从而得到 f ( x)的
傅氏级数
a0 2
(an
n1
cos
nx
l
bn
sin
nx
l
)
在点 x (l, l) ,
x 是 f ( x)的连续点时,级数收敛于 f ( x);
x 是 f ( x)的间断点时,级数收敛于 f ( x ) f ( x )
2
在端点 x l , 级数收敛于 f (l ) f (l )
O l 可以验证:
F(t)是周期为 2 的周期函数
F(t 2 ) f [ l (t 2 )] f [ l t 2l]
f ( l t) F(t)
F(t)
的傅氏级数
a0 2
(an
n1
cos nt
bn
sinnt)
在 (,) 上收敛,且
a0 2
(an
n1
cos nt
bn
sinnt)
F(t)
首先,将 f ( x)进行偶延拓,将它拓广 为 [l, l] 上的偶函数 F ( x) ;然后,将 F ( x) 展开成傅氏级数(余弦级数);最后,再将 x 限制在 [0, l] 上,就得到 f ( x) 的余弦级数 展开式。 即:
第八节 一般周期的函数的傅里叶级数

6
例2. 把 (1) 正弦级数;
展开成 (2) 余弦级数. 在 x = 2 k 处级 数收敛于何值? 解: (1) 将 f (x) 作奇周期延拓, 则有 y
n x 2 2 dx bn x sin 2 2 0 2 n x 2 x cos n 2 n 4 cos n n
o
T 2 2
x
它的复数形式的傅里叶系数为
1 T c0 2 u( t ) d t T T 2
h T
16
1 T2 u(t ) e T
T 2
i
2 nt T
1 2 d t he T 2
i
2 nt T
dt
h T e T 2 n i
2 n t i T
h n sin n T
n i h 1 i nT 2 T e e n 2 i 2 ( n 1 , 2 , )
1 n i 2 nT t h h n sin T e u( t ) T n
( n 0 , 1 , 2 ,) ( n 1 , 2 , 3 ,)
1 F ( z ) sin nz dz bn
令z
x
l
1 l n x an f ( x ) cos d x ( n 0 , 1 , 2 ,) l l l 1 l n x bn f ( x ) sin d x ( n 1 , 2 , 3 ,) l l l
n0
17
内容小结
1. 周期为2l 的函数的傅里叶级数展开公式 a0 f ( x) 2 (x 间断点) 1 l n x l f ( x ) cos l d x (n 0 ,1,) l 其中 1 l n x f ( x ) sin d x ( n 1 , 2 ,) l l l 当f (x)为奇(偶) 函数时, 为正弦(余弦) 级数. 变换 2. 在任意有限区间上函数的傅里叶展开法 延拓 3. 傅里叶级数的复数形式 利用欧拉公式导出
一般周期的傅里叶级数

FFT具有高效性、稳定性和易于实现 等优点,是数字信号处理领域的重要 算法之一。
FFT广泛应用于语音识别、图像处理 、频谱分析、雷达和声呐信号处理等 领域。
小波变换(Wavelet Transform)
定义
小波变换是一种时频分析方法, 它通过小波基函数的伸缩和平移 来分析信号在不同尺度上的变化 特性。小波变换能够提供信号在 不同频率和时间尺度上的信息, 具有多分辨率分析的特点。
周期函数的傅里叶级数展开可以通过傅里叶变换来实现,傅里叶变换将 时域信号转换为频域信号,提供了一种分析信号频率成分的有效方法。
非周期函数的展开
非周期函数的特性
非周期函数没有固定的重复模式,其波形不具有周期性。
非周期函数的近似展开
对于非周期函数,傅里叶级数展开式中的正弦和余弦函数具有连续的频率,这些频率覆盖了整个频域。通过选取一定 数量的频率分量,可以对非周期函数进行近似展开。
三角恒等式
正弦和余弦函数的线性组合
对于任意的实数$a$和$b$,有$sin(a+b) = sin a cos b + cos a sin b$和$cos(a+b) = cos a cos b - sin a sin b$。
三角恒等式的应用
在傅里叶级数展开中,三角恒等式用于将一个复杂的周期函数表示为正弦和余弦函数的线性组合。
其中,a0、an和bn为常数,n为整数 ,Σ表示求和符号,x为自变量。
傅里叶级数的一般形式为:f(x) = a0 + Σ[(an * cos(nx)) + (bn * sin(nx))]
傅里叶级数的历史背景
傅里叶级数的起源可以追溯到18世纪 初,法国数学家让-巴蒂斯特·约瑟夫· 傅里叶在研究热传导问题时提出了该 理论。
傅里叶级数一般公式

傅里叶级数一般公式傅里叶级数是一种十分重要而且重要的数学概念,它具有普遍性和广泛应用,在工程、数学和物理等领域有深远的影响。
其实,傅里叶级数也被称为Fourier级数,它是1826年法国数学家傅里叶(Joseph Fourier)提出的数学公式,用于描述一个周期函数的重建。
它基于Fourier的发现,即任何周期函数都可以用正弦或余弦组合函数表示,并且可以用有限个正弦或余弦波来近似表示它。
傅里叶级数的一般公式如下:f(x)=a_0+∑_n=1_(A_n*Cos(nx)+B_n*Sin(nx))等价于f(x)=a_0+∑_n=1_(A_n*Cos(ωx+φ_n))其中,A_n和B_n是傅里叶系数,a_0是偏移量,ω是周期,而φ_n表示相位。
由于某些科学应用需要近似表达函数,因此傅里叶级数的概念被广为应用,在工程中表现为有限个正弦以及余弦函数的线性组合。
例如,在水波动力学中,可以用傅里叶级数来描述海浪的高度和速度。
并且,由于傅里叶级数拥有许多优点,如解析性、小数量级、计算简便、便于理解,因此它也可以被用来模拟金融市场和力学系统等机械系统。
此外,傅里叶级数也被用于数据压缩,如在视频压缩领域中,可以使用它来表示连续的图像数据,用有限的数据点捕捉大量的细节,从而实现空间压缩;另外,在声音处理中,傅里叶级数也可用来表示声音,从而压缩声音文件。
最后,在模式识别和信号处理领域,傅里叶级数的运用是极其重要的,它可以完成复杂的分析,比如形状识别和振动分析等,从而促进机械化。
综上所述,傅里叶级数一般公式对于系统分析和数据处理是十分重要的,它也被广泛应用于工程、数学和物理等领域,用以模拟实际系统,提高系统特性识别和数据压缩的性能,从而更好地分析数据。
傅里叶级数定理

傅里叶级数定理傅里叶级数定理是数学中的一项重要定理,它是法国数学家傅里叶在18世纪提出的。
傅里叶级数定理的中心思想是任意一个周期函数都可以表示成一系列三角函数的和,这些三角函数的频率是原周期函数的基本频率的整数倍。
这个定理在数学、物理和工程等学科中都有非常广泛的应用。
傅里叶级数定理的表述可以用以下方式来说明:设f(x)是一个周期为T的函数,那么f(x)可以展开成各个频率的三角函数幅度和相位逐渐递减的级数表达式。
这个级数中的三角函数是正弦函数和余弦函数,其频率为基频的整数倍。
傅里叶级数表达式如下:f(x) = A0 + Σ[An*cos(nωt) + Bn*sin(nωt)]在这个公式中,A0是基频分量的直流分量,An和Bn分别是基频分量的余弦和正弦分量。
ω是基频角频率,n是频率的整数倍。
这个定理是非常重要的,因为它告诉我们任意周期函数都可以用无穷多个正弦和余弦函数来逼近。
这个逼近的程度可以通过级数中各个分量的幅度来控制。
如果级数中的幅度越大,那么逼近的程度就越高,而如果幅度趋近于零,那么函数的表示也就趋近于原函数。
傅里叶级数定理的应用非常广泛。
在数学领域,它可以用于解决各种泛函方程,比如热传导方程、波动方程和拉普拉斯方程等。
通过傅里叶级数的展开,我们可以将这些复杂的方程转化为简单的三角函数的运算。
在物理学中,傅里叶级数定理是研究振动和波动现象的重要工具。
通过将物理量表示为傅里叶级数,我们可以更好地理解光、声音等波动的性质。
在工程学中,傅里叶级数定理被广泛应用于信号处理和通信系统。
通过将信号进行频域变换,我们可以分析信号的频率成分,进而提取有用的信息。
傅里叶级数定理还有一项重要的推广,即傅里叶变换。
傅里叶变换是将一个非周期函数表示成一系列连续频谱的方法。
通过傅里叶变换,我们可以将信号从时域转换到频域,进而分析信号的频率特性。
傅里叶变换在数字信号处理、图像处理和音频处理等领域有着广泛的应用。
总结起来,傅里叶级数定理是数学中的一个重要定理,它告诉我们任意周期函数都可以表示成一系列三角函数的和。
傅里叶变换(周期和非周期信号)

例1的频谱图
周期信号的傅里叶变换——傅里叶级数
2、指数形式的傅里叶级数
式中,
f (t) Fne jn0t n
1
Fn T
T
2 T
f (t )e jn0tdt
2
证明
- n
傅里叶复系数
周期信号的傅里叶变换——傅里叶级数
2、指数形式的傅里叶级数
式中,
f (t) Fne jn0t n
1
Fn T
A
T1
2 A sin n1
n1 n
2
cos n1t
A
T1
2A sin
1
2
cos1t
A
sin
1
cos 21t
2A sin
3
31
2
cos 31t
......
2. 指数形式的傅里叶级数
周期矩形脉冲
f (t) Fne jn1t n
Fn
1 T1 A T1
T1
2 T1
f (t )e jn1tdt
2. T不变,τ减小,则频谱的幅度也将减小,谱线密度 保持不变,但包络过零点的间隔将增大。
A
F0 T
Back
非周期信号的傅立里叶变换
两个重要公式:
f ( t ) F( ) : F( ) f ( t )e jtdt
F( ) f (t ):
F -1F( ) f ( t ) 1 F( )e jtd
1、 三角函数式傅里叶级数
若周期函数 f (t) 满足狄里赫利( Dirichlet)条件:
(1)在任意周期内存在有限个第一类间断点; (2)在任意周期内存在有限个的极值点; (3)在任意周期上是绝对可积的,即
一般周期函数的傅里叶级数

2020年6月30日星期二
(Spring 2010,10ppt. L.G.YUAN)
2
定理. 设周期为2l 的周期函数 f (x)满足收敛定理条件, 则它的傅里叶展开式为
其中
(在 f (x) 的连续点处)
an
1 l
l f (x) cos n x d x
l
l
(n 0, 1, 2, )
bn
1 l
1 n1 n2
2
6
(Spring 2010,10ppt. L.G.YUAN)
6
内容小结
1. 周期为2l 的函数的傅里叶级数展开公式
f (x) a0 2
其中
1 l
l
l
f
(x) cos
n
l
xd
x
1 l
l
l
f
( x) sin
n
l
xd
x
(x 间断点)
(n 0,1, ) (n 1, 2, )
当f (x)为奇(偶) 函数时, 为正弦(余弦) 级数.
(在 f (x) 的连续点处)
其中 an
f (x) cos n x d x
l
(n 0, 1, 2, )
注: 无论哪种情况 , 在 f (x) 的间断点 x 处, 傅里叶级数
收敛于
2020年6月30日星期二
(Spring 2010,10ppt. L.G.YUAN)
4
例. 把
展开成
(1) 正弦级数; (2) 余弦级数.
第十章
一般周期函数的傅里叶级数
以2 l 为周期的函数的 傅里叶展开
2020年6月30日星期二
(Spring 2010,10ppt. L.G.YUAN)
14讲 傅里叶级数

其中权重函数仍为大于0的实函数。
注:正交系一定要指明区间。
三角函数族是权重为1的正交系(自证),由此可确定其傅里叶系数。 如,展开式两边同乘以基函数1,并在一个周期[-T/2,T/2]上积分得
T 2
T 2
1 T2 f (t )dt a0 dt 0, 即a0 f (t )dt. T 2 T T 2
k
同理,对于时间坐标的傅里叶展开变为
其中系数ck
1 T2 f ( )eikw0 d . T T 2
ck e ikw0t ,
注:在时间坐标的傅氏展开中习惯用指数的负幂形式。
五、多元函数的傅里叶级数展开
若函数f(x1,x2)具有双周期2l1和2l2,即x1,x2分属[-l1,l1]和[-l2,l2], 则函数可展为傅里叶级数:
二、奇偶函数的傅里叶展开 若周期函数f(x)是奇函数,则傅里叶级数中偶基函数的系数a0和 1 l k ak都应等于0。而展开系数 bk f ( ) sin d
l 2 l 中的被积函数是偶函数,故系数可写成: bk f ( ) sin k d . l 0 l l l
T 2
展开式两边同乘以基函数cos(2kt/T) ,并在 [-T/2,T/2]上积分得 2 T 2 T 2 2k t 2k t 2 T2 2k t
T 2
ak cos dt. dt 0, 即ak f (t ) cos T T T T 2 T 2 T2 2k t 同理,可得 bk f (t ) sin dt. 2cos2x=1+cos(2x) T T 2 T f (t ) cos
由于在边界x=0和x=l处,sin(kx/l)=0,故f(0)=0=f(l),这称为Ⅰ边界. 若周期函数f(x)是偶函数,则傅里叶级数中bk都应等于0,而 1 l l a0 f ( )d , ak 2 f ( ) cos k d . 0
周期信号的傅里叶变换

二、一般周期信号的傅里叶变换
令周期信号f(t)的周期为T1,角频率为1=2f1
e 一般周期信号:f (t)
F jn1t n
n
F 2 Fn n1 n
其中:
Fn
1 T1
T1
2 T1
f (t)e jwtdt
2
1.单脉冲信号的傅里叶变换
单脉冲信号:从周期脉冲信号f(t)中截取一个周 期,得到单脉冲信号。
思考题
1.正弦、余弦信号的傅里叶变换公式? 2. 一般周期信号的傅里叶变换公式?
n
又
1 Fn T1
fT (t) T (t) FT w1 (w nw1) n
可见,在周期单位冲激序列的傅里叶变换中只包含位于 =0,1, 21, n1, 频率处的冲激函数,其强度大 小相等,均等于1 。
例3-11
求周期矩形脉冲信号的傅里叶级数和 傅里叶变换。
f (t)
E
…
…
T
0
T
一、正弦、余弦周期信号的傅里叶变换
e Q f (t) j0t F F( m0 ), 0 0 1F2 (t) e j0t F 2 ( m0 ), 0 0
余弦信号:cos(1t) F ( 1) ( 1) 正弦信号:sin(1t) F j ( 1) ( 1)
1 f (t) cos w1t
2
f
(t
)e
jwt
dt
wnw1
周期信号的傅里叶级数的系数Fn等于单脉冲信号的傅里 叶变换F0()在n1频率点的值乘以1/T1。
可利用单脉冲的傅里叶变换方便求出周期性信号的傅里 叶级数的系数。
例3-10 单位冲激函数的间隔为T1,用符号T(t)
表示周期单位冲激序列:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n x d x ( n 0 , 1, 2 , ) 其中 an f ( x) cos l 注: 无论哪种情况 , 在 f (x) 的间断点 x 处, 傅里叶级数
收敛于
机动 目录 上页 下页 返回 结束
例1. 把 (1) 正弦级数;
展开成 (2) 余弦级数. 在 x = 2 k 处级 数收敛于何值? 解: (1) 将 f (x) 作奇周期延拓, 则有
机动 目录 上页 下页 返回 结束
2 2 a0 x d x 2 0
1 (2k 1) x ( 0 x 2 ) f ( x) x 1 2 cos 2 2 k 1 (2k 1) 8
说明: 此式对
也成立,
y
据此有
1 2 (2k 1) 2 8 k 1
作业:
11.8 1 ; 2 .
本章已讲完,下次课为习题课,请复习.
习题课 目录 上页 下页 返回 结束
机动
目录
上页
下页
返回
结束
定理. 设周期为2l 的周期函数 f (x)满足收敛定理条件, 则在函数的连续点处其傅里叶展开式为:
其中
n x 1 l d x (n 0 , 1, 2 ,) an f ( x) cos l l l
1 l n x bn f ( x) sin dx l l l
机动 目录 上页 下页 返回
(x 间断点)
结束
思考与练习
1. 将函数展开为傅里叶级数时为什么最好先画出其 图形? 答: 易看出奇偶性及间断点, 从而便于计算系数和写出 收敛域 . 2. 计算傅里叶系数时哪些系数要单独算 ? 答: 用系数公式计算 an , bn时 ,如分母中出现因子n-k
则ak 或 bk 必须单独计算.
(n 1, 2 ,)
机动
目录
上页
下页
返回
结束
证明: 令 z
令
x
l lz f (x) f ( ) , 则
,则
变成
F ( z 2 ) f ( f(
所以
l ( z 2 ) lz
)
) f(
lz
2l )
是以 2 为周期的周期函数 , 且它满足收敛
定理条件, 将它展成傅里叶级数:
o 2
x
由此还可导出
1 n2 n 1
1 2 2 6 n 1 n
2
8
机动
目录
上页
下页
返回
结束
二. 定义在任意有限区间上的函数的傅里叶展开法
方法1
ba ba , 即 z x 令xz 2 2 ba ba ba F ( z ) f ( x) f ( z ), z , 2 2 2 周期延拓
机动 目录 上页 下页 返回 结束
(2) 将
作偶周期延拓, 则有
y
n x 2 2 dx an x cos 2 2 0
2 n x 2 x sin n 2 n 4 n
2
o 2
x
2
n x cos 2
2 0
(1) n 1 2
1 (2k 1) x cos f ( x) x 1 2 2 2 k 1 (2k 1) (0 x2) 8
( 5 z 5)
F (z )
将F(z) 延拓成周期为 10 的周期函数, 则它满足收敛定
5 5 z 2 5 n z n 10 bn z sin d z (1) 5 0 5 n ( n 1 , 2 , ) n 10 (1) n z F ( z) sin (5 z 5 ) n 1 n 5
ba ba 上展成傅里叶级数 , F (z ) 在 2 2 ba 将 z x 代入展开式 2 在 上的傅里叶级数
机动 目录 上页 下页 返回 结束
方法2
令 即 z xa
F ( z ) f ( x) f ( z a ) ,
z 0 , b a
奇或偶式周期延拓
F (z ) 在 0 , b a 上展成正弦或余弦级数
将 z x a 代入展开式 在 上的正弦或余弦级数
机动
目录
上页
下页
返回
结束
例3. 将函数 解: 令 设
展成傅里叶级数.
F ( z ) f ( x) f ( z 10) z
理条件. 由于F(z) 是奇函数, 故
机动
目录
上页
下页
返回
结束
内容小结
周期为2l 的函数的傅里叶级数展开公式 a0 f (x) 2
1 l n x l f ( x) cos l d x (n 0 ,1,) l 其中 1 l n x f ( x) sin d x (n 1, 2 ,) l l l 当f (x)为奇 (偶)函数时, 为正弦(余弦) 级数. 变换 2. 在任意有限区间上函数的傅里叶展开法 延拓
y
n x 2 2 dx bn x sin 2 2 0 2 n x 2 x cos n 2 n 4 cos n n 4 (1) n 1 n x f ( x) sin n 1 n 2
o 2
x
2 0
2
n x sin 2
(0 x 2)
( 在 F(z) 的连续点处 )
机动 目录 上页 下页 返回 结束
其中
1 an
F ( z ) cos nz d z
(n 0 , 1, 2 ,) (n 1, 2 , 3 ,)
1 F ( z ) sin n z d z bn
令z
x
l
1 l n x an f ( x) cos d x (n 0 , 1, 2 ,) l l l 1 l n x bn f ( x) sin d x (n 1, 2 , 3 ,) l l l
( 在 f (x) 的 连续点处 )
机动 目录 上页 下页
证毕.
返回 结束
说明: 如果 f (x) 为奇函数, 则有 (在 f (x) 的连续点处)
n x 其中 bn f ( x) sin dx l 如果 f (x) 为偶函数, 则有
( n 1, 2 , )
(在 f (x) 的连续点处)
第十二章 第八节 一般周期的函数的傅里叶级数(14)
一 . 以2 l 为周期的函数的 傅里叶展开式 二 . 定义在任意有限区间上 函数的傅里叶展开式
机动
目录
上页
下页
返回
结束
一. 以2 l 为周期的函数的傅里叶展开
周期为 2l 函数 f (x) 变量代换 z
x
l
周期为 2 函数 F(z)
将F(z) 作傅里叶展开 f (x) 的傅里叶展开式