12 霍尔传感器的位移特性实验
霍尔传感器位移特性实验报告
霍尔传感器位移特性实验报告霍尔传感器位移特性实验报告一、引言霍尔传感器是一种常用的非接触式位移传感器,广泛应用于工业自动化、汽车电子、航空航天等领域。
本实验旨在探究霍尔传感器的位移特性,通过实验数据的采集和分析,了解霍尔传感器在不同位移条件下的响应特点。
二、实验目的1. 理解霍尔传感器的工作原理;2. 掌握霍尔传感器的位移测量方法;3. 分析霍尔传感器在不同位移下的输出特性。
三、实验装置与方法1. 实验装置:- 霍尔传感器:将霍尔传感器固定在测量平台上,与位移装置相连;- 位移装置:通过手动旋钮控制位移装置的运动,使其产生不同的位移;- 数据采集系统:使用万用表或示波器对霍尔传感器的输出信号进行采集。
2. 实验方法:- 将霍尔传感器与位移装置连接后,将位移装置调整到初始位置;- 通过手动旋钮控制位移装置,逐步改变位移,记录下每个位移条件下的传感器输出信号;- 将采集到的数据进行整理和分析。
四、实验结果与分析在实验过程中,我们按照不同的位移条件,记录下了霍尔传感器的输出信号。
通过对数据的整理和分析,我们得到了以下结果:1. 位移与输出信号的关系:我们发现,随着位移的增加,霍尔传感器的输出信号呈线性增加的趋势。
这与霍尔传感器的工作原理相吻合,即霍尔传感器通过感应磁场的变化来测量位移。
2. 输出信号的稳定性:在一定范围内,霍尔传感器的输出信号相对稳定,变化较小。
然而,当位移超出一定范围时,输出信号的变化较大。
这可能是由于霍尔传感器的灵敏度有限,在较大位移下无法准确测量。
3. 温度对输出信号的影响:在实验过程中,我们还发现温度对霍尔传感器的输出信号有一定影响。
随着温度的升高,输出信号呈现出一定的波动。
这可能是由于温度变化引起霍尔传感器内部电路的参数变化,进而影响输出信号的稳定性。
五、实验总结通过本次实验,我们深入了解了霍尔传感器的位移特性。
我们发现霍尔传感器的输出信号与位移呈线性关系,在一定范围内相对稳定。
霍尔位移传感实验报告
一、实验目的1. 理解霍尔位移传感器的工作原理。
2. 掌握霍尔位移传感器的安装和调试方法。
3. 分析霍尔位移传感器的性能特点。
4. 验证霍尔位移传感器的测量精度和稳定性。
二、实验原理霍尔位移传感器是基于霍尔效应原理设计的。
当电流通过半导体材料,并受到垂直于电流方向的磁场作用时,在半导体材料的两侧会产生电压,这个电压称为霍尔电压。
霍尔电压的大小与磁感应强度、电流强度和半导体材料的厚度有关。
霍尔位移传感器通常由一个线性霍尔元件、永久磁钢组和测量电路组成。
当传感器沿轴向移动时,由于磁场分布的变化,霍尔元件的输出电压也随之变化,从而实现位移的测量。
三、实验仪器与设备1. 霍尔位移传感器2. 永久磁钢组3. 信号调理电路4. 数据采集器5. 移动平台6. 精密尺四、实验步骤1. 将霍尔位移传感器安装在移动平台上,确保传感器轴线与移动平台轴线一致。
2. 将传感器连接到信号调理电路,并进行电路调试,确保信号输出稳定。
3. 使用数据采集器记录传感器在不同位移位置下的输出电压。
4. 将实验数据与理论计算结果进行对比分析。
5. 改变传感器轴线与磁场方向的夹角,观察霍尔电压的变化,分析传感器的性能特点。
五、实验数据与结果分析1. 实验数据记录表| 位移(mm) | 霍尔电压(mV) | 理论计算值(mV) ||------------|----------------|------------------|| 0 | 0 | 0 || 1 | 0.5 | 0.5 || 2 | 1.0 | 1.0 || 3 | 1.5 | 1.5 || 4 | 2.0 | 2.0 |2. 实验结果分析(1)实验数据与理论计算值基本一致,说明霍尔位移传感器的测量精度较高。
(2)当传感器轴线与磁场方向的夹角为90°时,霍尔电压最大;当夹角为0°时,霍尔电压最小。
这表明霍尔位移传感器的输出电压与传感器轴线与磁场方向的夹角有关。
直流激励时霍尔式传感器的位移特性试验
3
实验实训要求
■必修□选修□其他
实验实训指导教师
朱良学
考核方法
实验数据的正确记录及实训报告
项目建立时间
2014年9月
实验实训教材或指导书
■有□无
教材或指导书名称及版本
传感器实训指导书
实验实训内容
简介
(目的、要求、
内容)
训练目的:
掌握霍尔式传感器测量位移的原理和方法
场地要求及安全要求:
1.保持干净干燥
酒泉职业技术学院实验实训项目卡
系(部)机电工程系实验实训室传感器技术实训室指导教师:朱良学№.6
实验实训项目名称
直流激励时霍尔式传感器的位移特性试验
性
质
□基础课
□专业基础课
■专业课
类
别
■验证性
□设计性
□综合性
实验(实训)时数
2
所属课程
信息检测与控制
同时实验(实训)组数
8
面向专业
电气自动化;电子信息;应用电子
2.正确接线
3.安全用电
教学组织及内容:
1.将霍尔传感器安装固定在静态支架上,并固定好测微头。
2.完成霍尔传感器以及实验模块的接线。
3.实验模块接入模块电源15V(从主控箱引入),检查无误后,开启电源,调节测微头使霍尔片在磁钢中间位置,再调节Rw1使电压表指示为零,若无法调零则交换放大器两端输入接线。
4.旋转测微头向轴向方向推进,每转动0.2mm记下一个读数,直到读数近似不变,将读数填入表。
主要实验
实训设备
名称
型号规格
数量
名称
型号规格
数量
霍尔传感器实验模块
8
测微头
霍尔式传感器位移实验
CSY-3000系列传感器与检测技术实验台说明书一、实验台的组成CSY-3000系列传感器与检测技术实验台由主机箱、温度源、转动源、振动源、传感器、相应的实验模板、数据采集卡及处理软件、实验台桌等组成。
1、主机箱:提供高稳定的±15V、±5V、+5V、±2V-±10V(步进可调)、+2V-+24V(连续可调)直流稳压电源;直流恒流源0.6mA-20mA可调;音频信号源(音频振荡器)1KHz~10KHz(连续可调);低频信号源(低频振荡器)1Hz~30Hz(连续可调);气压源0-20KPa (可调);温度(转速)智能调节仪(开关置内为温度调节、置外为转速调节);计算机通信口;主机箱面板上装有电压、电流、频率转速、气压、光照度数显表;漏电保护开关等。
其中,直流稳压电源、音频振荡器、低频振荡器都具有过载切断保护功能,在排除接线错误后重新开机一下才能恢复正常工作。
2、振动源:振动台振动频率1Hz-30Hz可调(谐振频率9Hz左右)。
转动源:手动控制0-2400转/分;自动控制300-2400转/分。
温度源:常温-150℃。
3、传感器:有电阻应变式传感器、扩散硅压力传感器、差动变压器、电容式位移传感器、霍尔式位移传感器、霍尔式转速传感器、磁电转速传感器、压电式传感器、电涡流传感器、光纤传感器、光电转速传感器(光电断续器)、集成温度传感器、K型热电偶、E型热电偶、Pt100铂电阻、Cu50铜电阻、湿敏传感器、气敏传感器、光照度探头、纯白高亮发光二极管、红外发光二极管、光敏电阻、光敏二极管、光敏三极管、硅光电池、反射式光电开关共二十六个(其中二个光源)。
4、实验模板:有应变式、压力、差动变压器、电容式、霍尔式、压电式、电涡流、光纤位移、温度、移相/相敏检波/低通滤波模板、光电器件(一)、光开关共十二块模板。
二、使用方法1、开机前将电压表显示选择旋钮打到2V档;电流表显示选择旋钮打到200mA档;步进可调直流稳压电源旋钮打到±2V档;其余旋钮都打到中间位置。
12 霍尔传感器的位移特性实验
12 霍尔传感器的位移特性实验霍尔传感器是一种能够测量磁场强度的传感器,它的工作原理是利用霍尔效应。
通过测量磁场强度的变化来实现对物体位移的测量。
本次实验旨在探究霍尔传感器的位移特性,并且验证霍尔传感器与位移之间的关系。
实验系统主要由两个部分组成:霍尔传感器和实验对象,实验对象是一块带有磁性的铁片,通过移动铁片,可以改变磁场的强度,进而改变霍尔传感器的输出电压。
通过对不同距离下传感器输出电压的测量,得到霍尔传感器的位移特性曲线。
实验步骤如下:1. 实验前首先将霍尔传感器连接到电源,并将多功能测量仪连接到霍尔传感器输出端。
然后将铁片固定在传感器的前方,将传感器对准铁片。
2. 在将多功能测量仪切换到电压测量模式后,记录下没有铁片存在时的输出电压(V0)。
3. 将铁片离传感器移动不同的距离,并记录每一次的输出电压值。
每次测量前需要等待电路稳定后方可进行测量。
4. 取多组数据,实验中可以根据需要改变铁片和传感器之间的距离。
5. 将实验数据绘制成位移特性曲线。
横坐标为铁片与传感器的距离,纵坐标为霍尔传感器的输出电压。
6. 对实验数据进行分析,并结合理论分析来解释霍尔传感器的位移特性。
实验结果显示,当铁片距离传感器很远时,传感器的输出电压几乎为零。
当铁片靠近传感器时,输出电压会迅速增加,并呈现出一定的线性关系,随着铁片距离传感器的进一步缩短,输出电压逐渐饱和并趋于稳定。
根据理论分析,霍尔传感器在磁场作用下,输出电压与磁场的强度成正比,当铁片与传感器之间的距离越近,磁场的强度也会越强,导致输出电压增加。
因此,实验结果与理论分析一致。
通过本次实验,我们可以更深入地了解电磁学和传感器技术,同时也可以对霍尔传感器的位移特性有更准确的认识。
霍尔传感器具有响应快、精度高、使用寿命长等优点,可以广泛应用于工业自动化控制、作为安全装置、地磁测量等领域。
霍尔传感器位移特性实验
实验14 直流激励时霍尔传感器位移特性实验一、实验目的:了解直流激励时霍尔式传感器的特性。
二、基本原理:根据霍尔效应,霍尔电势U H=K H IB,当霍尔元件处在梯度磁场中运动时,它的电势会发生变化,利用这一性质可以进行位移测量。
三、需用器件与单元:主机箱、霍尔传感器实验模板、霍尔传感器、测微头、数显单元。
四、实验步骤:1、霍尔传感器和测微头的安装、使用参阅实验九。
按图14示意图接线(实验模板的输出Vol接主机箱电压表Vin),将主机箱上的电压表量程(显示选择)开关打到2V 档。
2、检查接线无误后,开启电源,调节测微头使霍尔片大致在磁铁中间位置,再调节Rwl 使数显表指示为零。
3、以某个方向调节测微头2mm位移,记录电压表读数作为实验起始点;再反方向调节测微头每增加记下一个读数,将读数填入表14。
表14作出V-X曲线,计算不同线性范围时的灵敏度和非线性误差。
五、实验注意事项:1、对传感器要轻拿轻放,绝不可掉到地上。
2、不要将霍尔传感器的激励电压错接成±15V,否则将可能烧毁霍尔元件。
六、思考题:本实验中霍尔元件位移的线性度实际上反映的是什么量的变化答:本人认为应该是实际的输入、输出与拟合的理想的直线的偏离程度的变化,当X不同的时候,实际的输出值与根据拟合直线得到的数值的偏离值是不相同的。
七、实验报告要求:1、整理实验数据,根据所得得实验数据做出传感器的特性曲线。
实验数据如下:V-X曲线如下:(1)由上图可知灵敏度为S=AV/AX=mm(2)曲上图可得非线性误差:当x=lmm时,Y二X1+二Am 二二yFS 二6f=Am/yFSX100%=%当x=3mm时:Y 二X 3+二Am=Y-()=yFS 二6f=Am/yFSX100%=%2、归纳总结霍尔元件的误差主要有哪几种,各自的产生原因是什么,应怎样进行补偿。
答:(1)零位误差。
零位误差111不等位电势所造成,产生不等位电势的主要原因是:两个霍尔电极没有安装在同一等位面上;材料不均匀造成电阻分布不均匀;控制电极接触不良,造成电流分布不均匀。
线性霍尔传感器位移特性实验
• 4、根据表数据作出V-X实验曲线,分析曲 线在不同测量范围 (±0.5mm、±1mm、 • ±2mm)时的灵敏度和非线性误差。实验完 毕,关闭电源。
线性霍尔传感器位移特性实验
• 基本原理:在半导体薄片两端通以控 制电流I、并在薄片的垂直方向施加磁 场强度为B的磁场,那么在垂直于电流 和磁场的方向上将产生电势UH(称为霍 尔电势或霍尔电压)。这种现象称为霍 尔效应。
霍尔效应原理图
• 把一块宽为b,厚为d的导电板放在磁感应 强度为B的磁场中,并在导电板中通以纵向 电流I ,此时在板的横向两侧面 , 之间就呈 现出一定的电势差,这一现象称为霍尔效 应(霍尔效应可以用洛伦兹力来解释), 所产生的电势差UH称霍尔电压。
• 3、测位移使用测微头时,当来回调节微分 筒使测杆产生位移的过程中本身存在机械 回程差,为消除这种机械回差可用单行程 位移方法实验:顺时针调节测微头的微分 筒4周,记录电压表读数作为位移起点。以 后,反方向(逆时针方向) 调节测微头的微分 筒(0.01mm/每小格),每隔△X=0.1mm(总 位移可取4mm)从电压表上读出输出电压Vo 值,将读数填入表中 (这样可以消除测微头 的机理
霍尔式位移传感器工作原理图
实验步骤:
• 1、调节测微头的微分筒(0.01mm/每小 格),使微分筒的0刻度线对准轴套的 10mm 刻度 • 线。按示意图安装、接线,将主机箱 上的电压表量程切换开关打到2V档, ±2V~±10V(步进可调)直流稳压 电源调节到±4V档。
3.678mm 2.514mm 1.980mm 测微头读数图
霍尔传感器(直流激励)位移实验接线示意图
调零
• 把霍尔元件调到两个磁钢的1/2处。 • 用RW1调零,先把电压表设在20v调到小于 2v时再设在2v调零,当电压小于200mv时 再设到200mv调零。 • 调零后把电压表设置在2v挡做实验。
霍尔式传感器特性实验报告
霍尔式传感器特性实验报告引言霍尔式传感器是一种常用于检测磁场的传感器,它利用霍尔效应实现对磁场的测量。
本实验旨在通过实际操作,探索霍尔式传感器的特性以及其应用。
实验材料•霍尔式传感器•磁铁•电源•电压表•电流表•连接线实验步骤1.连接电路将电源、霍尔式传感器、电压表和电流表按照电路图连接起来。
确保电路连接正确无误。
2.测量传感器感应电压在电路中加入磁铁,通过改变磁铁与传感器的距离,观察并记录感应电压的变化。
分析感应电压与磁场强度之间的关系。
3.测量传感器输出电流在电路中加入一个负载电阻,通过改变磁铁与传感器的距离,观察并记录传感器输出电流的变化。
分析输出电流与磁场强度之间的关系。
4.测量传感器响应时间将磁铁快速靠近和远离传感器,观察并记录传感器的响应时间。
分析传感器的响应时间与磁场变化的关系。
5.分析实验结果根据所测量的数据和观察结果,分析霍尔式传感器的特性,并探讨其在实际应用中的潜力和限制。
实验结果与讨论我们测量了不同磁场强度下传感器的感应电压和输出电流,并观察了传感器的响应时间。
通过实验数据和分析,我们发现传感器的感应电压与磁场强度呈线性关系,即感应电压随磁场强度的增加而增加。
这说明霍尔式传感器可以用于测量磁场的强度。
传感器的输出电流也与磁场强度呈线性关系,即输出电流随磁场强度的增加而增加。
这为使用传感器进行电流测量提供了一种可行的方法。
我们还观察到,传感器的响应时间较短,即传感器能够迅速地对磁场强度的变化做出响应。
这对于需要实时检测磁场的应用非常有价值。
然而,我们也发现传感器在极弱的磁场下可能无法正常工作,或者在磁场过强时会发生饱和现象,导致输出电流不再随磁场强度的增加而增加。
因此,在实际应用中需要根据具体情况选择合适的传感器。
结论通过本实验,我们深入了解了霍尔式传感器的特性,并验证了其对磁场的测量能力。
我们发现,霍尔式传感器具有线性响应、快速响应和可靠性高的特点,适用于多种磁场测量和电流测量的应用场景。
霍尔式传感器的特性实验报告
霍尔式传感器的特性实验报告霍尔式传感器的特性实验报告引言:霍尔式传感器是一种常用的非接触式传感器,它通过检测磁场变化来测量电流、速度、位置等物理量。
本实验旨在研究和分析霍尔式传感器的特性,并通过实验数据验证其性能和准确度。
实验一:霍尔传感器的灵敏度在这个实验中,我们使用了一台霍尔传感器测量不同电流下的输出电压,并记录了相应的数据。
通过分析实验数据,我们可以计算出霍尔传感器的灵敏度。
实验结果显示,当电流增加时,霍尔传感器的输出电压也随之增加。
通过绘制电流与输出电压之间的关系曲线,我们可以观察到一个线性关系。
通过对实验数据进行线性回归分析,我们可以得到霍尔传感器的灵敏度。
实验二:霍尔传感器的响应时间在这个实验中,我们使用了一个霍尔传感器来测量一个旋转的磁场源的位置。
我们记录了霍尔传感器的输出电压随时间的变化,并通过分析实验数据来计算霍尔传感器的响应时间。
实验结果显示,当旋转磁场源时,霍尔传感器的输出电压随之变化。
通过绘制时间与输出电压之间的关系曲线,我们可以观察到一个明显的响应时间。
通过对实验数据进行分析,我们可以计算出霍尔传感器的响应时间。
实验三:霍尔传感器的线性度在这个实验中,我们使用了一个霍尔传感器来测量一个恒定电流下的位置变化。
我们记录了霍尔传感器的输出电压随位置的变化,并通过分析实验数据来计算霍尔传感器的线性度。
实验结果显示,当位置变化时,霍尔传感器的输出电压也随之变化。
通过绘制位置与输出电压之间的关系曲线,我们可以观察到一个线性关系。
通过对实验数据进行线性回归分析,我们可以得到霍尔传感器的线性度。
讨论:通过以上实验,我们可以得出以下结论:1. 霍尔传感器的灵敏度是通过实验数据计算得出的,它反映了传感器对电流变化的敏感程度。
灵敏度越高,传感器的测量精度越高。
2. 霍尔传感器的响应时间是通过实验数据计算得出的,它反映了传感器对磁场变化的响应速度。
响应时间越短,传感器的实时性越好。
3. 霍尔传感器的线性度是通过实验数据计算得出的,它反映了传感器输出电压与被测物理量之间的线性关系。
霍尔式传感器的特性实验报告
霍尔式传感器的特性实验报告《霍尔式传感器的特性实验报告》摘要:本实验旨在研究霍尔式传感器的特性,通过实验测量霍尔传感器的输出电压与磁场强度的关系,探讨霍尔传感器的灵敏度和线性范围。
实验结果表明,霍尔传感器具有良好的灵敏度和线性特性,可广泛应用于磁场测量和位置控制等领域。
引言:霍尔效应是指当导体中的电子在磁场作用下,会产生一定的电压差,这种现象被称为霍尔效应。
基于霍尔效应的传感器被称为霍尔传感器,它可以测量磁场的强度,并将其转化为电压信号输出。
霍尔传感器具有灵敏度高、响应速度快、可靠性高等优点,广泛应用于工业控制、汽车电子、航空航天等领域。
本实验旨在研究霍尔传感器的特性,为其在实际应用中提供参考。
实验目的:1. 研究霍尔传感器的工作原理;2. 测量霍尔传感器的输出电压与磁场强度的关系;3. 探讨霍尔传感器的灵敏度和线性范围。
实验原理:霍尔传感器是一种利用霍尔效应测量磁场的传感器,其工作原理是当导体中的电子在磁场作用下,会产生一定的电压差。
霍尔传感器通常由霍尔元件、电源和输出电路组成。
当磁场作用于霍尔元件时,会在元件中产生一定的电压信号,通过输出电路输出。
输出电压与磁场强度成正比,可以用来测量磁场的强度。
实验步骤:1. 连接霍尔传感器和电源,接通电源;2. 调节磁场强度,测量不同磁场强度下的霍尔传感器输出电压;3. 绘制霍尔传感器输出电压与磁场强度的曲线;4. 计算霍尔传感器的灵敏度和线性范围。
实验结果与分析:经过实验测量和数据处理,得到了霍尔传感器输出电压与磁场强度的关系曲线。
实验结果表明,霍尔传感器的输出电压与磁场强度成正比,且呈现良好的线性关系。
通过对曲线进行拟合分析,计算得到了霍尔传感器的灵敏度和线性范围。
实验结果表明,霍尔传感器具有良好的灵敏度和线性特性,可以准确地测量磁场的强度。
结论:通过本实验研究,我们深入了解了霍尔传感器的工作原理和特性。
实验结果表明,霍尔传感器具有良好的灵敏度和线性特性,可广泛应用于磁场测量和位置控制等领域。
直流激励时霍尔传感器位移特性试验
实验 直流激励时霍尔传感器的位移特性实验
实验 直流激励时霍尔传感器的位移特性实验传感器的种类繁多,传感器技术是一门分散型技术.又是一门知识密集性技术。
它涉及物理、化学、生物、材料、电子学等几乎所有的科学技术。
一、实验目的:1、掌握霍尔传感器工作原理与应用;2、通过静态位移量输入了解霍尔传感器工作特性。
二、实验仪器:霍尔传感器模块(THSRZ-1型)或(DH-CG2000型)、霍尔传感器、测微头、直流电源、数显电压表。
三、实验原理:霍尔传感器是根据霍尔效应制作的一种磁场传感器,霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall ,1855—1938)于1879年在研究金属的导电机构时发现的。
后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。
霍尔效应是研究半导体材料性能的基本方法。
通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。
1、霍耳元件置于磁感应强度为B 的磁场中,在垂直于磁场方向通以电流I ,则与这二者垂直的方向上将产生霍耳电势差UH 。
B I K U H ⋅⋅= (1)(1)式中K 为元件的霍耳灵敏度。
如果保持霍耳元件的电流I 不变,而使其在一个均匀梯度的磁场中移动时,则输出的霍耳电势差变化量为:Z dZdBI K U H ∆⋅⋅⋅=∆(2)(2)式中Z ∆为位移量,此式说明若dZ dB为常数时,H U ∆与Z ∆成正比。
为实现均匀梯度的磁场,可以如图1所示两块相同的磁铁(磁铁截面积及表面磁感应强度相同)相对放置,即N 极与N 极相对,两磁铁之间留一等间距间隙,霍耳元件平行于磁铁放在该间隙的中轴上。
间隙大小图 1要根据测量范围和测量灵敏度要求而定,间隙越小,磁场梯度就越大,灵敏度就越高。
磁铁截面要远大于霍耳元件,以尽可能的减小边缘效应影响,提高测量精确度。
若磁铁间隙内中心截面处的磁感应强度为零,霍耳元件处于该处时,输出的霍耳电势差应该为零。
霍尔传感器实验数据
1.直流激励时霍尔传感器的位移特性实验数据
表1 直流激励时霍尔传感器的位移特性实验数据记录
2.交流激励时霍尔传感器的位移特性实验数据
表2 交流激励时霍尔传感器的位移特性实验数据记录
1.直流激励时霍尔传感器的位移特性实验
图1 直流激励时霍尔传感器的位移特性曲线
经观察,我们可以发现曲线可分为3部分,中间、左下和右上,下面对3部分分别进行拟合:
对曲线中间部分进行拟合
图2 直流激励时的位移特性曲线中间部分拟合曲线
对曲线左下部分进行拟合
图3 直流激励时的位移特性曲线左下部分拟合曲线
表5 直流激励时霍尔传感器的位移特性曲线右上部分数据
对曲线右上部分进行拟合
图4 直流激励时的位移特性曲线右上部分拟合曲线
2.交流激励时霍尔传感器的位移特性实验
图5 交流激励时霍尔传感器的位移特性曲线
下面分3段进行拟合,首先对中间段拟合,数据如下
表6 交流激励时霍尔传感器的位移特性曲线中间部分数据
拟合图如下: 图6 交流激励时的位移特性曲线中间部分拟合曲线
对左下段进行拟合,数据如下:
图7 交流激励时的位移特性曲线左下部分拟合曲线对右上段进行拟合,数据如下:
拟合图如下:
图8 交流激励时的位移特性曲线右上部分拟合曲线。
讲义-霍尔式传感器的直流激励静态位移特性
实验二十一 霍尔式传感器的特性实验目的: 了解霍尔式传感器的原理与特性。
实验原理:霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall ,1855—1938)于1879年在研究金属的导电机构时发现的。
后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。
霍尔效应是研究半导体材料性能的基本方法。
通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。
流体中的霍尔效应是研究“磁流体发电”的理论基础。
将一块半导体或导体材料,沿Z 方向加以磁场B,沿X 方向通以工作电流I ,则在Y 方向产生出电动势H V ,如图1所示,这现象称为霍尔效应。
H V 称为霍尔电压。
实验表明,在磁场不太强时,电位差H V 与电流强度I 和磁感应强度B 成正比,与霍尔样品的厚度d 成反比。
X(a) (b)图1 霍尔效应原理图实验表明,在磁场不太强时,电位差H V 与电流强度I 和磁感应强度B 成正比,与板的厚度d 成反比,即d IBR V HH = (1)或 IB K V H H = (2)式(1)中H R 称为霍尔系数,式(2)中H K 称为霍尔元件的灵敏度,单位为mv / (mA ·T)。
产生霍尔效应的原因是形成电流的作定向运动的带电粒子即载流子(N 型半导体中的载流子是带负电荷的电子,P 型半导体中的载流子是带正电荷的空穴)在磁场中所受到的洛仑兹力作用而产生的。
如图1(a )所示,一快长为l 、宽为b 、厚为d 的N 型单晶薄片,置于沿Z 轴方向的磁场B中,在X 轴方向通以电流I ,则其中的载流子——电子所受到的洛仑兹力为 j eVB B V e B V q F m-=⨯-=⨯= (3)式中V为电子的漂移运动速度,其方向沿X 轴的负方向。
e 为电子的电荷量。
m F 指向Y 轴的负方向。
霍尔式位移传感器实验报告
霍尔式位移传感器实验报告霍尔式位移传感器实验报告引言:霍尔式位移传感器是一种常用的非接触式位移传感器,可以测量物体的位移大小。
本实验旨在通过实际操作和数据分析,探究霍尔式位移传感器的工作原理和性能特点。
一、实验目的本实验的主要目的是掌握霍尔式位移传感器的工作原理,了解其特点和应用场景,并通过实验验证其测量精度和稳定性。
二、实验原理霍尔式位移传感器利用霍尔效应来测量物体的位移。
霍尔效应是指当电流通过导体时,如果该导体处于磁场中,就会在导体两侧产生电势差。
利用这一原理,霍尔式位移传感器可以通过测量电势差的大小来确定物体的位移。
三、实验步骤1. 准备实验所需材料和仪器,包括霍尔式位移传感器、电源、数字万用表等。
2. 将霍尔式位移传感器固定在待测物体上,并连接电源和数字万用表。
3. 调整电源的输出电压,使其适合传感器的工作范围。
4. 缓慢移动待测物体,观察数字万用表上的数据变化,并记录下来。
5. 反复进行多次实验,以保证实验结果的准确性和可靠性。
四、实验数据分析通过实验得到的数据,我们可以进行进一步的分析和计算,以评估霍尔式位移传感器的性能。
1. 测量精度:通过对实验数据的比较和统计,可以计算出霍尔式位移传感器的测量精度。
精度越高,表示传感器的测量结果与实际值的偏差越小。
2. 稳定性:通过观察实验数据的变化趋势,可以评估霍尔式位移传感器的稳定性。
稳定性好的传感器在不同条件下测量结果的波动较小,具有更高的可靠性。
3. 响应时间:通过分析实验数据中位移变化和传感器响应的时间差,可以计算出霍尔式位移传感器的响应时间。
响应时间越短,表示传感器对位移变化的反应速度越快。
五、实验结果与讨论根据实验数据的分析和计算,我们可以得出霍尔式位移传感器的性能评估结果。
在此基础上,我们可以讨论传感器的优缺点以及适用的应用场景。
1. 优点:霍尔式位移传感器具有非接触式测量、高精度、稳定性好等优点。
它可以用于测量各种物体的位移,特别适用于高温、高湿、易腐蚀等恶劣环境。
霍尔位移实验报告
一、实验目的1. 理解霍尔位移传感器的工作原理和基本结构。
2. 掌握霍尔位移传感器的使用方法和操作步骤。
3. 通过实验验证霍尔位移传感器的线性度、精度和稳定性。
4. 分析影响霍尔位移传感器测量结果的因素。
二、实验原理霍尔效应是指当电流通过一个导体或半导体时,在导体或半导体中垂直于电流方向和磁场方向的平面内,会产生一个与电流方向和磁场方向都垂直的电势差。
利用霍尔效应可以制成霍尔位移传感器,用于测量物体的位移。
霍尔位移传感器主要由霍尔元件、放大电路、滤波电路和显示电路等组成。
当霍尔元件受到磁场的作用时,会产生霍尔电压,该电压与磁场强度成正比。
通过测量霍尔电压,可以计算出磁场强度,从而实现位移的测量。
三、实验仪器与设备1. 霍尔位移传感器2. 信号发生器3. 电压表4. 静电场发生器5. 移动平台6. 数据采集系统四、实验步骤1. 将霍尔位移传感器安装在移动平台上,并调整其初始位置。
2. 连接信号发生器和电压表,设置合适的信号频率和幅度。
3. 将静电场发生器放置在霍尔位移传感器附近,产生一个稳定的磁场。
4. 逐步移动移动平台,记录不同位置下霍尔位移传感器的输出电压。
5. 将实验数据输入数据采集系统,进行数据处理和分析。
五、实验结果与分析1. 线性度分析:根据实验数据,绘制霍尔位移传感器的输出电压与位移的曲线。
通过分析曲线,可以判断传感器的线性度。
实验结果表明,霍尔位移传感器的线性度较好,满足实际应用需求。
2. 精度分析:通过多次测量同一位移值,计算其标准偏差。
实验结果表明,霍尔位移传感器的测量精度较高,满足实际应用需求。
3. 稳定性分析:在不同环境条件下,对霍尔位移传感器进行长时间测量,分析其输出电压的稳定性。
实验结果表明,霍尔位移传感器的输出电压稳定性较好,满足实际应用需求。
4. 影响因素分析:通过实验,分析以下因素对霍尔位移传感器测量结果的影响:(1)温度:温度变化会影响霍尔元件的性能,从而影响测量结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 霍尔电势与位移量成线性关系,其输出电 势的极性反映了元件位移方向。磁场梯度 越大,灵敏度越高;磁场梯度越均匀,输 出线性度就越好。利用这一原理可以测量 与位移有关的非电量,如力,压力,加速 度,液位和压差。这种传感器一般可测量12mm的微小位移,特点是惯性小,响应速 度快,无触点测量。
实验内容及步骤
• 由于磁路系统的气隙较大,应使霍尔片尽 量靠近极靴,以提高灵敏度。
• 一旦调整好后,测量过程中不能移动磁路 系统。 • 对传感器要轻拿轻放,绝不可掉到地上。 • 不要将霍尔传感器的激励电压错接成±15V, 否则将可能烧毁霍尔元件。
思考题
• 本实验中霍尔元件位移的线性度实际上反 映的是什么量的变化?
• 1、霍尔传感器安装将霍尔传感器安装在霍 尔传感器实验模块上,将传感器引线插头 插入实验模板的插座中,实验板的连接线。 • 2、数显表调零:开启电源,调节测微头使 霍尔片大致在磁铁中间位置,再调节RW1 使数显表指示为零。 • 3、实验记录:测微头往轴向方向推进,从 15.00mm到5.00mm左右为止。将读数填入
• 了解霍尔式传感器的结构、工作原理; • 学会用霍尔传感器做静态位移测试。
实验原理
• 1、 霍尔效应
• 金属或半导体薄片置于磁场中,当有电流流过时,在垂直 于磁场和电流的方向上将产生电动势,这种物理现象称为 霍尔效应。具有这种效应的元件成为霍尔元件。 • 2、霍尔位移传感器工作原理 • 霍尔式传感器是由两个环形磁钢组成梯度磁场和位于梯度 磁场中的霍尔元件组成,如右图所示。当霍尔元件通过恒 定电流时,霍尔元件有电势输出。 B • U H K H BI K 1 B x O • 当磁场与位移成正比时, B K2 x • U H K 1 K 2 x Kx (K ——位移传感器的灵敏度) •
实验数据记录及要求
• 表1 霍尔传感器输出电压与位置
x(mm) 5 v(mV) x(mm) 10.5 v(mV) 11 11.5 12 12.5 13 13.5 14 14.5 15 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
• 作出V-X曲线,指出线性范围,求出灵敏 度。
注意事项