计控实验五-达林算法仿真

计控实验五-达林算法仿真
计控实验五-达林算法仿真

计控实验五-达林算法仿真

实验报告|

|

实验名称大林算法仿真实验

课程名称计算机控制技术与系统

|

实验五 达林算法仿真实验

1、实验目的:

在离散系统直接数字控制算法学习基础上,通过Matlabl 软件仿真实验,加深掌握达林算法设计离散控制器的基本思想和方法,进一步理解最少拍与非最少有限拍控制器设计中存在的局限性。

2、实验内容及要求:

已知对象模型为

1.460()1 3.34S

e G s s -=

+

设期望的闭环响应M(z)为时间常数τ=2s 的一阶惯性环节,并带有l=1个采样周期的纯滞后,即

12

1

1(1)0.3935()110.6065l

z z M z z z z σσ------==--

要求:

1) 经采样(T=1S )保持后,求出其广义对象z 传递函数;

2) 基于达林算法给定的M(z),设计控制器D(z),对单位阶跃输入绘制U(k)

和系统输出y(k)响应曲线;

3) 设计消除振铃后的等效控制算法D(z),对单位阶跃输入绘制U(k)和系统

输出y(k)响应曲线;

4) 分析比较上述两种情况下,对应U(k)和y(k)的响应特性有哪些变化。

3、实验过程

3.1求取广义对象的z 传递函数

利用matlab 求取广义对象的z 传函并将其转化成零极点的形式,用到的程

序如下 T1=3.34; tao=1.46;

G0=tf([1],[T1 1],'inputdelay',tao) sysd=c2d(G0,T,'zoh'); zsysd=zpk(sysd)

得到的广义对象的z 传递函数为

2

0.14928(z 0.7332)

(z 0.7413)z

+-

3.2基于大林算法设计D(z)

期望的闭环响应函数为M(z),广义对象的传递函数为G(z),则根据大林算法设计的控制器D(z)表达式为

21(z) 2.636(z 0.7413)

(z)(z)1(z)(z 1)(z 0.7332)(z 0.3935)

M z D G M -==--++

在simulink 中仿真改系统,建立的框图为

得到的控制量的曲线为

可见出现了控制量的输出出现振铃现象。

得到的系统输出曲线为

从曲线可以发现系统输出最终稳定下来,没有超调,稳定时间约12拍。

3.3设计消除振铃后的等效控制算法D(z)

广义对象的z 传递函数为

2

0.14928(z 0.7332)

(z 0.7413)z +-

由理论可得,振林因子来自广义对象在z 平面上单位圆左半平面内的零点。即零点z=-0.7332是振铃现象产生的原因。 由大林算法设计的控制器D(z)

22.636(z 0.7413)

(z)(z 1)(z 0.7332)(z 0.3935)

z D -=-++

消除振铃现象的方法,即将D(z)中找到振铃因子,并将z=1代入。因此只需将z=1代入D(z)分母中的(z+0.7332),即可得到所需要的控制器D1(z)

111

1.5209(10.7413z ) 1.5209(z 0.7413)z

D1(z)=(10.3935z )(1z )(z 0.3935)(z 1)

-----=+-+- 在simulink 中仿真改系统,建立的框图为

得到的控制量的曲线为

得到的系统输出曲线为

系统最终能够稳定下来,有轻微的超调,稳定时间大约为12拍。

3.4普通大林算法和消除振铃后的对比

(1)控制量输出曲线对比

观察控制量的器输出虚线可以发现,消除振铃后,控制量的幅值以及变化幅度明显小了很多。这说明就控制量而言,消除振铃的大林算法控制系统明显优于消除振铃之前。

(2)系统输出曲线对比

观察系统的输出可以发现消除振铃之后系统的响应速度有些许的增加,但曲线出现了超调,系统稳定性出现一定幅度的下降。

分子荧光光谱法实验报告

分子荧光光谱法实验报告 一、实验目的 1.掌握荧光光度计的基本原理及使用。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.掌握分子荧光光度计分析物质的特征荧光光谱:激发光谱、发射光谱的测定方法。 4.了解影响荧光产生的几个主要因素。 5.学会运用分子荧光光谱法对物质进行定性和定量分析。 二、实验原理 原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。 具有不饱和基团的基态分子经光照射后,价电子跃迁产生荧光,是当电子从第一激发单重态S1的最低振动能级回到基态S0各振动能级所产生的光辐射。 (1)激发光谱 是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。 激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,使材料发出某一波长光的效

率。荧光为光致发光,合适的激发光波长需根据激发光谱确定——激发光谱是在固定荧光波长下,测量荧光体的荧光强度随激发波长变化的光谱。获得方法:先把第二单色器的波长固定,使测定的λem不变,改变第一单色器波长,让不同波长的光照在荧光物质上,测定它的荧光强度,以I为纵坐标,λex为横坐标所得图谱即荧光物质的激发光谱,从曲线上找出λex,,实际上选波长较长的高波长峰。 (2)发射光谱 是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长,纵坐标为发光相对强度。 发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。发射光谱的获得方法:先把第一单色器的波长固定,使激发的λex不变,改变第二单色器波长,让不同波长的光扫描,测定它的发光强度,以I为纵坐标,λem为横坐标得图谱即荧光物质的发射光谱;从曲线上找出最大的λem。 (3)荧光强度与荧光物质浓度的关系 用强度为I0的入射光,照射到液池内的荧光物质时,产生荧光,荧光强度If用仪器测得,在荧光浓度很稀(A 三、实验试剂和仪器试剂:罗丹明B乙醇溶液;1-萘酚乙醇溶液;3,3’-Diethyloxadicarbocyanine iodide:标准溶液,10μg/ml, 20μg/ml,30μg/ml,40μg/ml和未知浓度;蒸馏水;乙 醇。 仪器:Fluoromax-4荧光分光光度计;1cm比色皿;

蒙特卡洛(Monte Carlo)模拟法

当科学家们使用计算机来试图预测复杂的趋势和事件时, 他们通常应用一类需要长串的随机数的复杂计算。设计这种用来预测复杂趋势和事件的数字模型越来越依赖于一种称为蒙特卡罗模似的统计手段, 而这种模拟进一步又要取决于可靠的无穷尽的随机数目来源。 蒙特卡罗模拟因摩纳哥著名的赌场而得名。它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。数学家们称这种表述为“模式”, 而当一种模式足够精确时, 他能产生与实际操作中对同一条件相同的反应。但蒙特卡罗模拟有一个危险的缺陷: 如果必须输入一个模式中的随机数并不像设想的那样是随机数, 而却构成一些微妙的非随机模式, 那么整个的模拟(及其预测结果)都可能是错的。 最近, 由美国佐治亚大学的费伦博格博士作出的一分报告证明了最普遍用以产生随机数串 的计算机程序中有5个在用于一个简单的模拟磁性晶体中原子行为的数学模型时出现错误。科学家们发现, 出现这些错误的根源在于这5个程序产生的数串其实并不随机, 它们实际上隐藏了一些相互关系和样式, 这一点只是在这种微小的非随机性歪曲了晶体模型的已知特 性时才表露出来。贝尔实验室的里德博士告诫人们记住伟大的诺伊曼的忠告:“任何人如果相信计算机能够产生出真正的随机的数序组都是疯子。” 蒙特卡罗方法(MC) 蒙特卡罗(Monte Carlo)方法: 蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。这也是我们采用该方法的原因。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗解题三个主要步骤: 构造或描述概率过程: 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样

实验4 达林算法仿真

实验四达林算法仿真 一、实验目的 1.设计达林算法的Simulink仿真模型; 2.用S函数实现达林算法; 3.观察达林算法中的滞后时间常数和采样周期的选取对系统输出的影响。 二、实验内容 被控对象:G( S )= 2 4S+1 1.达林算法仿真模型 达林算法的SIMULINK仿真模型如图4.1所示。达林算法适用于一、二阶惯性加纯滞后环节对象,仿真模型仅对工业控制中常见的一阶惯性加纯滞后环节对象作仿真。 图 4.1达林算法仿真模型 3.达林算法的S函数实现达林算法控制器的S函数 程序darlincon.m清单如下: function[sys,x0,str,ts]=darlincon(t,x,u,flag,Ttao,T1,K,Tao,T) global umax k1 k2 k3 uk ek_1 N switch flag case 0, sizes=simsizes; sizes.NumContStates=0;sizes.NumDiscStates=0; sizes.NumOutputs=1;sizes.NumInputs=1; sizes.DirFeedthrough=1;sizes.NumSampleTimes=1; sys=simsizes(sizes);str=[]; ts=[T 0]; umax=50;N=floor(Tao/T); uk=zeros(N+2,1);ek_1=0;k1=exp(-T/Ttao); k2=exp(-T/T1);k3=(1-k1)/K/(1-k2); case 3, ek=u; uk(1)=k3*(ek-k2*ek_1)+k1*uk(2)+(1- k1)*uk(N+2); if uk(1)>umax uk(1)=umax; end

算法分析与设计实验报告

算法设计与分析 学院:计算机科学与技术 学号:129074106 姓名:张淼淼 2014 11 14

1、 当问题规模100 N 时,快速排序和插入排序各需多少时间?写清机器配置,列出五种 快速排序所需时间(ms) 插入排序所需时间(ms ) 两者相差多少 N=100 0.00600 0.019000 -0.013000 N=1000 0.074000 0.724000 -0.650000 N=10000 0.032000 64.657000 -64.625000 N=100000 13.300000 50.900000 -37.600000 N=1000000 53.500000 117.700000 -64.200000 Window 7 32位 Cpu :Inter(R) Core(TM) i3-2120 cpu@3.30GHz AMD Radeon HD 6450 Graphics

程序: #include #include #include #include int a[1000000];

int b[1000000]; void QuickSort(int low ,int high) { long i,j; int x; i=low; j=high; x=a[i]; while(i=x&&i(j+1)) QuickSort(j+1,high); } void BinaryInsertSort(int length) { int low,high,mid; int i,j,m;//m为保存待插入的元素 for(i=1;i=b[mid]) low=mid+1; else high=mid-1; } for(j=i-1;j>=high+1;j--)//high为插入位置 b[j+1]=b[j];//后移元素,留出插入的空位b[high+1]=m;//将元素插入正确的位置 }

荧光分析法实验报告

荧光分光光度法 一、 实验目的 1、学习荧光分光光度法的基本原理; 2、学习荧光光谱仪的结构和操作方法; 3、学习激发光谱、发射光谱曲线的绘制方法。 二、 实验原理 荧光分光光度法(fluorescence spectroscopy, FS )通常又叫荧光分析法,具有灵敏度高、选择性强、所需样品量少等特点,已成为一种重要的痕量分析技术。荧光(fluorescence )是分子吸收了较短波长的光(通常是紫外光和可见光),在很短的时间内发射出比照射光波长较长的光。由此可见,荧光是一种光致发光。 任何荧光物质都有两个特征光谱,即激发光谱(excitation spectrum )和发射光谱(emission spectrum )或称荧光光谱(fluorescence spectrum )。激发光谱表示不同激发波长的辐射引起物质发射某一波长荧光的相对效率。绘制激发光谱时,将发射单色器固定在某一波长,通过激发单色器扫描,以不同波长的入射光激发荧光物质,记录荧光强度对激发波长的关系曲线,即为激发光谱,其形状与吸收光谱极为相似。荧光光谱表示在所发射的荧光中各种波长的相对强度。绘制荧光光谱时,使激发光的波长和强度保持不变,通过发射单色器扫描以检测各种波长下相应的荧光强度,记录荧光强度对发射波长的关系曲线,即为荧光光谱。激发光谱和荧光光谱可用于鉴别荧光物质,而且是选择测定波长的依据。 荧光强度(F )是表征荧光发射的相对强弱的物理量。对于某一荧光物质的稀溶液,在一定波长和一定强度的入射光照射下,当液层的厚度不变时,所发生的荧光强度和该溶液的浓度成正比,即 该式即荧光分光光度法定量分析的依据。使用时要注意该关系式只适用于稀溶液。 三、 仪器与试剂 F-4500荧光光谱仪;比色管(10mL );牛血清白蛋白(BSA ) 四、 实验内容 1、 开机准备:接通电源,启动电脑。打开光谱仪主机电源,预热15分钟。 2、 运行FL solution 软件,设定检测方法和测量参数: EX (激发波长):280nm EM (发射波长):340nm EX 扫描范围:210nm ~330nm EM 扫描范围:290nm ~450nm EX 缝宽:2.5nm ,EM 缝宽:2.5nm 扫描速度:240nm/min PMT 电压:700V 3、 激发光谱和发射光谱的绘制: 先固定激发波长为280nm ,在290~450nm 测定荧光强度,获得溶液的发射光谱,在343nm 附近为最大发射波长λem ;再固定发射波长为λem ,测定激发波长为200nm ~λem 时的荧光强度,获得溶液的激发光谱,在280nm 附近为最大激发波长λex 。 4、 退出FL solution 软件,关闭光谱仪主机电源,关闭计算机。 Kc F

蒙特卡洛方法

蒙特卡洛方法 1、蒙特卡洛方法的由来 蒙特卡罗分析法(Monte Carlo method),又称为统计模拟法,是一种采用随机抽样(Random Sampling)统计来估算结果的计算方法。由于计算结果的精确度很大程度上取决于抽取样本的数量,一般需要大量的样本数据,因此在没有计算机的时代并没有受到重视。 第二次世界大战时期,美国曼哈顿原子弹计划的主要科学家之一,匈牙利美藉数学家约翰·冯·诺伊曼(现代电子计算机创始人之一)在研究物质裂变时中子扩散的实验中采用了随机抽样统计的手法,因为当时随机数的想法来自掷色子及轮盘等赌博用具,因此他采用摩洛哥著名赌城蒙特卡罗来命名这种计算方法,为这种算法增加了一层神秘色彩。 蒙特卡罗方法提出的初衷是用于物理数值模拟问题, 后来随着计算机的快速发展, 这一方法很快在函数值极小化、计算几何、组合计数等方面得到应用, 于是它作为一种独立的方法被提出来, 并发展成为一门新兴的计算科学, 属于计算数学的一个分支。如今MC方法已是求解科学、工程和科学技术领域大量应用问题的常用数值方法。 2、蒙特卡洛方法的核心—随机数 蒙特卡洛方法的基本理论就是通过对大量的随机数样本进行统计分析,从而得到我们所需要的变量。因此蒙特卡洛方法的核心就是随机数,只有样本中的随机数具有随机性,所得到的变量值才具有可信性和科学性。

在连续型随机变量的分布中, 最基本的分布是[0, 1]区间上的均匀分布, 也称单位均匀分布。由该分布抽取的简单子样ξ1,ξ2ξ3……称为随机数序列, 其中每一个体称为随机数, 有时称为标准随机数或真随机数, 独立性和均匀性是其必备的两个特点。真随机数是数学上的抽象, 真随机数序列是不可预计的, 因而也不可能重复产生两个相同的真随机数序列。真随机数只能用某些随机物理过程来产生, 如放射性衰变、电子设备的热噪音、宇宙射线的触发时间等。 实际使用的随机数通常都是采用某些数学公式产生的,称为伪随机数。真随机数只是一种数学的理想化概念,实际中我们所接触到的和使用的都是伪随机数。要把伪随机数当成真随机数来使用, 必须要通过随机数的一系列的统计检验。 无论伪随机数用什么方法产生,它的局限性都在于这些随机数总是一个有限长的循环集合, 而且序列偏差的上确界达到最大值。所以若能产生低偏差的确定性序列是很有用的,产生的序列应该具有这样的性质, 即任意长的子序列都能均匀地填充函数空间。 人们已经产生了若干种满足这个要求的序列,如Halton序列、Faure序列、Sobol序列和Niederreiter序列等。称这些序列为拟随机数序列。伪随机序列是为了模拟随机性, 而拟随机序列更致力于均匀性。 3、蒙特卡洛方法的原理 当问题可以抽象为某个确定的数学问题时,应当首先建立一个恰当的概率模型,即确定某个随机事件A或随机变量X,使得待求的解等

大林算法实验报告(20200623034811)

大林算法实验报告 一、实验目的 1、 掌握大林控制算法的基本概念和实现方法; 2、 进一步熟悉MATLAB 的使用方法; 3、 掌握在MATLAB 下大林算法控制器的调试方法; 4、 观察振铃现象,并且尝试消除振铃现象 二、实验原理 1■大林算法的原理及推导 大林算法是IBM 公司的大林(Dahlin)在1968年提出了一种针对工业生产过程中含有纯 滞后对象的控制算法。其目标就是使整个闭环系统的传递函数 相当于一个带有纯滞后的一 阶惯性环节。该算法具有良好的控制效果。 大林控制算法的设计目标是使整个闭环系统所期望的传递函数 0 (s) 相当于一个延迟环节和一个惯性环节相串联,即 : 整个闭环系统的纯滞后时间和被控对象 G0(s)的纯滞后时间T 相同。 闭环系统的时间常数为 T T ,纯滞后时间T 与采样周期T 有整数倍关系, T =NT 。 其控制器形式的推导的思路是用近似方法得到系统的闭环脉冲传递函数,然后再由被 控系统的脉冲传递函数,反推系统控制器的脉冲传递函数。 由大林控制算法的设计目标,可知整个闭环系统的脉冲传递函数应 当是零阶保持器与理想的 0 (s)串联之后的Z 变换,即0 (z)如下: R(z) _ s Ts 1 1- e T z 对于被控对象为带有纯滞后的一阶惯性环节即: s NTs Ke G o (s)- 1 Tp Ke 1 「s 其与零阶保持器相串联的的脉冲传递函数为: (s)二 1 Ts 1 G (z)=z3 心 .s 1 + T 1S 」 K Z — NT T/T 1 1 _ e ; 1 ■ e z

于是相应的控制器形式为: (仁「厲)(仁/仁一1 ) K (I e TTl )1 - ―1 -(1 e TT )^N_1 2■振铃现象及其消除 按大林算法设计的控制器可能会出现一种振铃现象,即数字控制器 的输出以二分之一的采样频率大幅度衰减振荡,会造成执行机构的磨损。 在有交互作用的多参数控制系统中,振铃现象还有可能影响到系统的稳 定性。 衡量振铃现象的强烈程度的量是振铃幅度 RA (Ringing Amplitude)。 它的定义是:控制器在单位阶跃输入作用下,第零次输出幅度与第一次 输出幅度之差值。 当被控对象为纯滞后的一阶惯性环节时,数字控制器 D(z)为: D 注 ⑴e TT )(i -宀\ D(Z) T T 1 T T -1 T T N -1 K(1- e J 1- e "z - (1- e f)z ] 由此可以得到振铃幅度为: T/T T/T 1 T/T 1 -T/T RA= ( e ) -( e 1 p e - e 于是,如果选择 T T >T1,则RA W 0,无振铃现象;如果选择 T T < T1, 则有振铃现象。由此可见,当系统的时间常数 T T 大于或者等于被控对象的 时间常数T1时,即可消除振铃现象。 三、实验内容 已知某过程对象的传递函数为: 期望的闭环系统时间常数 T 0 = 0.25s ,采样周期 T =0.5s 。 要求: (1) 适用大林算法设计数字控制器; (2) 判断有无振铃现象,若有则修改控制器消除之,仿真并分析系统在单位阶跃响应下 的输出结果; (3) 利用PID 控制器控制该对象,使得系统在单位阶跃信号下的响应满足超调量不超过 20%,衰减比为4:1,调节时间不超过 4s ; ⑷分析以上两种方法的优缺点。 四、实验过程 G (s )二 3e -0.5s 0.6s 1

计算机算法设计与分析

算法设计与分析 实 验 报 告 班级: 姓名: 学号: (备注:共给出5个参考实验案例,根据学号尾数做对应的实验,即如尾号为1,则模仿案例实验123;尾号2,则模仿案例实验234;尾号3,即345;尾号4,同1.)

目录 实验一分治与递归 (1) 1、基本递归算法 (1) 2、棋盘覆盖问题 (2) 3、二分搜索 (3) 4、实验小结 (5) 实验二动态规划算法 (5) 1、最长公共子序列问题 (5) 2、最大子段和问题 (7) 3、实验小结 (8) 实验三贪心算法 (8) 1、多机调度问题 (8) 2、用贪心算法求解最小生成树 (10) 3、实验小结 (12) 实验四回溯算法和分支限界法 (12) 1、符号三角形问题 (12) 2、0—1背包问题 (14) 3、实验小结 (18) 实验五多种排序算法效率比较 1、算法:起泡排序、选择排序、插入排序、shell排序,归并排序、快速排序等 (19) 2、实验小结 (18)

P art1:课程设计过程 设计选题--→题目分析---→系统设计--→系统实现--→结果分析---→撰写报告 P art2:课程设计撰写的主要规范 1.题目分析:主要阐述学生对题目的分析结果,包括题目描述、 分析得出的有关模型、相关定义及假设; 2.总体设计:系统的基本组成部分,各部分所完成的功能及相互 关系; 3.数据结构设计:主要功能模块所需的数据结构,集中在逻辑设 计上; 4.算法设计:在数据结构基础上,完成算法设计; 5.物理实现:主要有数据结构的物理存储,算法的物理实现,系 统相关的实现。具体在重要结果的截图,测试案例的结果数据,核心算法的实现结果等; 6.结果分析:对第五步的分析,包括定性分析和定量分析,正确 性分析,功能结构分析,复杂性分析等; 7.结论:学生需对自己的课程设计进行总结,给出评价,并写出 设计体会; 8.附录:带有注释的源代码,系统使用说明等; 9.参考文献:列出在撰写过程中所需要用到的参考文献。

药物分析实验报告

实验四苯甲酸钠的含量测定 一、目的 掌握双相滴定法测定苯甲酸钠含量的原理和操作 二、操作 取本品1.5g,精密称定,置分液漏斗中,加水约25mL,乙醚50mL和甲基橙指示液2滴,用盐酸滴定液(0.5mol/L)滴定,随滴随振摇,至水层显持续橙红色,分取水层,置具塞锥形瓶中,乙醚层用水5mL洗涤,洗涤液并入锥形瓶中,加乙醚20mL,继续用盐酸滴定液(0.5mol/L)滴定,随滴随振摇,至水层显持续橙红色,即得,每1mL的盐酸滴定液(0.5mol/L)相当于72.06mg的C7H5O2Na。 本品按干燥品计算,含C7H5O2Na不得少于99.0% 三、说明 1.苯甲酸钠为有机酸的碱金属盐,显碱性,可用盐酸标准液滴定。 COO Na +H C l COOH +N aC l 在水溶液中滴定时,由于碱性较弱(Pk b=9.80)突跃不明显,故加入和水不相溶混的溶剂乙醚提除反应生成物苯甲酸,使反应定量完成,同时也避免了苯甲酸在瓶中析出影响终点的观察。 2.滴定时应充分振摇,使生成的苯甲酸转入乙醚层。 3.在振摇和分取水层时,应避免样品的损失,滴定前,使用乙醚检查分液漏斗是否严密。 四、思考题 1.乙醚为什么要分两次加入?第一次滴定至水层显持续橙红色时,是否已达终点?为什么? 2.分取水层后乙醚层用5mL水洗涤的目的是什么? 实验五阿司匹林片的分析 一、目的 1.掌握片剂分析的特点及赋形剂的干扰和排除方法。 2.掌握阿司匹林片鉴别、检查、含量测定的原理及方法。 二、操作 [鉴别] 1.取本品的细粉适量(约相当于阿司匹林0.1g),加水10mL煮沸,放冷,加三氯化铁试液1滴,即显紫堇色。 2.取本品的细粉(约相当于阿司匹林0.5g),加碳酸钠试液10mL,振摇后,放置5分钟,滤过,滤液煮沸2分钟,放冷,加过量的稀硫酸,即析出白色沉淀,并发生醋酸的臭气。 [检查] 游离水杨酸 取本品的细粉适量(约相当于阿司匹林0.1g),加无水氯仿3mL,不断搅拌2分钟,用无水氯仿湿润的滤纸滤过,滤渣用无水氯仿洗涤2次,每次1mL,合并滤液和洗液,在室温下通风挥发至干;残渣用无水乙醇4mL溶解后,移至100mL量瓶中,用少量5%乙醇洗涤容器、洗液并入量瓶中,加5%乙醇稀释至刻度,摇匀,分取50mL,立即加新制的稀硫酸铁铵溶液[取盐酸液(1mol/L)1mL,加硫酸铁铵指示液2mL后,再加水适量使成100mL] 1mL,摇匀;30秒钟内如显色,和对照液(精密称取水杨酸0.1g,置1000mL量瓶中,加冰醋酸1mL,

蒙特卡洛模拟方法作业及答案(附程序)

蒙特卡洛习题 1.利用蒙特卡洛计算数值积分 () ()() 1280ln 1tan x x x xe dx +++? clear all ;clc;close all ; n=1000; count=0; x=0:0.01:1; y=log((1+x).^2+(tan(x).^8)+x.*exp(x)); plot(x,y,'linewidth',2) hold on for i=1:n x1=rand; y1=rand*y(end); plot(x1,y1,'g*') pause(0.01) if y1

2.分别用理论计算和计算机模拟计算,求连续掷两颗骰子,点数之和大于6且第一次掷出的点数大于第二次掷出点数的概率。 clear all;clc;close all; count=0; n=100000; for i=1:n x=floor(rand*6+1); y=ceil(rand*6); if x+y>6&&x>y count=count+1; end end P=count/n 3.

clear all;clc;close all; count=0; n=2000; ezplot('x^2/9+y^2/36=1'); hold on ezplot('x^2/36+y^2=1'); hold on ezplot('(x-2)^2+(y+1)^2=9') for i=1:n x=rand*12-6; y=rand*12-6; plot(x,y,'gh','linewidth',2) pause(0.01) if x^2/9+y^2/36<1&&x^2/36+y^2<1&&(x-2)^2+(y+1)^2<9

蒙特卡罗也称统计模拟方法

蒙特卡罗也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·罗方法正是以概率为基础的方法。与它对应的是确定性算法。 蒙特卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 基本思想 当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。有一个例子可以使你比较直观地了解蒙特卡罗方法:假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。蒙特卡罗方法是怎么计算的呢?假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。当你的豆子越小,撒的越多的时候,结果就越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。 工作过程 在解决实际问题的时候应用蒙特卡罗方法主要有两部分工作: 用蒙特卡罗方法模拟某一过程时,需要产生各种概率分布的随机变量。 用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解。 计算步骤 使用蒙特卡罗方法进行分子模拟计算是按照以下步骤进行的: ① 使用随机数发生器产生一个随机的分子构型。 ②对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型。 ③计算新的分子构型的能量。 ④比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型。 若新的分子构型能量低于原分子构型的能量,则接受新的构型,使用这个构型重复再做下一次迭代。 若新的分子构型能量高于原分子构型的能量,则计算玻尔兹曼常数,同时产生一个随机数。

《算法分析与设计》实验指导书

《计算机算法设计与分析》实验指导书(第一版)

前言 计算机算法分析与设计是面向设计的,它是计算机科学的核心。无论是计算机系统、系统软件和解决计算机的各种应用问题都可归结为算法的设计。通过本课程的学习,使学生掌握计算机领域中许多常用的非数值的算法描述:分治法、贪心法、动态规划、回溯法、分枝限界等算法,并掌握算法分析的方法,从而把学生的分析问题和解决问题能力提高到理论的高度。 前期课程为程序设计语言、数据结构、高等数学,即学生应该具备一门高级语言程序设计编程基础,学习基本的数据结构知识,还要求学生掌握较好的数学基础。 开发环境不限,本书采用C/C++语言的集成开发环境等。 实验完成后书写实验报告,包含实验问题、基本思想、关键算法流程图、测试数据及运行结果(截图)、调试心得和源程序。 总实验学时为16学时。

目录 预备实验验证算法的方法 (4) 实验目的: (4) 实验课时: (4) 实验原理: (4) 实验题目: (6) 基本题: (6) 提高题: (6) 实验一递归与分治 (7) 实验目的: (7) 实验课时: (7) 实验原理: (7) 实验题目: (7) 基本题: (7) 提高题: (8) 思考问题: (8) 实验二动态规划算法 (9) 实验目的: (9) 实验课时: (9) 实验原理: (9) 实验题目: (9) 基本题: (9) 提高题: (10) 思考问题: (10) 实验三贪心选择算法 (11) 实验目的: (11) 实验课时: (11) 实验原理: (11) 实验题目: (11) 基本题: (11) 提高题: (12) 思考问题: (12) 实验四回溯算法 (13) 实验目的: (13) 实验课时: (13) 实验原理: (13) 实验题目: (14) 基本题: (14) 提高题: (14) 思考问题: (14)

南京大学-X射线荧光光谱分析实验报告

X 荧光分析 一.实验目的 1.了解能量色散X 荧光分析的原理、仪器构成和基本测量、分析方法。 2.验证莫塞莱定律,并从实验推出屏蔽常数。 3.研究对多道分析器的定标,以及利用X 荧光分析测量位未知样品成分及相对含量的方法。 二.实验原理 以一定能量的光子、电子、原子、α粒子或其它离子轰击样品,将物质原子中的内壳层电子击出,产生电子空位,原子处于激发态。外壳层电子向内壳层跃迁,填补内壳层电子空位,同时释放出跃迁能量,原子回到基态。跃迁能量以特征X 射线形式释放,或能量转移给另一个轨道电子,使该电子发射出来,即俄歇电子发射。测出特征X 射线能谱,即可确定所测样品中元素种类和含量。 特征曲线X 射线根据跃迁后电子所处能级可以分为,,K L M 系等;根据电子跃迁前所在能级又可分为βαγβαL L K K K ,,,,等不同谱线。特征X 谱线的的能量为两壳层电子结合能之差。因此,所有元素的,K L 系特征X 射线能量在几千电子伏到几十千电子伏之间。X 荧光分析中激发X 射线的方式一般有三种: (1)用质子、α粒子等离子激发

(2)用电子激发; (3)用X射线或低能γ射线激发。我们实验室采用X射线激发(XIX技术),用放射性同位素作为激发源的X光管。 XIX技术中,入射光子除与样品中原子发生光电作用产生内壳层空位外,还可以发生相干散射和非相干散射(康普顿散射),这些散射光子进入探测器,形成XIX分析中的散射本底。另外,样品中激发出的光电子又会产生轫致辐射,但这产生的本底比散射光子本底小得多,且能量也较低,一般在3keV以下。所以XIX能谱特征是:特征X射线峰叠加在散射光子峰之间的平坦的连续本底谱上。如图1能谱示意图所示。 图一:能谱示意图 测量特征X射线常用() Si Li探测器,它的能量分辨率高,适用于多元素同时分析,也可选用() Ge Li或高纯Ge探测器,但均价格昂贵。 在X荧光分析中,对于轻元素(一般指45 Z<的元素)通常测其KX射线,对于重元素(45 Z>的元素),因其KX射线能量较高且比LX射线强度弱,

大林算法实验报告

大林算法实验报告 一、实验目的 1、掌握大林控制算法的基本概念和实现方法; 2、进一步熟悉MATLAB 的使用方法; 3、掌握在MA TLAB 下大林算法控制器的调试方法; 4、观察振铃现象,并且尝试消除振铃现象 二、实验原理 1.大林算法的原理及推导 大林算法是IBM 公司的大林(Dahlin)在1968年提出了一种针对工业生产过程中含有纯滞后对象的控制算法。其目标就是使整个闭环系统的传递函数 相当于一个带有纯滞后的一阶惯性环节。该算法具有良好的控制效果。 大林控制算法的设计目标是使整个闭环系统所期望的传递函数φ(s ) 相当于一个延迟环节和一个惯性环节相串联,即: 整个闭环系统的纯滞后时间和被控对象G 0(s )的纯滞后时间τ相同。 闭环系统的时间常数为T τ ,纯滞后时间τ与采样周期T 有整数倍关系, τ=NT 。 其控制器形式的推导的思路是用近似方法得到系统的闭环脉冲传递函数,然后再由被控系统的脉冲传递函数,反推系统控制器的脉冲传递函数。 由大林控制算法的设计目标,可知整个闭环系统的脉冲传递函数应 当是零阶保持器与理想的φ(s )串联之后的Z 变换,即φ(z )如下: 对于被控对象为带有纯滞后的一阶惯性环节即: 其与零阶保持器相串联的的脉冲传递函数为: 1 ()1 s s e T s ττ φ-=+1/1() 1(1)()=()11T s ττ T/T s N T T -Y z e e e z z Z z R z s T s e z ττ φ------??--==?=? ? ?+-?? 011()11s NTs Ke Ke G s T s T s τ--== ++11/1/1111()11T T Ts s N T T e Ke e G z Z Kz s T s e z τ-------??--=?=? ?+-??

算法分析与设计实验报告

实验一、归并排序及各种排序算法性能比较 一、实验实习目的及要求 了解归并排序等各种排序算法,并能独立在计算机上实现,同时并能够计算它们的时间复杂度,并用计算机来验证。 二、实验实习设备(环境)及要求(软硬件条件) 计算机eclipse软件,执行环境JavaSE-1.8. 三、实验实习项目、内容与步骤(注意是主要关键步骤,适当文字+代码+截图说明) 项目:对10 4 6 3 8 2 5 7进行从小到大排序,采用几种排序方法,并统计这几种方法的运行时间,与归并排序比较。 内容及步骤: (1)归并排序:将序列每次分成两组,再进行合并,直到递归完成; 1、递归调用mergeSort对数组排序 2、merge将两个有序数组合并为一个有序数组

3、主函数调用mergeSort对数组排序 4、统计时间 (2) 选择排序:每次选择一个当前最小的并和当前的相对的第一个元素交换,直到最后 只有一个元素时结束;也可选择当前最大的并与当前的相对的最后一个 元素交换,直到最后只有一个元素时结束。

1、数组长度为n,需要选择n-1次;每次选择完成后,将数组中的最大值与最后一 个元素互换,调用java.util包中Arrays类。 2、主函数调用ChooseSort对数组排序。 3、统计运行时间。 (3)插入排序:从第二个元素开始,每次插入一个到当前有序序列中,使得有序,当 所有的元素插入完毕时,就排好序了; 1、从第二个元素开始,与之前序列比较,插入到合适的位置。

2、主函数调用sort对数组排序。 3、统计运行时间 (4) 快速排序:每次选择一个中间元素,并进行交换,使得中间元素的左边比它小,右 边比它大,然后对左右两边进行递归; 1、选取一个基准位,从右边向左边看,找比基准位小的元素,再从左边向右边看, 找比基准位大的元素,若两者均存在则交换;若两者相遇,则相遇元素与基准位元素交换,然后递归排序左右半数组。

分子荧光光谱法实验报告范文

分子荧光光谱法实验报告范文 一、实验目的 1.掌握荧光光度计的基本原理及使用。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.掌握分子荧光光度计分析物质的特征荧光光谱:激发光谱、发射光谱的测定方法。 4.了解影响荧光产生的几个主要因素。 5.学会运用分子荧光光谱法对物质进行定性和定量分析。 二、实验原理 原子外层电子吸收光子后,由基态跃迁到激发态,再回到较低能级或者基态时,发射出一定波长的辐射,称为原子荧光。对于分子的能级激发态称为分子荧光,平时所说的荧光指分子荧光。 具有不饱和基团的基态分子经光照射后,价电子跃迁产生荧光,是当电子从第一激发单重态S1的最低振动能级回到基态S0各振动能级所产生的光辐射。 (1)激发光谱 是指发光的某一谱线或谱带的强度随激发光波长(或频率)变化的曲线。横坐标为激发光波长,纵坐标为发光相对强度。 激发光谱反映不同波长的光激发材料产生发光的效果。即表示发光的某一谱线或谱带可以被什么波长的光激发、激发的本领是高还是低;也表示用不同波长的光激发材料时,

使材料发出某一波长光的效率。荧光为光致发光,合适的激发光波长需根据激发光谱确定——激发光谱是在固定荧光波长下,测量荧光体的荧光强度随激发波长变化的光谱。获得方法:先把第二单色器的波长固定,使测定的λem不变,改变第一单色器波长,让不同波长的光照在荧光物质上,测定它的荧光强度,以I为纵坐标,λex为横坐标所得图谱即荧光物质的激发光谱,从曲线上找出λex,,实际上选波长较长的高波长峰。 (2)发射光谱 是指发光的能量按波长或频率的分布。通常实验测量的是发光的相对能量。发射光谱中,横坐标为波长(或频率),纵坐标为发光相对强度。 发射光谱常分为带谱和线谱,有时也会出现既有带谱、又有线谱的情况。发射光谱的获得方法:先把第一单色器的波长固定,使激发的λex不变,改变第二单色器波长,让不同波长的光扫描,测定它的发光强度,以I为纵坐标,λem为横坐标得图谱即荧光物质的发射光谱;从曲线上找出最大的λem。 (3)荧光强度与荧光物质浓度的关系 用强度为I0的入射光,照射到液池内的荧光物质时,产生荧光,荧光强度If用仪器测得,在荧光浓度很稀(A0.05)时,荧光物质发射的荧光强度If与浓度有下面的关系:If=KC。 三、实验试剂和仪器

算法分析与设计 实验二 哈夫曼编码

昆明理工大学信息工程与自动化学院学生实验报告 (201 —201 学年第一学期) 课程名称:算法设计与分析开课实验室:年月日 一、上机目的及内容 1.上机内容 设需要编码的字符集为{d1, d2, …, dn},它们出现的频率为{w1, w2, …, wn},应用哈夫曼树构造最短的不等长编码方案。 2.上机目的 (1)了解前缀编码的概念,理解数据压缩的基本方法; (2)掌握最优子结构性质的证明方法; (3)掌握贪心法的设计思想并能熟练运用。 二、实验原理及基本技术路线图(方框原理图或程序流程图) (1)证明哈夫曼树满足最优子结构性质; (2)设计贪心算法求解哈夫曼编码方案; (3)设计测试数据,写出程序文档。 数据结构与算法: typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码 typedef struct { unsigned int weight; //用来存放各个结点的权值 unsigned int parent,LChild,RChild; //指向双亲、孩子结点的指针 } HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树

程序流程图:

三、所用仪器、材料(设备名称、型号、规格等或使用软件) 1台PC及VISUAL C++6.0软件 四、实验方法、步骤(或:程序代码或操作过程) 程序代码: #include #include #include typedef struct { unsigned int weight; unsigned int parent,LChild,RChild; } HTNode, *HuffmanTree; //动态分配数组,存储哈夫曼树 typedef char *HuffmanCode; //动态分配数组,存储哈夫曼编码 void Select(HuffmanTree *ht,int n,int *s1,int *s2) { int i,min; for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { min=i; break; } } for(i=1; i<=n; i++) { if((*ht)[i].parent==0) { if((*ht)[i].weight<(*ht)[min].weight) min=i; } } *s1=min; for(i=1; i<=n; i++) { if((*ht)[i].parent==0 && i!=(*s1)) { min=i; break; }

分子荧光光谱实验报告doc

分子荧光光谱实验报告 篇一:分子荧光光谱实验报告 分子荧光光谱实验报告 一、实验目的: 1.掌握荧光光度法的基本原理及激发光谱、发射光谱的测定方法;学会运用分子荧光光谱法对物质进行定性分析。 2.了解荧光分光光度计的构造和各组成部分的作用。 3.了解影响荧光产生的几个主要因素。二、实验内容:测定荧光黄/水体系的激发光谱和发射光谱; 首先根据已知的激发波长(如果未知,则用紫外分光光度计进行测量,以最大吸收波长为激发波长)测定发射光谱,得到最大发射波长;然后根据最大发射波长测定激发光谱,得到最大激发波长;然后在根据最大激发波长测定测定发射光谱; 根据所得数据,用origin软件做出光谱图。三、实验原理: 某些物质吸收光子后,外层电子从基态跃迁至激发态,然后经辐射跃迁的方式返回基态,发射出一定波长的光辐射,此即光致发光。光致发光现象分荧光、磷光两种,分别对应单重激发态、三重激发态的辐射跃迁过程。本实验为荧光光谱的测定。

激发光谱:在发射波长一定的条件下,被测物吸收的荧光强度随激发波长的变化图。 发射光谱:在激发波长一定的条件下,被测物发射的荧光强度随发射波长的变化图。 各种物质均有其特征的最大激发波长和最大发射波长,因此,根据最大激发波长和最大发射波长,可以对某种物质进行定性的测定。 四、荧光光谱仪的基本机构 五、实验结果与讨论: XX00 S1 / R1 (CPS / MicroAmps) 150000 100000 50000 0Wavelength (nm) 400000 S1 / R1 (CPS / MicroAmps) 300000 XX00 100000 Wavelength (nm)

大林算法实验报告

实验4 大林算法工业设计和调试 实验目的: 1.认识和理解大林控制算法控制大时延系统的机理和效果。 2掌握实际控制系统的大林控制算法的设计、实现和调试方法及技术。实验内容: 1.测试系统开环阶跃响应求得被控对象的近似传递函数。 2.对被控对象近似传递函数进行等效离散化。 3.基于被控对象等效离散化模型设计大林控制算法,编写出实现程 序,将其嵌入到实验软件中。 4.将设计的大林算法投入运行,并经过调试获得预期控制性能。 5.记下大林控制算法的控制效果。 实验原理及说明: 大林算法是针对工业生产过程中含有纯滞后的被控对象所研究的控制算法,即在调节时间允许的情况下,要求系统没有超调量或只有在允许范围中的很小的超调量。大林算法的设计目标是设计一个数字调节器,使整个闭环系统所期望的传递函数相当于一个延迟环节和一个惯性环节的串联,并期望整个闭环系统的纯滞后时间和被控对象的滞后时间相同,并且,纯滞后时间与采样周期是整数倍关系。 实验中采样周期为1秒,k=0.15,t=22秒,t1=55秒。

.大林算法中涉及的被调对象的参数: 对象是一阶惯性滞后环节, <1>对象的放大倍数Kp:Kp=△PV/△OP 阶跃比,这是开环的静态参数,与PID的放大倍数K不是一回事;

<2>对象的时间常数T:干扰阶跃引起PV变化,从变化起到稳定值约2/3处的时间值,不包括滞后时间; <3>滞后时间T2:干扰阶跃开始到PV开始变化这一段滞后时间,包括:纯滞后时间及容量过渡滞后时间; 2. 整个系统的闭环传递函数相当于是一阶惯性环节, 这是大林算法的期望环节: <1> 输入R(t)是回路的设定值SP;输出Y(t)是回路的PV值; <2> 此一阶惯性环节的放大倍数为1,即稳定时PV=SP; 最终偏差接近零; <3>此期望环节的纯滞后时间应等于被调节对象的纯滞后时间; <4>此期望环节的闭环时间常数:这是待定的期望参数,为不引起回路的小幅振荡,这个时间值应选用大于等于被调对象的时间常数, 3. 这些参数如果不精确,将引起大林算法的不稳定性,导致调节质量变坏;

相关文档
最新文档