全等三角形轴对称勾股定理中难度题型荟萃.doc

合集下载

专题04 勾股定理压轴题型汇总(解析版)

专题04 勾股定理压轴题型汇总(解析版)

专题04 勾股定理压轴题型汇总一、单选题1.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=4,BF=2,△ADG的面积为52,则点F到BC的距离为()A.55B.255C.455D.433【答案】B【分析】首先求出ABD的面积.根据三角形的面积公式求出DF,设点F到BD的距离为h,根据12•BD•h=12•BF•DF,求出BD即可解决问题.【详解】解:∵DG=GE,∵S∵ADG=S∵AEG=52,∵S∵ADE=5,由翻折可知,ADB∵ADE,BE∵AD,∵S∵ABD=S∵ADE=5,∵BFD=90°,∵12•(AF+DF)•BF=5,∵12•(4+DF)•2=5,∵DF=1,∵DB=22BF DF+=2212+=5,设点F到BD的距离为h,压轴题型汇总1则12•BD•h=12•BF•DF,即:1121 22=⨯⨯,∵h,故选:B.【点睛】本题考查翻折变换,三角形的面积,勾股定理二次根式的运算等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题.2.七巧板是我国祖先的一项卓越创造,下列四幅图是爱思考的小红同学用如图所示的七巧板拼成的,则这四个图形的周长从大到小排列正确的是()A.乙>丙>甲>丁B.乙>甲>丙>丁C.丙>乙>甲>丁D.丙>乙>丁>甲【答案】A【分析】设最小的直角三角形的直角边长为1,根据勾股定理,分别表示出七块七巧板各边的长度,计算每个图形中重合的线段和,和越大,周长越小.【详解】解:设七巧板中最小的边长为1根据勾股定理,可以得出其余的边长分别为2,分别求出各图中重合的线段的长度和,和越大,则周长越小;甲图中重叠的线段和为:;乙图中重叠的线段和为:;丙图中重叠的线段和为;丁图中重叠的线段和为:;∵6755++++∵乙>丙>甲>丁故选:A.【点睛】本题考查了勾股定理,不规则图形的周长,解题关键是明确总周长一定,重叠的线段和越大,则周长越小.3.如图,在ABC 中,点D 是边AB 上的中点,连接CD ,将BCD △沿着CD 翻折,得到ECD ,CE 与AB 交于点F ,连接AE .若6,42AB CD AE ===,,则点C 到AB 的距离为( )A .72B .C .3D .【答案】C【分析】连接BE ,延长CD 交BE 于G 点,过C 作CH ∵AB 于H ,由折叠的性质及中点性质,可得∵AEB 是直角三角形,且G 点是BE 的中点,从而CG ∵BE ,由勾股定理可求得BE 的长,则根据∵ABC 的面积相等一方面可表示为12AB CH ,另一方面其面积为∵BCD 与∵ACD 面积的和,从而可求得CH 的长.【详解】连接BE ,延长CD 交BE 于G 点,过C 作CH ∵AB 于H ,如图所示由折叠的性质,得:BD =ED ,CB =CE∵CG 是线段BE 的垂直平分线∵BG =12BE∵D 点是AB 的中点∵BD =AD ,BCD ACD SS =∵AD =ED∵∵DAE =∵DEA∵BD =ED∵ ∵DEB =∵DBE∵∵DAE +∵BEA +∵DBE =180°即∵DAE +∵DEA +∵DEB +∵DBE =180°∵2∵DEA +2∵DEB =180°∵∵DEA +∵DEB =90°即∵AEB =90°在Rt ∵AEB 中,由勾股定理得: BE∵BG =∵BCD ACD ABC S S S += ∵11222CD BG AB CH ⨯=∵224CD BG CH AB ⨯===故选:C .【点睛】本题考查了直角三角形的判定、勾股定理、线段垂直平分线的判定,利用面积相等求线段的长,关键是得出CG ∵BE ,从而可求得∵BCD 的面积也即∵ABC 的面积.4.如图,在Rt ABC 中,90ACB ∠=︒,分别以AB ,AC ,BC 为斜边作三个等腰直角ABD △,ACE ,BCF △,图中阴影部分的面积分别记为1S ,2S ,3S ,4S ,若已知Rt ABC 的面积,则下列代数式中,一定能求出确切值的代数式是( )A .4SB .143S S S +-C .234S S S ++D .123S S S +-【答案】A【分析】设AC =m ,BC =n ,ABC 的面积为S ,用含有m ,n 的代数式分别表示相关线段,继而表示相应的面积,确定面积与m ,n ,S 之间的关系,从而作出判断.【详解】设AC =m ,BC =n ,ABC 的面积为S ,∵Rt ABC 中,90ACB ∠=︒,分别以AB ,AC ,BC 为斜边作三个等腰直角ABD △,ACE ,BCF △,∵S =1mn 2,AB ,∵AE =EC ,BF =CF ,AD =BD在直角三角形AED 中,ED ,∵DC =EC -ED )m n -,∵4S =11111AE ED=22222mn S •=⨯=, 故4S 的值可以确定,∵A 选项符合题意;设AC ,BD 的交点为G ,则3S +ADG S =1122)S CD AE m n =•=-△ADC =24()1m mn -, 1S +ADG S =222241S AD m n +==△ADB , ∵143S S S +-=224m n ++12S -24()1m mn -=2+4n S ,与n 有关系,故代数式的值不能确定,∵B 选项不符合题意;∵3S +ADG S =24()1m mn -,1S +ADG S =224m n +,∵13S S -=21+42n S , ∵234S S S ++=212BF +12S +1S -21-42n S =24n +12S +1S -21-42n S =1S ,无法确定, ∵C 选项不符合题意;∵123S S S +-=21+42n S +24n =21+22n S ,与n 有关, ∵D 选项不符合题意;故选A .【点睛】本题考查了直角三角形的性质,等腰直角三角形的性质,勾股定理,图形面积的割补,灵活运用性质和勾股定理计算阴影的面积是解题的关键.5.已知a 、b 为两正数,且12a b += ) A .12B .13C .14D .15【答案】B【分析】如图所示,构造Rt∵BEA 和Rt∵AFC 使得 BE =a ,EA =2,AF =3,FC =b ,然后根据勾股定理构可得ABAC 当A ,B ,C 三点共线时有最小值,在根据勾股定理计算即可.【详解】解:如图所示,构造Rt∵BEA 和Rt∵AFC 使得 BE =a ,EA =2,AF =3,FC =b ,根据勾股定理可得:AB AC所以:AB AC BC +≥,∵当A ,B ,C 三点共线时+AB AC 有最小值,即BC ,在Rt∵BDC 中13BC ==.故选:B【点睛】本题主要考查勾股定理,能够根据二次根式的特点,数形结合,构造出直角三角形表示所求式子是解题的关键.6.如图,在Rt ABC △中,90,30,ACB ABC CD ︒∠︒=∠=平分ACB ∠.边AB 的垂直平分线DE 分别交,CD AB 于点,D E .以下说法错误的是( )A .60BAC ∠=︒B .2CD BE =C .DE AC =D 12BC AB =+ 【答案】B【分析】 利用直角三角形的性质、三角形内角和定理、勾股定理、全等三角形的判定与性质等知识对各选项的说法分别进行论证,即可得出结论.【详解】解:如图,连接BD 、AD ,过点D 作DM∵BC 于M ,DN∵CA 的延长线于N ,A 、在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,∵60BAC ∠=︒.故此选项说法正确;B 、∵DM∵BC ,DN∵CA∵∵DNC =∵DMC =90°,∵CD 平分∵ACB ,∵∵DCN =∵DCM =45°.∵∵DCN =∵CDN =45°.∵CN=DN .则∵CDN 是等腰直角三角形.同理可证:∵CDM 也是等腰直角三角形,=.,∵DM=DN= CM=CN ,∵MDN =90°.∵DE 垂直平分AB ,∵BD=AD ,AB=2BE .∵Rt∵BDM∵∵ADN ,∵∵BDM=∵AND .∵∵BDM+∵ADM =∵AND+∵ADM =∵MDN .∵∵ADB=90°.=.即.∵在Rt∵AND 中,AD 是斜边,DN 是直角边,∵AD >DN .∵2BE >CD .故此选项说法错误.C 、∵BD=AD ,∵ADB=90°,∵∵ABD 是等腰直角三角形. ∵DE=12AB .在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒, ∵AC=12AB .∵DE=AC .故此选项说法正确.D 、∵Rt∵BDM∵∵ADN ,∵BM=AN .∵CN=AC+AN=AC+BM=CM .∵BC=BM+CM=AC+2BM .,. ∵AC=12AB ,12AB+BC .故此选项说法正确.故选:B .【点睛】本题属于三角形综合题,考查了直角三角形的性质,全等三角形的判定与性质,勾股定理等知识,难度较大,准确作出辅助线并灵活运用所学知识是解题的关键.7.如图,直角三角形纸片ABC 中,6AB =,8AC =,D 为斜边BC 中点,第1次将纸片折叠,使点A 与点D 重合,折痕与AD 交于点1P ;设1P D 的中点为1D ,第2次将纸片折叠,使点A 与点1D 重合,折痕与AD 交于点2P ;设21P D 的中点为2D ,第3次将纸片折叠,使点A与点2D重合,折痕与AD交于点3P,则3AP的长为()A.46325⨯B.36352⨯C.35325⨯D.23352⨯【答案】D 【分析】先求出AD的长,再由折叠的性质可得AP1=23AD1,AP2=23AD2,AP3=23AD3,计算出AD3的长度,可得AP3的长.【详解】解:∵∵BAC=90°,AB=6,AC=8,,∵D为斜边BC中点,∵AD=12BC=5,由折叠可知:AD1=34AD,AP1=12AD,∵AP1=23AD1,AD2=34AD1=916AD,AP2=12AD1=38AD,∵AP2=23AD2,可知:AP3=23AD3,AD1=34AD=354⨯,AD2=34AD1=916AD=24352⨯,∵AD3=34AD2=2433542⨯⨯=36352⨯,∵AP 3=23AD 3=25352⨯, 故选D .【点睛】本题主要考查了翻折变换的性质、勾股定理、直角三角形的性质等几何知识点及其应用问题;灵活运用翻折变换的性质,正确找出命题中隐含的数量关系是关键;对运算求解能力提出了较高的要求.8.如图,等边ABC 的边长为8.P ,Q 分别是边,AC BC 上的点,连结,AQ BP ,交于点O .以下结论:①若AP CQ =,则BAP ACQ ≌;②若AQ BP =,则120AOB ∠=︒;③若,7AP CQ BP ==,则5PC =;④若点P 和点Q 分别从点A 和点B 同时出发,以相同的速度向点C 运动(到达点C 就停止),则点O经过的路径长为 )A .①②③B .①④C .①②D .①③④【答案】B【分析】 第①个选项直接找到对应的条件,利用SAS 证明全等即可;第②③结论都有两种情况,准确画出图之后再来计算和判断;第四个结论要先判断判断轨迹(通过对称性)在来计算路径长.【详解】①在三角形∵BAP 和∵ACQ 中:AP CQ BAC C AB AC =⎧⎪∠=∠⎨⎪=⎩则∵BAP∵∵ACQ (SAS) ;①正确;②如图1,题中AQ=BP,存在两种情况:在1P的位置,∵AOB=120°,在2P的位置,∵AOB的大小无法确定;②错误;③本问与AP=CQ这个条件无关,如图,P还是会有两个位置即:1P、2P,当在1P时,作BE∵AC于E点,则E为AC中点,∵AB=8,AE=12AC,∵BE=,又BP=7,∵1PE==,∵CP=CE+PE=5,当在2P时,同理解∵BCP,得CP= CE-PE=3;故③错;④由题可得:AP=BQ,由对称性可得O的运动轨迹为∵ABC中AB边上的中垂线则∵AB=8,∵BC=AB=8,则AB=∵运动轨迹路径长为④正确;∵正确的为①④;故选:B .【点睛】此题考查了三角形全等,利用等边三角形的性质找出相应的全等条件是关键,还考查了等边三角形是周对称图形这一性质.9.图中不能证明勾股定理的是( )A .B .C .D .【答案】A【分析】根据各个图象,利用面积的不同表示方法,列式证明结论222+=a b c ,找出不能证明的那个选项.【详解】解:A 选项不能证明勾股定理;B 选项,通过大正方形面积的不同表示方法,可以列式()22142a b ab c +=⨯+,可得222+=a b c ; C 选项,通过梯形的面积的不同表示方法,可以列式()22112222a b ab c +=⨯+,可得222+=a b c ; D 选项,通过这个不规则图象的面积的不同表示方法,可以列式222112222c ab a b ab +⨯=++⨯,可得222+=a b c . 故选:A .【点睛】本题考查勾股定理的证明,解题的关键是掌握勾股定理的证明方法.10.如图,在△ABC 和△ADE 中,△BAC =△DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接B ,D 和B ,E .下列四个结论:①BD =CE ,②BD △CE ,③△ACE +△DBC=30°,④()2222BE AD AB =+. 其中,正确的个数是( )A .1B .2C .3D .4【答案】B【分析】①由AB=AC ,AD=AE ,利用等式的性质得到夹角相等,利用SAS 得出三角形ABD 与三角形ACE 全等,由全等三角形的对应边相等得到BD=CE ;②由三角形ABD 与三角形ACE 全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD 垂直于CE ;③由等腰直角三角形的性质得到∵ABD+∵DBC=45°,等量代换得到∵ACE+∵DBC=45°; ④由BD 垂直于CE ,在直角三角形BDE 中,利用勾股定理列出关系式,等量代换即可作出判断.【详解】解:如图,① ∵∵BAC=∵DAE=90°,∵∵BAC+∵CAD=∵DAE+∵CAD ,即∵BAD=∵CAE ,∵在∵BAD 和∵CAE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩===∵∵BAD∵∵CAE (SAS ),∵BD=CE ,故①正确;②∵∵BAD∵∵CAE ,∵∵ABD=∵ACE ,∵∵ABD+∵DBC=45°,∵∵ACE+∵DBC=45°,∵∵DBC+∵DCB=∵DBC+∵ACE+∵ACB=45°+45°=90°,∵∵BDC=90°,∵BD∵CE ,故②正确;③∵∵ABC 为等腰直角三角形,∵∵ABC=∵ACB=45°,∵∵ABD+∵DBC=45°,∵∵ABD=∵ACE∵∵ACE+∵DBC=45°,故③错误;④∵BD∵CE ,∵在Rt∵BDE 中,利用勾股定理得BE 2=BD 2+DE 2,∵∵ADE 为等腰直角三角形,∵AE=AD ,∵DE 2=2AD 2,∵BE 2=BD 2+DE 2=BD 2+2AD 2,在Rt∵BDC 中,BD BC <,而BC 2=2AB 2,∵BD 2<2AB 2,∵()2222BE AD AB <+故④错误,综上,正确的个数为2个.故选:B .【点睛】此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.二、填空题11.如图,△ABC 中,AB =BC ,AD △BC 垂足为D ,BE =AC ,△EAC =3△C ,BD =7,AC ﹣2AE =8,则AE 的长为 __.【答案】11【分析】在BC 上截取CM =AE ,连接AM ,通过论证∵AFB ∵∵BDA 和Rt∵EFB ∵Rt∵EFB ,为证明∵AEM ∵∵MCA 作准备条件,设MC =AE =x ,用含x 的代数式表示AB ,AC ,进而使用勾股定理建立方程,求解AE 的长.【详解】解:过点B 作BF ∵EA 于点F ,∵∵FAO +∵AOF =∵OBD +∵BOD =90°,∵∵AOF =∵BOD ,∵∵FAO =∵OBD∵∵EAC =3∵C ,∵AB =BC ,∵∵BAC =∵C∵∵EAB =2∵C∵∵BAD +∵FAO =180°﹣2∵C∵∵ABC =180°﹣2∵C =∵ABF +∵OBD ,∵∵ABF +∵OBD =∵BAD +∵FAO∵∵ABF =∵BAD∵AD ∵BC ,∵∵F =∵ADB =90°在∵BFA 和∵ADB 中,F ADB ABF BAD AB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∵∵AFB ∵∵BDA (AAS )∵BF =AD在Rt∵EFB 和Rt∵CDA 中,EB AC BF AD =⎧⎨=⎩∵Rt∵EFB ∵Rt∵CDA (HL ).在BC 上截取CM =AE ,连接AM .在∵AEB 和∵MCA 中,AE MC E C BE AC =⎧⎪∠=∠⎨⎪=⎩.∵∵AEB ∵∵MCA (SAS ).∵AB =AM .∵AD ∵BC ,∵AD 垂直平分BM .∵BD =DM =7.设AE =MC =x ,∵AC =8+2x ,DC =7+x ,AB =14+x .在∵ABD 和∵ADC 中,据勾股定理得,AB 2﹣BD 2=AC 2﹣DC 2=AD 2,即(14+x )2﹣72=(8+2x )2﹣(7+x )2.化简得x 2﹣5x ﹣66=0,解得x 1=11,x 2=﹣6(舍去),∵AE 的长为11.故答案为:11.【点睛】本题考查全等三角形的判定与性质、勾股定理等知识,是重要考点,掌握相关知识是解题关键.12.如图,在ABC ∆中,90ACB ∠=︒,点D 、E 分别在AC 、BC 上,且AD BE =,连接DE ,若四边形BADE 的面积是5,6AB =,则DE 的长为________.【答案】4【分析】作DF AB ⊥交AB 于F ,EH AB ⊥交 AB 于H ,DG EH ⊥交EH 于G ,可得四边形 DFHG 为矩形,设EH a =,DF b =,则有EG EH DF a b =-=-,容易证得 ()AFD EHB AAS ≅,可得6DG a b =--,根据5BADE S =四边形,得到 5ADE DFHE EHB S S S ++=梯形,即有()()11165222ab a b a b ab ++--+=,化简得 ()22610a b a b +=+-,根据DE【详解】解:如图示,作DF AB ⊥交AB 于F ,EH AB ⊥交 AB 于H ,DG EH ⊥交EH 于G ,∵四边形DFHG 为矩形,∵DF GH =,DG FH =,设EH a =,DF b =,∵EG EH DF a b =-=-,在ABC 中,90ACB ∠=︒∵90A B ∠+∠=︒,在ADF 中,90AFD ∠=︒∵90A ADF ∠+∠=︒,∵B ADF ∠=∠又∵AD BE =,90AFD EHB ∠=∠=︒∵()AFD EHB AAS ≅∵AF EH a ==,DF BH b ==∵6FH AB AF BH a b =--=--∵6DG FH a b ==--∵5BADE S =四边形,∵5ADE DFHE EHB S S S++=梯形 即:()()11165222ab a b a b ab ++--+=∵()22610a b a b +=+- Rt DGE 中,DE =4= 故答案是:4.【点睛】本题主要考查了全等三角形的判定和性质,勾股定理的应用,熟悉相关性质是解题的关键.13.如图,在Rt ABC △中,AB AC =,90BAC ∠=︒,D 、E 为BC 上两点,45DAE ∠=︒,F为ABC 外一点,且FB BC ⊥,FA AE ⊥,则下列结论:①CE BF =;②222BD CE DE +=;③14ADE EF S AD ⋅=;④2223CE BE AE +=,其中正确的是(写代号)________.【答案】①②③【分析】根据等腰直角三角形的性质,判断出∵AFB ∵∵AEC ,即可得出CE =BF ,根据勾股定理与等量代换可得②正确,根据在等腰三角形中,角平分线与中线为一条直线即可得出③,再根据勾股定理以及等量代换即可得出④.【详解】解:①∵∵BAC =90°,FA ∵AE ,∵DAE =45°,∵∵CAE =90°-∵DAE -∵BAD =45°-∵BAD ,∵FAB =90°-∵DAE -∵BAD =45°-∵BAD ,∵∵FAB =∵EAC ,∵AB =AC ,∵BAC =90°,∵∵ABC =∵ACB =45°,∵FB ∵BC ,∵∵FBA =45°,∵∵AFB ∵∵AEC ,∵CE =BF ,故①正确,②:由①中证明∵AFB ∵∵AEC ,∵AF =AE ,∵∵DAE =45°,FA ∵AE ,∵∵FAD =∵DAE =45°,∵∵AFD ∵∵AED ,连接FD ,∵FB =CE ,∵CE 2+BD 2=FB 2+BD 2=FD 2=DE 2,故②正确,③:如图,设AD 与EF 的交点为G ,∵∵FAD =∵EAD =45°,AF =AE ,∵AD ∵EF ,EF =2EG ,∵S ∵ADE =12•AD •EG =12•AD •12EF =14• AD •EF , 故③正确,④∵FB 2+BE 2=EF 2,CE =BF ,∵CE 2+BE 2=EF 2,在Rt ∵AEF 中,AF =AE ,AF 2+AE 2=EF 2,∵EF 2=2AE 2,∵CE 2+BE 2=2AE 2,故④错误.故答案为:①②③.【点评】本题考查了勾股定理、全等三角形的判定定理以及等腰直角直角三角形的性质,此题涉及的知识面比较广,解题时要注意仔细分析,难度较大.14.在Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,2BC =,D 为AC 中点,E 为边AB 上一动点,当四边形BCDE 有一组邻边相等时,则AE 的长为_____________.【答案】2或3或135. 【分析】分BC BE =、CD DE =、BE DE =三种情况考虑,当BC BE =时,由AE AB BE =-即可求出AE 的长度;当CD DE =时,过点D 作DF AE ⊥于F ,通过解直角三角形可得出AF 的长度,再根据等腰三角形的三线合一即可得出AE 的长度;当BE DE =时,过点D 作DF AE ⊥于F ,设EF x =,则52BE x =-,利用勾股定理表示出2DE 的值,结合BE DE =即可得出关于x 的一元一次方程,解之即可得出x 的值,进而即可得出AE 的长度,综上即可得出结论.【详解】解:在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,2BC =,4AB ∴=,AC =, D 为AC 中点,AD CD ∴=当四边形BCDE 有一组邻边相等时,由以下三种情况.①如图1,当BC BE =时,2BE BC ∴==,422AE AB BE ∴=-=-=;②如图2,当CD DE =时,作DF AE ⊥,垂足为点F ,AD CD DE ∴===12AF EF AE ∴==,在Rt ADF 中,1122DF AD ===32AF ∴==, 32232AE AF ∴==⨯=; ③如图3,当BE DE =时,作DF AE ⊥,垂足为点F ,35422BF AB AF ∴=-=-=, 设EF x =,则52BE BF EF x =-=-,在Rt DEF △中,DF =,52DE BE x ==-,EF x =, 222EF DF DE ∴+=,即22252x x ⎛⎫+=- ⎪⎝⎭⎝⎭, 解得:1110x =, 即1110EF =, 311132105AE AF EF ∴=+=+=. 故答案为:2或3或135. 【点睛】 本题考查了勾股定理、等腰三角形的性质、含30度角的直角三角形以及解一元一次方程,分三种情况寻找AE 的长度是解题的关键.15.如图,在四边形ABCD 中,45B C ∠=∠=︒,P 是BC 上一点,PA PD =,90APD ∠=︒,AB CD BC+=______.【分析】 通过等腰直角三角形构建一线三等角模型求解即可.【详解】解:如图所示,分别过A 、D 作AE BC ⊥于E ,DF BC ⊥于F∵90AEP DFP ∠=∠=︒∵90APE PAE ∠+∠=︒,90DPF PDF ∠+∠=︒∵90APD ∠=︒∵90APE DPF +=︒∠∠∵APE DPF ∠=∠ ,PAE DPF ∠=∠在AEP △与DFP △中APE DPF PA PDPAE DPF ∠=∠⎧⎪=⎨⎪∠=∠⎩∵()AEP DPF ASA ≅△△∵AE PF = ,PE DF =45,C ∠=︒45,FDC C ∴∠=∠=︒,DF FC PE ∴==在Rt ABE △中,45B ∠=︒∵AB ==同理可得:CD ==∵)()2BE CF AB CD BC BE CF ++===+2 . 【点睛】本题考察特殊的直角三角形,灵活运用一线三等角模型及特殊直角三角形三边关系是解题的关键.16.如图,在Rt ABC 中,90C ∠=︒,点D 在BC 上,点E 为Rt ABC △外一点,且ADE为等边三角形,60CBE ∠=︒,若7BC =,4BE =,则ADE 的边长为__________.【答案】【分析】在BC 的延长线上取点F ,使得60AFD ∠=︒,证()AFD DBE AAS △≌△,得4FD BE ==,AF BD =,设CF x =,则4CD x =-,3BD x =+,再由含30角的直角三角形的性质得2AF x =,则23x x =+,解得3x =,即可解决问题.【详解】解:在BC 的延长线上取点F ,使得60AFD ∠=︒,∵ADE 是等边三角形,∵AD DE AE ==,60ADE ∠=︒,∵ADB AFD DAF ADE EDB ∠=∠+∠=∠+∠,∵DAF EDB ∠=∠,在AFD 和DBE 中,60AFD DBE DAF EDBAD DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∵()AFD DBE AAS △≌△,∵4FD BE ==,AF BD =,设CF x =,则4CD x =-,)743(BD x x =--=+,∵90ACB ∠=︒,∵90ACF ∠=︒,∵906030CAF ∠=︒-︒=︒,∵22AF CF x ==,∵23x x =+,解得:3x =,∵3,CF AC ==∵1CD =,∵AD ===故答案为:【点睛】本题考查等边三角形的性质、全等三角形的判定与性质、勾股定理、含30°角的直角三角形的性质.三、解答题17.如图,△MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,求运动过程中,点D到点O的最大距离.+1【分析】取AB的中点E,连接OE、DE、OD,根据三角形的任意两边之和大于第三边可知当O、D、E三点共线时,点D到点O的距离最大,再根据勾股定理列式求出DE的长,根据直角三角形斜边上的中线等于斜边的一半求出OE的长,两者相加即可得.【详解】解:如图,取AB的中点E,连接OE、DE、OD,∵OD≤OE+DE,∵当O、D、E三点共线时,点D到点O的距离最大,此时,∵AB=2,BC=1,AB=1,∵OE=AE=12DE,∵OD+1.【点睛】此题考查勾股定理,三角形三边的关系,矩形的性质,直角三角形斜边上中线等于斜边的一半的性质.18.如图,是由边长为1的小正方形构成的10×10网格,每个小正方形的顶点叫做格点.五边形ABCDE的顶点在格点上,仅用无刻度的直尺在给定网格中画图,画图过程用虚线表示,画图结果用实线表示,按步骤完成下列问题:(1)五边形ABCDE的周长为.(2)在AB上找点F,使E,C两点关于直线DF对称;(3)设DF交CE于点G,连接AG,直接写出四边形AEDG的面积;(4)在直线DF上找点H,使△AHB=135°.【答案】(1)20(2)见解析;(3)10;(4)见解析.【分析】(1)根据勾股定理求出五边形ABCDE各边的长,相加即可;(2)连接EC,作DF∵EC交AB于点F即可;(3)分成两个三角形求面积即可;(4)利用等腰直角三角形的性质求解即可.【详解】DE=,解:(1)由题意,5AB BC CD===,AE5∵五边形ABCDE的周长故答案为:20(2)如图,连接EC ,作DF ∵EC 交AB 于点F ,点F 即为所求作.∵5DE CD ==,DF ∵EC ,∵CE GE =,∵点D ,G 是CE 垂直平分线上的点,∵DF 是CE 的垂直平分线,∵E ,C 两点关于直线DF 对称;(3)∵EG =AG AE ==∵222AG AE EG +=,∵AEG △是直角三角形;∵11521022AEG DEG AEDG S S S =+=⨯⨯⨯=四边形. (4)如图,过点A 作AH ∵DF 于H ,连接BH ,则点H 即为所求作.∵BK KH =BH ==∵222KH B H K B +=.∵BHK 是等腰直角三角形.∵45BHK ∠=︒.∵135AHB ∠=︒.【点睛】本题考查作图-轴对称变换,勾股定理,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19.已知△ACB 和△ECD 都是等腰直角三角形,△ACB =△ECD =90°.(1)如图1,若D 为△ACB 内部一点,请判断AE 与BD 的数量关系,并说明理由; (2)如图2,若D 为AB 边上一点,AD =5,BD =12,求DE 的长.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,已知△CAE =90°,AC =AE ,45ABC ∠=︒,AB =BC =1,求BE 的长.图1 图2 图3【答案】(1)AE BD =,理由见解析;(2)13;(3【分析】(1)证明AEC BDC ≌△△即可得AE BD =;(2)方法同(1)证明AEC BDC ≌△△,从而90,EAD ∠=︒AE BD =,最后由勾股定理即可求得DE(3)根据(1)(2)的方法作点C 关于AB 对称点C '则BC BC '=,连接,BC EC '',证明BC E '∠=90︒,通过证明C AC '△≌C AE '△得CC C E ''=,在Rt BC E '中用勾股定理求得BE 的长.【详解】(1)如图∵ACB 和∵ECD 都是等腰直角三角形,∵ACB =∵ECD =90°,,1290,2390CE CD CA CB ∴==∠+∠=︒∠+∠=︒13∠∠∴=∴AEC BDC ≌△△(SAS)∴AE BD =.(2)如图∵ACB 和∵ECD 都是等腰直角三角形,∵ACB =∵ECD =90°,,1290,2390CE CD CA CB ∴==∠+∠=︒∠+∠=︒,45B CAB ∠=∠=︒13∠∠∴=∴AEC BDC ≌△△(SAS)∴AE BD =,4B ∠=∠490EAD CAB ∴∠=∠+∠=︒在Rt ADE △中,12,5AE BD AD ===13ED ∴==.(3)如图:作点C 关于AB 对称点C ',连接,BC EC ''则1BC BC '==,AC AC '=,455ABC ∠∠==︒90C BC '∴∠=︒C C '∴==AB BC BC '==BAC BCA BAC '∴∠=∠=∠1(18045)67.52BC A '=∠=⨯︒-︒=︒ 267.5135CAC '∴∠=⨯︒=︒360C AE CAE CAC ''∴∠=︒-∠-∠36067.5290=︒-︒⨯-︒135=︒CAC C AE ''∴∠=∠又AE AC AC '==1112(180)(180135)22.5,22C AE '∴∠=∠=⨯︒-∠=⨯︒-︒=︒ 1134(180)(180135)22.522C AC '∠=∠=⨯︒-∠=⨯︒-︒=︒ 13∠∠∴=∴167.522.590BC E BC A ''∠=∠+∠=︒+︒=︒在C AC '△与C AE '△中13AC AC C AE C AC ∠=∠⎧⎪=⎨⎪∠='∠''⎩'∴C AC '△≌C AE '△(AAS )CC C E ''∴==在Rt BC E '中C E ',1BC '=BE ∴.【点睛】本题考查了轴对称图形的性质,三角形全等的判定与性质,等腰三角形的性质,勾股定理,找到三角形全等的条件或通过辅助线构造三角形全等的条件是解题的关键.20.已知在△ABC 中,AB =AC ,点D 是BC 边上一点,连接AD ,在直线AD 右侧作等腰△ADE ,AD =AE .(1)如图1,若△BAC =△DAE =90°,连接CE .求证:△ABD △△ACE ;(2)如图2,若△BAC =△DAE =120°,AB =AC =2.①当AE △BC 时,求线段BD 的长;②取AC 边的中点F ,连接EF .当点D 从点B 运动到点C 过程中,求线段EF 长度的最小值与最大值.【答案】(1)证明见解析;(2)①BD =;②线段EF 长度的最小值为12【分析】(1)由“SAS ”可证得ABD ACE △≌△;(2)①如图1,过点D 作DM ∵AB 于点M ,连接CE ,根据∵BAC =∵DAE =120°求出∵BAD =∵CAE ,然后根据平行性质求出∵ABC =∵ACB =∵EAC =30°,得到ABD △是等腰三角形,然后就可以求解了.②如图2,取AB 中点G ,连接DG ,CG ,由“SAS ”可证AFE AGD △≌△,可得GD=EF , 当GD ∵BC 时,GD 有最小值.当点D 与点C 重合时,DG 有最大值为CG ,即EF 也有最大值.【详解】证明:(1)∵∵BAC =∵DAE =90°,∵∵BAD =∵CAE .∵AB =AC ,AD =AE ,∵ABD ACE △≌△(SAS );(2)解:①如图1,过点D 作DM ∵AB 于点M ,连接CE ,∵∵BAC =∵DAE =120°,∵∵BAD =∵CAE .∵∵BAC =120°,AB =AC ,∵∵ABC =∵ACB =30°.∵AE ∵BC ,∵∵EAC =∵ACB =30°,∵∵BAD =30°,∵AD =BD ,∵BM 12=AB =1,∵DM ∵BD = ②如图2,取AB 中点G ,连接DG ,CG ,∵AB =AC =2,点F 是AC 中点,点G 是AB 中点,∵AG =BG =AF =CF =1.∵∵BAC =∵DAE =120°,∵∵BAD =∵CAE .∵AD=AE,AG=AF,∵AFE AGD△≌△(SAS),∵GD=EF,∵DG有最小值,EF也有最小值,∵当GD∵BC时,GD有最小值.∵∵BAC=120°,AB=AC,∵∵ABC=30°,GD∵BC,BG=1,∵GD12=,BD=当点D与点C重合时,DG有最大值为CG,即EF也有最大值.∵BD=BC∵CD=,∵CG==∵线段EF长度的最小值为12.故答案为:最小值是12【点睛】本题是三角形综合题,考查了平行线的性质,全等三角形的判定和性质,勾股定理,等腰三角形的性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.一、单选题1.(2020·苏州市吴江区盛泽第二中学)如图,在△ABC中,AC=BC,△ACB=90°,点D在BC 上,BD=6,DC=2,点P是AB上的动点,则PC+PD的最小值为()A.8B.10C.12D.14【答案】B【分析】过点C作CO∵AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP,此时DP+CP=DP+PC′=DC′的值最小.由DC=2,BD=6,得到BC=8,连接BC′,由对称性可知∵C′BA=∵CBA=45°,于是得到∵CBC′=90°,然后根据勾股定理即可得到结论.【详解】解:过点C 作CO ∵AB 于O ,延长CO 到C ′,使OC ′=OC ,连接DC ′,交AB 于P ,连接CP . 此时DP +CP =DP +PC ′=DC ′的值最小.∵DC =2,BD =6,∵BC =8,连接BC ′,由对称性可知∵C ′BA =∵CBA =45°,∵∵CBC ′=90°,∵BC ′∵BC ,∵BCC ′=∵BC ′C =45°,∵BC =BC ′=8,根据勾股定理可得DC ′10.故选:B .【点睛】此题考查了轴对称﹣线路最短的问题,确定动点P 为何位置时 PC +PD 的值最小是解题的关键.2.(2020·宁波市第十五中学九年级期中)如图,ACB ∆和ECD ∆都是等腰直角三角形,CA CB =,CE CD =,ACB ∆的顶点A 在ECD ∆的斜边DE 上,AB 、CD 交于F ,若6AE =,8AD =,则AF 的长为( )A .5B .407C .285D .6【答案】B【分析】 连接BD ,自F 点分别作FG AD ⊥,FH BD ⊥交AD 、BD 于G 、H 点,通过证明ECA DCB ≅,可得45,6E CDB AE BD ︒∠=∠===,根据勾股定理求出AB 的长度,再根据角平分线的性质可得FG FH =,根据三角形面积公式可得34BF AF =,代入10AF BF AB +==中即可求出BF 的值.【详解】如图,连接BD ,自F 点分别作FG AD ⊥,FH BD ⊥交AD 、BD 于G 、H 点∵ACB ∆和ECD ∆都是等腰直角三角形∵90,45ECD ACB EDC E ︒︒∠=∠=∠=∠=90ECA ACD DCB ︒∴∠=-∠=∠在∵ECA 和∵DCB 中CA CB ECA DCB CE CD =⎧⎪∠=∠⎨⎪=⎩ECA DCB ∴≅45,6E CDB AE BD ︒∴∠=∠===45EDC ︒∠=90ADB EDC CDB ︒∴∠=∠+∠=在Rt∵ADB中,AB 8,6AD BD ==10AB ∴=45CDB EDC ︒∠=∠=∵DF 是∵ADB 的角平分线,FG AD FH BD ⊥⊥FG FH ∴=18421632ADF BDF AD FG S AD S BD BD FH ∆⨯∴====⨯ ∵∵ADF 底边AF 上的高h 与∵BDF 底边BF 上的高h 相同142132ADF BDF AF h S AF S BF BF h ∆∆⨯∴===⨯ 34BF AF ∴= 10AF BF AB +== 3104AF AF ∴+= 407AF ∴=故答案为:B.【点睛】本题考查了三角形的综合问题,掌握等腰直角三角形的性质、全等三角形的性质以及判定定理、勾股定理、角平分线的性质、三角形面积公式是解题的关键.3.(2020·四川)(2019秋•陇西县期中)若△ABC中,AB=7,AC=8,高AD=6,则BC的长是()A.B.C.D.以上都不对【答案】C【分析】在∵ABC中,由∵A可能是锐角或是钝角,高AD可能线段BC上或BC的延长线上,分两种情况求解,根据勾股定理,线段和差求出线段BC的长为是.【详解】解:(1)当高AD在BC上时,如图1所示:∵AD∵BC,∵在Rt∵ABD中,由勾股定理得,BD=又∵AB=7,AD=6,∵BD=同理可得:DC=,又∵BC=BD+DC,∵BC=;当高AD在BC的延长线上时,如图2所示:∵AD∵BC,∵在Rt∵ADC中,由勾股定理得,DC=又∵AC=8,AD=6,∵DC==,同理可得;DB=又∵BC=DC﹣DB,∵BC=综合所述:BC的长是故选:C.【点睛】本题综合考查了勾股定理的运用,线段的和差计算等相关知识,重点掌握勾股定理的运用,易错点三角形可能是锐角三角形或钝角三角形.BC=,AD、CE分别是4.(2019·浙江温州市·九年级)如图,在ABC中,AC=13ABC的高线与中线,点F是线段CE的中点,连接DF.若DF CE⊥,则AB=()A.10B.11C.12D.13【答案】A【分析】连接DE,根据直角三角形的性质得到AB=2DE,根据线段垂直平分线的性质得到DE=DC,得到AB=2CD,根据勾股定理列式计算得到得到答案.解:连接DE ,∵AD∵BC ,点E 是AB 的中点,∵AB=2DE , ∵DF∵CE ,点F 是线段CE 的中点,∵DE=DC , ∵AB=2CD ,在Rt∵ABD 中,222AD AB BD =-,在Rt∵ACD 中,222AD AC DC =-,∵22AC DC -=22AB BD -,即2222(2)(13)CD CD CD -=--,解得,CD=5, ∵AB=2CD=10,故选:A .【点睛】本题考查的是勾股定理、直角三角形的性质,熟练掌握定理是关键.5.(2020·杭州市建兰中学九年级月考)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若S 1+S 2+S 3=12,则下列关于S 1、S 2、S 3的说法正确的是( )A .S 1=2B .S 2=3C .S 3=6D .S 1+S 3=8【答案】D【分析】 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG NG =,CF DG NF ==,再根据三个正方形面积公式列式相加:12312S S S ++=,求出2GF 的值,从而可以计算结论即可.解:八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,CG NG ∴=,CF DG NF ==,21()S CG DG ∴=+,222CG DG CG DG =++⋅,22GF CG DG =+⋅,22S GF =,2223()2S NG NF NG NF NG NF =-=+-⋅,2222212322312S S S GF CG DG GF NG NF NG NF GF ∴++=+⋅+++-⋅==,24GF ∴=,24S ∴=,12312S S S ++=,138S S ∴+=,故选:D .【点睛】此题主要考查了勾股定理的应用,用到的知识点是勾股定理和正方形、全等三角形的性质,根据已知得出2312GF =是解决问题的关键.6.(2019·常熟市第一中学八年级月考)如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC 上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm【分析】当C′落在AB上,点B与E重合时,AC'长度的值最小,根据勾股定理得到AB=5cm,由折叠的性质知,BC′=BC=3cm,于是得到结论.【详解】解:当C′落在AB上,点B与E重合时,AC'长度的值最小,∵∵C=90°,AC=4cm,BC=3cm,∵AB=5cm,由折叠的性质知,BC′=BC=3cm,∵AC′=AB-BC′=2cm.故选:C.【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.7.(2020·四川省岳池中学八年级月考)在△ABC中,△BCA=90△,AC=6,BC=8,D是AB的中点,将△ACD沿直线CD折叠得到△ECD,连接BE,则线段BE的长等于()A.5B.75C.145D.365【答案】C【分析】根据勾股定理及直角三角形的中线、翻折得CD=DE=BD=5,CE=AC=6,作DH∵BE于H,EG∵CD于G,证明∵DHE∵∵EGD,利用勾股定理求出75EH DG==,即可得到BE.【详解】∵∵BCA=90∵,AC=6,BC=8, ∵22226810AB AC BC ,∵D 是AB 的中点,∵AD=BD=CD=5,由翻折得:DE=AD=5,∵EDC=∵ADC ,CE=AC=6,∵BD=DE ,作DH∵BE 于H ,EG∵CD 于G ,∵∵DHE=∵EGD=90︒,∵EDH=12∵BDE=12(180︒-2∵EDC )=90︒-∵EDC ,∵∵DEB= 90︒-∵EDH=90︒-(90︒-∵EDC)=∵EDC ,∵DE=DE ,∵∵DHE∵∵EGD ,∵DH=EG ,EH=DG ,设DG=x ,则CG=5-x ,∵2EG =2222DE DG CE CG -=-,∵222256(5)x x -=--,∵75x =, ∵75EH DG ==, ∵BE=2EH=145, 故选:C.【点睛】此题考查翻折的性质,勾股定理,等腰三角形的性质,将求BE 转换为求其一半的长度的想法是关键,由此作垂线,证明∵DHE∵∵EGD ,由此求出BE 的长度.8.(2021·山西)如图,在长方形纸片ABCD 中,8AB cm =,6AD cm =. 把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,则AF 的长为( )A .254cmB .152cmC .7cmD .132cm 【答案】A【分析】由已知条件可证∵CFE∵∵AFD ,得到DF=EF,利用折叠知AE=AB=8cm ,设AF=xcm ,则DF=(8-x)cm ,在Rt∵AFD 中,利用勾股定理即可求得x 的值.【详解】∵四边形ABCD 是长方形,∵∵B=∵D=900,BC=AD,由翻折得AE=AB=8m ,∵E=∵B=900,CE=BC=AD又∵∵CFE=∵AFD∵∵CFE∵∵AFD∵EF=DF设AF=xcm ,则DF=(8-x )cm在Rt∵AFD 中,AF 2=DF 2+AD 2,AD=6cm ,222(8)6x x =-+254x cm = 故选择A.【点睛】此题是翻折问题,利用勾股定理求线段的长度.二、填空题9.(2021·华东师范大学青岛实验中学八年级期中)如图,在Rt ABC 中,ACB 90,AC 6,BC 8∠=︒==,AD 平分CAB ∠交BC 于D 点,E 、F 分别是AD 、AC 上的动点,则CE EF +的最小值为________.。

勾股定理典型题总结(较难)

勾股定理典型题总结(较难)

勾股定理一.勾股定理证明与拓展 模型一. 图中三个正方形面积关系思考:如下图,以直角三角形a 、b 、c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积有和关系?例1、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”;在“生长”了2017次后形成的图形中所有正方形的面积和是 .变式1:在直线l 上依次摆放着七个正方形(如图1所示).已知斜放置的三个正方形的面积分别是1,1. 21,1. 44,正放置的四个正方形的面积依次是1234S S S S ,,,,则41S S =______.变式2:如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,求S2.(变式2)(变式3)变式3:如图,Rt△ABC 的面积为10cm2,在AB 的同侧,分别以AB,BC,AC 为直径作三个半圆,则阴影部分的面积为.(难题)如图,是小明为学校举办的数学文化节设计的标志,在△ABC 中,∠ACB= 90°,以△ABC 的各边为边作三个正方形,点G 落在HI 上,若AC+BC=6,空白部分面积为10.5,则阴影部分面积模型二外弦图DCBA内弦图GFEH例题2.四年一度的国际数学大会于2002年8月20日在北京召开,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13,每个直角三角形两直角边的和是5。

求中间小正方形的面积为__________;变式1:如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方图案,已知大正方形面积为25,小正方形面积为1,若用x 、y 表示直角三角形的两直角边(x y >),下列四个说法:①2225x y +=,②2x y -=,③2125xy +=,④9x y +=.其中说法正确的有___________(填序号).(变式1) (变式2)变式2:如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长 为变式3:我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称为“赵爽弦图”(如图5),图6是由弦图变化得到的,他是由八个全等的直角三角形拼接而成。

全等三角形轴对称勾股定理中难度题型荟萃.doc

全等三角形轴对称勾股定理中难度题型荟萃.doc

全等三角形轴对称勾股定理中难度题型荟萃.doc全等三角形轴对称勾股定理中难度题型荟萃(强化训练)3.如图,在A J MC中,ZJ -90° > A8=6米,80 8米,动点P以2米/秒的速度从S点出发,沿刀。

向点(7移动,同时,动点。

以1米/秒的速度从。

点出发,沿C8向点8移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为g秒.(1)①当t=2.5秒时,求hCPQ的面积;②求hCPQ的面积S (平方米)关于时间,(秒)的函数解析式;(2)在P,。

移动的过程中,当bCPQ为等腰三角形时,写出,的值;1.将两个等边AABC和Z\DEF (DE>AB)如图所示摆放,点D是BC上一点(除B、C 外),把ADEF绕顶点D顺时针方向旋转一定的角度,使得边DE、DF与AABC的边(边BC除外)分别相交于点M、N.(1)NBMD和ZCDN相等吗?(2)画出使ZBMD和NCDN相等得所有情况的图形;(3)在(2)题中任选一种图形说明ZBMD和ZCDN相等的理由.8.如图,AABC的边BC在直线上,AC1BC,且AC=BC, ADEF的边FE也在直线*次上,边DF与边AC重合,且DF=EF.。

)在图(1)中,请你通过观察、思考,猜想并写出AB与AE 所满足的数量关系和位置关系;(不要求证明)(2)将ADEF沿直线出向左平移到图(2)的位置时,DE交AC 于点G,连结AE, BG.猜想ABCG与AACE能会通过旋转重合?请证明你的猜想.A(D) D A图⑴图⑵10.巳知:在?中,AC=BC f ZACB=9^f点D是的中点,点E是边上一点.(1)直线垂直于CE于点交CO于点G (如图①),求证:AE=CG;(2)直线垂直于CE于,垂足为H,交CD的延长线于点M (如图②),找出图中与相等的线段,并说明.13.将两块大小相同的含30。

角的直角三角板(NB4C=N8RC=30。

)按图①方式放置, 固定三角板A f B r C t然后将三角板SBC绕直角顶点C顺时针方向旋转(旋转角小于90。

勾股定理中考难题(有答案详解)

勾股定理中考难题(有答案详解)

勾股定理中考难题1、如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A . 48B . 60C . 76D . 802、如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B 的坐标为(3,),点C 的坐标为(,0),点P 为斜边OB 上的一个动点,则PA+PC 的最小值为( )A .B .C .D . 23、如图,已知直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )A . 6B . 8C . 10D . 124、已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE .以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2),其中结论正确的个数是( )A . 1B . 2C . 3D . 41题 2题 3题 4题 6题5、一直角三角形的两边长分别为3和4.则第三边的长为( )A . 5B .C .D . 5或6、如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )A .8米B .10米C .12米D .14米7、如图,若∠A =60°,AC =20m ,则BC 大约是(结果精确到0.1m)( )A .34.64mB .34.6mC .28.3mD .17.3m8、如图,△ABC 中,D 为AB 中点,E 在AC 上,且BE ⊥AC .若DE=10,AE=16,则BE 的长度为何?( )A .10B .11C .12D .139、如图,圆柱形容器中,高为1.2m ,底面周长为1m ,在容器内壁..离容器底部0.3m 的点B 处有一蚊子,此时一只壁虎正好在容器外壁..,离容器上沿0.3m 与蚊子相对..的点A 处,则壁A C B第7题图虎捕捉蚊子的最短距离为 m(容器厚度忽略不计).10、(2013•滨州)在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为.11、(2013山西,1,2分)如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为______.12、(2013•黄冈)已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE= .13、(2013•张家界)如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012= .14、(2013•包头)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 度.15、(2013•巴中)若直角三角形的两直角边长为a、b,且满足,则该直角三角形的斜边长为.16、(2013•雅安)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标.17、(2013哈尔滨)在△ABC中,AB=22,BC=1,∠ ABC=450,以AB为一边作等腰直角三角形ABD,使∠ABD=900,连接CD,则线段CD的长为.18、(2013哈尔滨)如图。

各类型中高难度全等三角形125题(答案版)

各类型中高难度全等三角形125题(答案版)

1.已知:如图,AB ∥DE ,AC ∥DF ,BE =CF .求证:AB =DE .A DB EC F 【答案】∵ AB ∥ DE ,∴ ∠B =∠DEF∵AC ∥DF ,∴∠F =∠ACB∵ BE =CF ,∴ BE +EC =CF +EC 即 BC =EF∴∆ABC ≌∆DEF ,∴AB =DE .2.图中是一副三角板,45︒的三角板Rt ∆DEF 的直角顶点D 恰好在30︒的三角板Rt ∆ABC 斜边AB 的中点处,∠A = 30︒,∠E = 45︒,∠EDF =∠ACB = 90︒,DE 交AC 于点G ,GM ⊥AB 于M .(1)如图1,当DF 经过点C 时,作CN ⊥AB 于N ,求证:AM =DN .(2)如图2,当DF ∥AC 时,DF 交BC 于H ,作HN ⊥AB 于N ,(1)的结论仍然成立,请你说明理由.FCEGAM D N B图1ECFG HA B图2【答案】⑴ ∵ ∠A = 30︒,∠ACB = 90︒, D 是 AB 的中点,∴ BC =BD , ∠B = 60︒ ∴△BCD 是等边三角形.又∵CN ⊥DB ,∴DN =1DB ,2∵∠EDF = 90︒,∆BCD 是等边三角形.∴∠ADG = 30︒,而∠A = 30︒,∴GA =GD .∵ GM ⊥AB ,∴AM =1 AD 2又∵AD =DB ,∴AM =DN .⑵∵DF ∥AC ,∴∠BDF =∠A = 30︒,∠AGD =∠GDH = 90︒,∴∠ADG = 60︒.∵∠B = 60︒,AD =DB ,∴∆ADG ≌∆DBH ,∴AG =DH ,又∵∠BDF =∠A ,GM ⊥AB ,HN ⊥AB ,∴∆AMG ≌∆DNH .∴AM =DN .3.在正方形ABCD 中,AB 、BC 、CD 三边上分别有点E 、G 、F ,且EF ⊥DG .求证:EF =DG .⎨ ⎩ADA DEEM FFB G CBGC【答案】过点C 作 EF 的平行线,交 AB 于 M .易知CM = EF .从而证的∆BCM ≌ ∆CDG ,从而有 DG = CM ,故 EF = DG .4.在正方形 ABCD 中, E 、 F 、G 、 H 分别是 AB 、 BC 、CD 、 DA 边上的点,且 EG ⊥ FH ,求证: EG = FH .A HD A H N DGGEEMBF CBF C【答案】过点 E 作 EM ⊥ CD ,过点 F 作 FN ⊥ AD ,垂足分别为 M 、N . 由 EM ⊥ CD , FN ⊥ AD , EG ⊥ FH ,易得∠MEG = ∠NFH 因为 EM = BC , BC = CD , CD = NF ,所以 EM = NF 故∆EMG ≌ ∆NFH ,所以 EG = FH .5.∆ABC 中, ∠B = 90︒ , M 为 AB 上一点,使得 AM = BC , N 为 BC 上一点,使得CN = BM ,连 AN 、CM 交于 P 点.试求∠APM 的度数,并写出你的推理证明的过程.AMBN C【答案】∠APM 的度数为45︒证明过程如下:如图过点 M 作 AB 的垂线 MD ,使 MD = CN ,连接 DA 、 DN , 于是因为 MD ∥ CN 且 MD = CN ,所以四边形 MDNC 是平行四边形. 从而∠MDN = ∠MCN ,又因为CN = BM ,得到 DM = BM ,进而在∆MDA 与∆MBC 中, ⎧DM = BM ⎪∠DMA = ∠MBC = 90︒ , ⎪MA = BC PFP⎨ ⎩所以∆DMA ≌ ∆MBC ,这样 DA = MC ,而 MC = DN , 所以 DN = DA .又因为∠ADN = ∠ADM + ∠MDN= ∠ADM + ∠DAM = 90︒ , 所以得到∆ADN 是一个等腰直角三角形,所以∠AND = 45︒ ,利用 MC ∥ DN ,从而得到∠APM = ∠AND = 45︒ .ADB NC6.如图,在Rt ∆ABC 中, AB = AC ,AD ⊥ BC ,垂足为 D . E 、F 分别是CD 、AD 上的点,且CE = AF .如果∠AED = 62︒ ,那么∠DBF = .A【答案】28︒BDE7.E 、F 分别是正方形 ABCD 的 BC 、CD 边上的点,且 BE = CF .求证:AE ⊥ BF .ADF【答案】在∆ABE 和∆BCF 中⎧ AB = BC ⎪∠ABE = ∠BCF⎪BE = CF∴ ∆ABE ≌ ∆BCF BEC∴ ∠BAE = ∠CBF ∵ ∠BAE + ∠AEB = 90︒ ∴ ∠CBF + ∠AEB = 90︒ ∴ AE ⊥ BF8.E 、F 、G 分别是正方形 ABCD 的 BC 、CD 、AB 边上的点,GE ⊥ EF ,GE = EF .求证: BG + CF = BC .AD【答案】显然, ∆BEG ≌ ∆CFE ,GFBECM PC∴ BG = CE , BE = CF ∴ BG + CF = BC9.如图,矩形 ABCD 中, E 是 AD 上一点, CE ⊥ EF 交 AB 于 F 点,若 DE = 2 ,矩形周长为16 ,且CE = EF ,求 AE 的长.AEDFBC【答案】∵ FE ⊥ EC ,∴ ∠AEF + ∠DEC = 90︒ .∵ ∠AEF + ∠AFE = 90︒ , ∴ ∠AFE = ∠DEC .在三角形 AFE 与∆DEC 中, FE = CE , ∠A = ∠D = 90︒ , ∠AFE = ∠DEC , ∴ ∆AFE ≌ ∆DEC . ∴ AE = DC . ∵矩形周长为16 , ∴ AD + DC = 8 . ∵ AD = AE + DE ,∴且 DE = 2 .∴ 2 AE = 8 - DE . 即 AE = 3 .10.如图,已知∆ABC 中,∠ABC = 90︒,AB = BC ,三角形的顶点在相互平行的三条直线l 1 ,l 2 ,l 3 上,且l 1 ,l 2 之间的距离为2 ,l 2 ,l 3 之间的距离为3 ,则 AC 的长是 .Al 1 l 2【答案】2 Bl 311.两个全等的30︒ 、60︒ 的三角板 ADE 、 BAC ,如右下图所示摆放, E 、 A 、C 在一条直线上,连结 BD .取 BD 的中点 M ,连结 ME 、MC ,试判断∆EMC 的形状, 并说明理由.BMDEA C【解析】判断∆EMC 是等腰直角三角形.理由:如图,连结 AM .17MBA C∵ ∠DAE = 30︒ , ∠BAC = 60︒ ,∴ ∠DAB = 90︒ ∵ ∆ADE ≌ ∆BAC ,∴ AD = AB又∵ M 是 BD 的中点,∴ AM = DM = BM ∴ ∠ADM = ∠MAB = 45︒ ∴ ∠EDM = ∠EDA + ∠ADM = 60︒ + 45︒ = 105︒ ∴ ∠MAC = ∠MAB + ∠BAC = 45︒ + 60︒ = 105︒ ∴ ∠EDM = ∠MAC ∵ ED = CA ,∴ ∆EDM ≌ ∆CAM ∴ EM = CM , ∠DME = ∠AMC而∠DME + ∠EMA = 90︒ ,∴ ∠AMC + ∠EMA = 90︒ 即∠EMC = 90︒ ,∴ ∆EMC 是等腰直角三角形.12.已知等腰直角三角形 ABC , ∠C 为直角, M 为 BC 的中点. CD ⊥ AM .求证: ∠AMC = ∠DMB .求证: ∠AMC = ∠DMB .CA DB【答案】法一:如图,过 B 作 EB ⊥ BC ,交CD 延长线于 E .CE∵ ∠3 + ∠1 = 90︒ , ∠4 + ∠1 = 90︒ ,∴ ∠3 = ∠4 .又 AC = CB ,∴ Rt ∆CBE ≌ Rt ∆AMC ,∴ BE = CM , ∠5 = ∠1 . 又 BM = CM ,∴ BE = BM .∴ ∠MBD + ∠EBD = 90︒ ,而∠MBD = 45︒ ,∴ ∠EBD =∠MBD . 又 BD 为公共边,∴ ∆BED ≌ ∆BMD .∴ ∠5 = ∠2 .解法二:如图,作底边 AB 的高CE 交 AM 于 F ,则CE 亦为中线和角平分线,3 1 M4 2 ADB5 MDC ∴AE =CE =BE .又∠3 +∠CDE =∠4 +∠CDE = 90︒.∴∠3 =∠4 ,∴Rt∆DCE = Rt∆FAE ,∴AMA E D B=CE=2,∴∠EDF = 45︒=∠B ,故CM AC 1DF ∥BC .又 E 、M 为AB 、BC 的中点,∴连接EM ,则EM ∥AC .∴AC ⊥BC ,∴EM ⊥BC ,故EM ⊥DF .∴EM 为DF 的中垂线.∴∠FME =∠DME .而∠FME +∠1 =∠DME +∠2 = 90︒,∴∠1 =∠2 .解法三:如图,作CG =AG 的平分线CF 交AM 于F ,CA DB 则∠ACF =∠MCF = 45︒,即ACF =∠CBD = 45︒.∵AC ⊥BC ,C D ⊥AM ,∴∠CAF +∠CMF =∠BCD +∠CMF = 90︒.∴BM=1.AC 2又∠B =∠CAD ,∴∆ACF ≌∆CBD .∴CF =BD .又CM =BM ,∠MCF =∠MBD .∴∆CFM ≌∆BDM .∴∠FMC =∠DMB .解法四:如图,过D 作DG ⊥CB .CA∵∠B = 45︒,∴DG =BG .∵∠DCG +∠AMC =∠FAC +∠AMC = 90︒,∴∠DCG =∠FAC .∴∆DCG ∽∆MAC .∴DG∶CG =CM∶AC = 1∶2 ,则BG∶CG = 1∶2 .∵DG ∥AC ,∴BD∶AD = 1∶2 ,而BM∶AC = 1∶2 , B =∠CAD .∴∆BMD ∽∆ACD ,∴∠BMD =∠ACD .而∠ACD =MGM F3 1FM24AMC ,解法五:如图,延长CB 到 E ,使 BE = BC .连接 AE ,延长CD 交 AE 于G ,则 AC = BC = BE ,CE∴AM = CE = 2 .CM AC 1 ∴ Rt ∆ACM ∽ Rt ∆ECA .∴ ∠CAM = ∠E . ∵ ∠CAM + ∠ACF = 90︒ , ∠GCE + ∠ACF = 90︒ , ∴ ∠CAM = ∠GCE .即∠GCE = ∠E .∴ CG = GE . ∵ ∠CAE + ∠E = 90︒ , ∠ACG + ∠GCE = 90︒ ,∴ ∠CAE = ∠ACG ,∴ CG = AG ,从而 AG = GE .又∵ BC = BE ,所以 D 为∆AEC 的重心,∴ BD = 1.而 BM = 1 , ∠B = ∠CAD . AD 2AC 2∴ ∆BMD ∽ ∆ACD ,∴ ∠BMD =∠ACD . 而 ∠AMC = ∠ACF ,∴ ∠BMD = ∠AMC .解法六:如图,过 A 作 AH ⊥ AM ,与 BC 的延长交于 H .HD B∵ ∠1 + ∠2 = 90︒ , ∠1 + ∠AMC = 90︒ , ∴ ∠2 = ∠AMC , ∴ Rt ∆AHC ∽ Rt ∆MAC ,∴ HC = AC= 2 . AC MC而 AC = BC ,∴HC= 2 .BC∵ HA ∥ C D ,∴ AD = HC= 2 .BD BC又∵ AC BM = 2 , ∠CAD = ∠B ,∴ ∆ADC ∽ ∆BDM ,C MFFMAD BG而∠AMC = ∠ACD ,∴ ∠AMC = ∠BMD .解法七:如图,过 D 作 DE ⊥ BM ,垂足为 E .CA∵ ∠CAM + ∠CMA = 90︒ , ∠ECD + ∠CMA = 90︒ , ∴ ∠CAM = ∠ECD , ∴ Rt ∆CAM ∽ Rt ECD ,∴ DE = MC = 1 .CEAC2∵ ∠B = 45︒ , ∠DEB = 90︒ ,∴ DE = BE ,∴ BE = 1. CE 2设 ME = x ,CM = BE = a ,∴a - x = 1 ,∴ x = a. a + x 2 3∴ DE = BE = a - a = 2a ,∴ ME = 1 = MC,3 3 ∴ Rt ∆CAM ∽ Rt ∆EDM , ∴ ∠AMC = ∠BMD .DE 2 AC13.如图所示,已知在等腰直角三角形 ABC 中, ∠BAC 是直角, D 是 AC 上一点, AE ⊥ BD ,AE 的延长线交 BC 于 F ,若∠ADB = ∠FDC ,求证:D 是 AC 的中点.AFC【答案】过C 作CH 垂直于 AC 交 AF 延长线于 H 点;易证∆ABD ≌∆AHC , HC = AD ;进而证明∆FHC ≌∆FDC ,得到 HC = CD ,则 D 为 AC 中点.A14.如图所示,在等边∆ABC 中, DE ∥ BC , O 为∆ADE 的中心, M 为 BE 的中点, 求证OM ⊥ CM .M EDE【答案】如图所示,延长OM 至点 N ,使OM = MN ,连接OA 、OE 、OC 、 BN 、CN .AAD OEO N D EMMBCNB C因为OM = NM , BM = ME , ∠OME = ∠NMB , 故∆BMN ≌ ∆EMO ,则 BN = EO , ∠OEM =∠NBM . 因为 DE ∥ BC ,则∠DEB = ∠CBE , ∠OED = ∠CBN .因为O 为∆ADE 的中心,则OA = OE = BN , ∠OAE = ∠OED = 30︒ = ∠CBN . 因为 AC = BC ,故∆AOC ≌ ∆BNC ,从而OC = CN . 因为OM = MN ,故OM ⊥ CM .【点评】如果具备三角形相似的知识,我们就可以采取下面的解法. 如图所示,取 AE 的中点 N ,连接 MN 、OA 、ON 、OC . 因为O 为∆ADE 的中心,故∠OAN = 30︒ , OA =2ON . 因为 AN = NE , BM = EM ,故 AB = 2MN = AC .因为ON ⊥ AC , MN ∥ AB ,故∠MNE = 60︒ ,因为∠ONM = 30︒ ,故∆OAC ∽ ∆ONM ,∠OMN = ∠OCN ,则O 、M 、C 、N 四点共圆.因为ON ⊥ AC ,故OM ⊥ CM .15.已知 P 为等腰直角∆ABC 的斜边 AB 上任意一点, PE 、PF 分别为 AC 、BC 之垂线,垂足为 E 、 F . M 为 AB 之中点.则 E 、 M 、 F 组成等腰直角三角形.A ECF B【答案】解法一:如图,连接CM ,则CM 为 AB 之中线,亦为 AB 之高.P MAECFB∴ ∠CMA = 90︒ . ∵ ∠PEC = ∠PFC = ∠ECF = 90︒ , ∴ ECFP 为矩形,故 PE = CF . 又∵ ∠A = 45︒ ,∴ ∆AEP 为等腰直角三角形,∴ AE = PE .∴ AE = CF . 又∵ CM = AM , ∠MCF = ∠A = 45︒ , ∴ ∆AEM ≌ ∆CFM ,∴ ∠AME = ∠CMF , EM = FM . ∵ ∠CME + ∠AME = 90︒ ,∴ ∠CME + ∠CMF = 90︒ ,即∠EMF = 90︒ . ∴ ∆EMF 为等腰直角三角形. 解法二:如图,由 M 作 ME ' ⊥ AC , MF ' ⊥ BC ,则显然由于 M 为 AB 之中点, AC = BC , AC ⊥ BC ,AE E'CF F'B∴ ME 'CF ' 为正方形,故 ME ' = MF ' . 又设 ME ' 交 PF 于Q , 则∵ PE ⊥ AC , PF ⊥ BC ,∴ ∠EPF = ∠C = 90︒ .而∠PEE ' = ∠EE 'Q = 90︒ . ∴ EE 'QP 为矩形,故 EE ' = PQ . 同理 FF ' = QM .又∵ PF ∥ AC ,∴ ∠QPM = ∠A = 45︒ . ∴ ∆PQM 为等腰直角三角形, ∴ PQ = QM ,故 EE ' = FF ' .又 ME ' = MF ' , ∠EE 'M = ∠FF 'M = 90︒ . ∴ ∆EE 'M ≌ ∆FF 'M ,∴ ∠EME ' = ∠FMF ' , EM =FM . 又∠E 'MF + ∠FMF ' = 90︒ , ∴ ∠E 'MF + ∠EME ' = 90︒ .即∠EMF = 90︒ ,故∆MEF 为等腰直角三角形.解法三:如图,延长 FM 到Q ,使 MQ = FM ,连接 AQ .PMPMQ2 2 2 A QECFB∵ AM = BM ,∴ A 、 F 、 B 、Q 4 点组成平行四边形. ∴ AQ = FB , AQ ∥ FB .又∵ BC ⊥ AC ,∴ AQ ⊥ AC , ∴ ∠QAE = ∠FCE = 90︒ .又∵ PF ⊥ BC , ∠B = 45︒ ,∴ FP = FB .同理 EP = AE . ∵ ECFP 为矩形,∴ FP = CE , EP = CF ,故 AB .而CM ⊥ AB , ∴ AQ = CE , A E = CF . ∴ Rt ∆AEQ ≌ Rt ∆CFE . ∴ EQ = FE , ∠AQE = ∠CEF , ∠QEA = ∠EFC . ∵ ∠AQE + ∠QEA = 90︒ ,∴ ∠CEF + ∠QEA = 90︒ .故 PF= .QF∴ ∆FEQ 为等腰直角三角形.而 M 为底边之中点,所以∆EMF 亦为等腰直角三角形.解法四:如图,连接CM ,则因为 M 为 AB 之中点,所以CM ⊥ AB ,CM 平分∠ACB , 即∠MCB = 45︒ .由 F 向 MB 引垂线 FQ ,向CM 引垂线 FF ' ,显然 F 'FQM 为矩形.则 FF ' = MQ .AECFB又∵ ∆CF 'F 为等腰直角三角形, CF = 2FF ' = 2MQ . 又∵ PE ⊥ AC , PF ⊥ BC , AC ⊥ BC , ∴ ECFP 为矩形,故 EP = CF = 2MQ . 于是在Rt ∆EPF 和Rt ∆MQF 中, PF = FB =2QF , PF = , EP= ,∴ PF = EP ,QF MQQF MQ∴ ∆EPF ∽ ∆MQF ,故∠EFP =∠MFQ . 又∵ ∠PFM + ∠MFQ = 45︒ , ∵ ∠PFM + ∠EFP = 45︒ ,即 PF = BF .同理∠FEM = 45︒ , ∆EMF 为等腰直角三角形.PMPM QF'E解法五:如图,连接CP 、CM .AECFB∵ PF = BF , ∆ABC 为等腰直角三角形, ∴ ∠BPF = ∠BCM = 45︒ .∴ P 、C 、 F 、 M 4 点共圆.∴ ∠CMF = ∠CPF .又∵ ∠CPF = ∠CEF ,∴ ∠CEF = ∠CMF ,∴ E 、C 、 F 、 M 4 点共圆.∴ ∠MEF = ∠MCF = 45︒ , ∠MFE = ∠MCE = 45︒ ,∴ iEMF 是等腰直角三角形.16.长方形 ABCD 中, AB = 4 , BC = 7 , ∠BAD 的角平分线交 BC 于点 E , EF ⊥ ED 交 AB 于 F ,则 EF = .ADFBEC【解析】由 AB = 4 ,AE 平分∠BAD 可知 BE = AB = CD = 4 .由基本图可知∆BEF ≌∆CDE , 故 EF = DE又 BC = 7 , BE = 4 ,故CE = 3 .由勾股定理可知, DE = 5 . 从而可知 EF = 5 .【答案】517.如图,设∆ABC 和∆CDE 都是正三角形,且∠EBD = 62︒ ,则∠AEB A .124︒ B .122︒ C .120︒ D .118︒的度数是( )ABCD【答案】分析 既然题目这样问,说明这两个角之间必然能找到一定的联系. 解 易知∠ACE = ∠BCD , ∆AEC ≌ ∆BDC ,于是∠EAC = ∠DBC ,从而∠EBD = ∠CBD + ∠CBE = ∠EAC + ∠CBE ,在考虑到∠EAC + ∠AEC + ∠ACE + ∠CEB + ∠ECB + ∠EBD = 360,有:∠BEC + ∠AEC = 360 - 60 - 62 = 360 - ∠AEB 从而∠AEB = 122 ,选B 。

专题 轴对称十大重难题型(期末真题精选)(解析版)

专题 轴对称十大重难题型(期末真题精选)(解析版)

专题03 轴对称十大重难题型一.轴对称图形的存在性之格点类(钥匙---对称轴)1.如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC成轴对称且以格点为顶点三角形共有()A.3个B.4个C.5个D.6个试题分析:解答此题首先找到△ABC的对称轴,EH、GC、AD,BF等都可以是它的对称轴,然后依据对称找出相应的三角形即可.答案详解:解:与△ABC成轴对称且以格点为顶点三角形有△ABG、△CDF、△AEF、△DBH,△BCG共5个,所以选:C.2.如图,在3×3的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有5个.试题分析:根据轴对称图形的定义与判断可知.答案详解:解:与△ABC成轴对称且也以格点为顶点的三角形有5个,分别为△ABD,△BCE,△GHF,△EMN,△AMQ,共有5个.所以答案是:5.二.轴对称的性质3.如图,把一张长方形纸片ABCD的一角沿AE折叠,点D的对应点D′落在∠BAC的内部,若∠CAE=2∠BAD′,且∠CAD′=n,则∠DAE的度数为n5+36°(用含n的式子表示).试题分析:由矩形的性质和折叠的性质即可得出答案.答案详解:解:如图,设∠BAD ′=x ,则∠CAE =2x ,由翻折变换的性质可知,∠DAE =∠EAD ′=2x +n ,∵∠DAB =90°,∴4x +2n +x =90°,∴x =15(90°﹣2n ),∴∠DAE =2×15(90°﹣2n )+n =n 5+36°. 所以答案是:n 5+36°. 4.如图,点P 为∠AOB 内部任意一点,点P 与点P 1关于OA 对称,点P 与点P 2关于OB 对称,OP =8,∠AOB =45°,则△OP 1P 2的面积为 32 .试题分析:根据轴对称的性质,可得OP 1、OP 2的长度等于OP 的长,∠P 1OP 2的度数等于∠AOB 的度数的两倍,再根据直角三角形的面积计算公式解答即可.答案详解:解:∵点P 1和点P 关于OA 对称,点P 2和点P 关于OB 对称,∴OP 1=OP =OP 2=8,且∠P 1OP 2=2∠AOB =90°.∴△P 1OP 2是直角三角形,∴△OP 1P 2的面积为12×8×8=32, 所以答案是:32.三.尺规作图:轴对称,角平分,垂直平分线5.已知直线l 及其两侧两点A 、B ,如图.(1)在直线l上求一点P,使P A=PB;(2)在直线l上求一点Q,使l平分∠AQB.(以上两小题保留作图痕迹,标出必要的字母,不要求写作法)试题分析:(1)作线段AB的垂直平分线与l的交点即为所求;(2)作点A关于l的对称点A′,连接BA′并延长交l于点Q,点Q即为所求.答案详解:解:6.已知:如图,∠AOB及M、N两点.请你在∠AOB内部找一点P,使它到角的两边和到点M、N 的距离分别相等(保留作图痕迹).试题分析:点P是∠AOB的平分线与线段MN的中垂线的交点.答案详解:解:点P就是所求的点.(2分)如果能正确画出角平分线和中垂线的给满分7.线段的垂直平分线的性质1:线段垂直平分线上的点与这条线段两个端点的距离相等.如图,△ABC中,AB=AC=16cm,(1)作线段AB的垂直平分线DE,交AB于点E,交AC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接BD,如果BC=10cm,则△BCD的周长为26cm.试题分析:根据线段的垂直平分线的性质(线段垂直平分线上的点与线段两个端点的距离相等)求解即可求得答案;(1)利用线段垂直平分线的作法进而得出即可;(2)由线段的垂直平分线的性质可得:AD=BD,从而将△BCD的周长转化为:AD+CD+BC,即AC+BC=16+10=26cm.答案详解:解:线段垂直平分线上的点与这条线段两个端点的距离相等,所以答案是:两个端点;相等;(1)如图所示,(2)连接BD,∵DE是AB的垂直平分线,∴AD =BD ,∵△BCD 的周长=BD +DC +BC ,∴△BCD 的周长=AD +DC +BC ,即AC +BC =16+10=26cm .所以答案是:26.8.如图,在正方形网格中,△ABC 的三个顶点分别在正方形网格的格点上,△A ′B ′C ′和△ABC 关于直线l 成轴对称,其中A ′点的对应为A 点.(1)请画出△A ′B ′C ′,并标出相应的字母;(2)若网格中最小正方形的边长为1,求△A ′B ′C ′的面积.试题分析:(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用三角形面积求法得出答案.答案详解:解:(1)如图所示:△A ′B ′C ′,即为所求;(2)△A ′B ′C ′的面积为:12×2×4=4.9.如图,△ABC 的三个顶点在边长为1的正方形网格中,已知A (﹣1,﹣1),B (4,﹣1),C (3,1).(1)画出△ABC 及关于y 轴对称的△A 1B 1C 1;(2)请直接写出以AB 为边且与△ABC 全等的三角形的第三个顶点(不与C 重合)的坐标.试题分析:(1)根据网格结构找出点A、B、C关于y轴的对称点A′、B′、C′的位置,然后顺次连接即可;(2)利用轴对称性确定出另一个点,然后根据平面直角坐标系写出坐标即可.答案详解:解:(1)△A1B1C1如图所示;(2)如图,第三个点的坐标为(0,1)或(0,﹣3)或(3,﹣3).四.坐标的轴对称10.已知点P(a,3),Q(﹣2,b)关于x轴对称,则a+b的值为()A.1B.−1C.5D.﹣5试题分析:关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数得出a,b的值,进而得出a+b的值.答案详解:解:∵点P(a,3),Q(﹣2,b)关于x轴对称,∴a=﹣2,b=﹣3,∴a+b=﹣2﹣3=﹣5.所以选:D.11.已知点P1(﹣1,﹣2)和P2(a,b﹣1)关于y轴对称,则(a+b)2021的值为()A.0B.﹣1C.1D.(﹣3)2021试题分析:根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出a、b的值,然后代入计算即可得解.答案详解:解:∵P1(﹣1,﹣2)和P2(a,b﹣1)关于y轴对称,∴a=1,b﹣1=﹣2,解得a=1,b=﹣1,∴a+b=0,∴(a+b)2021=02021=0.所以选:A.12.若点M与点N关于x轴对称,点M和点P关于y轴对称,点P的坐标为(2,﹣3),那么点N 的坐标为()A.(2,3)B.(2,﹣3)C.(﹣2,﹣3)D.(﹣2,3)试题分析:作出相关对称后可得点P与点N关于原点对称,那么依据点P的坐标为(2,﹣3),可得点N的坐标.答案详解:解:∵点M与点N关于x轴对称,点M和点P关于y轴对称,∴点N与点P关于原点对称,又∵点P的坐标为(2,﹣3),∴点N的坐标为(﹣2,3),所以选:D.13.已知点A(a﹣5,1﹣2a),解答下列问题:(1)若点A到x轴和y轴的距离相等,求点A的坐标;(2)若点A向右平移若干个单位后,与点B(﹣2,﹣3)关于x轴对称,求点A的坐标.试题分析:(1)直接利用点A在第一象限或第三象限或点A在第二象限或第四象限,分别得出答案;(2)直接利用平移的性质结合关于x轴对称点的性质得出答案.答案详解:解:(1)若点A在第一象限或第三象限,则a﹣5=1﹣2a,解得:a=2,则a﹣5=1﹣2a=﹣3,∴点A 的坐标为(﹣3,﹣3),若点A 在第二象限或第四象限,则a ﹣5+1﹣2a =0,解得a =﹣4,则a ﹣5=﹣9,1﹣2a =9,∴点A 的坐标为(﹣9,9),综上所述,点A 的坐标为(﹣3,﹣3)或(﹣9,9);(2)∵若点A 向右平移若干个单位,其纵坐标不变为(1﹣2a ),又∵点A 向右平移若干个单位后与点B (﹣2,﹣3)关于x 轴对称,∴1﹣2a +(﹣3)=0,a =﹣1,a ﹣5=﹣1﹣5=﹣6,1﹣2a =1﹣2×(﹣1)=3,即点A 的坐标为(﹣6,3).14.已知有序数对(a ,b )及常数k ,我们称有序数对(ka +b ,a ﹣b )为有序数对(a ,b )的“k 阶结伴数对”.如(3,2)的“1阶结伴数”对为(1×3+2,3﹣2)即(5,1).若有序数对(a ,b )(b ≠0)与它的“k 阶结伴数对”关于y 轴对称,则此时k 的值为( )A .﹣2B .−32C .0D .−12 试题分析:根据新定义可得:有序数对(a ,b )(b ≠0)的“k 阶结伴数对”是(ka +b ,a ﹣b ),并根据y 轴对称:横坐标互为相反数,纵坐标相等,可列方程组,从而可解答.答案详解:解:∵有序数对(a ,b )(b ≠0)的“k 阶结伴数对”是(ka +b ,a ﹣b ),∴{a −b =b a +ka +b =0, 解得:k =−32.所以选:B . 五.格点等腰三角形15.如图,在4×3的正方形网格中,点A 、B 分别在格点上,在图中确定格点C ,则以A 、B 、C 为顶点的等腰三角形有 3 个.试题分析:首先由勾股定理可求得AB的长,然后分别从AB=BC,AB=AC,AC=BC去分析求解即可求得答案.答案详解:解:如图,则符合要求的有:C1,C2,C3共3个点;所以答案是:3.16.如图所示的正方形网格中,网格线的交点称为格点.已知点A、B是两格点,若点C也是图中的格点,则使得△ABC是以AB为腰的等腰三角形时,点C的个数是()A.1B.2C.3D.4试题分析:根据AB是腰长时,根据网格结构,找出一个小正方形与A、B顶点相对的顶点,连接即可得到等腰三角形,答案详解:解:如图,以AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.所以选:D.17.如图是4×4的正方形网格,每个小正方形的顶点称为格点,且边长为1,点A,B均在格点上,在网格中建立平面直角坐标系.如果点C也在此4×4的正方形网格的格点上,且△ABC是等腰三角形,请写出一个满足条件的点C的坐标(﹣2,0),(﹣2,1),(﹣2,2),(2,2),(2,0),(1,0),(1,﹣1),(1,﹣2),;满足条件的点C一共有8个.试题分析:根据题意,画出图形,由等腰三角形的判定找出满足条件的C点,选择正确答案.答案详解:解:满足条件的点C的坐标为(﹣2,0),(﹣2,1),(﹣2,2),(2,2),(2,0),(1,0),(1,﹣1),(1,﹣2),满足条件的点C一共有8个,所以答案是:(﹣2,0),(﹣2,1),(﹣2,2),(2,2),(2,0),(1,0),(1,﹣1),(1,﹣2),8.六.规律类--坐标与图形的变化18.如图,已知正方形ABCD的对角线AC,BD相交于点M,顶点A、B、C的坐标分别为(1,3)、(1,1)、(3,1),规定“把正方形ABCD先沿x轴翻折,再向右平移1个单位”为一次变换,如此这样,连续经过2020次变换后,点M的坐标变为()A.(2022,2)B.(2022,﹣2)C.(2020,2)D.(2020,﹣2)试题分析:首先由正方形ABCD,顶点A(1,3),B(1,1),C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的坐标为:当n为奇数时为(2+n,﹣2),当n为偶数时为(2+n,2),继而求得把正方形ABCD连续经过2015次这样的变换得到正方形ABCD的对角线交点M的坐标.答案详解:解:∵正方形ABCD,顶点A(1,3),B(1,1),C(3,1),∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2+1,﹣2),即(3,﹣2),第2次变换后的点M的对应点的坐标为:(2+2,2),即(4,2),第3次变换后的点M的对应点的坐标为(2+3,﹣2),即(5,﹣2),第n次变换后的点M的对应点的坐标为:当n为奇数时为(2+n,﹣2),当n为偶数时为(2+n,2),∴连续经过2020次变换后,正方形ABCD的对角线交点M的坐标变为(2022,2).所以选:A.19.如图,将边长为1的正方形OABC沿x轴正方向连续翻转2020次,点A依次落在点A1、A2、A3、A4…A2020的位置上,则点A2020的坐标为()A.(2019,0)B.(2019,1)C.(2020,0)D.(2020,1)试题分析:探究规律,利用规律即可解决问题.答案详解:解:由题意A1(0,1),A2(2,1),A3(3,0),A4(3,0),A5(4,1),A6(5,1),A7(6,0),A8(7,0),A9(8,1),…每4个一循环,∵2020÷4=505则2020个应该在x轴,坐标应该是(2019,0),所以选:A.20.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(1,2),则经过第2021次变换后点A的对应点的坐标为()A.(1,﹣2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,2)试题分析:观察图形可知每四次对称为一个循环组依次循环,用2021除以4,然后根据商和余数的情况确定出变换后的点A所在的象限,然后解答即可.答案详解:解:点A第一次关于y轴对称后在第二象限,点A第二次关于x轴对称后在第三象限,点A第三次关于y轴对称后在第四象限,点A第四次关于x轴对称后在第一象限,即点A回到原始位置,所以,每四次对称为一个循环组依次循环,∵2021÷4=505余1,∴经过第2021次变换后所得的A点与第一次变换的位置相同,在第二象限,坐标为(﹣1,2).所以选:C.七.等腰三角形判定与性质21.如图,在△ABC中,∠ABC的角平分线和∠ACB相邻的外角平分线CD交于点D,过点D作DE∥BC交AB于E,交AC于G,若EG=2,且GC=6,则BE长为8.试题分析:根据角平分线+平行可以证明等腰三角形,所以可得EB=ED,GC=GD,从而求出DE的长,最后求出BE的长.答案详解:解:∵BD平分∠ABC,∴∠ABD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠ABD=∠EDB,∴EB=ED,∵CD平分∠ACF,∴∠ACD=∠DCF,∵DE∥BC,∴∠EDC=∠DCF,∴∠EDC=∠ACD,∴GC=GD=6,∵EG=2,∴ED=EG+GD=2+6=8,∴BE=ED=8,所以答案是:8.22.如图,△ABC中,∠A=∠ACB,CP平分∠ACB,BD,CD分别是△ABC的两外角的平分线,下列结论中:①CP⊥CD;②∠P=12∠A;③BC=CD;④∠D=90°−12∠A;⑤PD∥AC.其中正确的结论是①②④⑤(直接填写序号).试题分析:根据角平分线的定义得到∠PCB=12∠ACB,∠BCD=12∠BCF,根据垂直的定义得到CP⊥CD;故①正确;延长CB,根据角平分线的定义和三角形外角的性质得到∠P=12∠A,故②正确;根据平行线的判定定理得到AB∥CD,推出△ABC是等边三角形,而△ABC中,∠A=∠ACB,于是得到假设不成立,故③错误;根据角平分线的定义得到∠EBD=∠DBC,∠BCD=∠DCF,推出∠ABC=180°﹣2∠DBC,∠ACB=180°﹣2∠DCB,求得∠D=90°−12∠A,故④正确;根据三角形的外角的性质得到∠EBC=∠A+∠ACB,∠A=∠ACB,求得∠EBD=∠A,于是得到PD∥AC.故⑤正确.答案详解:解:∵CP平分∠ACB,CD平分∠BCF,∴∠PCB=12∠ACB,∠BCD=12∠BCF,∵∠ACB+∠BCF=180°,∴∠PCD=∠PCB+∠BCD=12∠ACB+12∠BCF=12(∠ACB+∠BCF)=90°,∴CP⊥CD;故①正确;延长CB,∵BD平分∠CBE,∠CBE=∠ABH,∴BP平分∠ABH,∴∠PBH=∠BCP+∠P,∵∠A+2∠PCB=2∠PBH,∴∠A+2∠PCB=2∠BCP+2∠P,∴∠A=2∠P,即:∠P=12∠A,故②正确;假设BC=CD,∴∠CBD=∠D,∵∠EBD=∠CBD,∴∠EBD=∠D,∴AB∥CD,∴∠DCF=∠A,∵∠ACB=∠A,CD平分∠BCF,∴∠ACB=∠BCD=∠DCF,∴∠A=∠ACB=60°,∴△ABC是等边三角形,而△ABC中,∠A=∠ACB,∴△ABC是等腰三角形,∴假设不成立,故③错误;∵BD、CD分别是△ABC的两个外角∠EBC、∠FCB的平分线,∴∠EBD=∠DBC,∠BCD=∠DCF,∴∠DBC+∠DCB+∠D=180°,∴∠A+∠ABC+∠ACB=180°,而∠ABC=180°﹣2∠DBC,∠ACB=180°﹣2∠DCB,∴∠A+180°﹣2∠DBC+180°﹣2∠DCB=180°,∴∠A﹣2(∠DBC+∠DCB)=﹣180°,∴∠A﹣2(180°﹣∠D)=﹣180°,∴∠A﹣2∠D=180°,∴∠D=90°−12∠A,故④正确;∵∠EBC=∠A+∠ACB,∠A=∠ACB,∴∠A=12∠EBC,∵∠EBD=12∠EBC,∴∠EBD=∠A,∴PD∥AC.故⑤正确;所以答案是:①②④⑤.23.Rt△ABC中,AC=BC,∠ACB=90°,如图,BO、CO分别平分∠ABC、∠ACB,EO∥AB,FO∥AC,若S△ABC=32,则△OEF的周长为8.试题分析:根据已知条件得到BC=8,根据平行线的性质得到∠ABO=∠BOE由角平分线的定义得到∠ABO=∠OBE,等量代换得到∠ABO=∠BOE于是得到BE=OE,则同理可得CE=OE即可得到结论.答案详解:解:∵AC=BC,∠ACB=90°,S△ABC=32,∴12BC2=32,∴BC=8,∵OE∥AB∴∠ABO=∠BOE∵OB平分∠ABC∴∠ABO=∠OBE∴∠ABO=∠BOE∴BE=OE,则同理可得OF=CF,∴△OEF的周长=OE+OF+EF=BE+EF+FC=BC=8.所以答案是:8.24.如图,△ABC中,∠ABC与∠ACB的平分线交于点D,过点D作EF∥BC,分别交AB,AC于点E,F.那么下列结论:①BD=DC;②△BED和△CFD都是等腰三角形;③点D是EF的中点;④△AEF的周长等于AB与AC的和.其中正确的有②④.(只填序号)试题分析:利用角平分线的定义可得∠ABD=∠DBC=12∠ABC,∠ACD=∠DCB=12∠ACB,然后根据∠ABC≠∠ACB,从而可得∠DBC≠∠DCB,进而可得DB≠DC,即可判断①;利用平行线的性质可得∠EDB=∠DBC,∠FDC=∠DCB,从而可得∠ABD=∠EDB,∠ACD=∠FDC,进而利用等角对等边可得ED=EB,FD=FC,即可判断②;根据EB≠FC,可得ED≠FD,即可判断③;利用等量代换可得△AEF的周长=AB+AC,即可判断④.答案详解:解:∵BD平分∠ABC,CD平分∠ACB,∴∠ABD=∠DBC=12∠ABC,∠ACD=∠DCB=12∠ACB,∵∠ABC≠∠ACB,∴∠DBC≠∠DCB,∴DB≠DC,故①不正确;∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∴∠ABD=∠EDB,∠ACD=∠FDC,∴ED=EB,FD=FC,∴△BED和△CFD都是等腰三角形,故②正确;∵EB≠FC,∴ED≠FD,故③不正确;∵EB=ED,FD=FC,∴△AEF的周长=AE+EF+AF=AE+ED+DF+AF=AE+EB+AF+FC=AB+AC,故④正确;综上所述:上列结论其中正确的有②④,所以答案是:②④.八.等边三角形的判定与性质25.如图,已知AB=AC,AD平分∠BAC,∠DEB=∠EBC=60°,若BE=5,DE=2,则BC=7.试题分析:作出辅助线后根据等腰三角形的性质得出△BEM为等边三角形,得出BM=EM=BE=5,从而得出BN的长,进而求出答案.答案详解:解:延长ED交BC于M,延长AD交BC于N,如图,∵AB=AC,AD平分∠BAC,∴AN⊥BC,BN=CN,∵∠EBC=∠DEB=60°,∴△BEM为等边三角形,∴BM=EM=BE=5,∠EMB=60°,∵DE=2,∴DM=3,∵AN⊥BC,∴∠DNM=90°,∴∠NDM=30°,∴NM=12DM=32,∴BN=BM﹣MN=5−32=72,∴BC=2BN=7.所以答案是:7.26.已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.试题分析:(1)根据等边三角形性质得出AC =BC ,CD =CE ,∠ACB =∠DCE =60°,求出∠ACD =∠BCE ,证△ACD ≌△BCE 即可;(2)根据全等求出∠ADC =∠BEC ,求出∠ADE +∠BED 的值,根据三角形的内角和定理求出即可;(3)求出AM =BN ,根据SAS 证△ACM ≌△BCN ,推出CM =CN ,求出∠NCM =60°即可. 答案详解:解:(1)∵△ABC 、△CDE 都是等边三角形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠BCD =∠DCE +∠BCD ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中{AC =BC ∠ACD =∠BCE CD =CE,∴△ACD ≌△BCE ,∴AD =BE .(2)解:∵△ACD ≌△BCE ,∴∠ADC =∠BEC ,∵等边三角形DCE ,∴∠CED =∠CDE =60°,∴∠ADE +∠BED =∠ADC +∠CDE +∠BED ,=∠ADC +60°+∠BED ,=∠CED +60°,=60°+60°,=120°,∴∠DOE =180°﹣(∠ADE +∠BED )=60°,答:∠DOE 的度数是60°.(3)证明:∵△ACD ≌△BCE ,∴∠CAD =∠CBE ,AD =BE ,AC =BC又∵点M 、N 分别是线段AD 、BE 的中点,∴AM =12AD ,BN =12BE ,∴AM =BN ,在△ACM 和△BCN 中{AC =BC ∠CAM =∠CBN AM =BN,∴△ACM ≌△BCN ,∴CM =CN ,∠ACM =∠BCN ,又∠ACB =60°,∴∠ACM +∠MCB =60°,∴∠BCN +∠MCB =60°,∴∠MCN =60°,∴△MNC 是等边三角形.27.如图,在△ABC 中,∠ACB =90°,∠A =30°,AB 的垂直平分线分别交AB 和AC 于点D ,E .(1)求证:AE =2CE ;(2)连接CD ,请判断△BCD 的形状,并说明理由.试题分析:(1)连接BE,由垂直平分线的性质可求得∠EBC=∠ABE=∠A=30°,在Rt△BCE 中,由直角三角形的性质可证得BE=2CE,则可证得结论;(2)由垂直平分线的性质可求得CD=BD,且∠ABC=60°,可证明△BCD为等边三角形.答案详解:(1)证明:连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC﹣∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE;(2)解:△BCD是等边三角形,理由如下:连接CD.∵DE垂直平分AB,∴D为AB中点,∵∠ACB=90°,∴CD=BD,∵∠ABC=60°,∴△BCD是等边三角形.九.直角三角形斜中线的灵活运用。

初二数学勾股定律难题集选及方法

初二数学勾股定律难题集选及方法

勾股定律难题集选用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。

图(1)中,所以。

方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。

图(2)中,所以。

方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。

在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。

,所以。

练习题CBA D EF1 如图,圆柱的高为10 cm ,底面半径为2 cm.,在下底面的A 点处有一只蚂蚁,它想吃到上底面上与A 点相对的B 点处,需要爬行的最短路程是多少?2 如图,长方体的高为3 cm ,底面是边长为2 cm 的正方形. 现有一小虫从顶点A 出发,沿长方体侧面到达顶点C 处,小虫走的路程最短为多少厘米? 答案AB=5AB3、一只蚂蚁从棱长为1的正方体纸箱的B’点沿纸箱爬到D 点,那么它所行的最短路线的长是_____________。

4、如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC •为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•5.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ). A .3B .4 CD .56.已知:如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交BC 于D ,垂足为E ,D=4cm . 求AC 的长.7、如图,有一个直角三角形纸片,两直角边AC=6,BC=8, 现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且 与AE 重合,则CD 的长为8、如图,在矩形ABCD 中,,6=AB 将矩形ABCD 折叠,使点B 与点D 重合,C 落在C '处,若21::=BE AE ,则折 痕EF 的长为 。

(完整word版)八年级数学全等三角形难题集锦

(完整word版)八年级数学全等三角形难题集锦

1. 如图① , 在△ ABC中 , ∠ ACB=90° ,AC=BC, 过点C 在△ ABC外作直线MN,AM⊥ MN于点M,BN⊥MN于点 N.(1)试说明 :MN=AM+BN.(2)如图② , 若过点 C作直线 MN与线段 AB订交 ,AM⊥MN 于点 M,BN⊥MN于点 N(AM>BN),(1) 中的结论能否仍旧建立 ?说明原因 .【答案】 (1) 答案看法析 ;(2) 不建立【分析】试题剖析:(1)利用互余关系证明∠ MAC =∠ NCB,又∠ AMC=∠CNB=90°, AC=BC,故可证△ AMC ≌△ CNB,进而有 AM=CN, MC=BN,即可得出结论;(2)近似于( 1)的方法,证明△ AMC ≌△ CNB,进而有 AM =CN ,MC =BN,可推出 AM 、 BN 与 MN 之间的数目关系.试题分析:解:( 1)∵ AM ⊥ MN , BN⊥ MN,∴∠ AMC=∠CNB=90°.∵∠ ACB=90°,∴∠ MAC +∠ ACM=90°,∠ NCB+∠ ACM=90°,∴∠ MAC=∠NCB.在△ AMC 和△ CNB 中,∵∠ AMC =∠ CNB,∠ MAC =∠ NCB, AC= CB,∴△ AMC ≌△ CNB(AAS ),∴ AM =CN ,MC =NB.∵MN =NC+CM ,∴ MN =AM+BN;(2)图( 1)中的结论不建立, MN =BN-AM.原因以下:∵AM ⊥ MN , BN⊥ MN ,∴∠ AMC=∠ CNB=90°.∵∠ ACB=90°,∴∠ MAC +∠ ACM=90°,∠ NCB+∠ ACM=90°,∴∠ MAC=∠NCB.在△ AMC 和△ CNB 中,∵∠ AMC =∠ CNB,∠ MAC =∠ NCB, AC= CB,∴△ AMC ≌△ CNB(AAS ),∴ AM =CN ,MC =NB.∵MN =CM -CN,∴ MN=BN-AM .点睛:此题考察了全等三角形的判断与性质.重点是利用互余关系推出对应角相等,证明三角形全等.2. 如图, BE、CF 是△ ABC 的高且订交于点 P,AQ∥ BC 交 CF 延伸线于点 Q,如有 BP=AC ,CQ=AB ,线段 AP 与 AQ 的关系怎样?说明原因。

全等三角形难题集锦

全等三角形难题集锦

全等三角形难题集锦1.已知△ABC中,∠ABC=45°,CD⊥XXX于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G。

1)证明BF=AC;2)证明CE=BF/2;3)推导CE与BC的大小关系。

2.已知△ABC为等边三角形,点D为直线BC上的一动点,以AD为边作菱形ADEF(A、D、E、F按逆时针排列),使∠DAF=60°,连接CF。

1)当点D在边BC上时,证明BD=CF和AC=CF+CD;2)当点D在边BC的延长线上时,AC≠CF+CD,AC、CF、CD之间存在什么数量关系;3)当点D在边BC的延长线上时,补全图形并直接写出AC、CF、CD之间的数量关系。

3.在△ABC中,BC边在直线l上,AC⊥BC,且AC=BC。

△EFP的边FP也在直线l上,XXX与XXX重合,且EF=FP。

1)通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;2)将△EFP沿直线l向左平移到图中的位置时,猜想并写出BQ与AP所满足的数量关系和位置关系,并证明猜想;3)将△EFP沿直线l向左平移到图中的位置时,EP的延长线交AC的延长线于点Q,猜想并说明BQ与AP的数量关系和位置关系是否仍然成立。

4.△AOB,△COD均为等腰直角三角形,∠AOB=∠COD=90º。

1)在图1中,证明AC与BD相等且垂直;2)当△COD绕点O顺时针旋转到图2的位置时,AC与BD不相等且不垂直;3)当△COD绕点O顺时针旋转到图3的位置时,AC与BD不相等但仍然垂直。

复“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知在△ABC中,AB=AC,P是△ABC内部任意一点,将AP绕A顺时针旋转至AQ,使∠QAP=∠BAC,连接BQ、CP,则BQ=CP.”XXX是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP之后,将点P移到等腰三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.解答:1)由已知得,∠QAP=∠BAC。

八年级上册数学重点难点题

八年级上册数学重点难点题

考察内容三角形、全等三角形、轴对称、整式的乘除与因式分解、分式。

(1)三角形:是初中数学的基础,中考命题中的重点。

中考试题分值约为18-24分,以填空,选择,解答题,也会出现一些证明题目。

【考察内容】①三角形的性质和概念,三角形内角和定理,三边关系,以及三角形全等的性质与判定。

②三角形全等融入平行四边形的证明③三角形运动,折叠,旋转,拼接形成的新数学问题④等腰三角形的性质与判定,面积,周长等⑤直角三角形的性质,勾股定理是重点⑥三角形与圆的相关位置关系⑦三角形中位线的性质应用(2)全等三角形(3)轴对称:图形的轴对称是中考题的新题型,热点题型。

分值一般为3-4分,题型以填空,选择,作图为主,偶尔也会出现解答题。

【考察内容】①轴对称和轴对称图形的性质判别。

②注意镜面对称与实际问题的解决。

(4)整式的乘除与因式分解:中考试题中分值约为4分,题型以选择,填空为主,难易度属于易。

【考察内容】①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公司的几何意义③利用提公因式发和公式法分解因式。

(5)分式:中考试题中分值约为6-8分,主要以填空,简答计算题型出现,难易度属于中。

【考察内容】①分式的概念,性质,意义②分式的运算,化简求值。

③列分式方程解决实际问题。

重点难点易错点学习内容:三角形重点:三角形的边、角的关系;三角形的“三线”;重心的概念及性质难点:三角形三边的关系;三角形的的“三线”易错点:三角形的三线的区分;多边形的外角学习内容:全等三角形重点:三角形全等的判定与探索;利用三角形全等解决实际问题。

难点:灵活运用三角形全等的各种方法证明三角形全等;利用全等三角形的性质证明边、角相等易错点:准确把握三角形全等的条件,以避免条件不完全的判定、及错判,如错用边边角学习内容:轴对称重点:轴对称的概念和性质;中垂线的性质运用;等腰三角形的的性质和判定难点:中垂线性质的运用;等腰三角形的性质的运用;利用轴对称解决最短路径问题易错点:对称轴是一条直线而非线段;最短路径问题学习内容:整式的乘除与因式分解重点:幂的运算法则;乘法公式;因式分解的方法难点:乘法公式的综合考察;准确理解因式分解和整式乘法运算的关系易错点:完全平方公式的运用;因式分解不彻底学习内容:分式重点:分式的意义及用分式的基本性质解题;分式的化简运算;分式方程的解法和应用难点:如何确定最简公分母;分式方程的一般解法;利用分式方程解决应用题易错点:解分式方程时必须检验;通分与解方程时去分母的区别。

全等三角形和轴对称专练题(50题)

全等三角形和轴对称专练题(50题)

全等三角形和轴对称专练题(50题)一.解答题(共60小题)1.如图,在△ABC中,D是BC边上的一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠DEC的度数.2.如图,在△ABC中,AB=AC,AD⊥BC于点D,E为AC边上一点,连接BE与AD交于点F,G为△ABC外一点,满足∠ACG=∠ABE,∠F AG=∠BAC,连接EG.(1)求证:△ABF≌△ACG;(2)求证:BE=CG+EG.3.如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连接AD,DE.已知∠1=∠2,AD=DE.(1)求证:△ABD≌△DCE;(2)若BD=3,CD=5,求AE的长.4.如图,AB平分∠CAD,AC=AD,求证:BC=BD.5.已知:如图,C是AB的中点,AE=BD,∠A=∠B.求证:∠E=∠D.6.如图,CE=DE,AE=BE,∠1=∠2,点D在AC边上,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠3的度数.7.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,AC=BD.求证:∠C=∠D.8.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.9.如图,四边形ABCD中,AD∥BC,E为CD的中点,连结BE并延长交AD的延长线于点F.(1)求证:△BCE≌△FDE;(2)连结AE,当AE⊥BF,BC=2,AD=1时,求AB的长.10.在△ABC中,D为AC的中点,DM⊥AB于M,DN⊥BC于N,且DM=DN.(Ⅰ)求证:△ADM≌△CDN.(Ⅱ)若AM=2,AB=AC,求四边形DMBN的周长.11.如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED,求证:DB=CD.12.如图,已知∠C=∠F=90°,AC=DF,AE=DB,BC与EF交于点O.(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=51°,求∠BOF的度数.13.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB,交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=2,CF=1时,求AC的长.14.如图,点C、E、F、B在同一直线上,CE=BF,AB=CD,AB∥CD.(1)求证∠A=∠D;(2)若AB=BE,∠B=40°,求∠D的度数.15.如图,AC=AE,∠1=∠2,AB=AD.求证:△ABC≌△ADE.16.如图,AB∥CD,∠B=∠D,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)试判断AD与BE有怎样的位置关系,并说明理由;(2)试说明△AOD≌△EOC.17.如图,在△ABC中,AB=AC=3,∠B=∠C=50°,点D在边BC上运动(点D不与点B,C重合),连接AD,作∠ADE=50°,DE交边AC于点E.(1)当∠BDA=100°时,∠EDC=°,∠DEC=°.(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.18.如图,在△ABC中,点D是BC上一点,且AD=AB,AE∥BC,∠BAD=∠CAE,连接DE交AC于点F.(1)若∠B=70°,求∠C的度数;(2)若AE=AC,AD平分∠BDE是否成立?请说明理由.19.如图所示,已知△ABC中AB=AC,E、D、F分别在AB,BC和AC边上,且BE=CD,BD=CF,过D作DG⊥EF于G.求证:EG=EF.20.如图,在△ABC中,∠B=∠C,点D、E、F分别在AB、BC、AC边上,且BE=CF,AD+EC=AB.(1)求证:DE=EF.(2)当∠A=36°时,求∠DEF的度数.21.如图,四边形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中点,AE与BD相交于点F,连接DE.(1)求证:△ABE≌△BCD;(2)判断线段AE与BD的数量关系及位置关系,并说明理由;22.如图,AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.23.如图,点A,B,C,D在一条直线上,且AB=CD,若∠1=∠2,EC=FB.求证:∠E=∠F.24.如图,点D在AB上,点E在AC上,AB=AC,BD=CE,求证:∠B=∠C.25.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD,∠BAC=∠D,BC=CE.(1)求证:AC=CD.(2)若AC=AE,∠ACD=80°,求∠DEC的度数.26.已知:如图,点D在△ABC的BC边上,AC∥BE,BC=BE,∠ABC=∠E,求证:AB=DE.27.如图,AC⊥CB,DB⊥CB,垂足分别为C、B,AB=DC,求证:∠A=∠D.28.如图,已知AD是△ABC的高,E为AC上的一点,BE交AD于点F,且有BF=AC,FD=CD,求证:BE⊥AC.29.已知:如图,AB=DE,AB∥DE,BE=CF,且点B、E、C、F都在一条直线上,求证:AC∥DF.30.如图,点B,E,C,F在同一直线上,∠A=∠D=90°,BE=FC,AB=DF.求证:∠B=∠F.31.如图,△ABC和△EFD的边BC、DF在同一直线上(D点在C点的左边),已知∠A=∠E,AB∥EF,BD=CF.(1)求证:△ABC≌△EFD;(2)求证:AC∥DE.32.如图,点B,E,C,F在同一条直线上,AB=DE,AC=DF,BF=CE,求证:△ABC≌△DEF;33.如图,A,B,C,D是同一条直线上的点,AC=BD,AE∥DF,∠1=∠2.求证:BE=CF.34.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形;(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.35.如图,∠1=∠2,∠C=∠D,求证:AC=AD.36.如图,在△ABC中,D是BC的中点,过D点的直线EG交AB于点E,交AB的平行线CG于点G,DF⊥EG,交AC于点F.(1)求证:BE=CG;(2)判断BE+CF与EF的大小关系,并证明你的结论.37.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数(直接写出结果);(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ 的形状,并加以证明.38.如图,AC⊥CB,DB⊥CB,垂足分别为C,B,AB=DC.求证:∠ABD=∠ACD.39.如图,已知AB=AD,∠B=∠D=90°.求证:△ABC≌△ADC.40.如图,已知点A、E、F、C在同一直线上,∠1=∠2,AE=CF,AD=CB.判断BE和DF的位置关系,并说明理由.41.如图,△ABC中,AB=AC,点D,E在边BC上,且BD=CE.(1)求证:△ABD≌△ACE;(2)若∠B=40°,AB=BE,求∠DAE的度数.42.已知:如图,B,A,E在同一直线上,AC∥BD且AC=BE,∠ABC=∠D.求证:AB=BD.43.已知:如图,∠B=∠C=90°,AF=DE,BE=CF.求证:AB=DC.44.已知:点A、E、D、C在同一条直线上,AE=CD,EF∥BD,EF=BD.求证:AB∥CF.45.已知:如图AC,BD相交于点O,∠A=∠D,AB=CD,求证:△AOB≌△DOC.46.如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,AE=CF,求证:AB∥CD.47.已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为点E,BF∥AC交CE的延长线于点F.求证:AC=2BF.48.如图,A、B两建筑物位于河的两岸,为了测量它们的距离,可以沿河岸作一条直线MN,且使MN ⊥AB于点B,在BN上截取BC=CD,过点D作DE⊥MN,使点A、C、E在同一直线上,则DE的长就是A、B两建筑物之间的距离,请说明理由.49.如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:(1)∠D=∠B;(2)AE∥CF.50.如图,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF.求证:△ABF≌△CDE.51.已知:如图,点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:BD=CE.52.如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:(1)△ABC≌△DEF;(2)BC∥EF.53.已知:如图,AC与BD交于点O,AO=CO,BO=DO.求证:AB∥CD.54.已知:如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.55.如图,已知∠ABC=∠ADC=90°,E是AC上一点,AB=AD,求证:EB=ED.56.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.57.已知:如图,AB∥DE,AC∥DF,BE=CF,求证:AB=DE.58.如图,D是AB上一点,DF交AC于点E,DE=EF,AE=CE,求证:AB∥CF.59.如图,BE=BC,∠A=∠D,求证:AC=DE.60.如图,AD,BC相交于点O,OA=OB,∠C=∠D=90°.(1)求证:△ACB≌△BDA.(2)当AC=3,AB=5时,求OD的长.2022年11月03日遵义三十二钟的初中数学组卷一.解答题(共60小题)1.如图所示:(1)A,B两点关于轴对称;(2)A,D两点横坐标相等,线段AD y轴,线段ADx轴;若点P是直线AD上任意一点,则点P的横坐标为;(3)线段AB与CD的位置关系是;若点Q是直线AB上任意一点,则点Q的纵坐标为.2.如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1).(1)在图中作△A'B'C',使△A'B'C'和△ABC关于x轴对称;(2)写出点A',B',C'的坐标;(3)直接写出△ABC的面积.3.如图,在△ABC中,∠C=90°,∠A=30°,AB=6cm,动点P、Q同时从A、B两点出发,分别在AB、BC边上匀速移动,它们的速度分别为V P=2cm/s,V Q=1cm/s,当点P到达点B时,P、Q两点同时停止运动,设点P的运动时间为ts.(1)当t为何值时,△PBQ为等边三角形?(2)当t为何值时,△PBQ为直角三角形?4.已知:如图,E为△ABC的外角平分线上的一点,AE∥BC,BF=AE,求证:(1)△ABC是等腰三角形;(2)AF=CE.5.如图,在△ABC中,AB=AC,D为CA延长线上一点,且DE⊥BC交AB于点F.(1)求证:△ADF是等腰三角形;(2)若AC=10,BE=3,F为AB中点,求DF的长.6.如图,在△ABC中,DE垂直平分BC,垂足为E,交AC于点D,连接BD.若∠A=100°,∠ABD =22°,求∠C的度数.7.△ABC在平面直角坐标系中的位置如图所示A、B、C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;(2)作出△ABC关于x对称的△A2B2C2,并写出点A2的坐标;(3)求△AA1A2的面积.8.如图,在△ABC中,AD是BC边上的高线,AD的垂直平分线分别交AB,AC于点E,F.(1)若∠DAC=30°,求∠FDC的度数;(2)试判断∠B与∠AED的数量关系,并说明理由.9.如图所示,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1)B(4,2)C(2,3).(1)在图中画出△ABC关于x轴对称的图形△A1B1C1;(2)在图中,若B2(﹣4,2)与点B关于一条直线成轴对称,则这条对称轴是,此时C点关于这条直线的对称点C2的坐标为;(3)△A1B1C1的面积为;(4)在y轴上确定一点P,使△APB的周长最小.(注:不写作法,不求坐标,只保留作图痕迹)10.如图,在四边形ABCD中,AB∥CD,连接BD,点E在BD上,连接CE,若∠1=∠2,AB=ED.(1)求证:BD=CD.(2)若∠A=120°,∠BDC=2∠1,求∠DBC的度数.11.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)△ABC的面积;(2)在坐标系中作出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标.12.如图,在△ABC中,AB=BC,∠ABC=120°,AB的垂直平分线DE交AC于点D,连接BD,若AC=12.(1)求证:BD⊥BC.(2)求DB的长.13.如图,在平面直角坐标系中,△ABC的顶点A(0,1),B(2,0),C(4,4)均在正方形网格的格点上.(1)画出△ABC关于x轴对称的图形△A1B1C1并写出顶点A1,B1,C1的坐标;(2)已知P为y轴上一点,若△ABP与△ABC的面积相等,请直接写出点P的坐标.14.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)作出△ABC关于y轴的对称图形△A'B'C';(2)写出点A',B',C'的坐标.(3)在y轴上找一点P,使P A+PC的长最短.15.如图,在△ABC中,∠B=30°,∠C=40°.(1)尺规作图:①作边AB的垂直平分线交BC于点D;②连接AD,作∠CAD的平分线交BC于点E;(要求:保留作图痕迹,不写作法)(2)在(1)所作的图中,求∠DAE的度数.16.如图,△ABC是等边三角形,P是△ABC的角平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.(1)若BQ=2,求PE的长(2)连接PF,EF,试判断△EFP的形状,并说明理由.17.如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.(1)求证:△ABC是等腰三角形;(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.18.如图,在△ABC中,AB=AC,点D为AC上一点,且满足AD=BD=BC.点E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF.(1)求∠BAC和∠ACB的度数;(2)求证:△ACF是等腰三角形.19.如图,在△ABC中,AB=AC,∠B=30°,D为BC边上一点,∠DAB=45°.(1)求∠DAC的度数;(2)请说明:AB=CD.20.如图:已知AB=AC=AD,且AD∥BC求证:∠C=2∠D.21.如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.22.在△ABC中,AB=AC,AD⊥BC,∠BAD=40°,AD=AE,求∠CDE的度数.23.在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,垂足为G,且AD=AB.∠EDF=60°,其两边分别交边AB,AC于点E,F.(1)求证:△ABD是等边三角形;(2)求证:BE=AF.24.如图,在△ABC中,AB=AC,点D是BC上一点,点E是AC上一点,且DE⊥AD.若∠BAD=55°,∠B=50°,求∠DEC的度数.25.如图,△ABC中,BC=10,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.26.如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=∠B.27.在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且AE=BD,(1)当点E为AB的中点时,如图1,求证:EC=ED;(2)当点E不是AB的中点时,如图2,过点E作EF∥BC,求证:△AEF是等边三角形;(3)在第(2)小题的条件下,EC与ED还相等吗,请说明理由.28.如图,△ABC中,AB=AC=CD,BD=AD,求△ABC中各角的度数.(2)当∠A=50°时,求∠DEF的度数.30.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:AE=BC.31.已知,如图,∠B=∠C,AB∥DE,EC=ED,求证:△DEC为等边三角形.32.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长.(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.34.如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD=BE,求证:△ABC为等腰三角形.35.如图:△ABC和△ADE是等边三角形.证明:BD=CE.36.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD垂直平分EF.37.如图,在△ABC中,∠A=40°,点D,E分别在边AB,AC上,BD=BC=CE,连结CD,BE.(1)若∠ABC=80°,求∠BDC,∠ABE的度数;(2)写出∠BEC与∠BDC之间的关系,并说明理由.38.如图,在△ABC中,AB=AC.过点A作BC的平行线交∠ABC的角平分线于点D,连接CD.(1)求证:△ACD为等腰三角形.(2)若∠BAD=140°,求∠BDC的度数.39.已知:如图,在△ADC中,AD=CD,且AB∥DC,CB⊥AB于B,CE⊥AD交AD的延长线于E,连接BE.(1)求证:CE=CB;(2)若∠CAE=30°,CE=2,求BE的长度.40.如图,在△ABC中,AB=AC,∠ABC的平分线BE交AC于点D,AF⊥AB交BE于点F.(1)如图1,若∠BAC=40°,求∠AFE的度数.(2)如图2,若BD⊥AC,垂足为D,BF=8,求DF的长.41.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,这两条垂直平分线分别交BC于点D、E.(1)若∠ABC=30°,∠ACB=40°,求∠DAE的度数;(2)已知△ADE的周长7cm,分别连接OA、OB、OC,若△OBC的周长为15cm,求OA的长.42.在△ABC中,点E,点F分别是边AC,AB上的点,且AE=AF,连接BE,CF交于点D,∠ABE =∠ACF.(1)求证:△BCD是等腰三角形.(2)若∠A=40°,BC=BD,求∠BEC的度数.43.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB于点E.(1)求证:∠AEC=∠ACE;(2)若∠AEC=2∠B,AD=1,求BD的长.44.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.求证:线段BF垂直平分线段AD.45.已知:如图,在等腰三角形ADC中,AD=CD,且AB∥DC,CB⊥AB于B,CE⊥AD交AD的延长线于E.(1)求证:CE=CB;(2)如果连接BE,请写出BE与AC的关系并证明.46.已知:如图,在△ABC中,点D是BC上一点,∠1=80°,AB=AD=DC.求:∠C的度数.47.如图,△ABC中,AB,AC边的垂直平分线分别交BC于点D,E,垂足分别为点F,G,△ADE的周长为6cm.(1)求△ABC中BC边的长度;(2)若∠BAC=116°,求∠DAE的度数.48.已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE分别交AB、AC于D、E.(1)若AC=12,BC=10,求△EBC的周长;(2)若∠A=40°,求∠EBC的度数.49.已知在△ABC中,AB=AC,且线段BD为△ABC的中线,线段BD将△ABC的周长分成12和6两部分,求△ABC三边的长.50.如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D为线段CE的中点,BE =AC.(1)求证:AD⊥BC.(2)若∠BAC=75°,求∠B的度数.51.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形.(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.52.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB.(1)若∠ABC=70°,则∠NMA的度数是度.(2)若AB=8cm,△MBC的周长是14cm.①求BC的长度;②若点P为直线MN上一点,请你直接写出△PBC周长的最小值.53.如图,已知AE平分∠BAC,BE⊥AE于E,ED∥AC,∠BAE=42°,求∠BED的度数.54.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC.(1)求△PDE的周长;(2)若∠A=50°,求∠BPC的度数.55.如图,在△ABC中,AB=AC=6,BC=10,AB的垂直平分线分别交BC、AB于点D、E.(1)求△ACD的周长;(2)若∠C=25°,求∠CAD的度数.56.如图在△ABC中,AB=AC=9,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,求DF的长.57.如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示).58.如图,△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D.①若△BCD的周长为8,求BC的长;②若BD平分∠ABC,求∠BDC的度数.59.如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.60.如图,AD平分∠BAC,EF垂直平分AD交BC的延长线于F,连接AF.求证:∠B=∠CAF.。

全等三角形难度题含答案

全等三角形难度题含答案

全等三角形测试题荟萃(1)一.选择题1.如图,EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有()A.4个B.3个C.2个D.1个【解】∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF∴BE=CF∠BAE=∠CAF∠BAE﹣∠BAC=∠CAF﹣∠BAC∴∠1=∠2△ABE≌△ACF∴∠B=∠C,AB=AC又∠BAC=∠CAB△ACN≌△ABM.④CD=DN不能证明成立,3个结论对.故选:B.2.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,BF⊥AE于点F.若BP=4,则PF的长()A.2 B.3 C.1 D.2【解】∵△ABC是等边三角形,∴AB=AC.∴∠BAC=∠C.在△ABD和△CAE中,,∴△ABD≌△CAE(SAS).∴∠ABD=∠CAE.∴∠APD=∠ABP+∠PAB=∠BAC=60°.∴∠BPF=∠APD=60°.∵∠BFP=90°,∠BPF=60°,∴∠PBF=30°.∴PF=.故选:A.3.如图,OA=OC,OB=OD且OA⊥OB,OC⊥OD,下列结论:①△AOD≌△COB;②CD=AB;③∠CDA=∠ABC;其中正确的结论是()A.①②B.①②③C.①③D.②③【解答】解:∵OA⊥OB,OC⊥OD,∴∠AOB=∠COD=90°.∴∠AOB+∠AOC=∠COD+∠AOC,即∠COB=∠AOD.在△AOB和△COD中,,∴△AOB≌△COD(SAS),∴AB=CD,∠ABO=∠CDO.在△AOD和△COB中,∴△AOD≌△COB(SAS)∴∠CBO=∠ADO,∴∠ABO﹣∠CBO=∠CDO﹣∠ADO,即∠ABC=∠CDA.综上所述,①②③都是正确的.故选:B.二.解答题4.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC.(1)求证:∠ABD=∠ACD;(2)若∠ACB=65°,求∠BDC的度数.【解答】证明:(1)∵∠BAC=∠EAD∴∠BAC﹣∠EAC=∠EAD﹣∠EAC即:∠BAE=∠CAD在△ABE和△ACD中∴△ABE≌△ACD ∴∠ABD=∠ACD(2)∵∠BOC是△ABO和△DCO的外角∴∠BOC=∠ABD+∠BAC,∠BOC=∠ACD+∠BDC∴∠ABD+∠BAC=∠ACD+∠BDC∵∠ABD=∠ACD∴∠BAC=∠BDC∵∠ACB=65°,AB=AC∴∠ABC=∠ACB=65°∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣65°﹣65°=50°∴∠BDC=∠BAC=50°.5.(1)如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试探究AB,AD,DC之间的等量关系,证明你的结论;(2)如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E 是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,证明你的结论.【解答】解:(1)证明:延长AE交DC的延长线于点F,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠F,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠BAE=∠EAD,∵AB∥CD,∴∠BAE=∠F,∴∠EAD=∠F,∴AD=DF,∴AD=DF=DC+CF=DC+AB,(2)如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF,6.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.【解】证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=DC,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形.7.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.【解】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA.在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.8.如图,在Rt△ABC,∠ACB=90°,AC=BC,分别过A、B作直线l的垂线,垂足分别为M、N.(1)求证:△AMC≌△CNB;(2)若AM=3,BN=5,求AB的长.【解】:(1)∵AM⊥l,BN⊥l,∠ACB=90°,∴∠AMC=∠ACB=∠BNC=90°,∴∠MAC+∠MCA=90°,∠MCA+∠NCB=180°﹣90°=90°,∴∠MAC=∠NCB,在△AMC和△CNB中,,∴△AMC≌△CNB(AAS);(2)∵△AMC≌△CNB,∴CM=BN=5,∴Rt△ACM中,AC===,∵Rt△ABC,∠ACB=90°,AC=BC=,∴AB===2.9.已知,如图,在等腰直角三角形中,∠C=90°,D是AB的中点,DE⊥DF,点E、F在AC、BC上,求证:DE=DF.【解】证明:连接CD.∵在等腰直角三角形ABC中,D是AB的中点.∴CD为等腰直角三角形ABC 斜边BC上的中线.∴CD⊥AB,∠ACD=∠BCD=45°,CD=BD=AD.又∵DE⊥DF∴∠EDC=∠FDB在△ECD和△FBD中∴△ECD≌△FDB(ASA)∴DE=DF10.如图,OC是∠MON内的一条射线,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A,B,PA=PB,连接AB,AB与OP交于点E.(1)求证:△OPA≌△OPB;(2)若AB=6,求AE的长.【解】(1)∵PA⊥OM,PB⊥ON,∴∠PAO=∠PBO=90°,又∵PA=PB,PO=PO,∴Rt△AOP≌Rt△BOP;(2)∵△OPA≌△OPB,∴∠APE=∠BPE,又∵PA=PB,∴AE=BE,∴AE=AB=3.11.如图,△ABC和△ADE分别是以BC,DE为底边且顶角相等的等腰三角形,点D在线段BC上,AF平分DE交BC于点F,连接BE,EF.(1)CD与BE相等?若相等,请证明;若不相等,请说明理由;(2)若∠BAC=90°,求证:BF2+CD2=FD2.【解】(1)CD=BE,理由如下:∵△ABC和△ADE为等腰三角形,∴AB=AC,AD=AE,∵∠EAD=∠BAC,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠CAD,在△EAB与△CAD中,∴△EAB≌△CAD,∴BE=CD,(2)∵∠BAC=90°,∴△ABC和△ADE都是等腰直角三角形,∴∠ABF=∠C=45°,∵△EAB≌△CAD,∴∠EBA=∠C,∴∠EBA=45°,∴∠EBF=90°,在Rt△BFE中,BF2+BE2=EF2,∵AF平分DE,∴AF垂直平分DE,∴EF=FD,由(1)可知,BE=CD,∴BF2+CD2=FD212.如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA,PE⊥OB,垂足分别为D,E.F是OC上另一点,连接DF,EF.求证:DF=EF.【解】证明:∵OC是∠AOB的角平分线,P是OC上一点,PD⊥OA,PE⊥OB,∴∠DOP=∠EOP,PD=PE.在Rt△POD和Rt△POE中,,∴Rt△POD≌Rt△POE(HL),∴OD=OE.在△ODF和△OEF中,,∴△ODF≌△OEF(SAS),∴DF=EF.13.如图,OP平分∠AOB,PE⊥OA于E,PF⊥OB于F,点M在OA上,点N 在OB上,且PM=PN.求证:EM=FN.【解】证明:∵点P在∠AOB的平分线上,PE丄0A于E,PF丄OB于F,∴PF=PE,在Rt△PEM和Rt△PEN中,∴Rt△PEM≌Rt△PEN(HL),∴EM=FN.14.如图,△ABC中,D为BC边上一点,BE⊥AD的延长线于E,CF⊥AD于F,BE=CF.求证:D为BC的中点.【解】证明:∵BE⊥AD的延长线于E,CF⊥AD于F,∴∠CFD=∠BED=90°,在△BED和△CFD中,∴△CDF≌△BDE(AAS)∴CD=BD.∴D为BC的中点.全等三角形测试题荟萃(2)2、 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。

全等三角形难题集锦超级好题汇总

全等三角形难题集锦超级好题汇总

1.如图,已知等边△ABC ,P 在AC 延长线上一点,以PA 为边作等边△APE,EC 延长线交BP 于M ,连接AM,求证:(1)BP=CE ; (2)试证明:EM-PM=AM.2、点C 为线段AB 上一点,△ACM, △CBN 都是等边三角形,线段AN,MC 交于点E ,BM,CN 交于点F 。

求证: (1)AN=MB.(2)将△ACM 绕点C 按逆时针方向旋转一定角度,如图②所示,其他条件不变,(1)中的结论是否依然成立? (3)AN 与BM 相交所夹锐角是否发生变化。

3.已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.22题PB EA B A B N CN 图①图②4、如图1,以ABC △的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断ABC △与AEG △面积之间的关系,并说明理由.5、如图所示,已知△ABC 和△BDE 都是等边三角形,且A 、B 、D 三点共线.下列结论:①AE=CD ;②BF=BG ;③HB 平分∠AHD ;④∠AHC=60°,⑤△BFG 是等边三角形;⑥FG ∥AD .其中正确的有( ) A .3个 B .4个 C .5个 D .6个6. 如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .AG FC BDE (图1) ABCD EFDCB A7、已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F . 当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12DEF CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.8.已知AC//BD,∠CAB 和∠DBA 的平分线EA 、EB 与CD 相交于点E. 求证:AB=AC+BD.9.如图1,BD 是等腰ABC Rt Δ的角平分线, 90=∠BAC .(1)求证BC =AB +AD ; (2)如图2,BD AF ⊥于F ,BD CE ⊥交延长线于E ,求证:BD =2CE ;A E C F BD图1图3ADFECBADBCE图2F图十一4321P A BC10、已知,如图1,在四边形ABCD 中,BC >AB ,AD=DC ,BD 平分∠ABC 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形轴对称勾股定理中难度题型荟萃(强化训练)3.如图,在A J MC中,ZJ -90° > A8=6米,80 8米,动点P以2米/秒的速度从S点出发,沿刀。

向点(7移动,同时,动点。

以1米/秒的速度从。

点出发,沿C8向点8移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为g秒.(1)①当t=2.5秒时,求hCPQ的面积;②求hCPQ的面积S (平方米)关于时间,(秒)的函数解析式;(2)在P,。

移动的过程中,当bCPQ为等腰三角形时,写出,的值;1.将两个等边AABC和Z\DEF (DE>AB)如图所示摆放,点D是BC上一点(除B、C 外),把ADEF绕顶点D顺时针方向旋转一定的角度,使得边DE、DF与AABC的边(边BC除外)分别相交于点M、N.(1)NBMD和ZCDN相等吗?(2)画出使ZBMD和NCDN相等得所有情况的图形;(3)在(2)题中任选一种图形说明ZBMD和ZCDN相等的理由.8.如图,AABC的边BC在直线上,AC1BC,且AC=BC, ADEF的边FE也在直线*次上,边DF与边AC重合,且DF=EF.。

)在图(1)中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;(不要求证明)(2)将ADEF沿直线出向左平移到图(2)的位置时,DE交AC于点G,连结AE, BG.猜想ABCG与AACE能会通过旋转重合?请证明你的猜想.A(D) D A图⑴图⑵10.巳知:在•中,AC=BC f ZACB=9^f点D是的中点,点E是边上一点.(1)直线垂直于CE于点交CO于点G (如图①),求证:AE=CG;(2)直线垂直于CE于,垂足为H,交CD的延长线于点M (如图②),找出图中与相等的线段,并说明.13.将两块大小相同的含30。

角的直角三角板(NB4C=N8RC=30。

)按图①方式放置, 固定三角板A f B r C t然后将三角板SBC绕直角顶点C顺时针方向旋转(旋转角小于90。

)至图②所示的位置,48与彳C交于点与』&交于点F, 与相交于点O.(1)求证:△ BCE£△ B,CF;(2)当旋转角等于30。

时,A8与垂直吗?请说明理由19.如图,在左ABC中,AB=AC, D 为J B C边上一点,Z^=30°, ZDAB=45°.(1)求ZDAC的度数;(2)求证:DC=AB20.如图,矩形ABCD中,点P是线段AD±一动点,O为BD的中点,PO的延长线交BC 于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D 重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD 是菱形.以P D图1图2图322. (1)如图①,在正方形ABCD中,的顶点E, F分别在8C, CD边上,高刀G 与正方形的边长相等,求么"的度数.(2)如图②,在中,\auj.flr,J U.G,点M,N是8D边上的任意两点,且ZAflW.dV,将绕点4逆时针旋转殖至△ADH位置,连接螺, 试判断A/N, ND, OH之间的数量关系,并说明理由.(3)在图①中,连接8D分别交AE.AF于点M,N,若愈..,斯..,,求刀G, MN的长.(图②〉25.在uABCD中,ZBAD的平分线交直线8C于点E,交直线OC于点F(1)在图1中证明cg^CP ;(2)若4«7=汩,G是EF的中点(如图2),直接写出/BDG的度数;(3)若ZABC-VXP,FG//CE, ,G= CR,分别连结DB、DG(如图3),求NBDG 的度数.RD E26.如图,在△N8C ZACB=9Q°中,〃是 8C 的中点,DEA.BC, CE//AD,若.0=2, CE=4,求四边形ACEB 的周长.28.问题:己知△刀8C 中,ZBAC=2ZACB f 点 Z)是左ABC 内一点,S.AD=CD 9BD=BA. 探究ZDBC 与ZABC 度数的比值.请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1)当Z^C=90°时,依问题中的条件补全下图.观察图形,48与4C 的数量关系为;当推出ZDAC=\5Q 时,可进一步推出/DBC 的度数为;可得到ZDBC 与ZABC 度数的比值为.(2)当N&1490。

时,请你画出图形,研究ZDBC 与匕48C 度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.全部试题答案:1.解:(1)可能相等,也可能不相等.(2)有四种情况,如下面四个图(3)选④证明::AABC和ADEF均为等边三角形,AZB=ZEDF=60°,・.・ ZADB+ZBMD=ZADB+ZCDN=120°,AZBMD=ZCDN3.解:在Rt/\AB C 中,46=6 米,BC=S米:.AC= 10 米由题意得:AP=2t f CQ=t则PC=10-2/(1)①过点P作PDA.BC于O,・・*2.5秒时,4P=2X2.5=5米,四=2.5米1 1/. PD= 2 43= 3 米,:.S= 3 -QC.-ED =3.75 平方米;②过点Q作QEA.PC于点E,QX AB _女易知Rt &QBC sRt AjUC.•・QC~AC ,奶=亏.•.S= \.FCQfi = \(10-20 1=十-女(° V <5】;f_10 25 80 (2)当秒(此时POQC), T秒(此是PQ=0C),或另秒(此时Pg=PC)时,AU笠为等腰三角形;8.解:(1)AB=AE, AB1AE(2)将ABCG绕点C顺时针旋转90。

后能与AACE重合(或将AACE绕点C逆时针旋转90。

后能与ABCG重合),理由如下:VAC±BC, DF±EF, B、F、C、E 共线,/. ZACB=ZACE=ZDFE=90°又・.・AC=BC, DF=EF, /. ZDFE=ZD=45°,在Z\CEG 中,V ZACE=90°, A ZCGE=ZDEF=90°,..CG=CE,在ABCG和AACE中*7 = AC「.△BCG竺ZkACE (SAS).••将ABCG绕点C顺时针旋转90。

后能与△ ACE重合(或将△ ACE绕点C 逆时针旋转90。

后能与ABCG重合).10.解:(1)证明:..•点。

是48 中点,AC=BC, ZACB=90°:.CDA.AB, ZACD= ZBCD = 45° ZCAD= ZCBD = 45° :.ZCAE =A BCG又BFLCE, :. ZCBG+ ZBCG=90Q又ZACE+ZBCF=90° :. ZACE=ZCBG:./\AEC^/\CGB :.AE=CG(2)BE=CM证明:.: CH上HM, CDA.ED :. ZCMA +ZMCH=90° ZBEC+ZMCH= 90°:.ZCMA=ZBEC 又,AC=BC, ZACM= ZCBE=45°:.^BCE^ACAM :・BE=CM13.解:(1)因/B=/B/, BC=B/C, ZBCE=90°-Z A Z C A= Z B f CF9 所以△ BCE 竺(2) AB与彳8,垂直,理由如下:旋转角等于30。

,即ZECF= 30°,所以/FCB/=6»,又ZB=ZB/=60。

,根据四边形的内角和可知19.解:(1) 9:AB=AC:.ZB=ZC=30°ZC+ ZBAC+ ZB=180°・.・匕曲C=180°—30°—30°=120°ZDAB=45°:.ZDAC=ZBAC-ZDAB=120o-45o=75o(2) V ZDAB=45°:.ZADC=ZB+ ZDAB=15°:.ZDAC=ZADC:.DC=AC:.DC=AB20.(1)证明:..四边形ABCD是矩形,...AD〃BC,AZPDO=ZQBO,又OB=OD, ZPOD=ZQOB,AAPOD^AQOB,・.・ OP=OQ.(2)解法一:PD=8-t..•四边形ABCD是矩形,A ZA=90°,V AD= 8cm , AB= 6cm , /. BD= 10cm , /. OD= 5cm .当四边形PBQD 是菱形时,PQ±BD, AZPOD=ZA, XZODP=ZADB, AAODP^AADB, OP AD 5 8・.・ AD" JD ,即8^7" 10 ,_7 7解得l = 4,即运动时间为4秒时,四边形PBQD是菱形.解法二:PD=8-t当四边形PBQD是菱形时,PB=PD=(8-t)cm,•.•四边形ABCD 是矩形,A ZA=90°,茬RT^ABP 中,AB= 6cm ,7 7解得< =4,即运动时间为4秒时,四边形PBQD是菱形.22.解:(1)在Rt/\ABE和RtZX/GE 中,姬.如,曷, :./\ABE^/\AGE.:• -同理,ZGAF-Z£Mr .・■二』fiHD・4分2(2)・,: ZBMf.ZGJM,ZBMf Y21W・45・,:• 0EW・aMH*,0XW F・4S・-「・ZAIV-ZMiW •又•「AU^AH,ZAf-JW '・'・Sf.flV,: ZAMD-MT,AB.AD,:• ZJU99 - ZJU» - 45* -:• ZAZW-ZA2M4.ZjG»-0n t・:• ・・.・ y.ND'DB,-(3)由(1)知,Bc.m, nr-A>•设XG-x,贝U CK-x-4 ,-,: eB%CF'.W '・.・a-4?+u・«y・i『解这个方程,得Xj-12 , x a--2 (舍去负根).:• M . L _________ _______:•叫:心-在(2)中,皿・,BM-ZW,:• Ml,.心.BU,・设JMf.d,则「■。

2&・以一。

*(切)'・・•・G.5逐・即MN.涌・25.解:⑴证明:如图1.:AF平分ZB4D,:.ZBAF=ZDAF.・・四边形ABCD是平行四边形,:・AD〃BC, AB//CD.:.ZDAF=ZCEF9 ZBAF=ZF.:.ZCEF=ZF.:.CE=CF(2)ZBDG=45°(3)解:分别连结G8、GE、GC (如图3)D图3:AB//DC. ZABC=120°:.ZECF=ZABC=120°•.歹G〃CE 且8G=CE..•・四边形CEGF是平行四边形.由⑴得CE=CF,:.nCEGF是菱形・1:.EG=EC, ZGCF=ZGCE= 2 ZECF=60°:4ECG是等边三角形:.EG=CG,①ZGEC=ZEGC=60°:.ZGEC=ZGCF. :. ZBEG=ZDCG.②由AD//BCRAF^^ ZBAD可得ZBAE= ZAEB.:.AB=BE.在□如CO 中,AB=DC.・•・BE=DC.③由①②③得△ BEG#4DCG.:.BG=DG. Z1=Z2.:.ZBGD=Zl +Z3=Z24-Z3=Z£GC=60°180°-ZJGDA ZBDG= 2 =60°.26.解:V ZACB=90°9 DEA.BC,:.AC//DE.又•: CE〃 A。

相关文档
最新文档