神经干复合动作电位以及其传导速度和兴奋不应期的测定
神经干动作电位、兴奋传导速度和不应期测定实验报告
神经干动作电位、兴奋传导速度和不应期测定实验报告神经干动作电位、兴奋传导速度和不应期测定实验报告课程:机能实验基础医学院系临床班姓名学号组员:【实验目的】1.了解电生理仪器的使用。
2.观察蟾蜍坐骨神经动作电位的基本波形;学习神经干动作电位的记录方法以及潜伏期、幅值、时程的测量;3.学习神经干动作电位传导速度的测定方法。
加深理解神经兴奋传导的概念及意义。
4.了解神经干兴奋后兴奋性的改变。
学习测定不应期的方法。
【实验动物】牛蛙【实验结果】图一神经干动作电位观察到一个先升后降的双相动作电位波形(有刺激伪迹)。
时程为4ms,潜伏期为,最大幅度为,(当刺激强度为时)。
图二神经干兴奋传导速度测定每个电极间距25mm,时间约为,速度测定为s图三神经的不应期测定(按时间顺序,从上到下、从左到右排列)【实验讨论】神经动作电位的观察神经细胞产生兴奋的客观标志是神经细胞的动作电位。
当神经纤维未受刺激时,膜外与电极所接触的两点之间没有电位差,所以两电极之间也无电位差存在,扫描线为一水平基线。
处于兴奋部位的膜外电位低于静息部位,当动作电位通过后,兴奋部位的膜外电位又恢复到静息水平,用电生理学方法可以引导并记录到此电位变化过程。
将一对引导电极置于神经干表面,当神经冲动通过时,两电极之间将产生一短暂的电位变化过程,即为神经干动作电位。
神经干动作电位是复合动作电位,可沿细胞膜做不衰减的传导,它的幅度在一定范围内与刺激强度成正比。
由于引导方式不同,记录到的神经干动作电位有双相和单相之分,假如在引导的两个电极之间将神经干麻醉或损坏,阻断其兴奋传导能力,此时可以记录到单相动作电位。
在神经干左端给与电刺激后,则产生一个向右传导的冲动(负电位),当冲动传导1电极(负电极)下方时,此处电位较2处低,产生了电位差,扫描线向上偏转,记录出一个向上的波形(在电生理实验中,规定负波向上)。
随后,冲动继续向右侧传导,离开1电极传向2电极处。
随后,冲动继续向右侧传导,离开1电极传向2电极处。
神经干动作电位、传导速度以及不应期的测定
不应期
S1
S2
t t1
t2
方法和步骤
➢ 急性动物实验制备蟾蜍 坐骨神经干标本 ▪ 分离坐骨神经干标本, 任氏液保持标本湿润
观察项目
• 记录随刺激强度增强而改变的双向复合动作电位。 • 测量动作电位的传导速度。 • 交换神经干两端的方向,观察复合动作电位变化,原理? • 夹伤神经干观察复合动作电位变化。 • 不应期观测。
区域测量 刺激伪迹
观察项目:动作电位传导的双向性
• 将神经干标本放置方向倒换 • 记录数据 :双相动作电位波形有无变化
双相动作电位幅度有无变化
观察项目:动作电位传导的速度
最大刺 激强度
观察项目:不应期
• 刺激器参数设置 • 细电压 • 双刺激 • 间隔减小 • 程控
实验目的
❖分离蟾蜍的坐骨神经,细胞外记录坐骨神 经干的单相和双相复合动作电位;
❖测定动作电位在神经干上的传导速度 ❖不应期的观察
实验原理-1
❖ 神经细胞(纤维)受到有效刺激(阈刺激,阈上刺激) 后,产生了动作电位,即兴奋,它是“全或无”的;
❖ 神经干由许多不同的神经细胞组成,众多神经细胞动作 电位的组合即形成复合动作电位;
• 动作电位传导速度=( r1-r2 )/ (t2 - t1)
0
实验原理-3
• 在两记录电极间夹伤神经干,双相动作电位变单相动作电 位;在两记录电极前夹伤神经干,动作电位消失;
0
实验原理——4
• 神经干动作电位不应期的观察 • 条件刺激(S1):引起神经兴奋。 • 测试刺激(S2):在前一兴奋过程的不同时相
❖ 复合动作电位能在神经干表面传导,顺序通过两根引导 电极,被记录到双向复合动作电位。
神经干复合动作电位以及其传导速度和兴奋不应期的测定
神经干复合动作电位以及其传导速度和兴奋不应期的测定一目的要求1. 观察蛙坐骨神经复合动作电位的基本波形,并了解其产生的基本原理2. 学习测定蛙离体神经干上神经冲动传导速度的方法和原理3. 学习测定神经兴奋不应期的基本原理和方法二基本原理神经干在受到有效刺激以后可以产生复合动作电位,标志着神经发生兴奋。
如果在离体神经干的一段施加刺激,从另一端引导传来的神兴奋冲动,可以记录出双相电位,加入在引导的两个电极之间将神经干麻醉或损伤,阻断其兴奋传导能力,这时候记录出的动作电位就成为单相电位。
神经细胞的动作电位是以全或无的方式产生的。
但是,复合动作电位的幅值在一定刺激强度下是随刺激强度的增加而增大的。
如果在远离刺激点的不同距离处分别引导离体神经干动作电位,两引导点之间的距离为m,在两引导点分别引导出的动作电位的时相差为s。
即可按照公式v=m/s来计算出兴奋的传导速度。
蛙类的坐骨神经干属于混合性神经,其中包含有粗细不等的各种纤维,其直径一般为3-29um,其中直径最粗的有髓纤维为A类纤维,传导速度在正常室温下为35-40 m/s。
神经每兴奋一次极其在兴奋以后的回复过程中,其兴奋性都要经历一次周期性的变化,其全过程依次包括绝对不应期、相对不应期、超常期和低常期4个时期。
为了测定坐骨神经在发生一次兴奋以后兴奋性所发生的周期性变化,首先要给神经施加一个条件性刺激引起神经兴奋,然后在前一兴奋及其恢复过程不同时相再施加一个测试性刺激,用于检查神经的兴奋阈值和所引起的动作电位的幅度,以判定神经兴奋性的变化。
三实验材料蛙,常用手术器械,PC机,信号采集处理系统,电子刺激器,神经屏蔽盒,任氏液四实验步骤1反射时和反射弧的测定(1) 制备脊蛙(2) 悬挂支架测定反射时2神经干动作电位的测定(1) 坐骨神经标本的制作(2) 连接poewrlab通道,神经屏蔽盒(3) 打开scope软件设置(4) 刺激记录双相动作电位(5) 损伤神经测定单相动作电位五实验结果与分析(一) 反应时测定(单位:秒)(二) 反射弧分析(三) 神经干动作电位记录图 ?双相电位untitled : Page 24SmVVmsDelay:180ms Ch3Dural:20ms Range:2mv Ampl:6.00vCh2 Range:2vTime Base 200HZ Sample:256Time:1S ?单相电位untitled : Page 25S21mV-1-2210V-1-2msDelay:180ms Ch3Dural:20ms Range:2mvAmpl:6.00v Ch2Range:2vTime Base 200HZSample:256Time:1S神经干是由许多粗细不同的神经纤维组成。
实验9_ 神经干复合动作电位的胞外记录及兴奋不应期和传导速度的测定
11. 测定兴奋传导速度 用两个通道同时记录时,可较准确的测定动作电 位传导的速度。研究不同温度对神经传导速度的影 响:室温;15℃;30 ℃ 。
【注意事项】 1.剥制标本时,切忌用手强拉、金属器械触碰神经 干。 2.制备标本的过程中,应随时用滴管滴些任氏液以 湿润标本,防止干燥。 3.防止手术器械对人的伤害。
各单神经纤维的兴奋性有所差别,因此不会表现 出“全或无”的特点,记录出的兴奋信号随刺激 强度的增大而有相应变化。
关于神经不应期:可兴奋组织在接受刺激后 产生兴奋的能力称为兴奋性。当组织兴奋时,由 于膜电位发生了一系列的变化,它的兴奋性也发 生相应的变化,分为绝对不应期、相对不应期、
超常期和低常期。调节双刺激之间的间距,可对 其不应期进行测定。
6. 并放入神经标本屏蔽盒中,然后连接数பைடு நூலகம்采 集线,上机。 7.打开实验软件,选择进入实验项目,设计好各 种刺激参数,开始示波、记录。 8.实验需要记录出:阈刺激、阈上刺激、最适刺 激时的动作电位。
9. 测定动作电位的潜伏期、幅值及时程。
10.不应期测定
选择双刺激,并逐步调节双刺激的间隔,记录 神经干的不应期。
关于神经冲动传导速度: 神经兴奋的标志是产 生动作电位,其传播速度与神经纤维的粗细、有 无髓鞘及环境温度等因素有关,通过测量神经冲 动经过的路程和所需要的时间,可知兴奋传导速 度的快慢。
【动物与器材】 蛙、常用手术器械、玻璃分针、生理信号 采集处理系统、神经标本屏蔽盒、电极线 【实验步骤】 1.破坏脑与脊髓 2.剥离皮肤 3.剪除躯干上部及内脏 4.分离两腿 5.游离坐骨神经
实验九
神经干复合动作电位的胞外记录 及兴奋不应期和传导速度的测定
【实验内容及目的】
实验一 神经干动作电位的引导,兴奋传导速度及不应期的测定
实验一神经干动作电位的引导,兴奋传导速度及不应期的测定神经干动作电位、传导速度及不应期的测定【目的和原理】神经纤维的兴奋表现为动作电位的产生和传导,神经纤维上传导的动作电位通常称为神经冲动。
在神经细胞外表面,已兴奋部位带“负电”,未兴奋部位带“正电”,用引导电极引导出此电位差,输入到示波器,则可记录到动作电位的波形。
本实验用细胞外记录法,可引导出坐骨神经的复合动作电位。
神经纤维兴奋的标志是产生一个可以传导的动作电位,它依局部电流或跳跃传导的方式沿神经纤维传导。
其传导速度取决于神经纤维的直径、内阻、有无髓鞘等因素,可用电生理学方法来记录和测量。
神经纤维在一次兴奋过程中,其兴奋性可发生周期性变化,包括绝对不应期、相对不应期、超常期和低常期。
本实验主要目的是学习电生理仪器的使用方法,掌握离体神经干动作电位的细胞外记录法及其基本波形的判断和测量。
掌握神经干动作电位传导速度及其不应期的测定方法,通过调整条件刺激和测试刺激之间的时间间隔,来测定坐骨神经干的绝对不应期。
【实验对象】蟾蜍或蛙。
【实验器材和药品】蛙类手术器械一套、电子刺激器、示波器(或计算机实时分析系统)、神经屏蔽盒、任氏液。
【实验步骤】1(制备坐骨神经——胫、腓神经标本操作方法详见3(8。
2(连接装置(见图8-1-1)。
3(准备仪器:(1)刺激器:调节刺激器各项参数:刺激方式连续刺激,频率16Hz,刺激强度0.5v,波宽0.1ms。
调节延迟使动作电位的图像位于示波器荧光屏的中央。
(2)示波器:灵敏度:1,2mv/cm,扫描速度:1,2ms/cm,引导电极输入到示波器的“AC”端,双边输入,刺激器的“同步输出”接示波器“外触发输入”,触发选择设置为“同步触发”。
4(观察项目:屏蔽盒S1 S2 R1 R2 R3 R4N输出上线下线刺示激波器器图8-1-1 神经干动作电位引导装置图(1)测量单、双相动作电位的潜伏期、时程和振幅,填入下表:时程振幅潜伏期动作电位格毫秒格毫伏格毫秒第一相双相动作电位第二相(2)测算动作电位的传导速度:V=S/?t (米/秒)式中:S为R1到R3的神经干长度,以米为单位。
机能实验-神经干复合动作电位及其传导速度与兴奋不应期的测定-
实验原理2
单相动作电位(Monophasic Action Potential)
如果两个引导电极之间的神经纤维完全损伤, 兴奋波只通过第一个引导电极,不能传至第二 个引导电极,则只能引导出一个方向的电位偏
向波形,称单向动作电位。
下一页
单相动作电位(Monophasic Action Potential)
下一页
实验步骤2
连接实验装置
Central end Peripheral end
返回
观察项目
1.引导神经干双向动作电位
2.测量动作电位传导速度:v =s/t 3.观察不应期条件:双刺激(串数2) 时间间隔↓ 4.观察单向动作电位
返回
模拟结果
1.双相动作电位(Biphasic Action Potential)
返回
双相动作电位曲线
下一页
模拟结果
2.单相动作电位(Monophasic Action Potential): 阻断或损伤引导电极1和2之间的神经干组织。
单相动作电位
下一页
模拟结果
3.动作电位幅值与刺激强度之间的关系。
下一页
模拟结果
4. 传导速度测定
传导速度测定 υ=
SAC Δt
下一页
模拟结果
5. 不应期测定
两个记录电极之间的神经损伤后,动作电位有何变 化?为什么?
当两个刺激脉冲的时间间隔逐渐缩短时,第二个动 作电位如何变化?为什么?
返回
总结讨论、结论
神经干受刺激后,以膜外记录方式可记录 到一个双相动作电位(简单描述其特点), 在两个引导电极间损伤神经其动作电位变 为单相 所测得的动作电位传导的速度及绝对不应 期、相对不应期的时程。
神经干动作电位的观察、传导速度与不应期测定
实验二、神经干动作电位的观察、传导速度与不应期测定一、实验目的应用微机生物信号采集处理系统和电生理实验方法,观察牛蛙坐骨神经动作电位的基本波形(包括双相和单相动作电位),了解并熟悉神经干兴奋不应期的记录方法和测定神经干兴奋不应期的基本原理和方法二、实验原理1.神经干动作电位的测定双相动作电位:两个引导电极分别置于正常完整的神经干表面,神经干一端兴奋时,兴奋向另一端传播并依次通过两个引导电极,可记录到两个方向相反的电位偏转波形。
单相动作电位:两个引导电极之间的神经组织有损伤,兴奋波只到达第1个引导电极,不能传导至第2个引导电极,则只能记录到一个方向的电位偏转波形。
2.神经干兴奋传导速度的测定神经纤维兴奋时产生一个可以传播的动作电位,动作电位依局部电流或跳跃传导的方式沿神经纤维传导,其速度取决于神经纤维直径、内阻、有无髓鞘等。
坐骨神经的动作电位是由一群不同兴奋阈值、传导速度和幅值的峰形电位所总和而成,为复合动作电位。
测定该复合动作电位传导的距离和经过这些距离所需的时间,即可根据V=S/t计算出神经干兴奋的传导速度3.神经干兴奋不应期的测定可兴奋组织在接受一次刺激而兴奋后,其兴奋性会发生规律性的时相变化,依次经过绝对不应期、相对不应期、超常期和低常期,然后再刺激到正常的兴奋性水平。
利用双刺激可检测神经对第2个刺激的反应,了解其兴奋阈值以及所引起的动作电位的幅度的变化,从而判定神经组织的兴奋性的变化三、实验结果1.神经干动作电位的测定1.1从0.8v逐步调节刺激器强度测试神经干的阈强度,当产生很小的动作电位时,此强度即为神经干的阈强度,为0.1v,截图如下1.2继续加大刺激强度,测试最适刺激强度,继续加大刺激强度直至动作电位不再增大,此数值是最适刺激强度,为0.3V1.3测试潜伏期,分别在在刺激伪迹前和动作电位的起始转折处建立光标,记录潜伏期实验结果,为0.7ms1.4测试电位时程,分别在动作电位的起始位置和结束位置建立光标,记录动作电位时程实验结果,为3.9ms1.5测试上相波的幅值,分别在动作电位的基线,上相波顶点处建立光标,记录上相波的幅值实验结果,为1.723mv1.6测试下相波的幅值,分别在动作电位的基线,下相波最低点处建立光标,记录下相波的幅值实验结果,为1.063mv1.7夹伤神经干,保存动作电位图1.8测试潜伏期,分别在刺激伪迹前,动作电位的起始转折处建立光标,记录潜伏期实验结果,为0.45ms1.9测试电位时程,分别在动作电位的起始位置,动作电位的结束位置建立光标,记录动作电位时程实验结果,为1.8ms1.10测量上相波的幅值,分别在动作电位的基线和上相波顶点处建立光标,记录上相波的幅值实验结果,为1.3mv1.11总实验记录表格如下2.神经干兴奋传导速度的测定2.1调节刺激器强度以产生最大动作电位,调整后,再分别点击通道1刺激伪迹开始位置和上相波开始位置,此距离用时为T1=0.71ms2.2分别点击通道2刺激伪迹开始位置和上相波开始位置,此距离用时为T2=1.20ms2.3电极距离d=0.01m,传导时间t=T2-T1=0.49ms2.4总实验结果记录如下:测得传导速度为20.41m/s3.神经干兴奋不应期的测定3.1调节刺激器强度以产生最大动作电位,调整后开始试验,刺激间隔设置为6ms,缩短刺激间隔时间,观察第二个动作电位,逐渐缩短两刺激间隔时间至第二个动作电位刚好变小,此时的刺激间隔时间即为动作电位的恢复周期,时间为4ms3.2逐渐缩短刺激间隔时间,第二个动作电位刚好消失,则该不应期为绝对不应期,时间为1ms四、结果分析1.神经干的阈强度为0.1v,最适刺激强度为0.3v,说明当神经干受到适宜的刺激的时候可以产生神经冲动,且神经干动作电位幅度在一定的范围内随着刺激的强度增强而增强,当神经干被夹伤后,双相动作电位变为单相动作电位,说明神经冲动无法经过损伤部位进行传导2.测得神经干兴奋传导速度为20.41m/s,在图像中除了动作电位的图像还有刺激伪迹的图像。
实验一_神经干动作电位的引导及其传导速度和不应期的测定
一目的要求:1.学习蛙类动物单毁髓与双毁髓的方法。
2.学习并掌握蛙类坐骨神经干标本的制备方法。
3.学习电生理学实验方法。
4.观察蟾蜍坐骨神经干复合动作电位的波形,了解其产生的基本原理。
二基本原理:神经干在受到有效刺激后,可以产生动作电位,标志着神经发生兴奋。
如果在神经干另一端引导传来的兴奋冲动,可以引导出双相的动作电位,如在两个引导电极之间将神经麻醉或损坏,则引导出的动作电位即为单相向动作电位。
神经细胞的动作位是以”全或无”方式发生的。
坐骨神经干是由很多不同类型的神经纤维组成的,所以,神经干的动作电位是复合动作电位。
复合动作电位的幅值在一定刺激强度下是随刺激强度的变化而变化的。
三动物与器材:蟾蜍、常用手术器械(手术剪、手术镊、金冠剪、眼科剪、毁髓针和玻璃分针)、蛙板、固定针、不锈钢盘、污物缸、粗棉线、任氏液、计算机生理信号处理系统、神经屏蔽盒。
四方法步骤:1.蟾蜍的单毁髓与双毁髓一手握住蛙或蟾蜍(可用纱布包裹蟾蜍躯干部),背部向上。
用拇指压住蛙或蟾蜍的背部,食指按压其头部前端,使头端向下低垂; 另一手持毁髄针,由两眼之间沿中线向后触划,当触及到两耳中间的凹陷处(此处与两眼的联机成等边三角形)时,持针手即感觉针尖下陷,此处即是枕骨大孔的位置。
将毁髄针由凹陷处垂直刺入,即可进入枕骨大孔(图t-1)。
然后将针尖向前刺入颅腔,在颅腔内搅动,以捣毁脑组织。
如毁髄针确在颅腔内,实验者可感到针尖触及颅骨。
此时的动物为单毁髓动物。
再将毁髓针退至枕骨大孔,针尖转冋后方,与脊柱平行刺入椎管,以捣毁脊髓。
彻底捣毁脊髓时,可看到动物的后肢突然蹬直,而后瘫痪如棉(图t-2),此时的动物为双毁髓动物。
如动物仍表现肢肌肉紧张或活动自如,必须重新毁髓。
操作过程中应注意使蟾蜍头部向外侧(不要挤压耳后腺),防止耳后腺分泌物射入实验者眼内(如被射入,则需立即手生理盐水冲洗眼睛)。
2.坐骨神经干标本制备(1) 剥制后肢标本(图t-3)(2) 分离两后肢(图t-4)(3) 分离坐骨神经(图t-5)3.测定:阈刺激、最大刺激,打印不同刺激引起的动作电位重叠显示波形。
神经干动作电位传导速度与不应期的测定
神经干动作电位传导速度与不应期 的测定
神经干动作电位传导速度
与不应神经干标本制备的基本操作技术。 2.掌握神经干动作电位的引导方法,观察动作电
位的基本波形。 3.学习神经干动作电位传导速度的测定和计算方法。 4.了解神经干动作电位不应期的测定并观察组织
兴奋性的周期性变化。
实验动物和器材
实验动物和器材
蟾蜍 、BL-420生物机能实验系统、棉线、 蛙类手术器械、神经屏蔽盒、任氏液。
实验步骤
实验步骤
1.制备坐骨神经干标本
a.破坏脑和脊髓; b.去内脏及剥皮; c.分开两腿; d.游离坐骨神经
2.连接实验装置(如图) 3.放好坐骨神经 4.软件操作
1通道 2通道 刺激输出
实 验 原 理(二)
实验原理(二)
可兴奋组织在接受一次刺激而被兴奋后,其兴奋性会发 生规律性的时相变化,依次经过绝对不应期、相对不应期、 超常期和低常期,然后再恢复到正常的兴奋性水平。为了测 定神经一次兴奋之后兴奋性的变化,可先给神经施加一个条 件性刺激,引起神经兴奋,然后再用一个检验性刺激在前一 兴奋过程的不同时相给予刺激,检查神经对检验性刺激的反 应以及所引起的动作电位的幅度,来判定神经组织的兴奋性 的变化。
防止神经过度牵拉和压迫,以免影响实验效果。 3.屏蔽盒内不要放过多的任氏液,以免电解质在刺激电极与
记录电极之间形成“短路”,使刺激伪迹过大。 4.要经常用任氏液浸润及清洗标本,防止干燥,勿用清水冲洗。 5.测量传导速度时,两对引导电极间距离越远越好。
思考题
思考题
1. 通常所记录的双向动作电位为何第一相幅 度大于第二相?在什么情况下可记录到一 个对称的双向动作电位?
神经屏蔽盒
坐骨神经标本
动作电位
(2)刺激强度与动作电位大小的关系 )
同样方法,点击“阈强度与动作电位的关系”,把系 统对话的参数的“起始刺激强度”改为10mv,然后点 击“开始”和“保存”,即可观察到刺激强度与神经 干动作电位幅度大小关系的图形,同时可观察到神经 干兴奋的“阈强度”。当刺激强度小于0.1mv时,几 乎看不到神经干动作电位,随刺激强度↑,神经干动 作电位↑,当刺激强度在2V以上或更大时,刺激强度↑, 神经干动作电位几乎不增大。这就是“最大刺激强 度”。
神经冲动的传导速度( ) 神经冲动的传导速度(v)是指动作电位在单位时间 ),可根据神经干上动作电 (t)内传导的距离(s),可根据神经干上动作电 )内传导的距离( ), 位从一点传导到另一点所需要的时间来计算。 位从一点传导到另一点所需要的时间来计算。
刺激器
输入通道
+
-
R1-
Rr1+ R2-
R2+
S
∆t
传导速度测定 υ=
SAC ∆t
实验原理-3 兴奋不应期的测定
神经组织在接受一次刺激产生兴奋后, 神经组织在接受一次刺激产生兴奋后,其兴奋性将 会发生规律性的变化,依次经过绝对不应期、 会发生规律性的变化,依次经过绝对不应期、相对 不应期、超常期和低常期,然后回到正常水平。 不应期、超常期和低常期,然后回到正常水平。采 用两次脉冲,通过调节两次脉冲间隔, 用两次脉冲,通过调节两次脉冲间隔,可测得坐骨 神经的绝对不应期和相对不应期。 神经的绝对不应期和相对不应期。
3. 动作电位的观察
(1)双相动作电位
在“实验模块” 菜单下的“肌肉神经实验”菜单点 击“神经干动作电位的引导”,点击“保存”。然后 点击“刺激”,若标本兴奋性好,坐骨神经与电极接 触良好,则可记录到双相动作电位。若实验结果理想, 可停止实验。在“打开文件”的文件夹找到保存的文 件,打开该文件,找到最好的图形,最后打印。
机能实验神经干复合动作电位及其传导速和兴奋不应期的测定
【实验目的与原理】
本实验的目的是学习蛙类坐骨神经干动作电位的记录方并观察几种因素对 动作电位波形的影响,测定神经干动作电位传导速度与不应期,并观察神经干 动作电位的兴奋性变化以及损伤后波形的改变。
当前第5页\共有30页\编于星期五\9点
单根神经纤维动作电位具有两个主要特征:(一)“全或无”特性,即动作电位幅度不随 刺激强度和传导距离而改变.引起动作电位产生的刺激需要有一定强度,刺激达不到阈强 度,动作电位就不出现;刺激强度达到阈值后就引发动作电位,而且动作电位的幅度也就 达到最大值,再继续加大刺激强度,动作电位的幅度不会随刺激的加强而增加;(二)可扩 布性,即动作电位产生后并不局限于受刺激部位,而是迅速向周围扩布,直至整个细胞膜都 依次产生动作电位.因形成的动作电位幅值比静息电位到达阈电位值要大数倍,所以,其扩 布非常安全,且呈非衰减性扩布,即动作电位的幅度、传播速度和波形不随传导距离远近 而改变.动作电位幅度不随刺激强度和传导距离而改变的原因主要是其幅度大小接近于K+ 平衡电位与Na+平衡电位之和,以及同一细胞各部位膜内外Na+、K+浓差都相同的原故.
4.如何记录神经干动作电位?神经功干动作电位波形与神纤维作电位有何不同?
神经组织是可兴奋的组织,当收到阈强度的刺激时,膜电位将发生一短暂的变化,即动作电位。动作电位可沿神经纤维 传导,使已兴奋的部位的神经细胞外表面带负电,未兴奋部位带正电。如果将两个引导电极分别置于正常的神经干表面 (细胞外记录),当神经干兴奋从一端向另一端传导依次通过这两个记录电极时,则可记录到两个方向相反的电位偏转 波形,此即神经干的动作电位,形成的波形为双向,而神经纤维动作电位的记录为细胞内记录,将无关电极置于细胞外, 记录电极插入细胞内,记录到的神经纤维动作电位时程很短,呈尖峰状单波形。神经干动作电位是用细胞外记录法记录 到的已兴奋部位和未兴奋部位的电位差。
神经干动作电位、传导速度和不应期测定
【实验原理与目的】可兴奋组织如神经纤维在受刺激而兴奋时,细胞膜电位将发生一系列短暂的变化。
由安静状态下的膜外正膜内负的静息电位变为兴奋状态下的膜外负膜内正的去极化状态。
因此,在膜外兴奋区相对于未兴奋区来说电位为负。
这种电位差所产生的局部电流又引起邻近未兴奋区的去极化,使兴奋沿细胞膜传向整个细胞,而原来的兴奋区的膜电位又恢复到膜外正膜内负的静息水平。
这种可传播的、短暂的膜电位变化称之为动作电位。
可兴奋组织在一次兴奋之后,其兴奋性要经历一个规律的时相变化,依次是绝对不应期、相对不应期、超常期和低常期,然后才恢复到正常的兴奋性水平。
本实验目的在于观察动作电位的基本波形、潜伏期、幅值及时程,观察不同刺激强度对神经干动作电位波形的影响。
了解神经兴奋传导速度测定的基本原理和方法,以及神经兴奋后兴奋性变化的规律。
【实验对象】蟾蜍或青蛙。
【实验器材和药品】1.仪器生物机能实验系统(生物信号记录分析系统)或二道生理记录仪。
2.器械蛙类手术器械一套、神经标本屏蔽盒。
3.药品任氏液。
4.其它滴管、滤纸片和棉球。
【实验步骤和观察指标】1.仪器装置准备好生物信号记录分析系统及相关电极。
(参见《常用实验仪器》)2.手术操作制作坐骨神经腓肠肌标本,将其浸泡在任氏液中数分钟,待其兴奋性稳定。
然后,将神经标本屏蔽盒内所有的电极用任氏液棉球擦拭,用镊子夹住神经标本两端扎线,将标本横搭在神经标本屏蔽盒的电极上,盖好标本盒盖,并将刺激电极、引导电极及地线等接线连好(神经干粗端置于刺激电极处,细端置于记录电极)。
3.观察与纪录(1)寻找阈刺激和最大刺激先将刺激强度设为零,再逐渐增大,直至出现动作电位时(此时的刺激强度即为阈强度);逐渐增大至动作电位幅度达到最大值为止,该强度的刺激为最大刺激(记下该强度值)。
(2)测定传导速度测量两记录电极之间的距离s(mm)和传导所用时间t(ms),然后,根据公式v=s/t,计算出传导速度。
(3)观察不应期给神经干最大刺激强度使之出现两个大小相等的动作电位,如果出现则用改变刺激间隔的时间,逐渐缩短两刺激间隔时间至第2个动作电位刚好变小,此时的刺激间隔时间即为动作电位的恢复周期。
神经干动作电位的引导、
神经干动作电位的引导、传导速度和兴奋不应期的测定一、实验结果:动作电位的引导:动作电位的传导速度:兴奋不应期的测定:二、数据处理:1.电位的引导:潜伏期:0.6ms时程:1.9ms幅值:9.30mv2.传导速度(潜峰法):两个动作电位波峰间的时间差(t2-t1):12.24ms两对引导电极间的距离(s2-s1):2.5cmV=(s2-s1)/(v2-v1)=2.5/12.24(cm/ms)≈2.04m/s3.兴奋不应期时间:由图可知:绝对不应期:1.25ms有效不应期:3.80ms相对不应期=有效不应期-绝对不应期=(3.80-1.25)ms=2.55ms三、实验结论:1.引导的动作电位的潜伏期为0.6ms,时程为1.9ms幅值为9.30mv。
2.神经干动作电位的传导速度为2.04m/s。
3.神经干动作电位的有效不应期时间为3.80ms,其中绝对不应期时间为1.25ms,相对不应期时间为2.55ms。
四、实验讨论:1.为什么这次实验动作电位的引导的动作电位是双相的?答:当膜在外正内负的极化状态下爆发动作电位时,兴奋膜上的动作电位呈现外负内正的去极化状态,这样兴奋部位和邻近静息电位产生了电位差。
当兴奋传到第一根引导电极的时候膜外为负电位,相应第二根引导电极处膜电位为正,此时两根引导电极之间产生了一个正电位差,经过放大器放大,出现一个正的动作电位;当兴奋传到第二根引导电极时,膜外电位为负,第一根电极膜处电位恢复到0,此时产生了一个负的电位差,同理产生了一个负的动作电位,故为双相动作电位。
2.动作电位在传导过程中无衰减现象的意义?答:为了保证信息的完整性。
3.通常所记录的双相动作电位的第一相和第二相何以在波形、幅值上不对称?在什么情况下可以记录到对称的双相动作电位?答:(1)由于神经干由各种神经纤维混合而成,在一对引导电极下的神经纤维的数量和种类均不同,当产生动作电位时每一引导电极下参与动作电位的形成的数量及总类也均不同,故第一相和第二相在波形、幅值上不对称。
蟾蜍坐骨神经干动作电位传导速度和兴奋性不应期的测定实验报告
神经干双向动作电位的引导传导速度及不应期的测定组员:陈良鹏肖瑶伍思静袁果曼罗冰清实验目的:观察蟾蜍坐骨神经动作电位的基本波形,掌握坐骨神经制备方法与引导动作电位的方法,理解与刺激和最大刺激强度的概念测定潜伏期时程和波幅,学会通过潜伏期法和潜峰法测定神经冲动的传导速度,通过测定神经干不应期理解兴奋性在兴奋过程中的变化过程。
实验对象:蟾蜍实验药品和器材:蛙类手术器械,BL-410生物信号记录分析系统,神经屏蔽盒,任氏液等。
实验原理:1、神经动作电位是神经兴奋的客观标志。
当神经受到有效刺激时,处于兴奋部位的膜外电位负于静息电位;当动作电位通过后,兴奋处的膜外电位又恢复到静息时水平。
神经干兴奋过程所发生的膜电位变化称神经复合动作电位。
如果将两个引导电极置于神经干表面时(双极引导),动作电位将先后通过两个引导电极处,可记录到两个相反的电位偏转波形,称为双向动作电位。
2、神经纤维兴奋的标志是产生一个可传播的动作电位。
测定神经干上的神经冲动的传导速度,可以了解神经的兴奋状态。
在示波器上测量动作电位传导一定距离所耗费的时间,便可计算出兴奋的传导速度。
3、神经与肌肉等可兴奋组织兴奋性在一次兴奋过程中可发生系列变化,即绝对不应期相对不应期超常期和低常期,组织的兴奋性才逐渐恢复。
为了测定神经干在兴奋过程中的兴奋性变化,可先给一个条件刺激以引起神经兴奋,然后再用另一检验性刺激,检查神经对检验性刺激反应的兴奋阈值以及所引起的动作电位(AP)幅度,即可观察到神经组织兴奋性的变化过程。
在本次实验中,主要观察的是不应期的变化,而非整个兴奋性的周期性变化。
实验对象:蟾蜍实验步骤及方法:1.坐骨神经—腓神经标本的制备。
2.将标本放入神经屏蔽盒,(注意刺激电极端为神经干的中枢端)。
3.仪器连接。
4.BL-410的操作。
实验内容:1、刺激坐骨神经时诱发产生的动作电位由在最适刺激强度时动作电位原图上进行区间测量可知,潜伏期为0.32ms,时程t1为 1.92ms ,波幅为11.08mV。
机能实验神经干复合动作电位及其传导速度和兴奋不应期的测定
实验原理2 单相动作电位(Monophasic Action Potential)
如果两个引导电极之间的神经纤维完全损伤, 兴奋波只通过第一个引导电极,不能传至第二 个引导电极,则只能引导出一个方向的电位偏
向波形,称单向动作电位。
医学PPT
下一7 页
单相动作电位(Monophasic Action Potential)
医学PPT
下1一3 页
实验步骤2
连接实验装置 Central end
Peripheral end
医学PPT
返回 14
观察项目
1.引导神经干双向动作电位
2.测量动作电位传导速度:v =s/t
3.观察不应期条件:双刺激(串数2) 时间间隔↓
4.观察单向动作电位
医学PPT
返回
15
模拟结果
1.双相动作电位(Biphasic Action Potential)
实验目的
1.学习神经干标本的制备。
2.观察坐骨神经干的单相、双相动作电位、双 向性传导并测定其传导速度。
3.观察机械损伤对神经兴奋和传导的影响
4.学习绝对不应期和相对不应期的测定方法
5.了解蛙类坐骨神经干产生动作电位后其兴奋性 的规律性变化
医学PPT
返回 12
实验步骤1
制备蟾蜍坐骨神经干标本:
1:破坏脑和脊髓 2:去除头、上肢和内脏 3:剥去皮肤 4:清洗手和器械 5 :分离两腿 6:分离坐骨神经
相反的电位波形,称双相动作电位。
医学PPT
下一4 页
实验原理1 双相动作电位 (Biphasic Action Potential)
细胞外引导电极
检流计
兴奋区
医学PPT
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神经干复合动作电位以及其传导速度和兴
奋不应期的测定
一目的要求
1.观察蛙坐骨神经复合动作电位的基本波形,并了解其产生的基本原理
2.学习测定蛙离体神经干上神经冲动传导速度的方法和原理
3.学习测定神经兴奋不应期的基本原理和方法
二基本原理
神经干在受到有效刺激以后可以产生复合动作电位,标志着神经发生兴奋。
如果在离体神经干的一段施加刺激,从另一端引导传来的神兴奋冲动,可以记录出双相电位,加入在引导的两个电极之间将神经干麻醉或损伤,阻断其兴奋传导能力,这时候记录出的动作电位就成为单相电位。
神经细胞的动作电位是以全或无的方式产生的。
但是,复合动作电位的幅值在一定刺激强度下是随刺激强度的增加而增大的。
如果在远离刺激点的不同距离处分别引导离体神经干动作电位,两引导点之间的距离为m,在两引导点分别引导出的动作电位的时相差为s。
即可按照公式v=m/s来计算出兴奋的传导速度。
蛙类的坐骨神经干属于混合性神经,其中包含有粗细不等的各种纤维,其直径一般为3-29um,其中直径最粗的有髓纤维为A类纤维,传导速度在正常室温下为35-40 m/s。
神经每兴奋一次极其在兴奋以后的回复过程中,其兴奋性都要经历一次周期性的变化,其全过程依次包括绝对不应期、相对不应期、超常期和低常期4个时期。
为了测定坐骨神经在发生一次兴奋以后兴奋性所发生的周期性变化,首先要给神经施加一个条件性刺激引起神经兴奋,然后在前一兴奋及其恢复过程不同时相再施加一个测试性刺激,用于检查神经的兴奋阈值和所引起的动作电位的幅度,以判定神经兴奋性的变化。
三实验材料
蛙,常用手术器械,PC机,信号采集处理系统,电子刺激器,神经屏蔽盒,任氏液
四实验步骤
1反射时和反射弧的测定
(1)制备脊蛙
(2)悬挂支架测定反射时
2神经干动作电位的测定
(1)坐骨神经标本的制作
(2)连接poewrlab通道,神经屏蔽盒
(3)打开scope软件设置
(4)刺激记录双相动作电位
(5)损伤神经测定单相动作电位
五实验结果与分析
(一)反应时测定(单位:秒)
(二)反射弧分析
(三) 神经干动作电位记录图
⑴双相电位
untitled : Page 24
m V
V
200
400
600
800
1000
1200
ms
Delay:180ms Ch3
Dural:20ms Range:2mv Ampl:6.00v Ch2 Range:2v
Time Base 200HZ Sample:256 Time:1S ⑵单相电位
untitled : Page 25
m
V
V
200
400
600
800
1000
1200
ms
Delay:180ms Ch3
Dural:20ms Range:2mv
Ampl:6.00v Ch2
Range:2v
Time Base 200HZ
Sample:256
Time:1S
神经干是由许多粗细不同的神经纤维组成。
将较粗大的电极置于神经干的表面作记录,则所观察到的动作电位和单根纤维不同,是神经干内许多神经纤维电活动成分的总和,称为神经干复合动作电位。
以不同强度的电刺激作用于神经干,可观察到动作电位从无到有并逐渐增强到最大幅度。
这一现象与动作电位的全或无性质并不矛盾,它表明神经干是由各类兴奋阈值不同的神经纤维组成的。
阈刺激仅能激活阈值最低的一类纤维,随着刺激强度的加强,导致阈值较高的纤维先后兴奋。
能使神经干中所有的纤维都兴奋的刺激称为最大刺激,此时复合动作电位的幅值达到最大;在强度超过最大刺激的超最大刺激时,幅值不会再增大。
当神经干在屏蔽盒内一端收到刺激时,表现为负电位变化的动作电位由刺激点开始从前向后传导。
设前端通道电极为a,后端通道电极为b,当动作电位传到a电极部位时,a、b之间出现电位差,b为正,a为负,扫描线向上偏移。
当动作电位继续传导至a、b两电极下或两电极之间时,a、b又处于等电位状态,扫描线回到基线。
当动作电位进一步推到b电极部位时,a、b之间又出现电位差,a为正,b为负,与电位达到a电极时相反,扫描线向下偏移。
其后,记录又回到零位。
这样获得的记录就为双相动作电位。
在a、 b之间滴加普鲁卡因时,由于普鲁卡因对神经具有麻醉作用,神经的兴奋被阻断,此时a位于无损伤部位,而b则被阻断。
在进行刺激前就可以记录到a为正,b为负的损伤电位。
当在神经干一端进行刺激时,a级的电位变化实际上是由于负电位抵消了损伤电位所致。
当动作电位传导到b极时,由于b极部分已丧失了兴奋性,不会再引起电位变化,因此,整个记录呈现出单相动作电位。