围岩力学参数

围岩力学参数

模拟——主要物理力学参数

试验——主要物理力学参数

隧道围岩分级及其主要力学参数

隧道围岩分级及其主要力学参数 一、一般规定 在公路勘察设计过程中,是根据周边岩体或土体的稳定特性进行围岩分级的。围岩分Ⅰ~Ⅵ级,由于每级间范围较大,施工阶段对Ⅲ、Ⅳ、Ⅴ基本级别,再进行亚级划分。在公路隧道按土质特性和工程特性分:岩质围岩分级——Ⅰ~Ⅴ级;土质围岩分级Ⅳ~Ⅵ级。对岩质围岩和土质围岩分别采用不同的指标体系进行评定:岩质围岩基本指标为岩质的坚硬程度和完整程度,修正指标为地下水状态,主要软弱结构面产状及初始地应力状态。 土质围岩分级指标体系宜根据土性差异而组成,粘土质围岩基本指标为潮湿程度。沙质土围岩基本指标为密实程度。修正指标潮湿程度。碎石土围岩基本指标为密实程度。至于膨胀土、冻土作为专门研究,这里暂不述。围岩分级指标体系中可用定性分析,也可用定量分析,但由于工地施工条件时间等因素,一般我们仅采用定性分析。下面我讲定性分析来确定围岩级别。 1、确定岩性及风化程度。 2、结构面发育,主要结构面结合程度,主要结构面类型,甚至产状倾角、走向结构面张开度,张裂隙。 3、水的状况涌水量等。 二、岩石坚硬程度的定性划分 1、坚硬岩:锤击声清脆、震手、难击碎,有回弹感,浸水后大多无吸水反应,如微风化的花岗岩——正长岩,闪长岩,辉绿岩,玄

武岩,安山岩,片麻岩,石英片麻岩,硅质板岩,石英岩,硅质胶结的砾岩,石英砂岩,硅质石灰岩等等。 2、较坚硬岩:锤击声较清脆,有轻微回弹,稍震手,较难击碎,浸水后有轻微吸水反应。如未风化~微风化的熔结凝灰岩、大理岩、板岩、白云岩、石灰岩、钙质胶结的砂岩等。 3、较软岩:锤击声不清脆,无回弹,较易击碎,浸水后指甲可刻击印痕。如未风化~微风化的凝灰岩,砂质泥岩,泥灰岩,泥质砂岩,粉砂岩,页岩等。 4、软岩:锤击声哑,无回弹,有凹痕,多击碎,手可掰开。如强风化的坚硬岩,弱风化~强风化的较坚硬岩,弱分化的较软岩,未风化的泥岩等。 5、极软岩:锤击声哑,无回弹,有较深凹痕,手可捏碎,浸水后可捏成团,如全风化的各种岩类,各种半成岩。Rc——岩石单轴饱和抗压强度、定性质与岩石的对应关系,一般Rc>60MPa——坚硬岩,Rc=60~30 MPa为较坚硬岩;Rc=3 0~15MPa为较软岩;Rc=15~5MPa 软岩;Rc<5Mpa极软岩。也可用Rc=22.82Is(50),Is(50)——岩石点荷载强度指数。这里不多说。 三、岩质围岩的完整度的定性划分 这是根据岩体的结构状况来定性划分 1、完整:节理裂隙,不发育,节理裂隙1-2组,平均间距>1.0m 层面结合好,一般。 2、较完整:节理裂隙,不发育,节理裂隙1-2组,平均间距1.0m

隧道力学数值方法

第一章 1、 隧道力学:是岩土力学的一个重要组成部分。其所采用的数值方法与结构物的周围环境、 施工方法等因素息息相关。 研究范围:隧道围岩的工程地质分级;隧道和地下结构物的静力分析和动力分析;现场测试和室内模型试验与数值方法的相互验证及参数获取;岩土物理力学性质和本构关系的研究 2、 隧道与地下结构设计模型:经验法、收敛—约束法、结构力学法、连续介质法 第二章 相应减少,同时还能够保证较高的计算精度1、对原结构可采用不规则单元,真实模拟复杂的边界形状。2、建立一基准单元:通过简单变化,能代表各类曲边、曲面单元,且完全不影响单元的特性计算;或不规则单元变换为规则单元,从而容易构造位移模式。3、引入数值分析方法,对积分做近似计算。在基准单元上实现规则化的数值积分,可使用标准数值计算方案,形成统一程序。等参变换条件:如果坐标变换和未知函数(如位移)插值采用相同的节点,并且采用相同的插值函数。 第三章 1.非线性问题:采用数值方法分析结构时,离散化后得到代数方程组:KU+F=0,当总刚度矩阵K 中的元素k ij 为常量时,所代表的的问题为线性问题,当k ij 为变量时,则式为非线性方程组,它所描述的问题为非线性问题。材料非线性:指的是当应力超过某一限值后,应力与应变的变化不成线性关系,但应变与位移的变化仍成线性关系。几何非线性:指的是当应变或应变速率超过某一限值以后,应变与位移的变化不成线性关系,但应力与应变的变化仍成线性关系。 有些情况下,非线性问题即包括材料非线性又包括几何非线性的特征。 2.非线性问题的四种求解方法 直接迭代法 :① 给定初值0x 、计算精度; ② 用迭代格式()1k k x g x +=进行迭代计算; ③ 判断迭代结果是否满足收敛判据,如果满足,终止计算并输出结果,否则返回步骤②。 特点:适用于求解很多场的问题,但不能保证迭代过程的收敛。 牛顿法—切线刚度法:使用函数f(x )的泰勒级数的前面几项来寻找方程f(x) = 0的根。 其最大优点是在方程f(x) = 0的单根附近具有平方收敛 。特点:如果初始试探解误差较大,则迭代过程也可能发散。只要初始刚度矩阵式对称的,则切线刚度矩阵将始终保持对称,而在大变形下割线刚度矩阵则不一定能保持这种对称性。 修正的牛顿法—初始刚度法 :每条线均为平行,均采用初始刚度,显然不用每次迭代都计算刚度矩阵,迭代次数增多,但计算时间不一定多。特点:对于材料应变软化以及体系中塑性区域发展范围较大的情况,采用初始刚度矩阵仍能取得迭代求解的收敛,而在这种情况下采用切线刚度法则难以甚至不能达到收敛。 混合法该法为切线刚度法与初始刚度法联合使用的方法。为此必须采用增量加荷的方式,将总荷载分成几级,逐级加荷。在每一级荷载作用下采用一种初始刚度进行迭代运算,达到收敛后再施加下一级荷载,并采用新的切线刚度矩阵[]r K 进行迭代运算。 3.岩土材料的弹塑性应力应变关系即本构关系四个组成部分:1.屈服条件和破坏条件,确定材料是否塑性屈服和破坏。

隧道围岩分级及其应用

052105 汤武丰 20101003938 一、我国公路隧道围岩分级 经过长期的隧道工程实践,我国公路隧道以铁路隧道围岩分级的标准为基础,参考了国内外有关围岩分级的成果,提出了适合我国公路隧道实情的围岩分级标准,下面介绍围岩分级的出发点和依据。 1.公路隧道围岩分级的出发点 主要考虑了以下几点: (1)强调岩体的地质特征的完整性和稳定性,避免单一的岩石强度指标分级的方法; (2)分级指标应采用定性和定量指标相结合的方式; (3)明确工程目的和内容,并提出相应的措施; (4)分级应简明,便于使用; (4)应考虑吸收其它围岩分级的优点,并尽量和我国其它工程分级一致。 2.分级需考虑的指标和因素 主要考虑了以下几类影响围岩稳定性的指标和因素。 (1)岩体的结构特征与完整性 岩体结构的完整状态是影响围岩稳定性的主要因素,目前主要是根据表4-6进行划分的,当风化作用使岩体结构发生变化,松散、破碎、软硬不一时,应结合因风化作用造成的各种状况,综合考虑确定围岩的结构完整状态;地质构造影响程度按表4-7确定。 表4-6 岩体完整程度的定性划分 表4-7围岩受地质构造影响程度等级划分

(2)岩石强度 将岩浆岩、沉积岩、变质岩按岩性、物理力学参数、耐风化能力和作为建筑材料的要求划分为硬质岩石及软质岩石二级,依饱和抗压极限强度R c与工程的关系分为四种,其标准及代表性岩石见表4-8;当风化作用使岩石成分改变、强度降低时,应按风化后之强度确定岩石等级。 表4-8岩石等级划分 (3)围岩基本质量指标BQ 根据上述岩石坚硬程度和岩体完整程度两个基本因素的定性、定量特征,根据公式(4-12)确定围岩基本质量指标BQ,并由此对围岩进行初步分级。其中,岩体完整程度的定量指标用岩体完整系数K v表达。K v一般用弹性波探测之,如无探测值时,可用岩体体积节理数J v按表4-9确定对应的K v。此外,K v与定性划分岩体完整程度的对应关系可按表4-10确定。 表4-9 J v与K v对照表 表4-10 K v与定性划分岩体完整程度的对应关系 (4)地下水等影响因素 在早期的围岩分级中,主要考虑地下水因素对围岩分级的影响。遇有地下水时,根据围岩等级,一般采用降级处理的方法。比如,在I级围岩或属于II级的硬质岩石中,可不考虑降低;在I级围岩或属于II级的软质岩石,应根据地下水的性质、水量大小和危害程度调整围岩级别,当地下水影响围岩稳定产生局部坍塌或软化软弱面时,可酌情降低l级;IV级、V级围岩已成碎石状松散结构,裂隙中有粘性土充填物,地下水对围岩稳定性影响较大,可根据地下水的性质、水量大小、渗流条件、动水和静水压力等情况,判断其对围岩的危害程度,可变差1~2级;在VI级围岩中,分级中已考虑了一般含水地质情况的影响,在特殊含水地层,需另作处理。

岩石力学参数测试

3.2 侏罗系煤岩层物理力学性质测试 3.2.1试验仪器及原理 本试验采用电子万能压力试验机(图3.24)对侏罗系、石炭系岩石试样进行抗压强度、抗拉强度以及抗剪强度的测定。 (a) 电子万能压力试验机 (b) 单轴抗压强度测试 (c) 抗拉强度测试 (d) 抗剪强度测试 图3.24 岩石力学电子万能压力试验机及试验过程 (1) 岩石抗压强度测定: 单轴抗压强度的测定:将采集的岩块试件放在压力试验机上,按规定的加载速度(0.1mm/min)加载至试件破坏。根据试件破坏时,施加的最大荷载P ,试件横断面A 便可计算出岩石的单轴抗压强度S 0,见式(3.1)。 S 0= P A (3.1) 一般表面单轴抗压强度测定值的分散性比较大,因此,为获得可靠的平均单轴抗压强度值,每组试件的数目至少为3块。 (2) 岩石抗拉强度的测定: 做岩石抗拉试验时,将试件做成圆盘形放在压力机上进行压裂试验,试件受集中荷载的作用,见式(3.2)。

S t = 2P DT π (3.2) 式中:S t ——岩石抗拉强度 MPa ; P ——岩石试件断裂时的最大荷载,KN ; D ——岩石试件直径; T ——岩石试件厚度。 为使抗拉强度值较准确,每种岩石试件数目至少3块。 (3) 岩石抗剪强度测定: 将岩石试件放在两个钢制的倾斜压模之间,然后把夹有试件的压模放在压力实验机上加压。当施加荷载达到某一值时,试件沿预定的剪切面剪断,见式(3.3)。 sin cos n T P A A N P A A τασα? = =? ??? ==?? (3.3) 式中:P ——试件发生剪切破坏时的最大荷载; T ——施加在破坏面上的剪切力; N ——作用在破坏面上的正压力; A ——剪切破坏面的面积; τ——作用在破坏面上的剪应力; n σ——作用在破坏面上的正应力; α——破坏面上的角度。 每组取3块试件,变换不同的破坏角,根据所得的数值,便可在στ-坐标系上画出反映岩石发生剪切破坏的强度曲线。并可求出反映岩石力学性质的另外两个参数:粘聚力c 及内摩察角?。 3.2.2 标准岩样加工 根据需要和所在矿的条件,在晋华宫矿12#煤层2105巷顶板钻取岩样,钻孔长度约22m ,在。根据各段岩心长度统计结果,晋华宫矿顶板岩层的RQD 值为72.4%,围岩质量一般。 岩心取出后,随即贴上标签,用透明保鲜袋包好以防风化,之后装箱,托运到实验室,经切割、打磨、干燥制成标准的岩石试样,岩样制作过程见图3.25。

有关隧道围岩的分级

关于隧道围岩的分级 最近一段时间学习了关于隧道围岩分级的问题,逐渐的了解了隧道的施工工艺及工序,也在网上查找了一些关于围岩问题的文章,学习了,很深奥,有很多东西还是不能够理解,希望能交到良师益友向您学习,本文章来自于百度文库,我整理了下,其中有些内容是我通过查找规范所得。 《公路隧道设计规范JTGD70-2004》 《公路工程地质勘察规范JTJ064-98》 《岩土工程勘察规范GB50021-2001》 《水工隧洞设计规范》(SL279-2002) 《工程岩体分级标准》(GB50218-94) 《铁路隧道设计规范》(TB10003-2005) 《地铁设计规范》(GB50157-2003) 《锚杆喷射混凝土支护技术规范》(50086-2001) 《公路隧道施工技术规范》(JTJF60-2009) 《工程岩体分级标准》(GB50218-94) 名词解释: 围岩:围岩是隧道开挖后其周围产生的应力重分布范围内的岩体,或指隧道开挖后对其稳定性产生影响的那部分岩体,(这里所指的岩体是土体与岩体的总称)

在不同的岩体中开挖隧道后岩体所表现出的性态是不同的,可归纳为充分稳定、基本稳定、暂时稳定和不稳定四种。 岩爆:岩体中聚积的弹性变形能在地下工程开挖中突然猛烈释放,使岩石爆裂并弹射出来的现象。轻微的岩爆仅剥落岩片,无弹射现象。严重的可测到4.6级的震级,一般持续几天或几个月。发生岩爆的原因是岩体中有较高的地应力,并且超过了岩石本身的强度,同时岩石具有较高的脆性度和弹性。这时一旦地下工程破坏了岩体的平衡,强大的能量把岩石破坏,并将破碎岩石抛出。预防岩爆的方法是应力解除法、注水软化法和使用锚栓-钢丝网-混凝土支护。 在JTJD70-2004《公路隧道设计规范》中关于隧道围岩级别划分为六级,级别越大围岩越差,六级为土,但目前实施中不同,《岩土工程勘察规范GB50021-2001》中规定地下铁道围岩分类应按 GB50307-1999《地下铁道,轻轨交通岩土工程勘查规范》, GB50307-1999《地下铁道,轻轨交通岩土工程勘查规范》中的围岩分类方法引自原《铁路隧道设计规范》(TB10003-1999)围岩分级是根据《工程岩体分级标准》(GB50218-94)结合工程经验得来的,勘察是为设计服务的,所以在地铁工程勘察中,如果还利用地铁勘察规范进行围岩分类,易给设计带来不便。 公路隧道围岩分级将围岩分为6级,给出了主要围岩的工程地质特征、结构特征,和完整性等指标并预测了隧道开挖后可能出现的塌方、滑动、膨胀、挤出、岩爆、突然涌水、及瓦斯突出等失稳的部位和地段,给出了相应的工程措施,

岩石力学计算题

第2章 岩石物理力学性质 例:某岩样试件,测得密度为1.9kg/cm3,比重为2.69,含水量为29%。试求该岩样的孔隙比、孔隙率、饱和度和干容量。 解:孔隙比:83.019 .1) 29.01(69.21) 1(=-+= -+?= γ ωεd v 孔隙度:%3.45%10083 .0183 .0%1001=?+=?+= v v n εε 饱和度:%9483 .0% 2969.2=?==εωG S r 干容重:)/(47.183 .0169.213cm g d =+=+?= εγ 例 某岩石通过三轴试验,求得其剪切强度c=10MPa ,υ=45°,试计算该岩石的单轴抗压强度和单轴抗拉强度。 解:由 例 大理岩的抗剪强度试验,当σ1n=6MPa, σ2n=10MPa ,τ1n=19.2MPa, τ2n=22MPa 。该岩石作三轴抗压强度试验时,当σa=0,则Rc=100MPa 。求侧压力 σa=6MPa 时,其三轴抗压强度等于多少? 解:(1)计算内摩擦角υ φστtg C n n 11+= (1) φστtg C n n 22+= (2) 联立求解: 021212219.2 0.735106 n n n n tg ττφφσσ--= ==?=-- (2)计算系数K : 7.335sin 135sin 1sin 1sin 10 =-+=-+=φφK (3)计算三轴抗压强度: 0100 3.7612.22C a S S K MPa σ=+=+?= 第3章 岩石本构关系与强度理论 例:已知岩石的应力状态如图,并已知岩石的内聚力为4MPa ,内摩擦角为35°。求: (1)各单元体莫尔应力圆,主应力大小和方向; (2)用莫尔库仑理论判断,岩石是否发生破坏

隧道围岩分类

隧道围岩分级 隧道围岩分级是正确地进行隧道设计与施工的基础。一个较好的、符合地下工程实际情况的围岩分级,能改善地下结构设计,发展新的隧道施工工艺,降低工程造价。 逐渐认识到:隧道的破坏,主要取决于围岩的稳定性,而影响围岩稳定性的因素是多方面的,其中隧道围岩结构特征和完整状态,是影响围岩稳定性的主要因素。隧道围岩体的强度,对隧道的稳定性有着重要的影响,地下水、风化程度也是隧道围岩丧失稳定性的重要原因。 从围岩的稳定性出发,1975年编制了我国“铁路隧道围岩分类”,这个分类由稳定到不稳定共分六类,代替了多年沿用的从岩石坚固性系数来分级的方法。 我国公路隧道围岩分级起步较晚,随着我国经济的发展,公路交通得到较大的发展,大量的公路隧道修建,需要有一个适合我国工期的公路隧道围岩分级,于1990年,根据我国铁路隧道的围岩分级为基础,编制了我国“公路隧道围岩分级”。 从国内外的发展中可以看出,以隧道围岩的稳定性为基础进行分级是总的趋势。但分级指标方面,大多数正在从定性描述、经验判断向定量描述发展。 公路隧道围岩分级 经过长期的隧道工程实践,我国公路隧道以铁路隧道围岩分级的标准为基础,参考了国内外有关围岩分级的成果,提出了适合我国公路隧

道实情的围岩分级标准,下面介绍围岩分级的出发点和依据。 (一)公路隧道围岩分级的出发点 主要考虑了以下几点: 1.强调岩体的地质特征的完整性和稳定性,避免单一的岩石强度指标分级的方法; 2.分级指标应采用定性和定量指标相结合的方式; 3.明确工程目的和内容,并提出相应的措施; 4.分级应简明,便于使用; 5.应考虑吸收其它围岩分级的优点,并尽量和我国其它工程分级一致。 (二)分级的指标和因素 主要考虑了以下几类影响围岩稳定性的因素; 1.岩体的结构特征与完整性 岩体结构的完整状态是影响围岩稳定性的主要因素,当风化作用使岩体结构发生变化,松散、破碎、软硬不一时,应结合因风化作用造成的各种状况,综合考虑确定围岩的结构完整状态;结构面(节理)发育程度应根据结构面特征;地质构造影响程度。 岩体完整程度的等级划分

隧道围岩类别划分与判定

隧道围岩类别划分与判 定 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

隧道围岩级别划分与判定 隧道围岩分级就是评定围岩性质、判断隧道围岩稳定性,作为选择隧道位置、支护类型的依据和指导安全施工。 国内外现在的围岩分级方法有定性、定量、定性与定量相结合3种方法,且多以前两种方法为主。定性分级的做法是,在现场对影响岩体质量的诸因素进行定性描述、鉴别、判断,或对主要因素作出评判、打分,有的还引入分量化指标进行综合分级。以定性为主的分级方法,如现行的公路、铁路隧道围岩分级等方法经验的成分较大,有一定人为因素和不确定性,在使用中,往往存在不一致,随勘察人员的认识和经验的差别,对同一围岩作出级别不同的判断。采用定性分级的围岩级别,常常出现与实际差别1~ 影响围岩稳定的因素多种多样,主要是岩石的物理力学性质、构造发育情况、承受的荷载(工程荷载和初始应力)、应力变形状态、几何边界条件、水的赋存状态等。这些因素中,岩体的物理力学性质和构造发育情况是独立于各种工作类型的,反映出了岩体的基本特性,在岩体的各项物理力学性质中,对稳定性关系最大的是岩石坚硬程度,岩体的构造发育状态、岩体的不连续性、节理化程度所反映的岩体完整性是地质体的又一基本属性。国内外多数围岩分级都将岩石坚硬程度和岩体的完整程度作为岩体基本质量分级的两个基本因素。 1 国标《锚杆喷射混凝土支护技术规范》围岩分级 围岩分级 围岩级别的划分应根据岩石坚硬性岩体完整性结构面特征地下水和地应力状况等因素综合确定并应符合表规定。 表围岩分级

注1 围岩按定性分级与定量指标分级有差别时一般应以低者为准。 2 本表声波指标以孔测法测试值为准如果用其他方法测试时可通过对比试验进行换算。 3 层状岩体按单层厚度可划分为 厚层大于0 5m 中厚层0 1~0 5m 薄层小于0 1m 4 一般条件下确定围岩级别时应以岩石单轴湿饱和抗压强度为准当洞跨小于5m,服务年限小于10 年的工程确定围岩级别时可采用点荷 载强度指标代替岩块单轴饱和抗压强度指标可不做岩体声波指标测试 5 测定岩石强度做单轴抗压强度测定后可不做点荷载强度测定。 围岩分级的主要影响因素 用岩体完整性系数K表示,K可按下式计算: Kv=(V pm /V pr )2()

最新常见岩石力学参数

几种常见岩石力学参数汇总 2010年9月2日 参考资料:《构造地质学》,谢仁海、渠天祥、钱光谟编,2007年第2版,P25-P37。 1.泊松比的变化范围: 2.弹性模量的变化范围:

3.常温常压下强度极限: 4.内摩擦角和内聚力的变化范围: 一、课程名称:中国戏曲介绍课时:2个学时 二、背景分析:戏曲是中国文化的瑰宝,同学们对中国戏曲 还不够了解,不能经常接触戏曲。 三、教学内容:中国戏曲 四、教学目标:初步了解中国戏曲的相关知识,并学会哼唱具有代表性的戏曲,简要说出

他们的起源 五、教学过程: 【引入课程】1、先介绍董永和七仙女的故事,然后放[天仙配],为讲戏曲作铺垫,将同学们带入戏曲的氛围中 【初步了解】1、介绍戏曲相关知识中国戏曲主要是由民间歌舞、说唱和滑稽戏三种不同艺术形式综合而成。它起源于原始歌舞,是一种历史悠久的综合舞台艺术样式。经过汉、唐到宋、金才形成比较完整的戏曲艺术,它由文学、音乐、舞蹈、美术、武术、杂技以及表演艺术综合而成,约有三百六十多个种类。它的特点是将众多艺术形式以一种标准聚合在一起,在共同具有的性质中体现其各自的个性。[1]中国的戏曲与希腊悲剧和喜剧、印度梵剧并称为世界三大古老的戏剧文化,经过长期的发展演变,逐步形成了以“京剧、越剧、黄梅戏、评剧、豫剧”五大戏曲剧种为核心的中华戏曲百花苑。[2-5]中国戏曲剧种种类繁多,据不完全统计,中国各民族地区地戏曲剧种约有三百六十多种,传统剧目数以万计。其它比较著名的戏曲种类有:昆曲、粤剧、淮剧、川剧、秦腔、晋剧、汉剧、河北梆子、河南坠子、湘剧、黄梅戏、湖南花鼓戏等。放[刘海砍樵] 2、戏曲行当 生、旦、净、丑各个行当都有各自的形象内涵和一套不同的程式和规制;每个都行当具有鲜明的造型表现力和形式美。 3、艺术特色 综合性、虚拟性、程式性,是中国戏曲的主要艺术特征。这些特征,凝聚着中国传统文化的美学思想精髓,构成了独特的戏剧观,使中国戏曲在世界戏曲文化的大舞台上闪耀着它的独特的艺术光辉。 4、唱腔 第一种是抒情性唱腔,其特点为速度较缓慢,曲调婉转曲折,字疏腔繁,抒情性强。它宜于表现人物深沉而细腻的内心感情。许多剧种的慢板、大慢板、原板、中板均厉于这-类。放[女驸马] 第二种是叙事性唱腔,其特点为速度中等,曲调较平直简朴,字密腔简,朗诵性强。它常用于交代情节和叙述人物的心情。许多剧种的二六、流水等均属于这一类。放[花木兰] 第三种是戏剧性唱腔,其特点为曲调的进行起伏较大,节奏与速度变化较为强烈,唱词的安排可疏可密。它常用于感情变化强烈和戏剧矛盾冲突激化的场合。各戏剧中的散板、摇板等板式曲调都属于这一类。 5、国五大戏曲剧种

隧道围岩级别划分与判定

隧道围岩级别划分与判定 隧道围岩分级就是评定围岩性质、判断隧道围岩稳定性,作为选择隧道位置、支护类型的依据和指导安全施工。 1 国标《锚杆喷射混凝土支护技术规范》围岩分级 1.1围岩分级 围岩级别的划分应根据岩石坚硬性岩体完整性结构面特征地下水和地应力状况等因素综合确定并应符合表1.1规定。 表1.1 围岩分级 注1 围岩按定性分级与定量指标分级有差别时一般应以低者为准。 2 本表声波指标以孔测法测试值为准如果用其他方法测试时可通过对比试验进行换算。 3 层状岩体按单层厚度可划分为 厚层大于0 .5m 中厚层0 .1~0 .5m 薄层小于0 .1m 4 一般条件下确定围岩级别时应以岩石单轴湿饱和抗压强度为准当洞跨小于5m,服务年限小于10 年的工程确定围岩级别时可采用点荷载强度指标代替岩块单轴饱和抗压强度指标可不做岩体声波指标测试 5 测定岩石强度做单轴抗压强度测定后可不做点荷载强度测定。 3公路隧道围岩分级 3.1公路隧道围岩分级 围岩级别可根据调查、勘探、试验等资料、岩石隧道的围岩定性特征、围岩基本质量指标(BQ)或修正的围岩质量指标[BQ]值、土体隧道中的土体类型、

密实状态等定性特征,按表3.1确定。当根据岩体基本质量定性划分与(BQ)值确定的级别不一致时,应重新审查定性特征和定量指标计算参数的可靠性,并对它们重新观察、测试。在工程可行性研究和初勘阶段,可采用定性划分的方法或工程类比方法进行围岩级别划分。 表3.1 公路隧道围岩分级 注:本表不适用于特殊条件的围岩分级,如膨胀性围岩、多年冻土等。 3.2围岩分级的主要因素 公路隧道围岩分级的综合评判方法采用两步分级,并按以下顺序进行:(1)根据岩石的坚硬程度和岩体完整程度两个基本因素的定性特征和定量的岩体基本质量指标(BQ),综合进行初步分级。(2)对围岩进行详细定级时,应在岩体基本质量分级基础上,考虑修正因素的影响修正岩体基本质量指标值。(3)按修正后的岩体基本质量指标[BQ],结合岩体的定性特征综合评判,确定围岩的详细分级。 3.2.1岩石坚硬程度 1 岩石坚硬程度可按表3.2.1-1定性划分。 表3.2.1-1 岩石坚硬程度的定性划分 2岩石坚硬程度定量指标用岩石单轴饱和抗压强度(Rc)表达。Rc一般采用实测值,若无实测值时,可采用实测的岩石点荷载强度指数Is(50)的换算值,即按式(3.2.1)计算: Rc= Is(50)0.75 (3.2.1) 3 Rc与岩石坚硬程度定性划分的关系,可按表3.2.1-2确定。 表3.2.1-2 Rc与岩石坚硬程度定性划分的关系 3.2.2岩体完整程度 1岩石完整程度可按表3.2.2-1定性划分。

岩体力学参数确定的方法

岩体力学参数的确定方法 在岩石工程实践中,首先需要了解其研究对象———工程岩体的力学特性,确定其特性参数。力学参数的合理确定在岩石力学的研究和发展过程中始终是难题之一。在应用工程力学领域, 如果原封不动地借用经典理论力学的连续性假设和定义,会出现理解上的毛病。必须考虑假设的合理使用范围和各物理量的适用定义。本文就地下岩体工程根据侧重的点不同对岩体参数的确定方法进行探讨。 一.传统岩体参数的确定方法 地下巷道、硐室开挖后,围岩产生应力重分异作用,径向应力减少,切向应力增加,并且随着工程不断推进,岩体应力状态不断改变。巷道、硐室围岩处于“三高一扰动”条件下,岩体表现的力学特性是破坏条件下的稳定失稳再平衡过程。围岩体处于一种拉压相间出现的复杂应力状态。该类工程岩体的力学参数的确定要进行岩体的卸荷试验研究,且要依据现场工程实际条件进行卸荷条件下的应力、渗流与温度三场耦合试验研究。需要进行循环加卸载条件下的岩体力学特性研究,进而获得岩体的力学参数特征。 确定地下巷道、硐室工程岩体力学参数的方法为: (1)三轴应力状态下的卸荷三场耦合力学试验,获得有关参数; (2)进行岩体流变特性试验研究,获得有关岩体的流变参数。 目前在该领域要进行大量的工作,包括设备仪器的研制等,同时还要利用新的计算机技术才会实现。 二.建立力学模型确定岩体力学参数

建立工程岩体力学参数模型主要是解决复杂岩体力学参数确定的问题。要确定复杂岩体的力学参数需要把工程岩体看作具有连续性的模型,运用确定岩体力学参数的新方法,对含层状斜节理的岩体建立力学模型进行力学实验,从而确定了该岩体的各项基本力学参数值。 1.工程岩体力学参数模型 目前对岩石的力学属性及其划分基本有两种观点:一种观点认为岩石本身是一个连续的、没有各向异性的材料,另一种意见认为岩石由多晶体系组成,并存在空洞和裂纹等缺陷,使得岩体本身结构表现出各向异性和不连续性。一般情况下岩体被视为非连续介质,但在一定条件下仍满足连续介质力学的基本假定。因此给定工程岩体的连续性假设:假定整个物体的体积都被组成这个物体的物质微元所充满,没有任何空隙。物质微元是有大小的,物质微元的尺寸决定于所研究的工程物体的尺寸。这样就存在一个用连续体理论来研究非连续体的问题。 2.工程岩体力学参数 为确定工程岩体的力学参数,需要通过井下工程地质调查,根据岩体所含结构面的不同及结构体特性的差异,选取具有代表性的不同尺寸的岩块和结构面,然后进行一系列室内力学实验和数值模拟实验。具体步骤如下: (1) 通过井下工程调查,确定结构面的空间分布模式,抽象工程岩体结构模型;并在现场采集有代表性的完整岩块和软弱结构面试

隧道围岩分级

铁路隧道围岩分级 一、铁路隧道围岩分级类型 根据《铁路隧道工程施工技术指南》铁路隧道围岩分级判定的内容将不同岩石性质和岩体结构的隧道围岩分为Ⅰ~Ⅵ六个基本级别。 铁路隧道围岩分级表

注:表中“围岩级别”和“围岩主要工程地质条件”栏,不包括膨胀性围岩、多年冻土等特殊岩土。

二、围岩级别判定的一般步骤 1、收集整理隧道场地的区域地质资料,分析研究设计图纸上详细的地勘报告,明确隧区主要的岩层、岩性、岩体构造、不良地质以及水文地质条件。特别是要详细研究不良构造体和不良地质作用对隧道区围岩的岩石强度、岩体完整性的影响。从整体上把握该区域工程地质条件。 2、按照编制的实施性超前地质预报组织进行隧道掌子面前方地质预测预报,并根据真实的预报结论分析判断掌子面前方的围岩情况。一方面根据预报结论初步判断围岩基本分级的级别,并将其与设计时提供的围岩分级进行比对,另一方面作为围岩级别和支护方案变更的依据之一。 3、实时记录掌子面地质素描表和围岩级别判定卡中的内容,特别是要客观填写掌子面围岩的岩性指标、岩体完整性情况和地下水状况,这些指标均是作为围岩基本分级的理论依据。如果难以明确围岩的地质条件,可通过实验和理论计算来确定围岩的各项力学性能和构造特点,来加以判断围岩级别。 4、根据得出的围岩岩性特征、构造特征以及其它相关资料并按照隧道围岩分级的标准进行围岩级别的判定。 三、围岩判定主要依据 1、岩石的坚硬程度 ①从定性划分 硬质岩包括坚硬岩和较硬岩,软质岩包括较软岩、软岩和及软岩。

坚硬岩: 锤击声清脆,有回弹,震手,难击碎,基本无吸水反应。代表性岩石如未风化~微风化花岗岩、闪长岩、辉绿岩、玄武岩、安山岩、片麻岩、石英岩、石英砂岩、硅质砾岩、硅质石灰岩等。 较硬岩: 锤击声较清脆,有轻微回弹,稍震手,较难击碎,有轻微吸水反应。代表性岩石有1、微风化的坚硬岩石;2、未风化的大理岩、板岩、石灰岩、白云岩、钙质砂岩等。 较软岩: 锤击声不清脆,无回弹,轻易击碎,浸水后指甲可刻出印痕。代表性岩石如1、中风化~强风化的坚硬岩或较硬岩;2、未风化微风化的凝灰岩、千枚岩、泥灰岩、砂质泥岩等。 软岩: 锤击声哑,无回弹,有较深凹痕,浸水后手可捏碎,辧开。代表性岩石有1、强风化的坚硬岩或较硬岩;2、中风化~强风化的较软岩;3、未风化~微风化的页岩、泥岩、泥质砂岩等。 极软岩: 锤击声哑,无回弹,有较深凹痕,浸水后手可捏成团。代表性岩石有1、全风化的各种岩石;2、各种半成岩。 ②从定量划分 根据岩石饱和单轴抗压强度确定岩石的坚硬程度

隧道围岩分级及其应用

第三节隧道围岩分级及其应用 隧道围岩分级是正确进行隧道设计与施工的基础。一个合理的、符合地下工程实际情况的围岩分级,对于改善地下结构设计、发展新的隧道施工工艺、降低工程造价、多快好省地修建隧道有着十分重要的意义。 近年来,由于各种类型地下工程的大量修建,隧道围岩分级的研究也得到了很大的发展,出现了各种各样不同的围岩分类;但都是为一定的工程目的服务的。如提供选择施工方法的根据和开挖的难易程度,确定结构上的荷载或给出隧道临时支撑与衬砌结构的类型和参考尺寸等。 人们对围岩及其自然规律的认识是不断深化的,因此,对围岩分类也有一个发展过程。在早期,从国外情况来看,如日本,最初主要借用适合于土石方工程的“国铁土石分类”来进行隧道的设计与施工,主要是根据开挖岩(土)体的难易程度(强度)来划分的。前苏联在很长的时期内采用以岩石的坚固性来分类,采用一个综合注的指标f值,称为岩石坚固性系数。理论上坚固性是岩体抵抗任何外力作用及其造成破坏的能力,不同于强度和硬度,而实际上只反映岩石抗压强度的性能,很少考虏岩体的构造特征。在英、美等国,主要沿用泰沙基(K,Terzaghi)提出的分级法,其中考虑到一些岩体的构造和岩性等影响,比较好地反映隧道围岩的稳定状况。目前美国也有用岩石质量指标(RQD)或隧道围岩在不支护条件下,暂时稳定的时间作为分级依据。 我国五十年代初期,铁路隧道围岩分级,基本上是沿用解放前的以岩石极限抗压强度与岩石天然容重为基础,这种分级仅运用上石方工程的土石分级法,没有适合隧道围岩的专门分类,只是把隧道围岩分为坚石、次坚石、松石及土质四类。以后,借用苏联的岩石坚固系数进行分类,即通常所谓的普氏系数(f值)。在长期大量的地下工程实践中发现:这种单纯以岩石坚固性(主要是强度)指标为基础的分类方法,不能全面反映隧道围岩的实际状态。逐渐认识到:隧道的破坏,主要取决于围岩的稳定性,而影响围岩稳定性的因素是多方面的,其中隧道围岩结构特征和完整状态,是影响围岩稳定性的主要因素。隧道围岩体的强度,对隧道的稳定性有着重要的影响,地下水、风化程度也是隧道围岩丧失稳定性的重要原因。 从围岩的稳定性出发,1975年编制了我国“铁路隧道围岩分类”,这个分类由稳定到不稳定共分六类,代替了多年沿用的从岩石坚固性系数来分级的方法。 我国公路隧道围岩分级起步较晚,随着我国经济的发展,公路交通得到较大的发展,大量的公路隧道修建,需要有一个适合我国工期的公路隧道围岩分级,于1990年,根据我国铁路隧道的围岩分级为基础,编制了我国“公路隧道围岩分级”。 从国外围岩分级的发展趋势看,围岩分级主要以隧道稳定性分级为主,且从对岩石的分级逐渐演变到对岩体的分级;从按单参数分级转变到按多参数分级,并逐渐向多参数组成的综合指标法演变;从经验性很强的分级逐步过渡到半经验、半定量分级和定量化分级,并将围岩分级与岩体力学的发展相联系,随着岩体力学的发展,这一趋势更为明显。在多参数综合分级法中,基本采用和差法或积商法。围岩分级方法是随着地质勘查方法的进步而快速发展的。围岩分级方法与隧道结构设计标准化、施工方法规范化的联系越来越密切。土质围岩分级方法逐步与岩质围岩分级方法分离,将会形成专门土质围岩分级方法。 从国内围岩分级的发展趋势看,从1975年以后,我国隧道围岩分级方法的发展基本与国际同步,主要以隧道稳定性进行分级,并在已颁布的国标和部标中体现了这一成果。此外,我国隧道围岩分级中更加重视施工阶段围岩级别的修正,即根据施工阶段获得的围岩分级信息对设计阶段的预分级进行修正。我国隧道围岩分级方法主要采用两个步骤:第一步以基本指标进行基本分级;第二步用修正指标对基本级别进行修正,最终获得修正后的围岩级别。

隧道力学-围岩特征曲线

西南交通大学 隧道力学(作业) Flac3d求解围岩特征曲线 年级: 学号: 姓名: 专业: 2011 年 11 月

目录 第1章 ..................................................................................................................................... 问题分析 .. (1) 1.1 围岩特征曲线定义 (1) 1.2 求解方法 (1) 第2章建模及计算 (1) 2.1 模型建立 (1) 2.2 命令流及解释 (2) 第3章计算结果及分析 (5) 3.1 数据处理 (5) 3.2 围岩特征曲线绘制 (5) 3.3 结果分析 (6) 参考文献 (7)

FLAC3D求解围岩特征曲线 第1章问题分析 1.1 围岩特征曲线定义 围岩的特征曲线,亦称为围岩的支护需求曲线。它形象的表明围岩在洞室周边所需提供的支护阻力及与其周边位移的关系。 1.2 求解方法 同一围岩级别下,相同隧道埋深情况下,通过改变衬砌的强度(修改体积模量及剪切模量)分别求解相应强度下隧道收敛平衡时的拱顶竖直位移和应力,根据所得数据绘制该围岩级别下相应埋深的围岩特征曲线。 第2章建模及计算 2.1 模型建立 图2.1-1

如图2.1-1,圆形隧道外径为6m ,衬砌厚度为0.2m ,考虑隧道影响范围,模型宽度为30m ,高度为30m 。V 级围岩和Ⅳ级围岩通过定义材料的相关参数来建模;根据 h σγ=计算出相应埋深(即50m 、100m 、150m )下产生的应力,将应力分别作用于模型上来建模求解。 2.2 命令流及解释 以V 级围岩150m 埋深为例,其命令流如下: ;绘制5级围岩150m 特性曲线,改变衬砌的E 进行计算 new ;建立模型,取圆形隧道半径为2.9米,衬砌厚度为0.1米, gen zone radcylinder p0 0 0 0 & p1 15 0 0 & p2 0 1 0 & p3 0 0 15 & p4 15 1 0 & p5 0 1 15 & p6 15 0 15 & p7 15 1 15 & p8 3 0 0 & p9 0 0 3 & p10 3 1 0 & p11 0 1 3 & size 5 1 8 11 & ratio 1 1 1 1.2 & group outsiderock;定义围岩分块 gen zone cshell p0 0 0 0 & p1 3 0 0 & p2 0 1 0 &

隧道围岩判定等级划分方法

高速公路、铁路隧道围岩等级判定 (文/萧整勇) 一、前言 随着我国高等级公路、铁路建设的迅猛发展,高速公路、铁路的隧道比也不断的增加,由于现阶段探测方法的不准确性,隧 道围岩情况又复杂多变,隧道围岩判定、分类工作对指导隧道施工、调整工法与支护参数尤为重要。在围岩分类的基础上再依照每一类围岩的稳定程度给出最佳的施工方法与支护结构设计。围岩分类就是选择施工方法的依据、就是进行科学管理及正确评价经济效益、确定结构上的荷载(松散荷载)、确定衬砌结构的类型及尺寸、制定劳动定额、材料消耗标准等的基础,同时也就是安全指导施工的有力保障。 汶马高速公路工程起于汶川县凤坪坝,止于马尔康市卓克基,就是典型的第二阶梯(四川盆地)向第三阶梯(青藏高原)的过渡 段。公路沿线穿越了龙门山断裂带、米亚罗断裂带、松岗断裂带; 汶马高速C14合同段的狮子坪1号隧道全长13、4公里,穿越了米亚罗断裂带,所穿越的主要岩性有变质砂岩、板岩、千枚岩等,地形地貌、水文地质条件极其复杂。所以对狮子坪1号隧道掌子面围岩判定指导施工尤为重要。 二、隧道围岩级别判定工作流程 隧道工程施工过程中需要进行隧道围岩级别判定的情况较多,这里指可能发生隧道围岩支护参数设计变更时进行的围岩级

别判定工作。由于其特殊性,隧道围岩级别判定一般采用五方现场会审制度(地质咨询、施工、监理、设计、业主)。五方现场会审一般由业主组织,进行隧道围岩级别判定时由地质咨询方牵头会审,其她各方共同确认;进行支护参数确认时由设计方提出并经业主确认。隧道围岩级别判定工作流程:预判-组织现场会审-审查工作-判定围岩级别-支护参数确认-签字确认。 三、隧道围岩级别判定工作方法 隧道围岩判定一般采用定性与定量相结合的方法,按两步判定围岩分级:第一步通过测量或观察隧道围岩状况得到岩石硬度与岩体完整度的定量数值或定性结论,然后计算得到岩体基本质量指标BQ值或利用矩阵法查得围岩基本分级判定结论;第二步综合考虑其它影响岩体质量与稳定性的因素,选取地下水状况、软弱结构面、地应力三个因素进行围岩级别修正,同时结合隧道设计支护参数分等级的做法,以半级为单位进行修正。 1、隧道围岩基本分级判定方法 a、为便于会审各方清晰观察与测量掌子面围岩的相关状 况,施工单位须确保掌子面已出渣、清危完毕。洞内具备良 好的通风与照明条件。 b、地质咨询方拍摄掌子面照片,测绘结构面产状,即时进 行地质素描工作。 c、通过对结构与物质组成、构造、触摸、锤击等方式确认 岩性与岩性组合。

铁路隧道围岩分级方法研究报告

铁路隧道围岩分级方法研究报告 篇一:铁路隧道围岩分级方法 铁路隧道围岩分级方法铁路隧道围岩分级 注:1 表中“围岩级别”和“围岩主要工程地质条件”栏,不包括膨胀性围岩、多年冻土等特殊; 2 关于隧道围岩分级的基本因素和围岩基本分级及其修正,可按本规范附录A的方法确定。 附录A 铁路隧道围岩基本分级 A.1 围岩基本分级 A.1.1 分级因素及其确定方法应符合下列规定: 1 围岩基本分级应由岩石坚硬程度和岩体完整程度两个因素确定; 2 岩石坚硬程度和岩体完整程度,应采用定性划分和定量指标两种方法综合确定。 A.1.2 岩石坚硬程度可按表表A.1.2 岩石坚硬程度的划分 表 表A.1.4 围岩基本分级 说明表A.1 层状岩层的层厚划分 说明表A.2 结构面发育程度分级 说明表A.3 岩体受地质构造影响的分级 说明表A.4结构面结合程度的划分 说明表A.5 岩体按节理宽度分级

说明表A.6岩体完整性指数与定性划分的岩体完整程度的对应关系 说明表A.7岩体结构与块度尺寸的关系 说明表A.7岩石风化程度分带 1、kf是同一岩体中风化岩石的单轴饱和抗压强度与未风化岩石的单轴饱和抗压强度的比值; 2、kp是同一岩体中风化岩体的纵波速与未风化岩体的纵波速的比值; 篇二:3.3铁路隧道围岩分级方法研究报告(简本) 隧道围岩稳定性及其控制技术研究 隧道围岩变形破坏机理及分级方法研究(XXG005-A)专题《铁路隧道围岩分级方法研究》 进展报告(简本) 西南交通大学二〇一〇年十月 3 目录 1 前言 ................................................ ............ 1 1.1 XX年度研究工作内容 ......................................... 1 1. 2 XX 年度7月-10月已开展的工作 ................................ 1 2 隧道围岩分级标准研究成

岩体力学计算题

计算题 四、岩石的强度特征 (1) 在劈裂法测定岩石单轴抗拉强度的试验中,采用的立方体岩石试件的边长为5cm ,一组平行试验得到的破坏荷载分别为16.7、17.2、17.0kN ,试求其抗拉强度。 解:由公式σt =2P t /πa 2=2×P t ×103/3.14×52×10-4=0.255P t (MPa) σt1=0.255×16.7=4.2585 σt2=0.255×17.2=4.386 σt3=0.255×17.0=4.335 则所求抗拉强度:σt ==(4.2585+4.386+4.335)/3=4.33MPa 。 试计算其抗拉强度。(K =0.96) 解:因为K =0.96,P t 、D 为上表数据,由公式σt =KI s =KP t /D 2代入上述数据依次得: σt =8.3、9.9、10.7、10.1、7.7、8.7、10.4、9.1。 求平均值有σt =9.4MPa 。 (3) 试导出倾斜板法抗剪强度试验的计算公式。 解: 如上图所示:根据平衡条件有: Σx=0 τ-P sin α/A -P f cos α/A =0

τ=P (sinα- f cosα)/A Σy=0 σ-P cosα-P f sinα=0 σ=P (cosα+ f sinα) 式中:P为压力机的总垂直力。 σ为作用在试件剪切面上的法向总压力。 τ为作用在试件剪切面上的切向总剪力。 f为压力机整板下面的滚珠的磨擦系数。 α为剪切面与水平面所成的角度。 则倾斜板法抗剪强度试验的计算公式为: σ=P(cosα+ f sinα)/A τ=P(sinα-f cosα)/A (4) 倾斜板法抗剪强度试验中,已知倾斜板的倾角α分别为30o、40o、50o、和60o,如果试样边长为5cm,据经验估计岩石的力学参数c=15kPa,φ=31o,试估计各级破坏荷载值。(f=0.01) 解:已知α分别为30o、40o、50o、和60o,c=15kPa,φ=31o,f=0.01, τ=σ tgφ+c σ=P(cosα+ f sinα)/A τ=P( sinα-f cosα)/A P( sinα-f cosα)/A= P(cosα+ f sinα) tgφ/A+c ( sinα-f cosα)= (cosα+ f sinα) tgφ+cA/P P=cA/[( sinα-f cosα)- (cosα+ f sinα) tgφ] 由上式,代入上述数据,计算得: P30=15(kN/mm2)×25×102(mm2)/[( sin30 - 0.01×cos30) - (cos30 + 0.01×sin30) tg31] αsinαcosα( sinα-f cosα)(cosα+ f sinα)(cosα+ f sinα) tgφ P 3 0 0.5 0.86602 5 0.49134 0.873751 0.525002 -111.4 4 0 0.64278 8 0.76604 4 0.635127 0.772522 0.464178 21.9363 8 5 0 0.76604 4 0.64278 8 0.759617 0.647788 0.38923 10.1245 6 6 0 0.86602 5 0.5 0.861025 0.5 0.30043 6.68932 (5) 试按威克尔(Wuerker)假定,分别导出σt、σc、c、φ的相互关系。 解:如图:

相关文档
最新文档