机电传动控制第二章

合集下载

机电传动控制-第二章课件

机电传动控制-第二章课件

时间常数
τm
=
GD2 R 375Ke KmΦN2
R电枢回路总电阻、ΦN总磁通量
Ke电势常数、Km转矩常数
机电传动控制
Chp2,P20
过渡过程时间的表达式:
∫ ∫ t = GDZ2 dn = GDZ2 dn
375 T − TL 375 TD
匀加速、匀减速情况下:
∫ t =
( ) GDZ2 dn = GDZ2
机电传动控制
Chp2,P8
电动机提升重物启动时
设重物提升时电动机旋转的
方向n为正方向。
启动时:
TM为与转速方向相同,取正号 TL为与转速方向相反,也取正号
动力学方程式为:
(+)TM
− (+)TL
=
GD2 375
dn dt
>
0
因此在启动时,系统为加速运行。
机电传动控制
Chp2,P9
电动机提升重物制动时
GDZ2
= δGDM2
+
GDL2 jL2
δ = 1.1 ~ 1.25
Chp2,P17
2)直线运动
机电传动控制
JZ
= JM
+
J1 j12
+
JL jL2
+ m v2 ωM2
GDZ2
= GDM2
+
GD12 j12
+
GDL2 jL2
+
365
Gv 2 n2
Chp2,P18
2.3 机电传动系统的过渡过程
1、过渡过程产生的原因 机械惯性: 与转动惯量和飞轮转矩相关,即转速不能突变。 电磁惯性: 与电感相关,即电枢电流和励磁磁通不能突变。 热惯性: 与散热有关,即温度不能突变。

机电传动控制第二章PPT课件

机电传动控制第二章PPT课件
存放系统程序,包括监控、解释、故障诊断、标准 子程序以及其它各种管理程序等。系统程序由厂家提供, 一般固化在ROM或EPROM中。
(2)用户程序储存器 存放用户程序。用户程序是用户为了解决实际问题,
并根据PLC的指令系统而编制成的程序,它通过编程器输 入,经CUP存入用户储存器。该储存器使用RAM。 5
2.2 PLC的编程器件和编程方式
PLC结构的内部可等效为一个继电器系统。储存单 元的每个二进制位可等效为一个继电器,这种等效继电 器的状态由软件控制,故叫做编程器(或软继电器)。
用户对这些器件进行编程就可实现所需的逻辑控制
PLC 内部 等效 继电 器电 路图
14
各类等效继电器的功能和使用方法
1. 输入继电器(X)
(3)变量储存器 存放PLC的内部逻辑变量,如内部继电器、I/O寄
存器、定时器/计数器中逻辑变量的现行值,这些在 CPU进行逻辑运算时读出、更新有关内容,所以也采用 RAM。
6
3. 输入输出接口
1)输入接口 输入接口功能是采集现场各种开关节点的状态信号,
并将其转换成标准的逻辑电平,送入CPU处理。
同时光电耦合器的V0发光,VT0受光照饱和导通,X0 为高电平1,当K0未合上时,电路不通,LED0不亮,光电 耦合器不导通,X0=0。
光电耦合器实现现场 与PLC主机的电器隔离, 以提高抗干扰性。
采集模பைடு நூலகம்量时必须经
A/D转换,转换成PLC的
CPU所接收的数字量。
8
(2) 输出接口
输出接口方式: 继电器输出方式:
输出状态寄存器的位数与输出元件数目相对应,所 以它又称为输出镜像寄存器。
12
3. 输出刷新阶段 在所有指令输出完毕后,输出状态寄存器中所有的

机电传动控制课后习题答案完整版

机电传动控制课后习题答案完整版

习题与思考题第二章机电传动系统的动力学基础2.1 说明机电传动系统运动方程中的拖动转矩,静态转矩和动态转矩。

拖动转矩是有电动机产生用来克服负载转矩,以带动生产机械运动的。

静态转矩就是由生产机械产生的负载转矩。

动态转矩是拖动转矩减去静态转矩。

2.2 从运动方程式怎样看出系统是处于加速,减速,稳态的和静态的工作状态。

TM-TL>0说明系统处于加速,TM-TL<0 说明系统处于减速,TM-TL=0说明系统处于稳态(即静态)的工作状态。

2.3 试列出以下几种情况下(见题2.3图)系统的运动方程式,并说明系统的运动状态是加速,减速,还是匀速?(图中箭头方向表示转矩的实际作用方向)TMTLTM=TLTM< TLTM-TL>0说明系统处于加速。

TM-TL<0 说明系统处于减速T M T L T M T LT M> T L M>L系统的运动状态是减速系统的运动状态是加速T M T L T T LT M= T L T M= T L系统的运动状态是减速系统的运动状态是匀速2.4 多轴拖动系统为什么要折算成单轴拖动系统?转矩折算为什么依据折算前后功率不变的原则?转动惯量折算为什么依据折算前后动能不变的原则?因为许多生产机械要求低转速运行,而电动机一般具有较高的额定转速。

这样,电动机与生产机械之间就得装设减速机构,如减速齿轮箱或蜗轮蜗杆,皮带等减速装置。

所以为了列出系统运动方程,必须先将各转动部分的转矩和转动惯量或直线运动部分的质量这算到一根轴上。

转矩折算前后功率不变的原则是P=Tω, p不变。

转动惯量折算前后动能不变原则是能量守恒MV=0.5Jω22.5为什么低速轴转矩大,高速轴转矩小?因为P= Tω,P不变ω越小T越大,ω越大T 越小。

2.6为什么机电传动系统中低速轴的GD2逼高速轴的GD2大得多?因为P=Tω,T=G∂D2/375. P=ωG∂D2/375. ,P不变转速越小GD2越大,转速越大GD2越小。

机电传动控制(第1、2章)机电传动控制的目的与任务

机电传动控制(第1、2章)机电传动控制的目的与任务

转距方向
二、运动方程式
d T TL J dt
……运动方程式
GD T T 375
2 Nm L Nm
N m 2
d nr / min d s t
T TL Td
……转矩平衡方程式
三、传动系统的状态
1.稳态(T TL时) : d
Td J dt
机 电 传 动 控 制
第一章

ห้องสมุดไป่ตู้

1.1 机电传动控制的目的与任务
一、机电传动系统的定义 机电传动是以电动机为原动机驱动生产机械的系统的总称。 机电传动系统包括: 1. 拖动生产机械的电动机 2. 控制电动机的控制系统
二、机电系统的组成
驱动运动部件的原动机 (这里指的是各种电动机) 之总称
机电系统完成生 产任务的基础 控制电动机的系统 驱动生产机械的电 动机和控制电动机 的一整套电气系统
2.4 机电系统稳定运行的条件 一、机电系统稳定运行的含义 1. 系统应能以一定速度匀速运行; 2. 系统受某种外部干扰(如电压波动、负载转矩波动等)使运 行速度发生变化时,应保证在干扰消除后系统能恢复到原来的运行
速度。
二、机电系统稳定运行的条件
1. 必要条件
电动机的输出转矩T和负载转矩TL大小相等,方向相反。 n=f(T)和n=f(TL)必须有交点,交点被称为平衡点。
例:如图所示电动机拖动重物上升和下降。 设重物上升时速度n的符号为正,下降时n的符号为负。
2.2 多轴拖动系统的简化
一、多轴拖动系统的组成
二、负载转矩的折算 ---按功率守恒的原则 1.对旋转运动:
TL
cM
TL L
'

机电传动控制课后习题答案

机电传动控制课后习题答案

习题与思考题第二章机电传动系统的动力学基础说明机电传动系统运动方程中的拖动转矩,静态转矩和动态转矩。

拖动转矩是有电动机产生用来克服负载转矩,以带动生产机械运动的。

静态转矩就是由生产机械产生的负载转矩。

动态转矩是拖动转矩减去静态转矩。

从运动方程式怎样看出系统是处于加速,减速,稳态的和静态的工作状态。

TM-TL>0说明系统处于加速,TM-TL<0 说明系统处于减速,TM-TL=0说明系统处于稳态(即静态)的工作状态。

试列出以下几种情况下(见题图)系统的运动方程式,并说明系统的运动状态是加速,减速,还是匀速(图中箭头方向表示转矩的实际作用方向)TM-TL>0系统的运动状态是减速系统的运动状态是匀速如图(a)所示,电动机轴上的转动惯量J M=, 转速n M n L=60r/min。

试求折算到电动机轴上的等效专惯量。

折算到电动机轴上的等效转动惯量J=JM+J1/j2+ JL/j12=+2/9+16/225=.如图(b)所示,电动机转速n M=950 r/min,齿轮减速箱的传动比J1= J2=4,卷筒直径D=,滑轮的减速比J3=2,起重负荷力 F=100N,电动机的费轮转距GD2M= m2, 齿轮,滑轮和卷筒总的传动效率为。

试球体胜速度v和折算到电动机轴上的静态转矩T L以及折算到电动机轴上整个拖动系统的飞轮惯量GD2z.。

ωM=*2n/60= rad/s.提升重物的轴上的角速度ω=ωM/j1j2j3=4*4*2=sv=ωD/2=2*=sT L=ηC n M=*100**950=GD2Z=δGD M2+ GD L2/j L2=*+100*322=在题图中,曲线1和2分别为电动机和负载的机械特性,试判断哪些是系统的稳定平衡点哪些不是交点是系统的稳定平衡点. 交点是系统的平衡点交点是系统的平衡交点不是系统的平衡点交点是系统的平衡点第三章一台他励直流电动机的技术数据如下:P N=,U N=220V, I N=, n N=1500r/min, R a =Ω,试计算出此电动机的如下特性:①固有机械特性;②电枢服加电阻分别为3Ω和5Ω时的人为机械特性;③电枢电压为U N/2时的人为机械特性;④磁通φ=φN时的人为机械特性;并绘出上述特性的图形。

机电传动控制课后习题答案完整版

机电传动控制课后习题答案完整版

机电传动控制课后习题答案完整版 习题与思考题
第二章 机电传动系统的动力学基础
2.1从运动方程式怎样看出系统是加速的、减速的、稳定的和静止的各种工作状态?
答:运动方程式:
T d >0时:系统加速; T d =0 时:系统稳速;T d <0时,系统减速或反向加速。

2.2 从运动方程式怎样看出系统是处于加速,减速,稳态的和静态的工作状态。

TM-TL>0 说明系统处于加速, TM-TL<0 说明系统处于减速, TM-TL=0 说明系统处于稳态 (即 静态)的工作状态。

2.3 试列出以下几种情况下系统的运动方程式,并说明系统的运行状态是加速、减速还是匀速?(图中箭头方向表示转矩的实际作用方向)
dt
d J
T T L M ω=-
答:a匀速,b减速,c减速,d加速,e减速,f匀速
2.4 多轴拖动系统为什么要折算成单轴拖动系统?转矩折算为什么依据折算前后功率不变的原则?转动惯量折算为什么依据折算前后动能不变的原则?
答:在多轴拖动系统情况下,为了列出这个系统运动方程,必须先把各传动部分的转矩和转动惯量或直线运动部分的质量都折算到电动机轴上。

由于负载转矩是静态转矩,所以可根据静态时功率守恒原则进行折算。

由于转动惯量和飞轮转矩与运动系统动能有关,所以可根据动能守恒原则进行折算。

2.5 为什么低速轴转矩大?调速轴转矩小?
答:忽略磨擦损失的情况下,传动系统的低速轴和调速轴传递的功率是一样的,即P1=P2而P1=T1ω1,P2=T2ω2.。

电机传动控制2

电机传动控制2
电压降低,空载 转速下降,转速 差不变。
n
U Ke
Ra KeKt2
T
n0
n
电动机的人为机械特性
改变磁通的人为机械特性
磁通降低,空载 转速与转速差均 增大,电磁转矩 下降。
n
U Ke
Ra KeKt2
T
n0
n
串励电动机的机械特性
软特性,启 动转矩大, 不容许空载。 改变电源极 性不能换向。 换向需改变 电枢或绕组 接线极性。
TM电动机 TL负载 Td动态
转动惯量与飞轮
FM FL FD FD Ma
TM TL TD TD J
旋转运动:TD rdFD r •r •dm TD r2 • dm Mr2 J J Mr2
TM与转向相同为正; TL与转向相反为正。
TM
TL
J
d dt
J mD2 / 4
1、拖动电机(直流电机、交流电机) 2、控制电机(控制信号的传递与转换)
三、开关量(接触器)控制系统
1、继电器 2、可编程序控制器
四、模拟量控制系统 五、数字量(晶闸管)控制系统
1、电子电力技术与晶闸管电路 2、直流传动控制系统 3、交流传动控制系统 4、步进电机传动控制系统
第2章 电机传动系统的动力学基础
改变电枢回路外串电阻调速特性
直流他励电动机的调速特性
改变电枢供电电压的调速特性
在额定转速以下平滑调节;机 械特性硬度不变,调速稳定; 调速过程中电动机输出转矩不 变,适合恒转矩调速;调压过 程可用于启动电机。
改变主磁通的调速特性
在额定转速以上调节;机械特 性较软,调速稳定;调速过程 中电枢电压与电枢电流不变, 适合恒功率调速;输出转矩随 主磁通减少而下降。

机电传动控制重点内容总结

机电传动控制重点内容总结

机电传动控制重点内容总结概述机电传动控制的目的与任务机电系统的组成电力拖动电气控制系统机械机电传动控制的任务将电能转换为机械能实现生产机械的启动、停止以及速度的调节完成各种生产工艺过程的要求保证生产过程的正常进行机电传动控制的目的第二章机电传动系统的运动学基础单轴拖动系统的运动方程式单轴拖动系统的运动方程式TM TL J d 2 dn J dt 60 dt 转动惯量和飞轮转矩的折算几种常见的负载特性恒转矩负载,离心式通风机型负载,直线型负载恒功率负载机电系统稳定运行的条件和判定方法第三章直流电机的工作原理及特性直流电机的基本结构和工作原理基本结构定子转子换向器工作原理发电机原理电动机原理电动势的大小和方向电磁转矩的大小和方向E K e nTM K m I a 直流他励电动机的机械特性机械特性的一般形式Ra U n Ia K e K e Ra U n T 2 K e K e K M 固有机械特性人为机械特性Ra U n T 2 K e K e K MU E I a RaP T 9.55 n PE K e n TM K m I a直流他励电动机的启动特性电动机固有的启动特性启动电流大启动转矩大启动方法电枢串电阻启动的方法启动电阻的选择直流他励电动机的调速特性调速方法特点电枢串电阻恒转矩调速特性电枢外加电压恒功率调速特性励磁磁通直流他励电动机的制动特性反馈制动产生的原因、制动过程与特点反接制动产生的原因、制动过程与特点能耗制动作用与特点第四章过渡过程过渡过程分析机电时间常数加快过渡过程的方法第五章交流电动机的工作原理及特性三相交流电动机的基本结构和工作原理基本结构定子转子工作原理旋转磁场的旋转速度旋转磁场的旋转方向转子的旋转速度三相交流电动机的额定参数定子绕组的连接方法额定参数连接方法的选用60 f n0 pn0 n S n0三相交流电动机的转矩特性与机械特性60 f n0 p S R2 n0 nm m X n0 20 U2 Tmax K 2 X 20 R2U 2 Tst K 2 2 R2 X 20 T max TN K 1 / f , X f 20三相交流电动机的启动、制动和调速特性固有启动特性启动方法调速方法与特点制动方法与特性单相交流电动机结构特点启动方法同步交流电动机结构特点特性启动方法第六章控制电机交直流伺服电机的工作原理如何消除自传现象第八章继电器接触器控制系统常用电器工作原理与使用场合接触器热继电器电流继电器电压继电器熔断器基本电路的分析与设计按钮、行程开关等继电器接触器电路的组成常用电动机控制电路按时间原则控制的电路按行程原则控制的电路按电流原则控制的电路按速度原则控制的电路各种保护第十三章步进电动机控制系统步进电动机的结构与工作原理齿数、相数通电方式步距角主要特性第十四章电机的选择电机容量的选择原则电机的发热和冷却不同工作制下电机容量的选择等效功率,力矩的折算电机种类,电压,转速,结构的选择。

《机电传动控制》笔记

《机电传动控制》笔记

《机电传动控制》笔记第一章:绪论1.1 简介《机电传动控制》将机械工程与电气工程相结合,通过研究电机、驱动器以及控制系统来实现对机械设备的有效操作。

本课程旨在培养学生理解并掌握机电一体化系统的设计原理和方法,为将来从事相关领域的科研或工程实践打下坚实的基础。

1.2 机电传动控制系统的基本概念•定义:机电传动控制系统是指利用电气、电子及计算机技术来控制机械设备运动的系统。

•组成要素:o执行机构(如电动机):负责产生驱动力。

o传感器:用于监测系统的状态信息。

o控制器:根据设定的目标值与实际反馈进行比较,并据此调整执行机构的动作。

o被控对象:即需要被控制的机械设备。

•工作流程:输入信号 → 控制器处理 → 输出信号 → 执行机构响应 → 反馈至控制器形成闭环回路。

1.3 发展历程与趋势自20世纪初以来,随着电力技术的发展,人们开始尝试用电能替代传统的蒸汽动力来进行工业生产。

到了20世纪中后期,随着微处理器技术和自动控制理论的进步,机电传动控制逐渐从简单的手动调节向自动化方向转变。

近年来,智能化、网络化成为该领域的主要发展方向之一。

未来,预计还将进一步融入物联网(IoT)、大数据分析等先进技术,提高整个系统的效率与可靠性。

第二章:电力拖动基础2.1 电机类型及其工作原理•直流电机o结构:由定子(包括主磁极、换向极)、转子(电枢铁心+绕组)、换向器三部分组成。

o工作原理:当电流通过电枢绕组时,在磁场作用下会产生电磁力矩使转子旋转;改变电压大小可以调节转速。

•交流电机o异步电机(感应电机)▪特点:简单耐用、成本低。

▪分类:单相、三相。

▪工作原理:依靠定子产生的旋转磁场切割转子导条,从而在转子内部形成闭合电路产生感应电流,进而产生转矩。

o同步电机▪特点:适用于高精度场合。

▪工作方式:转子转速严格等于电网频率与极对数之比,可通过改变励磁电流来调整输出功率因数。

2.2 电动机的选择原则选择合适的电动机对于确保整个系统的性能至关重要。

机电传动控制第2章

机电传动控制第2章

2.2 转矩、转动惯量和飞轮转矩的折算
依据动能守恒原则,折算到电机轴上的总飞轮矩为
2 2 GD GD 2 2 1 L GD GD Z M 2 2 j j 1 L 2 2 2 电机轴、中间轴、生产机 GD 、 GD 、 GD --- M 1 L 械轴上的飞轮转矩。 对于直线运动时:
折算到电机轴上的总转动惯量为
系统稳定运行的充分条件是:
dT dn
dT dT M L 0 dn dn
电动机的机械特性硬度应 小于负载的
机械特性硬度是可正可负,注意判别。
2.4 机电传动系统稳定运行的条件
由上分析,对于恒转矩负载,电动机的转速增加时, 必须具有向下倾斜的机械特性,系统才能稳定。(因为负 载的机械特性硬度是0,电动机的机械特性硬度应为负值)
式中:
J M 、 J 1 、 J L- - - 电机轴、中间轴、负载轴上的转动惯量; Z j 1 M 1 - - 电动机轴与中间传动轴之间的速比; 1 ZM
M jL - - - - 电机轴与负载轴之间的速度比; L M 、 1 、 L- - - 电机轴、中间轴、负载轴上的角速度 Z 1 、 Z M - - - - - 中间轴、电机轴上的齿数。
反映到电动机轴上的负载功率是:
P T M L M
2.2 转矩、转动惯量和飞轮转矩的折算
如电动机拖动生产机械旋转或运动,传动机构中的损耗 由电动机承担,根据功率平衡关系,有:
Fv T L M
Fv T 9 . 55 L
c
n c M
M
2 n 60
2.2 转矩、转动惯量和飞轮转矩的折算
对于旋转运动,如下图所示,当系统匀速运动时,生产机 械的负载功率是:

【机电传动控制-辅导】复习要点

【机电传动控制-辅导】复习要点

机电传动控制复习提纲第二章 机电传动系统的动力学基础2.1 知识要点2.1.1 基本内容1.机电传动系统的运动方程式机电传动系统是一个由电动机拖动,并通过传动机构带动生产机械运转的机电运动的动力学整体[如图2.1(a)所示]尽管电动机种类繁多、特性各异,生产机械的负载性质也可以各种各样,但从动力学的角度来分析时,则都应服从动力学的统一规律,即在同一传动轴上电动机转矩T M 、负载转矩T L 、转轴角速度ω三者之间符合下面的关系: T M -T L =Jdt d (2.1) 或用转速n 代替角速度ω,则为 T M -T L =dt dn GD 3752 (2.2)式(2.1)和式(2.2)称为机电传动系统的运动方程式。

机电传动系统的运动方程式是描述机电系统机械运动规律的最基本方程式,它决定着系统的运行状态,当动态转矩T d =T M -T L =0时,加速度a =dt dn =0 ,表示没有动态转矩,系统恒(匀)速运转,即系统处于稳态;当T d ≠0时,a =dt dn ≠0 ,表示系统处于动态,T d >0时,a =dt dn 为正,传动系统为加速运动;T d <0时,a =dt dn为负,系统为减速运动。

因式(2.1)和式(2.2)中的T M 、T L 既有大小还有方向(正负),故确定传动系统的运行状态不仅取决于T M 和T L 的大小,还要取决于T M 和T L 的正负(方向)。

因此,列机电传动系统的运动方程式和电路平衡方程时,必须规定各电量的正方向,也必须规定各机械量的正方向。

对机电传动系统中各机械量的正方向约定[见图2.1(b)]如下:在确定了转速n 的正方向后,电动机转矩T M 取与n 相同的方向为正向,负载转矩T L 取与n 相反的方向为正向,因此,若T M 与n 符号相同,则表示T M 与n 的方向一致;若T L 与n 符号相同,则表示T L 与n 方向相反。

也可以由T M 、T L 的方向来确定T M 、T L 的正负。

机电传动控制第二章

机电传动控制第二章

二、机电系统稳定运行的条件 1. 必要条件 电动机的输出转矩TM和负载转矩TL大小相等,方向相反。 从T—n坐标上来看,就是电动机的机械特性曲线 n=f(TM)和生 产机械的机械特性曲线 n=f(TL)必须有交点,交点被称为平衡点。
2. 充分条件 系统受到干扰后,要具有恢复到原平衡状态的能力,即: 当干扰使速度上升时,有 TM<TL ;否则,当干扰使速度下降时, 有TM>TL 。这是稳定运行的充分条件。
方成正比,即:
TL Cn2
其中:C为常数。
三、直线型机械特性
直线型机械特性的负载转矩TL的 大小与速度n的大小成正比,即 :
TL Cn 其中:C为常数。
他励直流发电机,当励磁电流和电 枢电阻固定不变时。
四、恒功率型机械特性
恒功率型机械特性的负载转矩TL的大小与速度n的大小成正
比,即
TL
C n
其中:C为常数。如图所示。
2.1 单轴拖动系统的运动方程式 一、单轴拖动系统的组成
电动机
电动机的驱动对象
系统结构图
连接件
转距方向
电动机M通过连接件直接与生产机械相连,由电动机M产生输
出转矩TM,用来克服负载转矩TL ,带动生产机械以角速度ω(或速
度n)进行运动。
二、运动方程式
在机电系统中,TM、TL、(或n)之间的函数关系称为运动方
符合稳定运行条件的平衡点称为稳定平衡点。
分析举例
异步电动机 的机械特性
交点a
a、b两点是否 为稳定平衡点?
生产机械 的机械特 性
交点b
a点: TM TL 0 当负载突然增加后
TM TL' 0 TM' TL' 0 当负载波动消除后

机电传动控制课后知识题目解析

机电传动控制课后知识题目解析

第二章机电传动系统的动力学基础2.2 从运动方程式怎样看出系统是处于加速,减速,稳态的和静态的工作状态。

T M-T L>0说明系统处于加速,T M-T L<0 说明系统处于减速,T M-T L=0说明系统处于稳态(即静态)的工作状态。

2.3 试列出以下几种情况下(见题2.3图)系统的运动方程式,并说明系统的运动状态是加速,减速,还是匀速?(图中箭头方向表示转矩的实际作用方向)TT MTLT M=T L T M< T LT M-T L>0说明系统处于加速。

T M-T L<0 说明系统处于减速T M T M T LT M> T L T M> T L系统的运动状态是减速系统的运动状态是加速TM T L T L2.5为什么低速轴转矩大,高速轴转矩小?因为P= Tω,P不变ω越小T越大,ω越大T 越小。

2.6为什么机电传动系统中低速轴的GD2逼高速轴的GD2大得多?因为P=Tω,T=G∂D2/375. P=ωG∂D2/375. ,P不变转速越小GD2越大,转速越大GD2越小。

2.9 一般生产机械按其运动受阻力的性质来分可有哪几种类型的负载?可分为1恒转矩型机械特性2离心式通风机型机械特性3直线型机械特性4恒功率型机械特性,4种类型的负载.2.11 在题2.11图中,曲线1和2分别为电动机和负载的机械特性,试判断哪. 些是系统的稳定平衡点?哪些不是?交点是系统的稳定平衡点. 交点是系统的平衡点交点是系统的平衡交点不是系统的平衡点交点是系统的平衡点第三章3.1为什么直流电记得转子要用表面有绝缘层的硅钢片叠压而成?直流电机的转子要用表面有绝缘层的硅钢片叠加而成是因为要防止电涡流对电能的损耗..3.5 一台直流发电机,其部分铭牌数据如下:P N=180kW, U N=230V,n N=1450r/min,ηN=89.5%,试求:①该发电机的额定电流;②电流保持为额定值而电压下降为100V时,原动机的输出功率(设此时η=ηN)P N=U N I N180KW=230*I NI N=782.6A该发电机的额定电流为782.6AP= I N100/ηNP=87.4KW3.6 已知某他励直流电动机的铭牌数据如下:P N=7.5KW, U N=220V, nN=1500r/min, ηN=88.5%, 试求该电机的额定电流和转矩。

机电传动控制课件__第2章

机电传动控制课件__第2章
第2章
机电传动系统的静态与动态特性
本章重点: 1.几种典型生产机械的负载特性 2.加快过渡过程的方法以及机电传动系统稳定 运行的条件
2.1 研究机电传动系统静态与动态特性的意义 2.2 机电传动系统的运动方程式(揭示运动规律)
2.3 典型生产机械的负载特性(了解掌握典型)
2.4 负载转矩、转动惯量和飞轮转矩的折算方法
• 由于负载转矩是静态转矩,可以根据功 率守恒原则进行折算。
• 1.旋转运动
TL L TL TL c M c j
• 2.直线运动 电动机拖动生产机械移动 ,提升重物
F v TL 9.55 c n
• 生产机械拖动电动机移动,如下放重物
F v c TL 9.55 n
• A.电动机的机械特性曲线与生产机械的机械特 性曲线有交点;即电动机轴上的拖动转矩和折 算到电动机轴上的负载转矩大小相等,方向相 反,相互平衡。 • B.当转速大于平衡点对应的转速时,有: M T
TL
• 当转速小于平衡点对应的转速时,有 :T T M L
• 只有满足上述两个条件的平衡点,才是 拖动系统的稳定平衡点,即只有这样的 特性配合,系统在受到外界干扰后,才 具有恢复到原来平衡状态的能力而进行 稳定的运行。在一般负载情况下,只要 电动机的机械特性是下降的,整个系统 就能够稳定运行。
2.5 机电传动系统的过渡过程
2.6 机电传动系统稳定运行的条件(懂得判断)
2.1 研究机电传动系统静态与动态特性的意义
机电传动系统有静态(稳态)和动态(暂态)两种运 行状态。 静态是指系统以恒速运转的状态,其动态转矩为 零; 动态是指系统的速度处于变化之中的状态,存在动态 转矩。 机电传动系统的静态特性是电动机的电磁 的条件

机电传动控制基础课后题答案

机电传动控制基础课后题答案

折算到电机轴上的静态转矩:
TL
9.55 F v2
c nM
9.55 100 0.37 0.83 950
0.448
N •m
折算到电动机轴上整个拖动系统的飞轮惯量GDZ2
GDZ2
GDM2
GD12
j
2 1
(
GDL2 j1 j2 )2
365
G v2 nM2
1.1 GDM2
365
F v2 nM2
(2)电动机拖动位能性恒转矩负载,要求以-300r/min速度下放重 物,采用倒拉反接制动,电枢回路应串多大电阻?若采用能耗制动, 电枢回路应串多大电阻?
(3)想使电机以n=-1200r/min速度,在再生发电制动状态下,下 放重物,电枢回路应串多大电阻?若电枢回路不串电阻,在再生发 电制动状态下,下放重物的转速是多少?
n) 9.55Ke N 2
TL
- Ra
( 220 1200) 9.55 0.2082
0.208
49
- 0.4 0.8
不串电阻时的制动转速:
n
UN KeN
Ra
9.55Ke
N
2
TL
220 0.208
0.4 9.55 0.2082
49 1105 r/min
习题与思考
3.4 直流电动机一般为什么不允许直接启动?如直接启动 会发生什么问题?应采用什么方法启动比较好?
N •m
3.11一台他励直流电动机的名牌数据为:
PN=5.5kW,UN=110V, IN=62A
nN=1000r/min ,
试绘制出它的固有机械特性曲线:
解:
Ra
0.75
UnN n2
PN

机电传动控制2

机电传动控制2
△n
n △n
b点是平衡稳定点 注意:1.电动机机械特性曲线和负载 特性曲线的区别;2.平衡点须同时满 足二稳定平衡条件。
目 录
教材P13 2.2、2.3、2.11题
目 录
第二章机电传动的动力学基础 2.1运动方程式
1.对于一个电动机输出轴上的运动情况有 2.意义 3.Tm与TL的正反
2.3 生产机械的机械特性
另外,应有抗干扰能力: 当有外来干扰时会引起n变化; 当干扰消失后,n应恢复原状态; 所以另一个稳定条件是:
目 录
第一章 概述 第二章 机电传动的动力学基础 2.1运动方程式2.3 生产机械的机械特性 2.4 机电传动系统的稳定运行条件1.机械特性曲线
2、当有外加干扰使n变化时,干扰消 除后n应能自行恢复到原状态。
以转速的方向为准(n):
Tm: 与n同向时为正(拖动)反之为负(制动) TL: 与n反向时为正(制动)反之为负(拖动)
目 录
第一章 概述 第二章 机电传动的动力学基础 2.1运动方程式 1.对于一个电动机输出轴上的运动情况 2.意义 3.Tm与TL的正反
解释:提升重物
升:Tm为正; TL正 (拖动)
此处:Tm=TL(匀速)
目 录
第一章 概述 第二章 机电传动的动力学基础 2.1运动方程式2.3 生产机械的机械特性 2.4 机电传动系统的稳定运行条件1.机械特性曲线
例:
●曲线1和2,附合这个 条件,有a、b交点; ●曲线1和3,不附合;
1
a
2 3
b
目 录
第一章 概述 第二章 机电传动的动力学基础 2.1运动方程式2.3 生产机械的机械特性 2.4 机电传动系统的稳定运行条件1.机械特性曲线
2.3.4 恒功率型特性

机电传动控制课后习题答案

机电传动控制课后习题答案

机电传动控制课后习题答案Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#习题与思考题第二章机电传动系统的动力学基础说明机电传动系统运动方程中的拖动转矩,静态转矩和动态转矩。

拖动转矩是有电动机产生用来克服负载转矩,以带动生产机械运动的。

静态转矩就是由生产机械产生的负载转矩。

动态转矩是拖动转矩减去静态转矩。

从运动方程式怎样看出系统是处于加速,减速,稳态的和静态的工作状态。

TM-TL>0说明系统处于加速,TM-TL<0 说明系统处于减速,TM-TL=0说明系统处于稳态(即静态)的工作状态。

试列出以下几种情况下(见题图)系统的运动方程式,并说明系统的运动状态是加速,减速,还是匀速(图中箭头方向表示转矩的实际作用方向)TM-TL>0TM= TL TM= TL系统的运动状态是减速系统的运动状态是匀速如图(a)所示,电动机轴上的转动惯量J M=, 转速n M,转速n L=60 r/min。

试求折算到电动机轴上的等效专惯量。

折算到电动机轴上的等效转动惯量J=JM+J1/j2+ JL/j12=+2/9+16/225=.如图(b)所示,电动机转速n M=950 r/min,齿轮减速箱的传动比J1= J2=4,卷筒直径D=,滑轮的减速比J3=2,起重负荷力 F=100N,电动机的费轮转距GD2M= m2, 齿轮,滑轮和卷筒总的传动效率为。

试球体胜速度v和折算到电动机轴上的静态转矩T L以及折算到电动机轴上整个拖动系统的飞轮惯量GD2z.。

ωM=*2n/60= rad/s.提升重物的轴上的角速度ω=ωM/j1j2j3=4*4*2=sv=ωD/2=2*=sT L=ηC n M=*100**950=GD2Z=δGD M2+ GD L2/j L2=*+100*322=在题图中,曲线1和2分别为电动机和负载的机械特性,试判断哪些是系统的稳定平衡点哪些不是交点是系统的稳定平衡点. 交点是系统的平衡点交点是系统的平衡交点不是系统的平衡点交点是系统的平衡点第三章一台他励直流电动机的技术数据如下:P N=,U N=220V, I N=, n N=1500r/min, R a =Ω,试计算出此电动机的如下特性:①固有机械特性;②电枢服加电阻分别为3Ω和5Ω时的人为机械特性;③电枢电压为U N/2时的人为机械特性;④磁通φ=φN时的人为机械特性;并绘出上述特性的图形。

机电传动控制课后习题答案《第五版》

机电传动控制课后习题答案《第五版》

习题与思考题第二章机电传动系统的动力学基础2.1说明机电传动系统运动方程中的拖动转矩,静态转矩和动态转矩。

拖动转矩是由电动机产生用来克服负载转矩,以带动生产机械运动的。

静态转矩就是由生产机械产生的负载转矩。

动态转矩是拖动转矩减去静态转矩。

2.2从运动方程式怎样看出系统是处于加速,减速,稳态的和静态的工作状态。

TM-TL>0说明系统处于加速,TM-TL<0说明系统处于减速,TM-TL=O 说明系统处于稳态(即 静态)的工作状态。

2.3试列出以下几种情况下 (见题2.3图)系统的运动方程式, 并说明系统的运动状态是加速,减速,还是匀速?(图中箭头方向表示转矩的实际作用方向)系统的运动状态是减速系统的运动状态是加速系统的运动状态是减速系统的运动状态是匀速2.4多轴拖动系统为什么要折算成单轴拖动系统?转矩折算为什么依据折算前后功率不变TMTM=TL说明系统处于减速TM< TL TM-TL<0说明系统处于减速。

TM-TL<0T M T LT M =T LT L的原则?转动惯量折算为什么依据折算前后动能不变的原则?因为许多生产机械要求低转速运行,而电动机一般具有较高的额定转速。

这样,电动机与生产机械之间就得装设减速机构,如减速齿轮箱或蜗轮蜗杆,皮带等减速装置。

所以为了列出系统运动方程,必须先将各转动部分的转矩和转动惯量或直线运动部分的质量这算到一根轴上。

转矩折算前后功率不变的原则是P=T 3 , p不变。

转动惯量折算前后动能不变原则是能量守恒MV=0.5J 3 22.5为什么低速轴转矩大,高速轴转矩小?因为P= T 3 ,P不变3越小T越大,3越大T越小。

2.6为什么机电传动系统中低速轴的GD2比高速轴的GD2大得多?因为P=T 3, T=G?D2/375. P= 3 G?D2/375. ,P不变转速越小GD2越大,转速越大GD2 越小。

2.7 如图2.3 (a)所示,电动机轴上的转动惯量j M=2.5kgm2,转速n M=900r/min;中间传动轴的转动惯量J L=16kgm2,转速n L=60 r/min。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 即 0,即
d 0,传动系统加速运动。
dt
d 0,传动系统减速运动。
dt
TM TL 时传动系统处于加速或减速运动的这种状态被称为动态。
四、TM、TL 、n的参考方向(2) 因为电动机和生产机械以共同的转速旋转,所以,一般以ω(或n)的转动方向
为参考来确定转矩的正负。
拖动转距促进运动;制动转距阻碍运动。
J 2 dn ……运动方程式
60 dt TM TL Td ……转矩平衡方程式
TM ─ 电动机的输出转矩(N.m);
TL─ 负载转矩(N.m);
J ─ 转动惯量(kg.m2); n ─ 速度(r/min);
─ 角速度(rad/s); t ─ 时间(s );
Td
J
d
dt
J
2
60
dn dt

动态转矩(N.m)。
C
减速机构的输出功率 减速机构的输入功率
TLL TeqM
则生产机械上的负载转矩折算到电动机轴上的等效转矩为:
Teq
TLL c M
TL
c j
式中:ηc—电动机拖动生产机械运动时的传动效率;
j M —传动机构的总传动比 L
2.3 生产机械的机械特性 在同一轴上,负载转矩和转速之间的函数关系,称为生产机械的机械特性。
因摩擦、非弹性体的压缩、拉伸与扭转等作用所产生的负载转矩,如机床加工 过程中所产生的负载转矩。
2.位能作用方向不变,与运动方向无关,即在某一方向阻碍运动而在另一方向促进运动 。
卷扬机起吊重物时,由于重物的作用方向永远向着地心,所以,由它产生的 负载转矩永远作用在使重物下降的方向,当电动机拖动重物上升时,TL与n的方向相反 ;当重物下降时,TL和n的方向相同。
折算的原则是:折算前后系统总的传输功率及储存能量不变。
二、负载转矩的折算 假设电动机以ωM角速度匀速旋转,负载转矩TL折算到电动机轴上的负载转矩 为Teq,而生产机械的转动速度为ωL 。则电动机输出功率PM和负载所需功率PL分别为:
PM M • Teq
PL L •TL
考虑传动机构在传输功率的过程中有损耗,这个损耗可用效率ηc来表示,且
举例:如图所示电动机拖动重物上升和下降。
设重物上升时速度n的符号为正, 下降时n的符号为负。
当重物上升时:
TM为正, TL为正。
TM、TL、n的方向如图(a)所示。运 动方程式为:
TM
TL
J
2
60
dn dt
因此重物上升时,TM为拖动转矩,TL为制动转矩。
当重物下降时:
TM为正, TL为正。
TM、TL、n的方向如图(b)所示。运动方程式为:
第二章 机电传动系统的运动学基础 ✓机电传动系统的运动方程式; ✓多轴传动系统中转矩折算的基本原则和方法;
✓ 了解几种典型生产机械的负载特性; ✓ 了解机电传动系统稳定运行的条件以及学会分析实际系统的稳定性。
2.1 单轴拖动系统的运动方程式 一、单轴拖动系统的组成
电动机
电动机的驱动对象
系统结构图
连接件
一、恒转矩型机械特性 恒转矩型机械特性根据其特点可分为反抗转矩和位能转矩两种。分别如图所示:
1.反抗转矩:又称摩擦性转矩,其特点如下: ✓转矩大小恒定不变; ✓作用方向始终与速度n的方向相反,当n的方向发生变化时,它的作用方向也随之 发生变化,恒与运动方向相反,即总是阻碍运动的。
按关于转矩正方向的约定可知,反抗转矩恒与转速n取相同的符号,即n为正方 向时TL为正,特性在第一象限;n为负方向时TL为负,特性在第三象限。
其中:C为常数。 三、直线型机械特性
TL Cn2
直线型机械特性的负载转矩TL的大小与速 度n的大小成正比,即 :
TL Cn
其中:C为常数。
他励直流发电机,当励磁电流和电枢电阻 固定不变时。
四、恒功率型机械特性
恒功率型机械特性的负载转矩TL的大小与速度n的大小成正比,即
TL
C n
其中:C为常数。如图所示。
2.4 机电系统稳定运行的条件 机电传动系统中,电动机与生产机械连成一体,为了使系统运行合理,就要使
电动机的机械特性与生产机械的机械特性尽量相配合。特性配合好的一个起码要求是系 统能稳定运行。
一、机电系统稳定运行的含义
1. 系统应能一定速度匀速运行; 2. 系统受某种外部干扰(如电压波动、负载转矩波动等)使运行速度发生变化 时,应保证在干扰消除后系统能恢复到原来的运行速度。
三、传动系统的状态
根据运动方程式可知:运动系统有两种不同的运动状态:
1.稳态(TM TL时):
Td
J d
dt
0即
dω 0,ω为常数,传动系统以恒速运动。 dt
TM =TL时传动系统处于恒速运动的这种状态被称为稳态。
2.动态(TM TL时):
TM
TL时:Td
J
d
dt
TM
TL时:Td
J
d
dt
1. TM的符号与性质 当TM的实际作用方向与n的方向相同时,取与n相同的符号; 当TM的实际作用方向与n的方向相反时,取与n相反的符号; 当TM的实际作用方向与n的方向相同(符号相同)时, TM为拖动转距,否则为制 动转距。
2. TL的符号与性质 当TL的实际作用方向与n的方向相同时,取与n相反的符号; 当TL的实际作用方向与n的方向相反时,取与n相同的符号; 当TL的实际作用方向与n的方向相同(符号相反)时, TL为拖动转距,否则为制 动转距。
转距方向
电动机M通过连接件直接与生产机械相连,由电动机M产生输出转矩TM,用来克 服负载转矩TL ,带动生产机械以角速度ω(或速度n)进行运动。
二、运动方程式 在机电系统中,TM、TL、(或n)之间的函数关系称为运动方程式。
根据动力学原理,TM、TL、(或n)之间的函数关系如下:
TM
TL
J
d
dt
TM
TL
J
2
60
dn dt
即:
TL
TM
J
2
60
dn dt
因此重物下降时,TM为制动转矩,TL为拖动转矩。
2.2 多轴拖动系统的简化
一、多轴拖动系统的组成
示:
电动机通过减速机构(如减速齿轮箱、蜗轮蜗杆等)与生产机械相连,如图所
为了对多轴拖动系统进行运行状态的分析,一般是将多轴拖动系统等效折算为 单轴系统。
假设n为正时TL阻碍运动,则n为负时TL促进运动,特性在第一、四象限。
不难理解,在运动方程式中,反抗转矩TL的符号总是与 n 相同;位能转矩TL的 符号则有时与n 相同,有时与n相反。
二、离心式通风型机械特性
离心式通风型机械特性是按离心力原理工 作的,如离心式鼓风机、水泵等,它们的负载转矩 TL的大小与速度n的平方成正比,即:
相关文档
最新文档