2018年高考天津卷文科数学试题答案解析
2018天津高考文科数学解析
![2018天津高考文科数学解析](https://img.taocdn.com/s3/m/f72790be0029bd64793e2c17.png)
2018年普通高等学校招生全国统一考试(天津卷)-文科数学2018年天津高考文科数学试卷真题答案&解析天津新东方优能一对一部高中数学组第一部分:试卷整体点评2018年文科数学的出题顺序相比较2017年发生了一些变化。
但是整体难度与去年持平。
首先是选择题部分,8道题目前7题中2017年的概率变为线性规划,其他知识点考察基本一致。
选择压轴题从去年的函数与方程变为向量的数量积问题。
再来看填空部分,与2017年相同的考查知识点有4题,分别是是复数、导数的几何意义、圆的方程、均值不等式。
发生变化的题目是立体几何17年在14~16连续三年三视图的基础上考察外接球体积,有13年题目的非常相似。
18年则是给出立体图形求体积难度有所下降。
填空压轴题方面,17,18两年发生了互换,近年函数与方程作为填空题的最后一题。
值得一提的是回顾14年-18年天津在考察函数与方程的题目方面偏爱一个分段函数结合不等式恒成立问题,此类问题仍然是我们2019年备考的侧重点。
大题方面的顺序发生了变化,不同于16和17两年把三角函数放在15题的位置,18年重新把概率计算放在首位。
三角函数考查内容与去年相一致。
第三题仍然是立体几何,考察线线垂直,异面直线成角,线面角。
第18题数列题考察等差等比数列的基础公式,没有涉及到人们求和方法错位相减、裂项方法,考察难度有弱化趋势。
19,20题的考察内容相比2017年发生互换,尤其注意一点近年的椭圆题目越来越重视运算求解能力,结合一定的平面几何证明。
最后一题的导数前两问考察侧重基础,对于大部分同学是完全有能力拿下的,最后一问的模型也是平时练习中有所涉及,对于学生计算的要求依然很大。
总体来看数列、立体几何小题考察今年有弱化趋势,计算量大仍然是天津卷的特点,请同学们在2019年的备考过程中注意计算的准确性,祝2018年的考生金榜题名。
第二部分:试卷题目解析一、 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 设集合{}{}{}1,2,3,4,1,02,3=|12),,C 则(==-∈-≤<=A B x R x A B C(A ){}1,1- (B ){}0,1 (C ){}1,0,1- (D ){}2,3,4 答案:C解析:依题意可知:{}=1,0,1,2,3,4-A B ,)={-1,0,1}(A B C .(2) 设变量,x y 满足约束条件5,24,1,0.+≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩x y x y x y y 则目标函数35=+z x y 的最大值为(A )6 (B )19 (C )21 (D )45 答案:C解析: 设5+≤x y 与1-+≤x y 的交点为A=5=1+⎧⎨-+⎩x y x y ,解得=2=3⎧⎨⎩x y ,∴(2,3)A 又35=+z x y 是一族斜率为35-的平行线,∴=max 当直线过(2,3)时,z 取得最大值为z 21A . (3) 设∈x R ,则“38>x ”是||2>x 的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 答案:A 解析:38>x 的解集为2>x ,||2>x 的解集为22或><x x ,38||2是∴>>x x的充分不必要条件.(4) 阅读右边的程序框图,运行相应的程序, 若输入N 的值为20,则输出的T 的值为 (A )1 (B )2 (C )3 (D )4 答案:B是 输出TT=T +1 是整数?i=2,T=0输入N开始 i=i +1 是 否否解析:=20N ,2,0,10===Ni T i; 203,1,3===N i T i ;4,=i 20=54=N i ; 5,2,输出==i T T .=2∴T(5) 已知13313711log ,(),log 245===a b c ,则,,a b c 的大小关系为(A )>>a b c (B )>>b a c (C )>>c b a (D )>>c a b 答案:D 解析:37log 2=a , 1331log =log 55=c , 又3log x 在+(0,)∞单调递增,3371log log 522∴<<<,即12∴<<<a c ,131()4=b ,函数1()4=x y 的底数小于1,1()4是定义域内单调递减的函数∴=x y ,10311b ()()144∴=<=b 12∴<<<<ac ,即b <<a c(6) 将函数sin(2)5π=+y x 的图象向右平移10π个单位长度,所得图象对应的函数(A )在区间[,]44ππ-上单调递增 (B )在区间[,0]4π-上单调递减(C )在区间[,]42ππ上单调递增 (D )在区间[,]2ππ上单调递减答案:A解析:sin(2)5π=+y x 向右移动10π个单位长度得到sin[2-]105()ππ=+y x ,即sin 2=y x ,单增区间为:+222()22ππππ-≤≤+∈k x k k Z+()44ππππ-≤≤+∈k x k k Z当0=k 时,函数sin(2)5π=+y x 在区间[,]44ππ-上单调递增.(7) 已知双曲线22221(0,0)-=>>x y a b a b的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点,设,A B 到双曲线的同一条渐近线的距离分别为12和d d 且12+=6d d ,则双曲线方程为(A )22139-=x y (B )22193-=x y (C )221412-=x y (D )221124-=x y答案:A解析:2==ce a,2=c a , 在梯形ABCD 中,+2=AC BD FE ,FE 为渐焦距=b ,1226∴+==d d b 3∴=b222+=a b c 2229,12=3,∴==a b c∴22139-=x y (8) 在如图的平面图形中,已知1,2,120,OM ON MON ==∠=,2,BM MA =2CN NA =,则的值为BC OM(A )-15 (B )-9 (C )-6 (D )0 答案:C解析:如图所示建系,(0,0),(1,0)1,3)-O M N 设(,),(,),(,)A A B B C C A x y B x y C x y2=B M M A(1,)2(1,∴--=-B B A A x y x y1=22=2--⎧∴⎨-⎩B A B Ax x y y ,即=32=2-⎧⎨-⎩B A B A x x y y2=CNNA(1)2(1,∴--=+C CA A x yx y1222--=+⎧⎪∴=-CA C A x x y y 322=--⎧⎪∴⎨=⎪⎩C A C Ax x y y 633=10(-,),(,)∴=BC OM =6∴∙-BC OM二、填空题:本大题共6小题,每小题5分,共30分.(9)i 是虚数单位,复数6712ii+=+ .答案:4i - 解析:67(67)(12)412(12)(12)i i i i i i i ++-==-++- (10)()ln ,()()(1)x f x e x f x f x f ''=已知函数为的导函数,则的值为 . 答案:e解析:'1()(ln )x f x e x x=+ ()'1f e =(11)如图,已知正方体1111ABCD A BC D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点,,,,E F G H M (如图),则四棱锥M EFGH -的体积为 .答案:13解析:连11AC交11B D于点O ,111111111(1333A BB D D B BDD V AO S -=鬃=? (12) 在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为 答案:2220x x y -+=解析:因为圆过(0,0)(2,0)所以圆心在x=1上,设其坐标为(1,b ) 又因为(1,1)在圆上所以10,1r b br =-==22(1)1,x y -+=即2220x x y -+=(13) 1,,360,28a b a b R a b ∈-+=+已知且则的最小值为答案:14解析:31122284a ab b-+=+? (14) [)2122,0,,()3,,22,0,x x a x a R f x x x x a x ⎧++-≤∈=∈-+∞⎨-+->⎩已知函数若对任意()a f x x ≤恒成立,则的取值范围是答案:1[,2]8解析:当2[3,0],22x x x a x ?++-?恒成立2m i n (32)2a x x ?-+= 当2(0,),22x x x a x ??+-?恒成立2max1()28x xa -+?综上,1[,2]8a Î二、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(I)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(II)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.答案:(I)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比分别为3:2:2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的志愿者中分别抽取3人,2人,2人.(II) (i)解:从抽取的7名同学中随机抽取2名同学的所有可能结果为{},A B ,{},A C ,{},A D ,{},A E ,{},A F ,{},A G ,{},B C ,{},B D ,{},B E ,{},B F ,{},B G ,{},C D ,{},C E ,{},C F ,{},C G ,{},D E ,{},D F ,{},D G ,{},E F ,{},E G ,{},F G ,共21种.(ii)解:由(I),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{},A B ,{},A C ,{},B C ,{},D E ,{},F G ,共5种.所以,事件M 发生的概率5()21P M =. (16)(本小题满分13分)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c ,已知bsin cos 6π⎛⎫=- ⎪⎝⎭A a B .(I)求角B 的大小;(II)设2, 3.sin(2)求和的值==-a c b A B . 答案:(I)解:在ABC ∆中,由正弦定理,sin sin sin sin 可得==a bb A a B A B,又由bsin cos 6π⎛⎫=- ⎪⎝⎭A a B ,得a sin cos 6π⎛⎫=- ⎪⎝⎭B a B ,即sin cos 6π⎛⎫=- ⎪⎝⎭B B ,可得tan =B ()0,π∈B ,可得=3πB .(II)解:在ABC ∆中,由余弦定理及2,3=3,π==a c B ,有222+2cos 7,故=-==b a c ac B b由bsin cos6π⎛⎫=- ⎪⎝⎭A a B ,可得sin cos ,故=<=A a c A .因此21sin 22sin cos cos 22cos 177===-=AA A A A ,所以, ()11sin 2-sin 2cos cos 2sin 727214=-=-⨯=A B A B A B . (17)(本小题满分13分)如图,在四面体ABCD 中,ABC ∆是等边三角形,平面ABC⊥平面ABD,点M 为棱AB 的中点,=2=90,∠AB AD BAD .(I)求证:AD ⊥BC(II)求异面直线BC 与MD 所成角的余弦值; (III)求直线CD 与平面ABD 所成角的正弦值.答案:(I)证明:由平面ABC ⊥平面ABD ,平面ABC 平面=ABD AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(II)解:取棱AC 的中点N ,连接,MN ND .又 因为M 为棱的中点AB ,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在t ∆R DAM 中,1=AM ,故22=13+DM AD AM 因为AD ⊥平面ABC ,故AD ⊥AC .在t ∆RDAN 中,1=AN ,故=DN .在等腰三角形DMN 中,=1MN ,可得12cos 26∠==MNDMN DM. 所以,异面直线BC 与MD (III)解:连接CM .因为ABC ∆为等边三角形,M为边AB 的中点,故CM ⊥AB , CM 又因为平面ABC ⊥平面ABD ,而⊂CM 平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角.在t ∆R CAD 中,4=.在t ∆R CMD中,sin CDM=∠=CM CD所以,直线CD 与平面ABD 所成角的正弦值为4.(18)(本小题满分13分)设{}n a 是等差数列,其前n 项和为n S (n N *∈);{}n b 是等比数列,公比大于0,其前n 项和为Tn (n N *∈).已知132435546122.b a a b a a ==+=+=+,b ,b ,b (I) 求n S 和n T ;(II)若12(...)4n n n n S T T T a b ++++=+,求正整数n 的值。
2018年天津高考文科数学(含参考答案)
![2018年天津高考文科数学(含参考答案)](https://img.taocdn.com/s3/m/6c480fbc6bec0975f465e231.png)
2018年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,再选涂其他答案标号。
2.本卷共8参考公式:·如果事件.h 表示棱柱的高.h 表示棱锥的高.一..(1|12}x x ∈-≤<R ,则()A B C = (A ){1,1}-(C ){1,0,1}-(D ){2,3,4}(2)设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为(A )6 (B )19 (C )21(D )45(3)设x ∈R ,则“38x >”是“||2x >”的 (A )充分而不必要条件(B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件(4)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为 (A )1(B )2(C )3(D )4(5)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为(A )a>(6(A (C (7),A B 两点(A )23x -(C )24x -(8)·OM 的值为 (A )15-(C )6-(D )0第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2.本卷共12小题,共110分。
二.填空题:本大题共6小题,每小题5分,共30分. (9)i 是虚数单位,复数67i12i++=__________.(10)已知函数f (x )=e x ln x ,f?′(x )为f (x )的导函数,则f?′(1)的值为__________. (11)如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱柱A 1–BB 1D 1D 的体积为__________. (12)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. (13)已知a ,b ∈R ,且a –3b +6=0,则2a +18b的最小值为__________. (14)已知a ∈R ,函数()22220220x x a x f x x x a x ⎧++-≤⎪=⎨-+->⎪⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.三.解答题:本大题共6小题,共80(15)(本小题满分13分)中抽取7名同学去某敬老院参加献爱心活动.(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,的卫生工作.(i(ii )设M (16在△ABC .已知b sin A =a cos(B –π6). (Ⅰ)求教(Ⅱ)设a (17如图,ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD =(Ⅰ)求证:AD ⊥BC ;(Ⅱ)求异面直线BC 与MD 所成角的余弦值; (Ⅲ)求直线CD 与平面ABD 所成角的正弦值. (18)(本小题满分13分)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n 项和为T n (n ∈N *).已知b 1=1,b 3=b 2+2,b 4=a 3+a 5,b 5=a 4+2a 6.(Ⅰ)求S n 和T n ;(Ⅱ)若S n +(T 1+T 2+…+T n )=a n +4b n ,求正整数n 的值. (19)(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的右顶点为A ,上顶点为B .已知椭圆的离心率为3,||AB =(I )求椭圆的方程;(II )设直线:(0)l y kx k =<与椭圆交于,P Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若BPM △(20)设函数(f x (I )若2t =(II )若d (III . 参考答案(1)C (5)D(9)4–i (12)2x y +三、解答题(15)本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.满分13分.(Ⅰ)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人. (Ⅱ)(i )解:从抽出的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.(ii )解:由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种.学@科网 所以,事件M 发生的概率为P (M )=521. (16)(Ⅰ)解:在△ABC中,由正弦定理sin sin a b A B =π)6-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tanB(Ⅱ)解:在△ABC 中,由余弦定理及a =2,c =3 由sin b A a =2cos22cosA =所以,sin(217- (17考13分.=AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC . M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或在Rt △DAM 中,AM =1,故DM AD ⊥平面ABC ,故AD ⊥AC . 在Rt △DAN 中,AN =1,故DN .在等腰三角形DMN 中,MN =1,可得12cos MNDMN DM ∠==. 所以,异面直线BC 与MD(Ⅲ)解:连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM 面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面AB D .所以,∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD .在Rt △CMD 中,sin CM CDM CD ∠==.所以,直线CD 与平面ABD . (18(I 因为0q >设等差数列16,d =从而11,a d ==(II 131(222)2n n n T n +++=+++-=由1(n n S T b ++可得1(1)222n n n n n n +++--=+整理得240,n --=解得(19(I||AB =,从而3,2a b ==.所以,椭圆的方程为22194x y +=. (II )解:设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>, 点Q 的坐标为11(,).x y --由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ , 从而21112[()]x x x x -=--,即215x x =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x =.由215x x =5(32)k =+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-.当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意.(20,又y =0. f (x故(f '当x (III )解:曲线y =f (x )与直线y =?(x ?t 2有三个互异的公共点等价于关于x 的方程(x ?t 2+d )(x ?t 2)(x ?t 2?d )+(x ?t 2有三个互异的实数解,令u =x ?t 2,可得u 3+(1?d 2)u =0. 设函数g (x )=x 3+(1?d 2)x ,则曲线y =f (x )与直线y =?(x ?t 2有三个互异的公共点等价于函数y =g (x )有三个零点.()g'x =3x 3+(1?d 2).当d 2≤1时,()g'x ≥0,这时()g'x 在R 上单调递增,不合题意.当d 2>1时,()g'x =0,解得x 1=,x 2.易得,g (x )在(?∞,x 1)上单调递增,在[x 1,x 2]上单调递减,在(x 2,+∞)上单调递增,g (x )的极大值g (x 1)=g (+g (x )若g (x 2若2()0,g x <12||,(d x g -<()y g x =所以d 10)(10,+∞。
2018年天津高考数学答案解析(文理两套)
![2018年天津高考数学答案解析(文理两套)](https://img.taocdn.com/s3/m/b4aaadcb28ea81c758f57849.png)
2018年高考天津卷数学试题详解1.设集合,,,则A. B.C. D.【答案】C【详解】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果.详解:由并集的定义可得:,结合交集的定义可知:.本题选择C选项.2.设变量满足约束条件则目标函数的最大值为A.6B.19C.21D.45【答案】C【详解】分析:由题意首先画出可行域,然后结合目标函数的详解式整理计算即可求得最终结果.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.3.设,则“”是“”的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【详解】分析:求解三次不等式和绝对值不等式,据此即可确定两条件的充分性和必要性是否成立即可.详解:求解不等式可得,求解绝对值不等式可得或,据此可知:“”是“”的充分而不必要条件.本题选择A选项.4.阅读如图所示的程序框图,运行相应的程序,若输入的值为20,则输出的值为A.1B.2C.3D.4【答案】B【详解】分析:由题意结合流程图运行程序即可求得输出的数值.详解:结合流程图运行程序如下:首先初始化数据:,,结果为整数,执行,,此时不满足;,结果不为整数,执行,此时不满足;,结果为整数,执行,,此时满足;跳出循环,输出.本题选择B选项.拓展:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.。
2018年天津卷文科数学高考试卷(原卷 答案)
![2018年天津卷文科数学高考试卷(原卷 答案)](https://img.taocdn.com/s3/m/b7964205abea998fcc22bcd126fff705cc175c20.png)
.本题选择 C 选项.
联立直线方程:
,可得点 A 的坐标为:
,
据此可知目标函数的最大值为:
.
本题选择 C 选项.
3. 【答案】A 【解析】分析:求解三次不等式和绝对值不等式,据此即可确定两条件的充分性和必要性是否成立即可.
详解:求解不等式 可得 ,
求解绝对值不等式
可得 或
,
据此可知:“ ”是“ ” 的充分而不必要条件.
详解:设双曲线的右焦点坐标为 (c>0),则
,
5 / 12
由
可得:
,
不妨设:
,双曲线的一条渐近线方程为
,
据此可得:
,
,
则
,则
,
双曲线的离心率:
,
据此可得: ,则双曲线的方程为
.
本题选择 A 选项. 点睛:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形 式,然后再根据 a,b,c,e 及渐近线之间的关系,求出 a,b 的值.如果已知双曲线的渐近线方程,求双曲线的标
函数的单调递减区间满足:
,
即
,
令 可得函数的一个单调递减区间为 ,选项 C,D 错误;
本题选择 A 选项. 点睛:本题主要考查三角函数的平移变换,三角函数的单调区间等知识,意在考查学生的转化能力和计算求解能力. 7. 【答案】A 【解析】分析:由题意首先求得 A,B 的坐标,然后利用点到直线距离公式求得 b 的值,之后求解 a 的值即可确定双 曲线方程.
13.【答案】
【解析】分析:由题意首先求得 a-3b 的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立
的条件.
2018高考天津文科数学带答案
![2018高考天津文科数学带答案](https://img.taocdn.com/s3/m/2850201a01f69e31433294c6.png)
2018高考天津文科数学带答案(A )1 (B )2 (C )3 (D )4 (5)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为(A )a b c >> (B )b a c >> (C )c b a >> (D )c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数(A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π 上单调递减(C )在区间[,]42ππ上单调递增 (D )在区间[,]2ππ 上单调递减(7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d+= 则双曲线的方程为(A )22139x y -= (B )22193x y -= (C )221412x y -= (D )221124x y -=(8)在如图的平面图形中,已知1.2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为(A )15- (B )9- (C )6- (D )0 第Ⅱ卷 注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2.本卷共12小题,共110分。
二.填空题:本大题共6小题,每小题5分,共30分.(9)i 是虚数单位,复数67i 12i++=__________.(10)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________.(11)如图,已知正方体ABCD –A 1B 1C 1D 1的棱长为1,则四棱柱A 1–BB 1D 1D 的体积为__________.(12)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. (13)已知a ,b ∈R ,且a –3b +6=0,则2a+18b的最小值为__________. (14)已知a ∈R ,函数()22220220x x a x f x x x a x ⎧++-≤⎪=⎨-+->⎪⎩,,,.若对任意x ∈[–3,+∞),f (x )≤x 恒成立,则a 的取值范围是__________.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.(16)(本小题满分13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B–π).6(Ⅰ)求教B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A–B)的值.(17)(本小题满分13分)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.(18)(本小题满分13分)设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n项和为T n (n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.(19)(本小题满分14分)设椭圆22221(0)x ya ba b+=>>的右顶点为A,上顶点为B.已知椭圆的离心率为53,||13AB=(I)求椭圆的方程;(II)设直线:(0)l y kx k=<与椭圆交于,P Q两点,l与直线AB交于点M,且点P,M均在第四象限.若BPM△的面积是BPQ △面积的2倍,求k 的值.(20)(本小题满分14分)设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列. (I )若20,1,t d == 求曲线()y f x =在点(0,(0))f 处的切线方程;(II )若3d =,求()f x 的极值; (III )若曲线()y f x = 与直线 12()63y x t =---有三个互异的公共点,求d 的取值范围.参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分40分.(1)C (2)C (3)A (4)B(5)D (6)A (7)A (8)C二、填空题:本题考查基本知识和基本运算.每小题5分,满分30分.(9)4–i (10)e (11)13(12)2220x y x +-= (13)14 (14)[18,2]三、解答题(15)本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.满分13分.(Ⅰ)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)解:从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.(ii)解:由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.学@科网所以,事件M发生的概率为P(M)=5.21(16)本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分.(Ⅰ)解:在△ABC 中,由正弦定理sin sin a bA B=,可得sin sin b A a B =,又由πsin cos()6b A a B =-,得πsin cos()6a B a B =-,即πsin cos()6B B =-,可得tan 3B (0π)B ∈,,可得B =π3. (Ⅱ)解:在△ABC 中,由余弦定理及a =2,c =3,B =π3,有2222cos 7b a c ac B =+-=,故b 7 由πsin cos()6b A a B =-,可得3sin 7A =.因为a <c ,故cos 7A =因此43sin 22sin cos A A A ==21cos22cos17A A =-=.所以,sin(2)sin 2cos cos2sin A B A B A B -=-=431133327-= (17)本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.满分13分.(Ⅰ)由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(Ⅱ)解:取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DM 22=13AD AM +因为AD ⊥平面ABC ,故AD ⊥AC .在Rt △DAN 中,AN =1,故DN 22=13AD AN +在等腰三角形DMN 中,MN =1,可得1132cos MNDMN DM ∠==.所以,异面直线BC 与MD 13(Ⅲ)解:连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM 3为平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面AB D .所以,∠CDM 为直线CD 与平面ABD 所成的角. 在Rt △CAD 中,CD. 在Rt △CMD中,sin CM CDM CD ∠==.所以,直线CD 与平面ABD 所成角的正弦值为.(18)本小题主要考查等差数列、等比数列的通项公式及前n 项和公式等基础知识.考查数列求和的基本方法和运算求解能力.满分13分. (I )解:设等比数列{}nb 的公比为q ,由b 1=1,b 3=b 2+2,可得220qq --=.因为0q >,可得2q =,故12n nb-=.所以122112nn n T -==--.设等差数列{}na 的公差为d .由435b a a =+,可得134a d +=.由5462ba a =+,可得131316,a d += 从而11,1ad ==,故nan=,所以(1)2nn n S+=.(II )解:由(I ),知13112(222)2 2.n n n T T T n n ++++=+++-=--由12()4n n n nST T T a b ++++=+可得11(1)2222n n n n n n ++++--=+,整理得2340,nn --= 解得1n =-(舍),或4n =.所以n 的值为4.学&科网(19)本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分14分. (I )解:设椭圆的焦距为2c ,由已知得2259c a =,又由222ab c =+,可得23.a b =由||AB ==,从而3,2a b ==.所以,椭圆的方程为22194x y +=.(II )解:设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210xx >>,点Q 的坐标为11(,).x y -- 由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ , 从而21112[()]xx x x -=--,即215xx =.易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y ,可得1294xk =+.由215xx =,2945(32)k k +=+,两边平方,整理得2182580kk ++=,解得89k =-,或12k =-. 当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x=,符合题意.所以,k 的值为12-. (20)本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能量,满分14分.(Ⅰ)解:由已知,可得f (x )=x (x −1)(x +1)=x 3−x ,故f ‵(x )=3x −1,因此f (0)=0,(0)f '=−1,又因为曲线y =f (x )在点(0, f (0))处的切线方程为y −f (0)=(0)f ' (x −0),故所求切线方程为x +y =0.(Ⅱ)解:由已知可得f (x )=(x −t 2+3)( x −t 2) (x −t 2−3)=( x −t 2)3−9( x −t 2)=x 3−3t 2x 2+(3t 22−9)x − t 22+9t 2. 故()f x '= 3x 3−6t 2x +3t 22−9.令()f x '=0,解得x = t 23,或x = t 23当x 变化时,f ‵(x ),f (x )的变化如下表:所以函数f (x )的极大值为f (t 23)=(3)3−9×(33f (t 2)3−9×)=−.(III )解:曲线y =f (x )与直线y =−(x −t 2)−有三个互异的公共点等价于关于x 的方程(x −t 2+d )(x −t2) (x −t 2−d )+ (x −t 2=0有三个互异的实数解,令u = x −t2,可得u 3+(1−d 2)u 设函数g (x )= x 3+(1−d 2)x,则曲线y =f (x )与直线y =−(x −t 2)−3数y =g (x )有三个零点.()g'x =3 x 3+(1−d 2).当d 2≤1时,()g'x ≥0,这时()g'x 在R 上单调递增,不合题意.当d 2>1时,()g'x =0,解得x 1=213d -x 2213d -.易得,g (x )在(−∞,x 1)上单调递增,在[x 1, x 2]上单调递减,在(x 2, +∞)上单调递增, g (x )的极大值g (x 1)= g (213d -32223(1)63d -+g (x )的极小值g (x 2)= g 213d -)=32223(1)3d -+若g (x 2) ≥0,由g (x )的单调性可知函数y =f (x )至多有两个零点,不合题意. 若2()0,g x <即322(1)27d->,也就是||10d >2||d x >,(||)||630,g d d =+> 且312||,(2||)6||2||636210630d x g d d d -<-=--+<-<,从而由()g x 的单调性,可知函数()y g x = 在区间1122(2||,),(,),(,||)d x x x x d -内各有一个零点,符合题意.所以-∞+∞d的取值范围是(,(10,).。
2018年普通高等学校招生全国统一考试(天津卷)文科数学 word版 含答案
![2018年普通高等学校招生全国统一考试(天津卷)文科数学 word版 含答案](https://img.taocdn.com/s3/m/e5c4e690cc7931b764ce153a.png)
2018年普通高等学校招生全国统一考试(天津卷)文科数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件 A ,B 互斥,那么 P (A ∪B )=P (A )+P (B ). ·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积,h 表示棱柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面积,h 表示棱锥的高. 一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-≤<R ,则()A B C =U I (A ){1,1}- (B ){0,1} (C ){1,0,1}-(D ){2,3,4}(2)设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为(A )6 (B )19 (C )21(D )45(3)设x ∈R ,则“38x >”是“||2x >” 的(A )充分而不必要条件(B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件(4)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为(A )1(B )2(C )3(D )4(5)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为(A )a b c >>(B )b a c >>(C )c b a >>(D )c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ 上单调递增 (D )在区间[,]2ππ 上单调递减(7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为(A )22139x y -=(B )22193x y -= (C )221412x y -=(D )221124x y -= 此卷只装订不密封班级 姓名 准考证号 考场号 座位号(8)在如图的平面图形中,已知 1.2,120OM ON MON ==∠=o,2,2,BM MA CN NA ==u u u u r u u u r u u u r u u u r则·BC OM u u u r u u u u r的值为(A )15-(B )9- (C )6-(D )0第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2018年高考真题——文科数学(天津卷)+Word版含答案
![2018年高考真题——文科数学(天津卷)+Word版含答案](https://img.taocdn.com/s3/m/245247056bec0975f465e2a4.png)
x y 5,
2x
y
4,
则目标函数
z
3x 5y 的最大值为
x y 1,
y 0,
(A)6 ( C) 21
( B) 19 ( D) 45
( 3)设 x R ,则“ x3 8 ”是“ |x | 2 ” 的
( A )充分而不必要条件
( B)必要而不充分条件
( C)充要条件
( D)既不充分也不必要条件
( 4)阅读如图所示的程序框图,运行相应的程序,若输入
N 的值为 20,则输出 T 的
值为
(A)1
( B) 2
( C) 3
( D) 4
1
( 5)已知 a log3 7 , b ( 1 )3 , c log 1 1 ,则 a,b, c 的大小关系为
2
4
35
( A ) a b c ( B) b a c
( C) c b a
( D) c a b
( 6)将函数 y sin(2 x ) 的图象向右平移
( A ) 15 (C) 6
(B) 9
(D)0
第Ⅱ卷
注意事项:
1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2.本卷共 12 小题,共 110 分。
二 . 填空题:本大题共 6 小题,每小题 5 分,共 30 分 .
( 9) i 是虚数单位,复数
6
7i =__________ .
1 2i
( 10)已知函数 f(x)=exln x, f ′x()为 f(x)的导函数,则 f ′( 1)的值为 __________.
( 11)如图,已知正方体 ABCD –A1B1C1D 1 的棱长为 1,则四棱柱 A1–BB1D 1D 的体积为
2018年高考文科数学天津卷及答案解析
![2018年高考文科数学天津卷及答案解析](https://img.taocdn.com/s3/m/b2d880714431b90d6d85c727.png)
数学试卷 第1页(共14页) 数学试卷 第2页(共14页)绝密★启用前天津市2018年普通高等学校招生全国统一考试文科数学第I 卷本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟. 参考公式:·如果事件A ,B 互斥,那么()()()P AB P A P B =+.·棱柱的体积公式V Sh =.其中S 表示棱柱的底面面积,h 表示棱柱的高.·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面积,h 表示棱锥的高.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-<R ≤,则()A B C =( )A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}2.设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩≤≤≤≥则目标函数35z x y =+的最大值为 ( )A .6B .19C .21D .45 3.设x ∈R ,则“38x >”是“||2x >”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为( )A .1B .2C .3D .4 5.已知37log 2a =,131()4b =,131log 5c =,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .c a b >>6.将函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数( )A .在区间,44ππ⎡⎤-⎢⎥⎣⎦上单调递增B .在区间,04π⎡⎤⎢⎥⎣⎦上单调递减C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增D .在区间,2π⎡⎤π⎢⎥⎣⎦上单调递减毕业学校_____________ 姓名________________ 考生号________________________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共14页) 数学试卷 第4页(共14页)7.已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( )A .22139x y -=B .22193x y -= C .221412x y -=D .221124x y -= 8.在如图的平面图形中,已知1OM =,2ON =,120MON ∠=︒,2BM MA =,2CN NA =则BC OM 的值为( )A .-15B .-9C .-6D .0第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.9.i 是虚数单位,复数67i12i+=+ . 10.已知函数()e x f x lnx =,()f x '为()f x 的导函数,则(1)f '的值为 . 11.如图,已知正方体1111–ABCD A B C D 的棱长为1,则四棱柱111–A BB D D 的体积为 .12.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为 .13.已知a ,b ∈R ,且–360a b +=,则218a b+的最小值为 . 14.已知a ∈R ,函数2222,0,()22,0x x a x f x x x a x ⎧++-⎪=⎨-+->⎪⎩≤.若对任意)[3,x ∈-+∞,()||f x x ≤恒成立,则a 的取值范围是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动. (Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作。
2018年天津文科数学高考试卷(word版含答案)
![2018年天津文科数学高考试卷(word版含答案)](https://img.taocdn.com/s3/m/634f46473b3567ec102d8a24.png)
绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件 A ,B 互斥,那么 P (A ∪B )=P (A )+P (B ). ·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积,h 表示棱柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面积,h 表示棱锥的高. 一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-≤<R ,则()A B C =(A ){1,1}-(B ){0,1}(C ){1,0,1}-(D ){2,3,4}(2)设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为(A )6 (B )19 (C )21(D )45(3)设x ∈R ,则“38x >”是“||2x >” 的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件(D )既不充分也不必要条件(4)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为(A )1(B )2(C )3(D )4(5)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为(A )a b c >> (B )b a c >> (C )c b a >>(D )c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ 上单调递增 (D )在区间[,]2ππ 上单调递减(7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为(A )22139x y -=(B )22193x y -=(C )221412x y -=(D )221124x y -= (8)在如图的平面图形中,已知 1.2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为(A )15- (B )9- (C )6-(D )0第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
精品解析:2018年全国普通高等学校招生统一考试文科数学(天津卷)(原卷版)
![精品解析:2018年全国普通高等学校招生统一考试文科数学(天津卷)(原卷版)](https://img.taocdn.com/s3/m/fdfe3218b4daa58da1114a11.png)
2018年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A,B互斥,那么P(A∪B)=P(A)+P(B).·棱柱的体积公式V=Sh. 其中S表示棱柱的底面面积,h表示棱柱的高.·棱锥的体积公式,其中表示棱锥的底面积,h表示棱锥的高.一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,,则A. B.C. D.2. 设变量满足约束条件则目标函数的最大值为A. 6B. 19C. 21D. 453. 设,则“”是“” 的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件4. 阅读如图所示的程序框图,运行相应的程序,若输入的值为20,则输出的值为学。
科。
网...学。
科。
网...A. 1B. 2C. 3D. 45. 已知,则的大小关系为A. B. C. D.6. 将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减7. 已知双曲线的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且则双曲线的方程为A. B.C. D.8. 在如图的平面图形中,已知,则的值为A. B.C. D. 0第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2018年高考文科数学天津卷-答案
![2018年高考文科数学天津卷-答案](https://img.taocdn.com/s3/m/c0eab3c469eae009591bec6f.png)
天津市2018年普通高等学校招生全国统一考试文科数学答案解析一、选择题 1.【答案】C【解析】由于1,0,1,2,},4{3A B =-U ,所以{()1,0,1}A B C -=U I . 【考点】集合的运算 2.【答案】C【解析】做出不等式组5,24,1,0x y x y x y y +⎧⎪-⎪⎨-+⎪⎪⎩≤≤≤≥,所表示的可行域,其是由(00)O ,,(2,0)A ,(3,2)B ,(2,3)C ,(0,1)D 围成的五边形区域(包括边界),对于目标函数35x x y =+;结合图象可知过点C 时取得最大值,最大值为325321⨯+⨯=. 【考点】简单的线性规划 3.【答案】A【解析】由38>解得2x >;由||2x >解得2x <-或2x >,所以“8x >”是“||2x >”的充分而不必要条件。
【考点】不等式的求解、充分必要条件的判定 4.【答案】B【解析】输人2020N i T ===,,,此时10Ni=是整数,则有011213T i =+==+=,,此时不满足条件5i ≥;接下来有203N i =不是整数,则有314i =+=,此时.不满足条件5i ≥;接下来有5N i =是整数,则有112415T i =+==+=,,此时满足条件5i ≥,结束循环,输出2T =. 【考点】算法的程序框图.模拟程序框图的运行 5.【答案】D【解析】根据函数的图象与性质可知13133331711log log 5log log 315244⎛⎫⎛⎫=>>==> ⎪ ⎪⎝⎭⎝⎭,则c a b >>. 【考点】代数值的大小比较、函数的图象与性质 6.【答案】A【解析】将函数πsin 25y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π10个单位长度得到ππsin 2sin 2105y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦由ππ2π22π+,22k x k k -+∈Z ≤≤,解得ππππ+,44k x k k -+∈Z ≤≤,当0k =时,则知函数在区间ππ,44⎡⎤-⎢⎥⎣⎦上单调递增.【考点】三角函数图象的平移变换、三角函数的图象与性质 7.【答案】A【解析】由双曲线的离心率2c e a==,可得2c a =,则知b ,将2x a =代人双曲线222213x y a a -=,可得3y a =±,设点(2,3)(2,3)A d a B a a -,0y +=,可得12d d ====,,所以126d d +=+==,解得a =,故双曲线的方程为22139x y -=. 【考点】双曲线的方程与几何性质、点到直线的距离公式 8.【答案】C【解析】根据题目可得:22((33)3()33()33321cos120=31=6BC OM AC AB OM AN AM OM AN AM OMMN OM ON OM OM ON OM OM =-=-=-==-=-=⨯⨯⨯︒⨯-u u u r u u u u r u u u r u u u r u u u u r u u u r u u u u r u u u u r u u u r u u u u r u u u u rg g g g u u u u u r u u u u r u u u u r u u u r u u u u r u u u u r u u u r u u u u rg g g ) 【考点】平面向量的线性运算与数量积 二、填空题 9.【答案】4i -【解析】由题可得67i (67i)(12i)205i 4i 12i(12i)(12i)5++--===-++-.【考点】复数的四则运算 10.【答案】e【解析】由于()e ln x f x x =则有1()e ln e x x f x x x '=+g ,所以111(1)e ln1e e 1f '=+=g g .【考点】导数及其应用、函数值的求解11.13【答案】 【解析】由题可知四棱锥111A BB D D -,1,则四棱锥111A BB D D -的体为11133V =⨯=. 【考点】空间几何体的性质、空间几何体的体积 12.【答案】2220x y x +-=【解析】由于圆经过三点(0,0)(1,1)(2,0)O A B ,,,可知OAAB ⊥,则知OB 为圆的直径,则圆心(1,0)C ,半径1r =,可得圆的方程为22(1)1x y -+=,即2220x y x +-=. 【考点】圆的方程13.【答案】14【解析】由于360a b -+=;可得366a -=-,结合基本不等式可得33112222284a a b b --+=+==g ≥,当且仅当322a b -=,即33a b =-=-.【考点】基本不等式14.【答案】1,28⎡⎤⎢⎥⎣⎦【解析】当[]3,0-时,由()||f x x ≤恒成立可得22x x a x ++-≤-即232x x a ++-≤0,结合图象可知99200020a a -+-⎧⎨++-⎩≤≤,解得2a ≤;当·(0,)x ∈+∞时,由()||f x x ≤恒成立可得222x x a x -+-≤,即²20x x a -+≥,结合图象可知2412(1)041a ⨯⨯--⨯≥,解得a 18a ≥;综上分析可得128a ≤≤.【考点】分段函数、函数的图象与性质、不等式恒成立 三、解答题15.【答案】(Ⅰ)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比为3:2:2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人. (Ⅱ)(ⅰ)解:从抽出的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.(ⅱ)解:由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种. 所以,事件M 发生的概率为5(2)1P M =.【考点】随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识16.【答案】(Ⅰ)解:在ABC △中,由正弦定理sin sin a bA B=,可得sin sin b A a B =,又由πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭,得πsin cos 6a B a B ⎛⎫=- ⎪⎝⎭,即πsin cos 6B B ⎛⎫=- ⎪⎝⎭,可得tan B(0π)B ∈,,可得π3B =. (Ⅱ)解:在ABC △中,由余弦定理及23π3a c B ===,,,有2222cos 7b a c ac B =+-=,故b =.由πsin cos 6b A a B ⎛⎫=- ⎪⎝⎭,可得sin A =.因为a c <,故cos A =sin 22sin cos A A A =,21cos22cos 17A A =-=.所以,11sin(2)sin 2cos cos 2sin 27A B A B A B -=-=-= 【考点】考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识17.【答案】(Ⅰ)由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(Ⅱ)解:取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,1AM =,故DM =AD ⊥平面ABC ,故AD AC ⊥. 在Rt △DAN 中,1AN =,故DN =在等腰三角形DMN 中,1MN =,可得12cos MNDMN DM ∠==. 所以,异面直线BC 与MD(Ⅲ)解:连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB,CM =面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面AB D .所以,∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,4CD =.在Rt △CMD中,sin CM CDM CD ∠=. 所以,直线CD 与平面ABD. 【考点】异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识 18.【答案】(I )解:设等比数列{}n b 的公比为q ,由13212b b b ==+,,可得220q q --=.因为0q >,可得2q =,故12n nb -=.所以122112nn n T -==--.设等差数列{}n a 的公差为d .由435b a a =+,可得134a d +=.由5462b a a =+,可得131316,a d += 从而11,1a d ==,故n a n =,所以(1)2n n n S +=. (II )解:由(I ),知13112(222)2 2.n n n T T T n n ++++=+++-=--L L由12()4n n n n S T T T a b ++++=+L 可得11(1)2222n n n n n n ++++--=+, 整理得2340,n n --= 解得1n =-(舍),或4n =.所以n 的值为4. 【考点】等差数列、等比数列的通项公式及前n 项和公式等基础知识19.【答案】(I )解:设椭圆的焦距为2c ,由已知得2259c a=,又由222a b c =+,可得23.a b =由||AB ,从而3,2a b ==.所以,椭圆的方程为22194x y +=. (II )解:设点P 的坐标为11(,)x y ,点M 的坐标为22(,)x y ,由题意,210x x >>, 点Q 的坐标为11(,).x y -- 由BPM △的面积是BPQ △面积的2倍,可得||=2||PM PQ , 从而21112[()]x x x x -=--,即215x x =. 易知直线AB 的方程为236x y +=,由方程组236,,x y y kx +=⎧⎨=⎩消去y ,可得2632x k =+.由方程组221,94,x y y kx ⎧+⎪=⎨⎪=⎩消去y,可得1x =.由215x x =5(32)k =+,两边平方,整理得2182580k k ++=,解得89k =-,或12k =-. 当89k =-时,290x =-<,不合题意,舍去;当12k =-时,212x =,1125x =,符合题意. 所以,k 的值为12-.【考点】标准方程和几何性质、直线方程等基础知识,用代数方法研究圆锥曲线的性质,运算求解能力,以及用方程思想解决问题的能力20.【答案】(Ⅰ)解:由已知,可得3()(11))(x f x x x x x +=-=-,故()31f x x '=-,因此(0)0f =,(0)1f '=-,又因为曲线()y f x =在点(0, f (0))处的切线方程为()(0)0(0)f y f x -'-=,故所求切线方程为0x y +=.(Ⅱ)解:由已知可得33222222222222()3 39 3399()()()()().)(f x x t x t x t x t x t x t x t x t t =-+---=---=-+--+故3222363()9x t x t f x =+'--.令()0f x '=,解得2x t =2x t =当x所以函数f (x )的极大值为23((9(f t =-⨯=23(9f t =-⨯=(III )解:曲线()y f x =与直线2()y x t =---有三个互异的公共点等价于关于x 的方程2222 ()()()()0x t d xt x t d x t -+---+-+有三个互异的实数解,令2u x t =-,可得32()01u d u ++=-.设函数()321()g x x d x =+-+()y f x =与直线2()y x t =---函数()y g x =有三个零点.32()()31g d 'x x =+-.当21d ≤时,()0g'x ≥,这时()g'x 在R 上单调递增,不合题意.当21d >时,()0g'x =,解得1x =,2x =. 易得,g (x )在(−∞,x 1)上单调递增,在[x 1, x 2]上单调递减,在(x 2, +∞)上单调递增,g (x )的极大值1)0(g x g ⎛=> ⎝=.g (x )的极小值32221)9()g g d x -=+=若2()0g x ≥,由g (x )的单调性可知函数()y f x =至多有两个零点,不合题意.若2()0,g x <即322(1)27d->,也就是||d >2||d x >,(||)||0,g d d =+ 且312||,(2||)6||2||0d x g d d d -<-=--+-<,从而由()g x 的单调性,可知函数()y g x =在区间1122(2||,),(,),(,||)d x x x x d -内各有一个零点,符合题意所以d 的取值范围是(,).-∞+∞U【考点】导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,函数思想和分类讨论思想,综合分析问题和解决问题的能力。
2018天津高考文科数学真题答案解析(可编辑)
![2018天津高考文科数学真题答案解析(可编辑)](https://img.taocdn.com/s3/m/3aa82461a26925c52cc5bf31.png)
CN 2 NA ,则 BC OM的值为
(A)-15 答案:C 解析:如图所示建系,
O( 0 , 0 M ), ( 1 ,N 0 ) , ( 1, 3)
(B)-9
(C)-6
(D)0
设 A( xA , yA ), B( xB , yB ), C ( xC , yC )
B M 2 M A
( 1 xB , yB ) 2x( yA , A 1
1 8
1 综上, a Î [ , 2] 8 二、解答题:本大题共 6 小题,共 80 分.解答应写出文字说明,证明过程或演算
步骤. (15)(本小题满分 13 分) 已知某校甲、乙、丙三个年级的学生志愿者人数分别为 240,160,160.现采用分 层抽样的方法从中抽取 7 名同学去某敬老院参加献爱心活动. (I)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人? (II)设抽出的 7 名同学分别用 A,B,C,D,E,F,G 表示,现从中随机抽 取 2 名同学承担敬老院的卫生工作. (i)试用所给字母列举出所有可能的抽取结果; (ii)设 M 为事件“抽取的 2 名同学来自同一年级” ,求事件 M 发生的概
(ii)解:由(I),不妨设抽出的 7 名同学中,来自甲年级的是 A,B,C,来自乙年 级的是 D,E,来自丙年级的是 F,G,则从抽出的 7 名同学中随机抽取的 2 名 同学来自同一年级的所有可能结果为 A,B ,A,C ,B ,C ,D ,E ,F ,G , 共 5 种. 所以,事件 M 发生的概率 P(M ) (16)(本小题满分 13 分)
.
答案:
1 3
解析:连 A1C1 交 B1 D1 于点 O, VA1- BB1D1D =
1 1 2 鬃 A1O S B1BDD1 = 创 (1? 2) 3 3 2
2018天津高考文科数学试题及答案
![2018天津高考文科数学试题及答案](https://img.taocdn.com/s3/m/8548c217ad02de80d4d8404c.png)
2018年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件A,B 互斥,那么P(A∪B)=P(A)+P(B).·棱柱的体积公式V=Sh. 其中S表示棱柱的底面面积,h表示棱柱的高.(A)1 (B)2 (C)3 (D)4(A)-15 (B)-9 (C)-6 (D)0第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2.本卷共12小题,共110分。
二.填空题:本大题共6小题,每小题5分,共30分.三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.(16)(本小题满分13分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知bsinA=acos(B–π/6).(Ⅰ)求教B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A–B)的值.(17)(本小题满分13分)如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分40分.(1)C (2)C (3)A (4)B(5)D (6)A (7)A (8)C二、填空题:本题考查基本知识和基本运算.每小题5分,满分30分.(17)本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.满分13分.(Ⅰ)由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)解:取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN(或其补角)为异面直线BC与MD所成的角.(20)本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能量,满分14分..'.。
2018高考天津文科数学带答案
![2018高考天津文科数学带答案](https://img.taocdn.com/s3/m/1a631f530b4c2e3f572763e7.png)
绝密★启用前2018年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:·如果事件 A ,B 互斥,那么 P (A ∪B )=P (A )+P (B ).·棱柱的体积公式V =Sh . 其中S 表示棱柱的底面面积,h 表示棱柱的高. ·棱锥的体积公式13V Sh =,其中S 表示棱锥的底面积,h 表示棱锥的高. 一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x x =∈-≤<R ,则()AB C = (A ){1,1}-(B ){0,1} (C ){1,0,1}- (D ){2,3,4}(2)设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为 (A )6 (B )19(C )21(D )45 (3)设x ∈R ,则“38x >”是“||2x >” 的(A )充分而不必要条件(B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件(4)阅读如图所示的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为(A )1 (B )2 (C )3 (D )4(5)已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为 (A )a b c >> (B )b a c >>(C )c b a >> (D )c a b >> (6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 (A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π 上单调递减 (C )在区间[,]42ππ 上单调递增 (D )在区间[,]2ππ 上单调递减 (7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为(A )22139x y -= (B )22193x y -= (C )221412x y -=(D )221124x y -= (8)在如图的平面图形中,已知 1.2,120OM ON MON ==∠=,2,2,BM MA CN NA ==则·BC OM 的值为 (A )15-(B )9- (C )6-(D )0第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在答题卡上。
2018年天津市高考文科数学试题及答案
![2018年天津市高考文科数学试题及答案](https://img.taocdn.com/s3/m/ceaee6f8112de2bd960590c69ec3d5bbfd0adae1.png)
2018年天津市⾼考⽂科数学试题及答案绝密★启⽤前2018年普通⾼等学校招⽣全国统⼀考试(天津卷)数学(⽂史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分,共150分,考试⽤时120分钟。
第Ⅰ卷1⾄2页,第Ⅱ卷3⾄5页。
答卷前,考⽣务必将⾃⼰的姓名、准考证号填写在答题考上,并在规定位置粘贴考试⽤条形码。
答卷时,考⽣务必将答案涂写在答题卡上,答在试卷上的⽆效。
考试结束后,将本试卷和答题卡⼀并交回。
祝各位考⽣考试顺利!第Ⅰ卷注意事项:1.每⼩题选出答案后,⽤铅笔将答题卡上对应题⽬的答案标号涂⿊。
如需改动,⽤橡⽪擦⼲净后,再选涂其他答案标号。
2.本卷共8⼩题,每⼩题5分,共40分。
参考公式:·如果事件A,B互斥,那么P(A∪B)=P(A)+P(B).·棱柱的体积公式V=Sh.其中S表⽰棱柱的底⾯⾯积,h表⽰棱柱的⾼.·棱锥的体积公式,其中表⽰棱锥的底⾯积,h表⽰棱锥的⾼.⼀.选择题:在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.(1)设集合,,,则(A)(B)(C)(D)(2)设变量满⾜约束条件则⽬标函数的最⼤值为(A)6(B)19(C)21(D)45(3)设,则“”是“”的(A)充分⽽不必要条件(B)必要⽽不充分条件(C)充要条件(D)既不充分也不必要条件(4)阅读如图所⽰的程序框图,运⾏相应的程序,若输⼊的值为20,则输出的值为(A)1(B)2(C)3(D)4(5)已知,则的⼤⼩关系为(A)(B)(C)(D)(6)将函数的图象向右平移个单位长度,所得图象对应的函数(A)在区间上单调递增(B)在区间上单调递减(C)在区间上单调递增(D)在区间上单调递减(7)已知双曲线的离⼼率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同⼀条渐近线的距离分别为和,且则双曲线的⽅程为(A)(B)(C)(D)(8)在如图的平⾯图形中,已知,则的值为(A)(B)(C)(D)0第Ⅱ卷注意事项:1.⽤⿊⾊墨⽔的钢笔或签字笔将答案写在答题卡上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2018年高考天津卷文科数学试题详解
1. 设集合,,,则
A.
B.
C.
D.
【答案】C
【详解】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:
, 结合交集的定义可知:
. 本题选择C 选项.
拓展:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力. 2. 设变量满足约束条件则目标函数的最大值为 A. 6 B. 19
C. 21
D. 45
【答案】C
【详解】分析:由题意首先画出可行域,然后结合目标函数的详解式整理计算即可求得最终结果.
详解:绘制不等式组表示的平面区域如图所示,
结合目标函数的几何意义可知目标函数在点A 处取得最大值, 联立直线方程:,可得点A 的坐标为:, 据此可知目标函数的最大值为:
. 本题选择C 选项
.
3. 设,则―”是“‖ 的。